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Abstract

Generalization to unseen environments is a significant challenge in the field of1

robotics and control. In this work, we focus on contextual reinforcement learning,2

where the agent acts within environments with varying contexts, such as self-driving3

cars or quadrupedal robots that need to operate in different terrains or weather4

conditions than they were trained for. We tackle the critical task of generalizing to5

out-of-distribution (OOD) contexts, without access to explicit context information6

at test time. Recent work has addressed this problem by training a context encoder7

and a history adaptation module in separate stages. While promising, this two-phase8

approach is cumbersome to implement and train. We simplify the methodology and9

introduce SPARC, a single-phase adaptation method for reinforcement learning in10

contextual environments. We evaluate SPARC on varying contexts within MuJoCo11

environments and the high-fidelity racing simulator Gran Turismo 7 and find that it12

achieves competitive or superior performance on OOD generalization.13

1 Introduction14

Deep reinforcement learning (RL) has demonstrated successful performance in fields such as robotics15

[23], nuclear fusion [7], and high-fidelity racing simulators [32]. Despite these successes, generalizing16

RL agents to unseen environments with varying contextual factors remains a critical challenge. In17

real-world applications, environmental conditions such as friction, wind speed, or vehicle dynamics18

can change unpredictably, often leading to catastrophic failures when the agent encounters out-of-19

distribution (OOD) contexts that it was not trained for.20

A promising approach to tackle this issue is context-adaptive reinforcement learning [3], where21

agents infer and adapt to latent environmental factors by leveraging past interactions. Rapid Motor22

Adaptation (RMA) [15] is a notable framework in this direction, introducing a two-phase learning23

procedure. In the first phase, a context encoder is trained using privileged information about24

the environment. The second phase then employs supervised learning to train a history-based25

adaptation module, enabling the agent to infer latent context solely from past state-action trajectories.26

While effective, this two-phase approach introduces complexity during implementation and training;27

requiring separate optimization stages and increasing the risk of error propagation.28

In this work, we introduce SPARC (Single-Phase Adaptation for Reinforcement learning in29

Contextual environments), a novel method that unifies context encoding and adaptation into a30

single training phase, as illustrated in Figure 1. SPARC is straightforward to implement and naturally31

integrates with off-policy training as well as asynchronous distributed computation on cloud-based32

rollout workers. Algorithms such as SPARC and RMA are advantageous when explicit context labels33

are unavailable at test time, a frequent limitation in real-world robotic deployment. By collapsing34
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Figure 1: Overview of SPARC, which trains an expert policy πex and an adapter policy πad

simultaneously in a single phase. The adapter policy does not require access to privileged contextual
information, facilitating deployment in real-world scenarios. Observations o, contextual information
c, and a history of recent observation-action pairs h are passed into the networks. Latent encodings ℓ
and z are concatenated and passed to the final layers, producing action a. Similar to RMA [15], πex

is trained with pure RL, while the History Adapter ϕ of πad is trained with supervised learning to
regress its encoding ϕ(h) = ẑ to the Context Encoder’s output ψ(c) = z. Note that since SPARC
trains in one phase, the context encoding z will be a moving target, instead of a traditionally fixed
target [19, 15]. Trainable modules are in green. The black modules regularly hard-copy weights from
their counterpart in the expert policy.

adaptation into a single training loop, SPARC is naturally compatible with on-device continual35

learning—especially applicable in settings where retraining in the cloud is prohibitive due to privacy36

or latency constraints. In contrast, RMA is unable to perform continual learning in a straightforward37

manner.38

We evaluate SPARC on two distinct domains: (1) a set of MuJoCo environments featuring strongly39

varying environment dynamics through the use of wind perturbations, and (2) a high-fidelity racing40

simulator, Gran Turismo 7, where agents must adapt to different car models on multiple tracks.41

SPARC achieves state-of-the-art generalization performance and consistently produces Pareto-optimal42

policies when evaluated across multiple desiderata.43

Our contributions are summarized as follows.44

• We introduce SPARC, a novel single-phase training method for context-adaptive reinforce-45

ment learning, eliminating the need for separate encoder pre-training.46

• We empirically validate SPARC’s generalization ability across OOD environments,47

demonstrating competitive or superior performance compared to existing approaches.48

• We perform and analyze several ablation studies, examining key design choices such as49

history length and the selection of rollout policy during training.50

2 Related Work51

Generalization to out-of-distribution (OOD) environments is a fundamental challenge in reinforcement52

learning (RL), hindering its deployment in real-world applications, particularly in robotics and control53

tasks [14]. The learning dynamics of RL methods often struggle to adapt to novel environmental54

conditions [22]. Contextual reinforcement learning [17, 3] provides a framework to address this55

problem by training agents capable of adapting to varying environmental factors.56

2.1 Contextual RL57

Robust RL often depends on effective contextual adaptation. Recent work has explored context-aware58

policies that integrate contextual cues into decision-making [4, 5, 16] or employ world models to59

capture environment dynamics [20, 26]. In addition, several studies have focused on modifying60

the environment itself—such as by varying gravity or adjusting agent component dimensions—to61

promote the development of more versatile controllers [3, 21].62
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2.2 What if the Agent has No Access to Context?63

In many real-world scenarios, agents are deprived of explicit contextual information during64

deployment. In these cases, the agent must infer the relevant environmental factors indirectly.65

For instance, Lee et al. [19] advanced robust legged locomotion by introducing a two-phase learning66

process. It first trains an expert policy, which includes a context encoder using the privileged67

contextual information. The second phase involves an adapter policy that tries to imitate the expert’s68

action, while a history-based adaptation component aims to minimize the difference between its69

history encoding and the expert’s context encoding. Rapid Motor Adaptation (RMA) [15] refines70

this methodology by only imitating the context encoding, not the action. The adapter policy can be71

deployed, as it does not require access to the privileged context. See Section 4.1 for further details.72

2.3 Other Techniques for Generalization73

Several complementary approaches have been proposed to enhance generalization. Domain74

randomization [30, 25] and procedurally generated environments [6, 9] introduce diversity during75

training, thereby encouraging robust policy behavior. We employ domain randomization by default76

in our experiments. System identification methods [33]—whether performed explicitly or through77

implicit online adaptation, as in SPARC and RMA—also contribute to improved performance under78

varying conditions. Moreover, techniques such as data augmentation [18, 12] and masking [10, 13]79

have been shown to further enhance generalization, particularly for pixel-based inputs.80

Meta-reinforcement learning offers an alternative paradigm for learning adaptable policies [31,81

27]. Foundational algorithms like Model-Agnostic Meta-Learning (MAML) [8] enable rapid task82

adaptation, and emerging methods using hypernetworks can generate task-specific policy parameters83

on the fly [2, 28, 4]. Although many of these approaches involve multi-phase training, they underscore84

the importance of adaptability—a principle that our single-phase approach, SPARC, aims to simplify.85

3 Background86

In this section, we formalize the underlying problem framework and examine the core techniques87

that form the foundation for SPARC, enabling context-adaptive behavior.88

3.1 Problem Formulation89

We consider a contextual Markov decision process (CMDP) [11, 1], redefined by Kirk et al. [14] as a90

tuple M = (S,A,O, C, R, T,O, ps, pc) where:91

• S is the state space,92

• A is the action space,93

• O is the observation space,94

• C is the context space,95

• R : S ×A× C → R is the reward function,96

• T : S ×A×C → ∆(S) defines the stochastic transition dynamics conditioned on a context97

c ∈ C,98

• O : S × C → O is the observation function,99

• ps : C → ∆(S) is the distribution over initial states s0 given a context c ∈ C, and100

• pc ∈ ∆(C) is the distribution over contexts.101

During training, the agent will be exposed to a certain subset of contexts CIND ⊂ C, which are102

in-distribution (IND), short for within the training distribution. To test generalization ability, we hold103

out a different subset of contexts COOD ⊂ C that are out-of-distribution (OOD). We ensure that there104

is no overlap: CIND ∩ COOD = ∅. This separation defines two sub-CMDPs: MIND and MOOD. We105

specify the context distributions to be uniform over their respective subsets:106
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pic(c) =

{
1

|Ci| if c ∈ Ci
0 otherwise,

for i ∈ {IND, OOD}.107

In our setting, the agents do not observe c ∈ COOD at test time and must infer it through other means,108

for example from their interaction history. However, for comparison, we will also present results of109

an expert policy that does have access to the privileged context information c ∈ COOD at evaluation.110

Our objective is to train a policy π that maximizes expected return across both in-distribution (IND)111

and out-of-distribution (OOD) contexts, while only having access to privileged contextual information112

c ∈ CIND during training.113

3.2 Pure History-based Policies114

History-based policies have emerged as a powerful approach in reinforcement learning for inferring115

hidden environmental context from past interactions. Instead of relying solely on the current116

observation ot ∈ O, these policies condition action selection on a sequence of recent observation-117

action pairs. Let H be the history length and H = (O×A)H the space of possible histories. For time118

t we define the corresponding history ht as119

ht = (ot−H:t−1, at−H:t−1) ∈ H.
This history input results in policies of the form π : O × H → ∆(A). Including the history may120

enable the agent to implicitly capture latent context information c ∈ C, as the context c may influence121

the environment dynamics.122

A pure history-based approach is presented by Lee et al. [19] as a strong baseline. In their work123

on quadrupedal locomotion over challenging terrains, the authors demonstrate that leveraging an124

extended history of proprioceptive data via a temporal convolutional network (TCN) enables robust125

control in diverse settings.126

4 Method127

4.1 Making use of Contextual Information128

The absence of privileged contextual information at test time does not prevent its use during the129

training process. Training with privileged information has been shown to be particularly useful for130

generalizing to OOD contexts. In that regard, the approaches by Lee et al. [19] and Kumar et al. [15]131

are almost equivalent; we will focus on Rapid Motor Adaptation (RMA) [15]. In RMA, two policies132

are trained in separate phases. First, the expert policy133

πex
θ : O × C → ∆(A)

which includes a context encoder ψ(·) with access to the environment’s privileged information, is134

trained using a reinforcement learning algorithm. While the original RMA work uses PPO [29], we135

make use of the more sample-efficient QR-SAC, proven to work well in Gran Turismo [32].136

Once training of πex
θ has converged to a sufficient level, the best model checkpoint πex

θ∗ needs to be137

determined. This selection requires careful evaluation across multiple dimensions [24], a cumbersome138

intermediate step that SPARC skips, as it is trained in a single phase.139

The second stage of RMA trains the adapter policy140

πad : O ×H → ∆(A)

while keeping the expert policy πex
θ∗ frozen. In the adapter policy, a history adapter ϕθ processes a141

sequence of recent observation-action pairs ht to produce a latent representation ẑt = ϕθ(ht). The142

history adapter is trained by minimizing the distance between ẑt = ϕθ(ht) and zt = ψθ∗(ct) through143

the mean squared error loss:144

Lϕ(ct, ht) = Ect,ht
[(zt − ẑt)

2]. (1)

The history-inferred latent context ẑt is then integrated into the policy. By conditioning on both the145

current observation ot and the latent context ẑt, the policy can adjust its behavior to handle unseen or146

varying environmental conditions.147
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Table 1: Performance summary on IND and OOD settings across all tracks, averaged over 3 seeds.
Results show the mean built-in AI (BIAI) ratio across cars (ratio = the RL agent’s lap time divided
by the BIAI lap time, lower is better). If an algorithm fails to complete a lap with a specific vehicle,
it will receive a BIAI ratio of 2.0 for that car model. Additionally, we show the percentage of cars
with a successfully completed lap (± s.e.m.). We bold the best out-of-distribution results across
algorithms without access to context at test time (all except Oracle, see Table 3). We include IND
results for reference. SPARC achieves the fastest OOD lap times on 2/3 race tracks and completes the
most laps with OOD vehicles overall.

Race Track Method IND OOD

BIAI ratio (↓) Success % (↑) BIAI ratio (↓) Success % (↑)

Grand-Valley

Only Obs 0.9929 ± 0.0007 100.00 ± 0.00 1.0641 ± 0.0058 95.15 ± 0.56
History Input 0.9904 ± 0.0001 99.68 ± 0.08 1.0826 ± 0.0203 92.56 ± 2.12
RMA 1.0046 ± 0.0054 99.84 ± 0.16 1.0560 ± 0.0134 97.09 ± 1.12
SPARC 0.9999 ± 0.0061 99.76 ± 0.14 1.0491 ± 0.0055 98.06 ± 0.56
Oracle 0.9884 ± 0.0005 100.00 ± 0.00 1.1348 ± 0.0137 90.94 ± 2.27

Nürburgring

Only Obs 1.0202 ± 0.0163 95.87 ± 1.48 1.1745 ± 0.0129 81.88 ± 1.17
History Input 0.9984 ± 0.0030 97.49 ± 0.32 1.1204 ± 0.0132 86.73 ± 1.29
RMA 1.1085 ± 0.0195 88.03 ± 1.76 1.2995 ± 0.0306 77.99 ± 3.19
SPARC 1.0254 ± 0.0061 95.87 ± 0.49 1.1199 ± 0.0076 89.00 ± 0.86
Oracle 0.9804 ± 0.0027 99.27 ± 0.28 1.1182 ± 0.0215 89.64 ± 2.53

Catalunya-Rallycross

Only Obs 0.9319 ± 0.0009 100.00 ± 0.00 0.9560 ± 0.0006 100.00 ± 0.00
History Input 0.9294 ± 0.0001 100.00 ± 0.00 0.9553 ± 0.0068 99.33 ± 0.67
RMA 0.9445 ± 0.0010 99.82 ± 0.18 0.9667 ± 0.0030 100.00 ± 0.00
SPARC 0.9432 ± 0.0027 100.00 ± 0.00 0.9631 ± 0.0026 100.00 ± 0.00
Oracle 0.9282 ± 0.0001 100.00 ± 0.00 1.1354 ± 0.0595 85.33 ± 5.81

4.2 Single-Phase Adaptation148

Our algorithm illustrated in Figure 1, SPARC, greatly simplifies the implementation and training149

of agents capable of generalizing to out-of-distribution environments without access to privileged150

contextual information. In SPARC, the expert policy πex and the adapter policy πad are trained151

simultaneously, in contrast to the two-phase approach of RMA. This means that the context encoding152

ψ(c) = z is a moving target for the history adapter ϕ, instead of a fixed target. The results in Section 6153

demonstrate that the adapter policy is able to manage these new learning dynamics.154

An important detail in RMA is which model acts in the environment to collect experience. Policy155

πex acts in the first training phase, while πad does so in the second. This raises the question which156

policy should gather experience for SPARC, as both are trained together. One option would be to let157

the expert policy πex control the actions, since it is updated and improved through QR-SAC.158

However, the expert policy, πex, is not the goal of the SPARC approach. A robust adapter policy, πad,159

is the overall learning target and using this policy to gather experience allows the learning algorithm160

to correct for any inaccuracies before final deployment. This brings the learning of πad closer to an161

on-policy setting, even though its history adapter ϕ is trained through supervised learning as shown162

in Equation 1. We perform an ablation study on this choice of rollout policy in Appendix B.163

Reducing training of SPARC to one phase provides several benefits: (i) no intermediate selection of164

the best trained model checkpoint of the first phase is necessary, (ii) training can be easily continued165

indefinitely, without having to retrain the second phase, (iii) the simpler implementation facilitates166

the use of SPARC on asynchronous distributed systems.167

5 Experimental Setup168

5.1 Environments169

We evaluate our approach on two distinct domains. MuJoCo: A suite of continuous control tasks170

including HalfCheetah, Hopper, and Walker2d. We induce contextual variability by perturbing the171

environment’s wind speed in multiple dimensions and scales, thereby creating challenging out-of-172

distribution scenarios. Gran Turismo 7: A high-fidelity racing simulator that features diverse car173
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models and realistic vehicle-track dynamics. The simulator’s rich contextual variability makes it an174

ideal testbed for assessing generalization to unseen conditions. Within Gran Turismo, we experiment175

on two settings: (1) generalization across car models, and (2) generalization across differing engine176

power and vehicle mass settings for one specific car.1 The in-distribution (IND) training set and OOD177

test set are selected as follows:178

(1) Car Models: we sort all ∼500 vehicles by their anomaly score through an isolation forest2 on179

the car’s contextual features such as mass, length, width, weight distribution, power source type,180

drive train type, wheel radius, etc. We hold out the 20% most outlier vehicles as a test set (OOD)181

and train on the 80% most inlier cars (IND).182

(2) Power & Mass: for a more controlled experiment, we pick a relatively standard racing car, but183

tune its engine power and mass in each episode to randomly sampled values within the range184

[75%, 125%] of their defaults. During evaluation, we test on fixed-spaced intervals within [50%,185

150%], covering IND and OOD settings.186

For the wind-perturbed MuJoCo environments, we similarly train on a certain range of wind speeds,187

while testing on intervals twice as large. In Gran Turismo, we experiment on three different tracks,188

presented in Table 2. These tracks represent highly varying settings, with Catalunya-Rallycross even189

including a mixed dirt and tarmac racing path.190

5.2 Training Details191

Table 2: The Gran Turismo tracks which we exper-
iment on in the Car Models setting. We ensure to
include varying road types and track lengths to test
SPARC and the baselines on multiple settings.

Track Length Road Type

Grand-Valley 5.099 km Tarmac
Nürburgring 25.378 km Tarmac + Concrete
Catalunya-Rallycross 1.133 km Dirt + Tarmac

All experiments are conducted using the off-192

policy QR-SAC algorithm [32] as the base193

reinforcement learning method. The critics194

present within SAC have the same architecture195

as the expert policy (see Figure 1), which is196

possible since during inference only the actor,197

or policy network, is needed. We repeat our runs198

with different random seeds to ensure statistical199

robustness: three seeds for the compute-heavy200

Gran Turismo simulator, and five for MuJoCo201

environments. Key training hyperparameters—such as the history length H , learning rates, and202

network architectures—are tuned through preliminary experiments with grid search. We analyze the203

history length in Section 7.1.204

We train all methods asynchronously, collecting experience on multiple distributed rollout workers.205

In the MuJoCo experiments we train for 3M policy updates. For Gran Turismo, in the Power & Mass206

setting we perform 6M updates, while across Car Models we train for 9M steps. The famously long207

and difficult Nürburgring track is an exception, where we perform additional updates: 12M . In each208

training episode, a new IND setting is sampled for the environment, determining the wind speeds, a209

car’s power & mass, or even the full car model. We further increase the generalization complexity for210

the Car Model experiment by sampling over 9 different tire types, from least traction Comfort Hard211

up to most traction Racing Soft.212

5.3 Evaluation Protocol213

We evaluate policy performance under two settings:214

• In-Distribution (IND): Evaluation on environments with contextual parameters that lie215

within the training distribution.216

• Out-of-Distribution (OOD): Contextual parameters that deviate significantly from the217

training set, testing the model’s generalization capabilities.218

During training, we evaluate the policy at fixed intervals on three IND settings. These training219

evaluations form a Pareto-front, from which we select the best three model checkpoints for each220

run. We then test these policies on a wide range of IND & OOD contexts. For the Car Models,221

1This is referred to as Balance of Power within the Gran Turismo game.
2See the scikit-learn documentation for the IsolationForest algorithm.
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this means all vehicles, while for Power & Mass and MuJoCo we divide the widest context222

ranges into fixed intervals, providing 212 = 441 test environments. Results are averaged over223

all seeds and model checkpoints per method, along with confidence intervals to account for variance.224
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Figure 2: Results on Grand-Valley averaged over three seeds.
For each algorithm, we plot the percentage of cars that
successfully completed laps, and the built-in AI ratio lap time.
SPARC finishes the most and the fastest laps on OOD cars.

225

Performance metrics include the226

return for MuJoCo and lap times227

in Gran Turismo. However, for228

particularly difficult outlier cars,229

some algorithms may not be able to230

complete any laps. For this reason,231

we present the racing results along232

two dimensions: (1) percentage of233

cars with a completed lap, and (2)234

the average lap time over the cars235

that managed to finish. Note that (2)236

is a biased metric, so (1) needs to be237

taken into account.238

When averaging raw lap times,239

slower cars have a larger impact240

on the average. To avoid skewed241

results, we divide by the built-in AI242

(BIAI) lap time for each specific243

car. The BIAI is a classical con-244

trol method implemented in Gran245

Turismo to follow a preset driving246

line. This BIAI ratio of RL lap time247

over BIAI lap time gives us a useful248

normalized value.249

5.4 Baselines250

We compare the performance of the following algorithms.251

• Only Obs: A simple QR-SAC [32] policy trained without any context information. Only252

the current observation is provided as input.253

• History Input: A strong baseline policy [19] that additionally receives a history of254

observation-action pairs.255

• RMA: The two-phase approach of Rapid Motor Adaptation [15], first trains an expert policy256

with context input, then learns the adapter policy from history.257

• SPARC: Our single-phase adaptation technique introduced in this work. At test time it only258

receives observation-action history and the current observation.259

• Oracle: A policy that has access to the current observation and the ground-truth unencoded260

contextual features, even at test time.261

Table 3: The inputs that each algorithm receives.

Method Inputs during Training Inputs at Test Time
Only Obs obs obs
History Input obs, history obs, history
RMA obs, history, context obs, history
SPARC obs, history, context obs, history
Oracle obs, context obs, context

These baselines allow us to isolate the ben-262

efits of the single-phase training paradigm263

of SPARC, especially regarding implemen-264

tation simplicity and OOD generalization.265

See Table 3 for a concise overview of the266

inputs per algorithm. We are interested267

in OOD generalization without access to268

contextual settings at test time, but include269

the Oracle for reference.270
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(a) RMA
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(b) SPARC

Figure 3: Lap times on the Power & Mass experiment. We show the average lap time over 3 seeds,
and color a square black if at least one seed does not complete a lap in that setting. Even though both
algorithms are trained only on settings within the IND region, SPARC is able to handle challenging
OOD settings in the bottom right corner (high power and low mass).

6 Results271

6.1 Gran Turismo: Car Models272

The scatterplot in Figure 2 summarizes the performance of each algorithm averaged over all out-of-273

distribution cars on the race track Grand-Valley. The results indicate that SPARC outperforms the274

baselines across unseen vehicles during training. SPARC completes laps with the most cars and with275

the fastest average built-in AI ratio lap time.276

Table 1 provides a quantitative summary of our findings across all three tracks. On IND settings,277

SPARC is competitive, but it is specially designed to handle OOD dynamics. When racing untrained278

cars, SPARC is the fastest of all algorithms without access to context at test time on 2 out of 3 tracks.279

Furthermore, our method manages to complete laps with the most OOD vehicles on aggregate.280

6.2 Gran Turismo: Power & Mass281

Table 4: Performance summary of the Power & Mass
experiments, averaged over 3 seeds. Results show
the mean built-in-AI lap-time ratios (2.0 if no lap
completed) across all OOD power & mass settings,
and the percentage of these settings with a successfully
completed lap (± s.e.m.). SPARC completes the most
and the fastest laps.

Method BIAI lap-time ratio (↓) Success % (↑)

Only Obs 1.0131 ± 0.0136 98.75 ± 1.25
History Input 1.0135 ± 0.0013 98.33 ± 0.10
RMA 1.0004 ± 0.0030 99.17 ± 0.28
SPARC 0.9907 ± 0.0011 99.90 ± 0.10
Oracle 0.9962 ± 0.0067 99.27 ± 0.58

In Figure 3 we show the difference be-282

tween the RMA baseline and SPARC.283

SPARC is able to complete laps in almost284

all OOD contextual settings, while RMA285

struggles in the most difficult scenarios of286

lightweight cars with high engine power.287

Table 4 provides a summary of the average288

results across all OOD contexts, indicat-289

ing that SPARC outperforms all baselines,290

including the oracle which has access to291

context features at test-time. SPARC is292

the most robust—completing laps in all but293

one setting—and also achieves the fastest294

average built-in-AI lap-time ratio.295

6.3 MuJoCo Results296

Table 5 presents results for all baselines and MuJoCo enviroments. Again, SPARC presents strong297

generalization ability to unseen contexts. On Hopper the Oracle performs best; note that this baseline298

has access to true context at test-time, in contrast to all others (see Table 3). Appendix A shows the299

difference between SPARC and RMA in each wind perturbation tested. Overall, SPARC beats RMA300

in significantly more IND and OOD settings, demonstrating robust performance across contexts.301
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Table 5: Performance across MuJoCo environments, averaged over 5 seeds. Results show the mean
return over all out-of-distribution wind perturbations (± s.e.m.). SPARC outperforms all baselines—
including the Oracle—in 2 out of 3 environments.

Method HalfCheetah (↑) Hopper (↑) Walker2d (↑)

Only Obs 5724.51 ± 1624.98 1274.13 ± 133.78 2495.77 ± 220.69
History Input 8760.12 ± 161.53 1367.09 ± 67.79 1534.86 ± 144.26
RMA 9033.87 ± 634.11 1307.96 ± 45.65 2306.23 ± 222.09
SPARC 10017.90 ± 476.19 1348.22 ± 53.67 2528.25 ± 263.58
Oracle 7821.42 ± 1156.77 1710.14 ± 98.98 2325.30 ± 576.48

7 Analysis and Ablation Studies302

To further understand the contributions of our design choices, we perform a deeper analysis on303

essential settings, such as the optimal history length (Section 7.1) and the ideal rollout policy304

(Appendix B). Furthermore, we present an analysis of transferability between distinct environment305

dynamics in Appendix C.306

7.1 Optimal History Length307
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Figure 4: Analysis of the optimal history length for SPARC,
averaged over all OOD settings and 5 seeds (± s.e.m.).

We perform a sensitivity analysis of308

SPARC to different lengths of the309

observation-action history H . Recall310

from Figure 1 that SPARC’s History311

Adapter ϕ uses this recent experience312

to recognize its current contextual envi-313

ronment. The results in Figure 4 show314

that a history length of 50 timesteps315

seems to be optimal for SPARC. Too316

few observation-action pairs do not317

provide enough information to robustly318

distinguish between contexts, whereas319

too many may distract the agent and320

waste computational resources.321

8 Conclusion322

This paper introduces SPARC, a novel single-phase adaptation method for reinforcement learning323

in contextual environments that unifies context encoding and history-based adaptation into one324

streamlined training procedure. By eliminating the need for separate phases—commonly required in325

approaches such as Rapid Motor Adaptation—SPARC not only simplifies implementation but also326

facilitates continual training and deployment in real-world scenarios.327

Our extensive experiments in both the high-fidelity Gran Turismo 7 simulator and various MuJoCo328

tasks demonstrate that SPARC achieves competitive or superior performance in both in-distribution329

and out-of-distribution settings. In particular, SPARC excels at generalizing to unseen contexts while330

maintaining robust control, a critical capability for robotics applications where explicit contextual331

information is unavailable during deployment.332

While our results are promising, the work also highlights opportunities for future research. In333

particular, testing SPARC on physical robotic platforms and further optimizing its training efficiency334

remain important next steps. Training with other base methods instead of QR-SAC is a promising335

direction, which we expect to work well as our approach is agnostic to the underlying reinforcement336

learning algorithm. Overall, SPARC represents a significant advance toward practical, adaptable337

agents that can thrive in dynamic and uncertain environments.338
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Appendix438

A Delta Results on MuJoCo439

In Figure 5, we show results on HalfCheetah by calculating the difference in performance between440

SPARC and its main baseline RMA, in each contextual setting that we tested. The green squares441

show SPARC outperforming RMA, while purple indicates the opposite. Overall, SPARC beats RMA442

in significantly more IND and OOD contexts, demonstrating a robust performance across wind443

perturbations.444
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Figure 5: Difference in average return of SPARC versus RMA with varying wind perturbations over
5 seeds. In green: SPARC is better in that wind setting, while in purple: RMA scores higher. Our
method outperforms the two-phase baseline across many IND and OOD contextual settings.

B Ablation Study on the Rollout Policy445

In this ablation we compare performance when experience is collected with the expert policy (πex)446

versus the adapter policy (πad). As detailed in Section 4.2, SPARC performs rollouts with the adapter447

policy to ensure a more on-policy style of learning.448

Table 6 presents results across all OOD cars on three tracks. Although the differences are small, the449

results demonstrate that naively using πex for rollouts leads to slower lap times on 2 out of 3 tracks.450

Moreover, SPARC finishes every track with at least as many cars as the naive scheme.451

C Transferability to Updated Game Dynamics452

The Gran Turismo developers regularly deploy game updates, where the simulation physics can453

be adjusted.3 Reinforcement learning agents that are trained on previous game dynamics generally454

struggle to adapt to the new physics. We present results on an experiment where we evaluate policies455

trained on a previous version of Gran Turismo, but tested for zero-shot generalization on the newest456

game dynamics.457

In Figure 6 we show that SPARC outperforms all baselines in OOD generalization, this time not458

only across different car models, but also across other unseen environment dynamics. The oracle459

3See https://www.gran-turismo.com/us/gt7/news/00_3399040.html for details on the game
update we discuss here.
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Table 6: Ablation on rollout-policy. Results across all OOD cars and 3 seeds. Mean ± s.e.m. of
lap-time BIAI ratio and % successful laps. Naively collecting experience with πex does not perform
as well as directly using πad.

Race Track Method BIAI ratio (↓) Success % (↑)

Grand-Valley SPARC-naive 1.0417 ± 0.0024 98.06 ± 0.00
SPARC 1.0491 ± 0.0055 98.06 ± 0.56

Nürburgring SPARC-naive 1.1531 ± 0.0158 85.44 ± 1.12
SPARC 1.1199 ± 0.0076 89.00 ± 0.86

Catalunya SPARC-naive 0.9659 ± 0.0032 100.00 ± 0.00
SPARC 0.9631 ± 0.0026 100.00 ± 0.00

policy with access to ground-truth context is not able to finish laps with around 10% of the cars,460

while SPARC reduces this to less than 5%, with significantly faster lap times. Note that the context461

c ∈ C that we provide to the oracle policy contains information about the car model only, as the462

exact simulator physics adjustments are unknown to us. This missing information highlights the463

importance of SPARC’s ability to adapt to unseen contexts without access to all the exact contextual464

details, e.g., when training in simulation and transferring to a real-world environment.465
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Figure 6: Performance difference between old and new game dynamics. These algorithms have only
been trained on old physics settings, and are tested zero-shot on the new physics after a game update
of Gran Turismo. SPARC shows the best OOD generalization, driving only slightly slower lap times
on the new dynamics, while other algorithms decrease significantly in performance.
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