
Under review as a conference paper at ICLR 2023

COMPACT BILINEAR POOLING VIA GENERAL BILIN-
EAR PROJECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Many factorized bilinear pooling (FBiP) algorithms employ Hadamard product-
based bilinear projection to learn appropriate projecting directions to reduce
the dimension of bilinear features. However, in this paper, we reveal that the
Hadamard product-based bilinear projection makes FBiP miss a lot of possible
projecting directions, which will significantly harm the performance of outputted
compact bilinear features, including compactness and effectiveness. To address
this issue, we propose a general matrix-based bilinear projection based on the
rank-k matrix base decomposition, where the Hadamard-based bilinear projection
and Y = UT XV are special cases of our proposed one. Thus, our proposed pro-
jection can be used improve the algorithms based on the two types of bilinear pro-
jections. Using the proposed bilinear projection, we design a novel low-rank fac-
torized bilinear pooling (named RK-FBP), which considers the feasible projecting
directions missed by the Hadamard product-based bilinear projection. Thus, our
RK-FBP can generate better compact bilinear features. To leverage high-order in-
formation in local features, we nest several RK-FBP modules together to formu-
late a multi-linear pooling that outputs compact multi-linear features. At last, we
conduct experiments on several fine-grained image tasks to evaluate our models,
which show that our models achieve new state-of-the-art classification accuracy
by the lowest dimension.

1 INTRODUCTION

Bilinear pooling (BiP) (Lin, 2015) and its variants (Li et al., 2017b; Lin & Maji, 2017; Wang et al.,
2017) employ Kronecker product to yield expressive representations by mining the rich statistical
information from a set of local features, and has attracted wide attentions in many applications, such
as fine-grained image classification, visual question answering, etc. Although achieving excellent
performance, the bilinear features suffer from two shortcomings: (1) the ability of BiP to boost
the discriminant information between different classes also magnifies the intra-class variances of
representations, which makes BiP easily encounter the burstiness problem (Gao et al., 2020; Zheng
et al., 2019) and suffer from a performance deficit; (2) the Kronecker product exploited by BiP
usually makes the bilinear features exceptionally high-dimensional, leading to an overfitted training
of the succeeding tasks and a hefty computational load by increasing the memory storage. Thus,
how to effectively solve the shortcomings of BiP is an important issue.

Several approaches have been proposed (Gao et al., 2016; Fukui et al., 2016; Yu et al., 2021; Li
et al., 2017b; Kim et al., 2016) to solve the shortcomings of BiP. Among them, the factorized
bilinear pooling (FBiP) methods (Li et al., 2017b; Kim et al., 2016; Amin et al., 2020; Yu et al.,
2018; Gao et al., 2020) have been promising leads. The essence of FBiP performs a dimension
reduction operation on bilinear features. It finds a linear projection to map bilinear features into
a low-dimension space with their discriminant information among classes preserved using the
least dimensions, and then employs L2-normalization to project those low-dimension features on
a hyper-sphere. (Bilinear pooling equals the non-linear projection determined by the polynomial
kernel function k(x, y) = (< x, y >)2 Gao et al. (2016), which makes bilinear features probably
linear discriminant.) Thus, the information reflecting the large intra-class variances is abandoned
because they do not help distinguish different classes. In this way, the burstiness and high dimension
problems are solved simultaneously (Gao et al., 2020; Wei et al., 2018). This procedure is depicted
in Figure 1. The sub-figure (a) shows a set of samples with a large variance. Sub-figure (c) is

1

Under review as a conference paper at ICLR 2023

（a） （b） （c） （d） （e）

2

4

1

3𝑒1

𝑒2

𝑒4

𝑒3
1

2

3

（f）

𝛿𝛿
𝑒2

𝑒1 𝑒1

𝑒2

Figure 1: (a): Original data {xi}; (b): The results projected by x̂i = [0.55,−0.45;−0.45, 0.55]xi; (c): L2-
normalization on x̂i: zi = x̂i/|x̂i|2; (d): Element-wise "signed-square-root": x̃i = sgn(xi)

√
xi. Samples in

regions 1,2,3,4 shrink to points [1, 1], [−1, 1],[−1,−1] and [1,−1], respectively. (e)(f): L2-normalization on
x̃i and xi, respectively. Compared (e) with (f), we know the intra-class variances in region 2 and 4 are reduced
but those in 1 and 3 are increased in (e). Thus, an accurate linear projection is better than "signed-square-root"
strategy for solving the burstiness problem.

the result after the linear projection and L2-normalization, the intra-class variance is reduced
significantly. Actually, the information along e1 can be completely discarded, and the dimension
of data becomes 1. Let us compare sub-figure (c) with (e), we can find FBiP outperforms the
combination of the signed-square-root transformation and L2-normalization . To achieve such a
good performance, the key step is to find the accurate projecting direction e2, or the dimension and
intra-variance reduction can not achieve successfully. Because of the extremely high dimension of
bilinear features, it is not easy to find appropriate projecting directions by traditional linear projec-
tion. Thus, how to find a set of parameter-efficient model to accurately depict those appropriate
directions is curial for solving the shortcomings of bilinear features.

𝒖1
𝑇𝒙𝒔

𝒖2
𝑇𝒙𝒔

𝒖3
𝑇𝒙𝒔

𝒖4
𝑇𝒙𝒔

𝒖5
𝑇𝒙𝒔

∘

𝒗1
𝑇𝒚𝒕

𝒗2
𝑇𝒚𝒕

𝒗3
𝑇𝒚𝒕

𝒗4
𝑇𝒚𝒕

𝒗5
𝑇𝒚𝒕

=

(𝒖1
𝑇𝒙𝒔)(𝒗1

𝑇𝒚𝒕)

(𝒖2
𝑇𝒙𝒔)(𝒗2

𝑇𝒚𝒕))

(𝒖3
𝑇𝒙𝒔)(𝒗3

𝑇𝒚𝒕))

(𝒖4
𝑇𝒙𝒔)(𝒗4

𝑇𝒚𝒕))

(𝒖5
𝑇𝒙𝒔)(𝒗5

𝑇𝒚𝒕))

(𝑼𝑻𝒙𝒔) ∘ 𝑽𝑻𝒚𝒕 = 𝒛 (𝑼𝑻𝒙𝒔)⨂ 𝑽𝑻𝒚𝒕 = 𝒛

𝒖1
𝑇𝒙𝒔

𝒖2
𝑇𝒙𝒔

𝒖3
𝑇𝒙𝒔

𝒖4
𝑇𝒙𝒔

𝒖5
𝑇𝒙𝒔

⨂

𝒗1
𝑇𝒚𝒕

𝒗2
𝑇𝒚𝒕

𝒗3
𝑇𝒚𝒕

𝒗4
𝑇𝒚𝒕

𝒗5
𝑇𝒚𝒕

=

(𝒖1
𝑇𝒙𝒔)(𝒗1

𝑇𝒚𝒕))

(𝒖1
𝑇𝒙𝒔)(𝒗2

𝑇𝒚𝒕))
⋮

(𝒖2
𝑇𝒙𝒔)(𝒗1

𝑇𝒚𝒕))

(𝒖2
𝑇𝒙𝒔)(𝒗2

𝑇𝒚𝒕))
⋮

(𝒖5
𝑇𝒙𝒔)(𝒗4

𝑇𝒚𝒕))

(𝒖5
𝑇𝒙𝒔)(𝒗5

𝑇𝒚𝒕))

(a) (b)

Figure 2: Two ways to connect di-
mensions of UT xs and VT yt. (a)
is Hadamard product; (b) is Kro-
necker product.

Most FBiP approaches formulate the projection for dimension
reduction as a Hadamard product-based bilinear projection (Kim
et al., 2016; Gao et al., 2020; Li et al., 2017b): f = PT (UT xs ◦
VT yt) where U and V are two learnable variables, respectively,
and P is a variable defined various from algorithms. Each di-
mension of f can be seen as a linear combination of dimensions
of the Hadamard product z = (UT xs ◦ VT yt). Consider each
dimension of z shown in Figure 2. The Hadamard product only
considers the values {(uT

i xs)(yTt vj)|i = j)} and ignores val-
ues {(uT

i xs)(yTt vj)|i ̸= j} which are considered by Kronecker
product. In this paper, we prove that those ignored values are important for dimension reduction, be-
cause they are coefficients of bilinear features on feasible matrix projecting directions {viuT

j |i ̸= j}.
Thus, missing them will lead to inaccurate projecting directions of the dimension reduction, which
inevitably affects the overcoming for shortcomings of BiP greatly. Consequently, the effectiveness
and compactness of FBiP are seriously harmed.

In this paper, from the perspective of finding accurate and parameter-efficient matrix projecting
directions, we analyze the decomposition on bases of a matrix space, then propose a general bilinear
projection based on decomposed rank-k matrix bases. Because of the solid mathematical foundation
of the proposed bilinear projection, it can be seen as a baseline to analyze current FBiP. Employing
our novel bilinear projection, we formulate a new FBiP model without missing possible projecting
directions. The contributions are listed as follows:

(1) We make a detailed analysis to demonstrate why the traditional FBiP tends to miss a lot of
feasible projecting directions. Based on our analysis, we propose a general bilinear projection that
calculates the coefficients of matrix data on a set of complete decomposed rank-k matrix bases.

(2) Based on the proposed general bilinear projection, we design a new FBiP method named rank-k
factorized bilinear pooling (RK-FBP). Because of the capability to learn accurate projecting direc-
tions, the calculated bilinear features are highly compact and effective. Utilizing this property, we
nest several RK-FBP modules to calculate multi-linear features that are still compact and effective.

(3) We conduct experiments on several challenging image classification datasets to demonstrate the
effectiveness of the proposed RK-FBP. Compared with state-of-the-art BiP methods, our model can
output extremely compact bilinear features (the dimension is 512) and achieve comparable or better
classification accuracy.

2

Under review as a conference paper at ICLR 2023

Notation. Throughout this paper, Tr(·) denotes the trace of a matrix. vec(·) is the matrix vector-
ization (i.e., reshaping a matrix to a vector by stacking its columns on top of one another). rank(·)
represents the rank of a matrix. The ij-th element of the matrix A ∈ Rm×n is represented by the
symbol (A)ij , and the i-th element of x ∈ Rd is represented by (x)i.

2 PRELIMINARY
2.1 DIMENSION REDUCTION ON BILINEAR FEATURES

Given a set of training samples, among which each instance yields two groups of local features
denoted by Xf = {xs ∈ Rm}ps=1 and Yf = {yt ∈ Rn}qt=1 (in some cases, Yf = Xf (Lin, 2015;
Kong & Fowlkes, 2017)). Bilinear pooling (BiP) integrates those two groups of local features into
an expressive representation by the following operation.

X =
∑

(s,t)∈S

xsyT
t ∈ Rm×n (1)

where X is the bilinear feature, and S is the pair set of local features. For convenience, we write
bilinear feature as X = xsyT

t in the following content by ignoring the summation symbol. Because
most deep neural networks satisfy |S| < min{m,n}, the bilinear feature X is a low-rank matrix.
Such property can help to design parameter-efficient dimension reduction algorithms.

Factorized bilinear pooling (FBiP) reduces X to a h-dimensional vector by linear projection f =
[Tr(XWT

1), · · · , T r(XWT
h)] where Wr ∈ Rm×n is the r-th low-rank matrix projecting direction.

For parameter-efficiency, each Wr is decomposed into small matrices in various ways, which leads
to different FBiP algorithms.

For example, by decomposing Wr as Wr = UrVT
r where Ur ∈ Rm×k and Vr ∈ Rn×k, k is the

rank of Wr. The r-th dimension of f can be rewritten as follows.

(f)r = Tr
(

xsyT
t VrUT

r

)
= 1

T (UT
r xs ◦ VT

r yt) (2)

where ◦ is Hadamard product and 1 is a vector with all elements equaling 1. The Eq.(2) is adopted
by FBC (Gao et al., 2020) and LowFER (Amin et al., 2020).

Besides, some FBiP algorithms (Kong & Fowlkes, 2017; Wei et al., 2018) let local feature sets
X = Y and assume Wr be a symmetric low-rank matrix. The Wr is decomposed as Wr =
U+

r (U
+
r)

T − U−
r (U

−
r)

T where U+
r and U−

r are learned smaller matrices. Thus, let Ur = [U+
r ,U−

r],
r-th dimension also can be rewritten as a Hadamard product-based projection:

(f)r = Tr
(
xsyTt U+

r (U
+
r)

T
)
− Tr

(
xsyT

t U−
r (U

−
r)

T
)
= [1T ,−1T](UT

r xs ◦ UT
r yt) (3)

Some algorithms (Kim et al., 2016; Yu et al., 2018; Kim et al., 2018) replace 1 in Eq.(2) by a
learnable vector pr and transform Eq.(2) to a more general formulation presented as follows.

f = PT
(

UT xs ◦ VT yt
)

(4)

where P = [p1, · · · ,ph] ∈ Rl×h, U ∈ Rm×l, and V ∈ Rn×l are learnable matrices, respectively.
Eq.(4) is a general formulation of Eq.(2) and Eq.(3), mathematically, so we can only focus our
analysis on Eq.(4).

2.2 SHORTCOMINGS OF TRADITIONAL FACTORIZED LOW-RANK BILINEAR POOLING

The linear dimension reduction finds the least projecting directions to mapping samples into the
low-dimensional space with their discriminant information being preserved. Thus, the projecting
directions should satisfy the following criteria: (1) they preserve discriminant information of sam-
ples well, otherwise the classification performance will be poor; (2) those projecting directions are
linear independent, or the calculated low-dimensional embeddings can be reduced further.

Next, we demonstrate that the bilinear projection in Eq.(4) can not find suitable projecting directions
and harms the compactness and effectiveness of the compact bilinear features. Before doing this,
we first introduce a theorem presented as follows.

3

Under review as a conference paper at ICLR 2023

Theorem 1. Suppose U = {up ∈ Rm×1}l1p=1 and V = {vq ∈ Rn×1}l2q=1 are two groups of linear
independent vectors in spaces Rm×1 and Rn×1, respectively. If the vector set W = {vec(Wi) ∈
Rmn×1}l1l2i=1 is constructed by Wi = upvTq where i = l1(q − 1) + p, then W is a set of linear
independent vectors.

The Proof is attached in the Appendix. If l1 = m and l2 = n, W is a complete bases of Rmn×1.
The r-th element of the low-dimensional feature f presented in Eq.(4) can be rewritten as

(f)r =

(
l∑

j=1

(pr)jvec(ujvT
j)

)T

vec(xsyT
t) (5)

where (pr)j is the j-th element in the r-th column of P. As seen from Eq.(5), (f)r is the coefficient
of the bilinear feature vec(xsyT

t) projected on the projecting direction
∑l

j=1(pr)jvec(ujvT
j) which

is a vector in the linear space spanned by vectors B = {vec(u1vT
1), vec(u2vT2), · · · , vec(ulvT

l)}.

Then, we prove that the linear combinations of vectors in B can not express all the possible projecting
directions.

Let us start from the case l ≤ max{m,n}. Because learning a low-rank matrix is a challenging
problem in the machine learning community(Candès et al., 2011; Liu et al., 2012; Wright et al.,
2009), U and V in Eq.(4) are much likely to be full rank matrices because of no additional constraints
on them. Thus, columns in U (and V) are linear independent. Figure 3 gives experimental Proof to
support this assumption. Because the columns of U trained by the FBiP model of Eq.(4) are nearly
vertical, U is a full rank matrix.

According to Theorem 1, columns of U and V can generate a set of linear indepen-
dent vectors W . Obviously, B is a small subset of W . According to criterion (2),
not only vectors in the space spanned by B but also vectors spanned by W − B can
generate the possible projecting directions for reducing dimensions of samples in Rmn×1.

（a） （b）

Figure 3: The angles between
columns of U(2048 × 2048) trained
by Eq.(4). Because the angle range
is about [85◦, 95◦], the columns are
nearly vertical to each other.

However, because Eq.(4) only calculates coefficients of the bi-
linear feature projected on directions spanned by B, it misses
the projecting directions generated by W −B. Considering the
number of vectors in W − B and B are l2 − l and l, respec-
tively, more than 99% feasible projecting directions are missed
if max{m,n} > l > 100.

Worse, such a serious issue can not be alleviated by increasing
l. Without loss of generality, we let l > m = n and the first
m columns in U and V be linear independent. Thus, the last
l − m columns in U (or V) can be represented by the first m
columns. To be specific, the r-th (r > m) columns in U and
V are ur =

∑m
p=1 arpup and vr =

∑m
q=1 brqvq , respectively,

where arp and brq are auxiliary parameters introduced for easy
reading. Obviously, ur and vr can generate a projecting direc-
tion vec(urvTr) =

∑m
p=1

∑m
q=1(arpbrq)vec(upvT

q). Let us list those generated projecting vectors of
different r into a projecting matrix, i.e., L̂ = [vec(um+1vTm+1), · · · , vec(ulvTl)].

According to Theorem 1, {vec(upvTq)}
m,n
p=1,q=1 is a complete base set in Rmn×1. So vec(urvTr)

can be any mn-dimensional vector by giving auxiliary parameters {arpbrq}m,n
p=1,q=1 suitable values.

However, because those auxiliary parameters are implicit, we can not train them as other parameters
of our model. Thus, the learnable projecting directions can be any possible ones in the solution
space. The worst case is that L̂ is a rank-1 matrix, which means most of its columns do not preserve
the discriminant information of samples. Thus, we can transform L̂ to one column without perfor-
mance reduction. It implies that the missed projecting directions can not be found by increasing the
value of l. Thus, FBiP can not find suitable projecting directions. Of course, auxiliary parameters
can let L̂ be a full rank matrix. In this case, the projecting directions will be in the space spanned
by the missed directions W − B. The performance of deep learning crucially depends on tricks in
stochastic gradient descent strategies, such as ’momentum’ and ’decay’. Because those auxiliary
parameters can not be improved by those tricks, their values may not as good as desired, which
probably make the learned projecting directions unsuitable. Thus, the performance of FBiP will

4

Under review as a conference paper at ICLR 2023

be poor. To alleviate this issue, FBiP should adopt more projection directions to capture enough
discriminant information. Nevertheless, due to keeping large intra-class variances, the performance
of those unsuitable solutions has an upper bound less than that of the suitable projecting directions.
Consequently, the effectiveness and compactness of outputted bilinear features are harmed.

For the case U = V, the following Corollary can demonstrate Eq.(4) also misses a lot of feasible
projecting matrices. The analysis can be made in the same way mentioned above, needing to replace
Theorem 1 with the Corollary. Thus, we do not present the analysis in our paper.

Corollary. Given a set of linear independent vectors {ui ∈ Rm×1}li=1, the symmetry matrices

S = { (uiuT
j +ujuT

i)

2 ∈ Rm×m}l,li=1,j=1 are also linear independent.

The Proof is attached in the Appendix.

3 GENERAL BILINEAR PROJECTION
3.1 DECOMPOSITION OF MATRIX BASES

Given a set of rank-k matrices Wm×n
k = {Wp ∈ Rm×n}mn

p=1, if those matrices are linear indepen-
dent, then Wm×n

k is a rank-k complete base set of the matrix space Rm×n.

Theorem 1 demonstrates that the rank-1 matrix base set can be decomposed into two vector base
sets. According to Theorem 1, we can derive the traditional bilinear projection Y = UT XV which
is famous in the fields of linear algebra (Strang et al., 1993) and machine learning (Pirsiavash et al.,
2009; Nie et al., 2018). The conclusion is presented in the following theorem.

Theorem 2. If the coefficient of X ∈Rm×n on the base upvTq is calculated as ypq = Tr(XT upvTq),
then the coefficients of X on the whole base set W = {upvTq |up ∈ U , vq ∈ V}m,n

p=1,q=1 are
{ypq}m,n

p=1,q=1 which can form a coefficient matrix Y ∈ Rm×n satisfying:

Y = UT XV (6)

where U = [u1, · · · ,um] ∈ Rm×m and V = [v1, · · · , vn] ∈ Rn×n.

The Proof is presented in the Appendix.

Remark 1. Theorem 2 gives a way to decompose a matrix base set into two low-dimensional vector
base sets. A base set corresponds to a linear projection in the linear space. Thus, the solution to
find an appropriate projection in a matrix space (a high-dimensional space) can be transformed to
find two vector projections in the low-dimensional vector spaces, which will alleviate the overfitting
problem and save the computational sources, including running time and memory storage. Theorem
2 is a mathematical interpretation of why so many matrix-based algorithms modeled by the projec-
tion Y = UT XV (Pirsiavash et al., 2009; Nie et al., 2018; Fukui et al., 2016) work well. However,
according to Theorem 2, the feature reduction algorithms based on Eq.(14) only find rank-1 matrix
projections. Rank-1 projections are a small port of feasible projections. If the applications prefer
high-rank projections, Eq.(14) will miss them and lead to a performance deficit.

In the next section, we will explore a more general bilinear projection which is based on matrix
bases with high rank, i.e., k > 1.

3.2 FORMULATION OF THE GENERAL BILINEAR PROJECTION

Consider the coefficient of an arbitrary matrix X ∈ Rm×n projected on a rank-k matrix base Wp ∈
Wm×n

k . The coefficient can be calculated as yp = Tr(XWT
p) = Tr(UT

p XVp) by decomposing Wp

as Wp = UpVT
p where Up ∈ Rm×k and Vp ∈ Rn×k. Since Tr(UT

p XVp) = vecT (XVp)vec(Up) =

vecT (Vp)(Ik ⊗ X)vec(Up), the calculation of yp is equivalent to:

yp = Tr
(
(Ik ⊗ X)vec(Vp)vec

T (Up)
)

(7)

where ⊗ represents the Kronecker product, Ik is the k × k identity matrix.

Eq.(7) indicates that the coefficient yp equals the coefficient of Ik ⊗ X projected on the ma-
trix vec(Vp)vec

T (Up) in Rmk×nk. As the analysis presented in the previous section, the term

5

Under review as a conference paper at ICLR 2023

vec(Vp)vec
T (Up) consists of a set of free implicit variables that make the appropriate projecting di-

rections hard to learn. To overcome this shortcoming, we employ the property presented in Theorem
1 to separate the implicit variables from the linear independent projecting directions.

Since mn ≪ mnk2, the matrices {vec(Vp)vec
T (Up)}mn

p=1 are more likely located in a subspace of
Rmk×nk whose matrix base set can be decomposed into two vector base sets {ûi}l1i=1 and {v̂i}l2i=1.
Thus, for each vec(Vp)vec

T (Up), we can find a matrix Lp ∈ Rl1×l2 to hold the following equation:

vec(Vp)vec
T (Up) =

l2∑
i=1

l1∑
j=1

(Lp)ij v̂iûT
j (8)

where (Lp)ij is the ij-th element in the matrix Lp, l1 ≤ mk and l2 ≤ nk.

By substituting Eq.(8) in Eq.(7), we obtain a new equation to calculate yp by employing Lp, {v̂i}l2i=1

and {ûj}l2j=1. Assigning {yp}hp=1 in a vector denoted by y = [y1, · · · , yh], the general bilinear
projection is presented as follows:

y = PT vec(UT (Ik ⊗ X)V) (9)

where k indicates the rank of the matrix base set, X ∈ Rm×n, U = [û1, · · · , ûl1] ∈ Rmk×l1 ,
V = [v̂1, · · · , v̂l2] ∈ Rnk×l2 , P = [vec(L1), · · · , vec(Lh)] ∈ R(l1l2)×h. Worthy of note is that the
sizes of U and V in Eq.(9) become mk × l1 and nk × l2 respectively, which are different from the
ones presented before in this paper.

Remark 2. Worthy of note is that P stores the free implicit variables mentioned in the previous
section. In our proposed projection, they become explicit variables whose values are easy to con-
strain. Unlike Eq. (2), our bilinear projection considers all feasible projecting directions to reduce
dimension and intra-class variance. Thus, our projection facilitates yielding more compact features
than other FBiP approaches.

Remark 3. BiP methods MPN (Li et al., 2017a), MPN-COV(Wang et al., 2020), iSQRT-COV (Li
et al., 2018), SMSO (Yu & Salzmann, 2018) and DBTNet-50 (Simonyan & Zisserman, 2014) reduce
the dimension of local feature xs by a linear projection x̂s = UT xs and then calculate low-dimension
bilinear features as UT xsxT

s U. According to our analysis, it equals to reduce the dimension of xsxTs
by rank-1 matrix projecting directions, which misses much information. From Eq.(9), the projection
on local features should be x̂s = UT (Ik ⊗ xs).

The term Ik ⊗ X in Eq.(9) has a lot of zeros which cost lots of memory storage. By introducing
the matrix partition as U = [UT

1 , · · · ,UT
k]

T and V = [VT
1 , · · · ,VT

k]
T , we can reformulate our

general bilinear projection as y = PT vec(
∑k

i=1 UT
i XVi). where Ui ∈ Rm×l1 , Vi ∈ Rn×l2 and

P ∈ Rl1l2×h, respectively.
4 RANK-k FACTORIZED BILINEAR POOLING
4.1 FORMULATION

Bilinear pooling. Following traditional FBiP method (Kim et al., 2016), we employ the Eq.(9) to
reduce the dimension of the bilinear feature xsyTt , and formulate a new compact bilinear pooling
method named rank-k factorized bilinear pooling (RK-FBP) presented as follows.

fi = PT

(
vec

(
k∑

r=1

(UT
r xs + bu

r)(V
T
r yt + bv

r)
T

))
+ bp (10)

where bu
r ∈ Rl1×1, bv

r ∈ Rl2×1 and bp ∈ Rh×1 are the bias terms of projections Ur ∈ Rm×l1 ,
Vr ∈ Rn×l2 and P ∈ Rh×(l1l2), respectively.

Remark 4. As seen from Eq.(10), let us set l1 = l2 = h. If we fix P ∈ {0, 1}h×h2

in which only the
(i, (i− 1)h+ i)-th element equals "1". Then our model is equivalent to the bilinear pooling model
used in (Gao et al., 2020; Amin et al., 2020). If we set the (i, (i− 1)h+ i)-th element of P, i.e., Pik,
as learnable parameters while other elements are set as "0", our model is equivalent to the bilinear
pooling module used in (Kim et al., 2016; Lu et al., 2016; Yu et al., 2017).

Multi-linear pooling. We employ the proposed bilinear projection to generate high-order pooling
features. However, the dimension of high-order pooling features is huge, so it is intractable to

6

Under review as a conference paper at ICLR 2023

𝑼1
𝑇𝒙𝑠𝒚𝑡

𝑇𝑽1

𝑼𝑘
𝑇𝒙𝑠𝒚𝑡

𝑇𝑽𝑘

𝒙𝑠

𝒚𝑡

+⋮

𝑼1

𝑽1

𝑼𝑘

𝑽𝑘

⋮
𝑣𝑒𝑐(∙)

𝑃 𝑓

Backbone

RK-FBP RK-FBP RK-FBP

Second order Third order
Fourth order

Outputted
Feature

C
o
p

y

(Optional)

(Optional)

(Optional)

(a) (b)

Figure 4: (a) The proposed multi-linear pooling structure. (b) RK-FBP module. In (a), we use three Rk-FBP
modules to integrate high-order information into the multi-linear representations. From left to right, the 1-th,
2-th and last modules integrates the second-order information, the third-order information, and the fourth-order
information, respectively. Each RK-FBP has its own parameters. At last, we choice several types of those
features and concatenate them to a more informative one.

perform the dimension reduction on the high-order features directly. Thus, we give a recursive way
to output the compact high-order pooling features by utilizing several RK-FBP modules. Without
ambiguity, we denote fti as the t-th order pooling feature, then the (t + 1)-th order pooling feature
can be calculated as follows.

ft+1
i = PT

(
vec

(
k∑

r=1

(UT
r xs + bu

r)(V
T
r fti + bv

r)
T

))
+ bp (11)

For obtained features {fti}Ot=1 , we concatenate them into one feature vector, i.e., fi =

[(f1i)T , · · · , (f
O
i)

T]T before feeding them into the classifier. Considering the information of dif-
ferent orders may be conflicted with each other, some order pooling features can be ignored in the
concatenation. The structure of our model is depicted in Figure 4.

Memory Analysis. Compared with the fully bilinear pooling algorithm (Lin, 2015), our method
results in a great saving of memory storage and computational load. For c-th classification tasks,
U, V and P and the classifier hyperplane have kml1 + knl2 + l1l2h + ch elements. In image
classification tasks adopting ResNet50 as backbone, there are m = 2048, n = 2048, BiP requires
mnc = 200mn ≈ 109 parameters to output the classification result. In our RK-FBP, we set l1 =
l2 = 300, h = 512 and k = 4 at most, there is about 107 parameters, which is smaller than
that of BiP by two orders of magnitude, and same as that of traditional factorized bilinear pooling
algorithm, e.g., FBC (Gao et al., 2020; Fang et al., 2019), etc. Due to having a smaller amount of
parameters, the computational load is also reduced. Because the high-order RK-FBP is recursively
constructed by nesting several RK-FBP modules together, its storage memory is several times of the
singular RK-FBP. Considering a T -fold multi-linear feature has mT dimension for a m-dimension
first-order feature, the weights of our multi-linear version of RK-FBP are much smaller.

5 EXPERIMENTS AND ANALYSIS

5.1 EXPERIMENTAL SETTING

We conduct experiments on the image classification tasks to evaluate the proposed RK-FBP model.
The adopted image datasets are Describing Texture Dataset (DTD) (Cimpoi et al., 2014), MINC-
2500 (MINC) (Bell et al., 2015), MIT-Indoor (INDOOR) (Quattoni & Torralba, 2009), and Caltech-
UCSD Bird (CUB200) (Xie et al., 2013), Cars196 (Krause et al., 2013), Aircraft (Maji et al., 2013)
which are the texture image dataset in the wild, the material dataset, the indoor scene dataset, and
two fine-grained image datasets, respectively. We incorporate our RK-FBP module in Deep Neural
Networks as Figure 4, and implement it by PyTorchPaszke et al. (2017). ImageNet-pretrainings
are taken from torchvision Marcel & Rodriguez (2010). The adopted backbones are VGG-16 and
ResNet50. For those image data, each image is resized into 418 × 418. VGG-16 generates a 28 ×
28 × 512 feature map from con5 − 3 layer. The number of local features d = 512 and number
of local feature is 784. For ResNet50, it generates a 14 × 14 × 2048 feature map which result 196
2048-dimensional features. Following Gao et al. (2016), the compact bilinear feature f are sent to the
softmax classifier. Each RK-FBP module has its own parameters U, V, and P, which are updated by
the back-propagation algorithm. The Pytorch is run on GPU Quadro RTX 6000. The optimization
is done using SGD, weight decay is 0.01, learning rate is 0.01, momentum is 0.9. The number of
epoch is 60 and batch size is 32.

7

Under review as a conference paper at ICLR 2023

5.2 ABLATION EXPERIMENT

We adopt VGG16 as the backbone for the ablation experiments.
Rank k. Different k means different matrix bases, the compact bilinear features also have different
performance. To demonstrate how the rank k affects Rk-FBP, we perform RK-FBP on Indoor data
set with varied k ∈ [1, · · · , 15]. The number of column and row projections are set as l1 = l2 =
l ∈ {50, 100, 150, 200, 250} and the dimension of the bilinear feature is set to h = 512. The
results are depicted in Figure. 6. We can find that While l = 250 and k = 2, RK-FBP achieves
the best performance 83.5%. When l = 250 and k = 1, the accuracy is about 81.9% with about
2.6% decrease. When l => 150, the accuracy is relatively stable after k > 2. The accuracy
variance of k for each l is within 2%. It means only k = 2 is enough. But when l < 150, the
maximal accuracy corresponds large k = 9. This means when the number of matrix bases is less, a
large rank is preferred. Because large rank matrices have more parameters, so they can depict the
projecting directions more accurate. Thus, the observation may indicates fewer dimensions need
more accurate projecting directions to capture the discriminant information. Besides, we employ

Figure 5: Accuracy of RK-FBP with different
Rank k on Indoor (dimension h = 512). When
l is small, k should be large to achieve its largest
accuracy.

Figure 6: Accuracy of RK-FBP with different
dimensions on Indoor. FBC and RK-HFBP need
large dimensions to achieve the best result.

x̂s = UT (I ⊗ xs) to improve the dimension procedure in SMSO (Li et al., 2017a), MPN(Yu &
Salzmann, 2018), iSQRT-COV(Li et al., 2018). As seen from Table 1, we can find that increase
of the rank k, the accuracy of those methods can be improved. And the maximum gain is 6.6%
achieved by MPN on the Indoor dataset. Besides, we can find that with the increase of k, the
accuracy will increase first and then be stable. This is consistent with our RK-FBP when the number
of matrix bases is s small. Both experiments illustrate the importance of rank k. This indicates that
current dimension reduction methods in those bilinear pooling models limit their expressive ability.

Table 1: Accuracy (%) with different rank k of
the projection on different datasets.

k 1 4 7 10 13
SMSO DTD 69.3 71.3 70.9 71.5 71.7

Indoor 79.5 81.2 82.1 83.1 82.6
MPN DTD 68.0 69.4 70.9 71.4 71.3

Indoor 76.5 78.9 79.2 82.6 83.1
iSQRT-COV DTD 69.7 70.3 71.3 71.5 70.9

Indoor 79.5 80.3 81.9 82.3 83.4

Dimensionality h. We compare our model with
FBC, RK-FBP, and RK-HFBP (presented in Eq.(38))
on Indoor. We report the testing accuracy at h =
[128, 256, 512, 1024, 2048, 3072, 4096, 8192]. We set
the rank k = 2 for our RK-FBP and l1 = l2 = 250 for
RK-FBP. For RK-HFBP and FBC, the rank of them are
empirically set as k = 8 and k = 14, respectively. As
seen from Figure 6. RK-FBP outperforms FBC and
RK-HFBP with different dimensionality. Specifically, RK-FBP is higher than FBC about 4.1%
when h = 512. It validates that our model can find more discriminative projecting directions than
RK-HFBP and FBC. After the dimension increase as h > 512, the performances of RK-FBP are
relatively stable. Considering RK-FBP achieves the best result among the three approaches, this
indicates that the performance of RK-FBP saturates. Nevertheless, for FBC and RK-HFBP, their
performance continues to increase when h > 512. It may be because they can not find accurate
projecting directions, so more discriminant information is acquired when the feature dimension in-
creases. However, they can not surpass the RK-FBP. This implies that the missing discriminant
information can not be completely solved by increasing the dimension of the compact bilinear fea-
tures.
5.3 COMPARISON WITH THE STATE-OF-THE-ART ALGORITHMS

VGG-16 backbone. We first compare with full bilinear pooling methods: BCNN, improved BCNN,
DeepO2P , G2DeNet, RUN, DeepKSPD. Except BCNN, those methods adopt enhanced normal-
ization strategies to overcome the bursitness problem. As seen from Table 2, only G2DeNet slightly
surpasses our RK-FBP on CUB200 dataset by 0.6%. On the rest five datasets, our RK-FBP achieves
the best results, and the largest gain is 8.6% (more than DeepO2P) on the MINC dataset.

8

Under review as a conference paper at ICLR 2023

Table 2: Comparisons for BiP methods in terms of Average Precision (%)

Methods Backbone Feature dim. Param DTD Indoor MINC CUB200 Cars196 Aircraft

VGG-16 (Simonyan & Zisserman, 2014) VGG16 4096 120.4M 60.1 64.5 73.0 80.4 76.7 74.1
BCNN (Lin, 2015) VGG16 131K 52.4M 67.5 77.6 74.5 84.0 91.1 87.1
Improved BCNN(Lin & Maji, 2017) VGG16 131K 411M - - - 85.8 92.0 88.5
DeepO2P (Ionescu et al., 2015) VGG16 131K 52.4M 67.2 78.4 74.8 - - -
CBP (Gao et al., 2016) VGG16 8K 1.64M 67.7 76.8 73.3 84.0 90.1 87.1
MPN (Li et al., 2017a) VGG16 32K 13.1M 68.0 76.5 76.2 86.1 92.2 89.9
G2DeNet (Wang et al., 2017) VGG16 131K 411M - - - 87.1 92.5 89.0
LRBP (Kong & Fowlkes, 2017) VGG16 - 0.8M 65.8 - - 84.2 90.9 87.3
FBN (Li et al., 2017b) VGG16 - 0.39 67.8 - - 82.9 87.7 84.8
SMSO (Yu & Salzmann, 2018) VGG16 2048 1.46M 69.3 79.5 78.0 85.0 92.1 88.1
RUN (Yu et al., 2020) VGG16 131K - 68.4 80.8 - 86.3 81.0 89.8
DeepKSPD (Engin et al., 2018) VGG16 131K - - 81.0 - 86.5 90.1 91.0
ReDro (Rahman et al., 2020) VGG16 33K 103M - 80.2 - 86.7 92.2 91.0
iSQRT-COV (Li et al., 2018) VGG16 33K 308M 69.7 79.5 79.2 87.2 91.1 90.0
HBP (Yu et al., 2018) VGG16 24.6K 39B - - - 87.2 93.7 90.3
MoNet-2 (Gou et al., 2018) VGG16 10K 10M - - - 85.7 91.8 89.3
FCBN (Yu et al., 2021) VGG16 4K - 66.8 - - 85.6 - 90.5
FBC (Gao et al., 2020) VGG16 8192 10M 71.5 79.9 80.2 84.3 90.3 87.1
TKBF (Yu et al., 2022) VGG16 9K 96 68.2 80.5 78.2 86.0 84.3 91.4
RK-FBP (2+ , ours) VGG16 512 45.2M 72.2 83.5 83.4 86.8 92.5 91.9
RK-FBP (3+ + 2+ , ours) VGG16 1024 52.3M 74.1 85.1 84.3 87.4 93.6 92.5
TKBF (Yu et al., 2022) ResNet50 9K 96 71.4 84.1 79.3 85.7 84.1 92.1
DBTNet-50 (Zheng et al., 2019) DBTNet 2K - - - - 87.5 94.5 91.2
ReDro (Rahman et al., 2020) ResNet50 33K 103M - 80.2 - 86.7 92.2 91.0
iSQRT-COV (Li et al., 2018) ResNet50 33K 312M 70.4 80.1 81.3 87.9 92.1 90.9
SMSO (Yu & Salzmann, 2018) ResNet50 2K 5.75M 72.5 79.7 81.3 85.8 92.2 88.9
RK-FBP (2+ , ours) ResNet50 512 112M 73.2 84.5 84.9 86.7 92.9 92.8
RK-FBP (3+ + 2+ , ours) ResNet50 1024 112M 74.9 86.2 85.1 88.1 94.5 93.6

Then, we further compare with the medium-scale bilinear features, ReDro and iSQRT-COV. ReDro
is a grouped bilinear pooling method which reduces the dimension of bilinear features to 33K. As
shown in Table 2, Our RK-FBP achieves comparable results with ReDR. Specifically, RK-FBP
is more than ReDro by 0.1% and 0.3% CUB200 and Car196, and 3.3% and 0.9% on Indoor and
Aircraft datasets, respectively. iSQRT-COV reduces the dimension of the local features from 512
to 256 using a 1 × 1 convolution layer. So, the dimension of its bilinear features is 33K too. Our
RK-FBP outperforms iSQRT-COV on the rest five datasets except CUB200. Especially, RK-FBP
significantly surpasses iSQRT-COV by 4.0% on Indoor. Because the ReDro and iSQRT-COV are
designed to overcome the burstiness of bilinear features, their dimensions are relatively low.

We conclude two conclusions: (1) those positive results over the high dimensional BiP methods
indicate that high dimension limits the efficiency of bilinear features in the succeeding classification
tasks. (2) Considering that the above comparison methods employ matrix normalization strategies,
the comparable results mean our RK-FBP can effectively solve the bursitness problem caused by the
intra-class variances, that indicating that our method can find suitable projecting directions.

We also compare several state-of-the-art compact bilinear pooling methods: CBP, LRBP, FBC, and
TKPF. As for those methods, we report the best results and their corresponding dimensions. As
shown in Table 2, our RK-FBP achieves better classification accuracy using the lowest dimension.
Compared to 4K, the smallest dimensions of those comparison methods, 512 and 1024 are ex-
tremely compact. It is mainly because those compact methods can not find suitable projecting
directions since they miss a lot of possible directions. As for the number of parameters, our RK-
FBP uses more parameters than other compact methods. However, compared with the importance
of accurate projecting directions, the cost of such an amount of storage is acceptable. Most of our
model’s parameters are contributed by P, whose parameters can be reduced by constraining it using
sparsity regularization. It will be done in our future work.

At last, we report the performance of our multi-linear models (3+ + 2+ means capturing the 2-
order and the 3-th order information). As seen from Table 2, our multi-linear model achieves the
best accuracy while the dimension is 1024. Especially, our multi-linear features surpass HPB by
0.2%, where HBP is an enhanced bilinear pooling method fusing features across different layers by
Hadamard product. Because the dimension of traditional compact bilinear pooling is high, it is hard
to calculate multi-linear features by nesting them together. This excellent result shows the benefit of
extremely low dimension features in the community.

ResNet50 backbone. As shown in Table 2, our models (bilinear and multi-linear) surpass other
comparison methods on most datasets for the comparison methods, which indicates our model is
robust to the backbones. Besides, we also compare with DBTNet-50 is a deep structure constructed
by bilinear transformation blocks. We find that DBTNet-50 surpasses RK-FBP on CUB200 and
Cars196 being weaker than RK-FBP on Aircraft. However, considering that DBTNet-50 applies
the bilinear pooling in every layer, the results reported are not significant. Besides, our multi-linear
features can outperform DBTNet-50 on most datasets with smaller dimensions. It may be because

9

Under review as a conference paper at ICLR 2023

the transformation used DBTNet-50 is based on the rank-1 matrix bases whose learning ability is
limited. So DBTNet-50 may be improved by our proposed rank-k bilinear projection.
6 CONCLUSION
In this paper, we reveal that traditional factorized bilinear pooling tends to miss feasible projecting
direction. To overcome this disadvantage, we propose a general bilinear projection to formulate
a pooling module called rank-k factorized bilinear pooling (RK-FBP). Our RK-FBP has three ad-
vances: (1) RK-FBP is derived from a general bilinear projection based on complete matrix bases,
so no feasible projecting directions will be missed. (2) Because the projecting directions are ac-
curate, the learned bilinear features are not only compact but also discriminative. Those benefits
give RK-FBP the power to produce more expressive compact bilinear features. Conducted exper-
iments demonstrate that RK-FBP outperforms various state-of-the-art algorithms on challenging
image classification tasks.

REFERENCES

Saadullah Amin, Stalin Varanasi, Katherine Ann Dunfield, and Günter Neumann. Lowfer: Low-
rank bilinear pooling for link prediction. In International Conference on Machine Learning, pp.
257–268. PMLR, 2020.

Sean Bell, Paul Upchurch, Noah Snavely, and Kavita Bala. Material recognition in the wild with
the materials in context database. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 3479–3487, 2015.

Emmanuel J Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal component analysis?
Journal of the ACM (JACM), 58(3):1–37, 2011.

Anoop Cherian, Piotr Koniusz, and Stephen Gould. Higher-order pooling of cnn features via kernel
linearization for action recognition. In 2017 IEEE Winter Conference on Applications of Com-
puter Vision (WACV), pp. 130–138. IEEE, 2017.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3606–3613, 2014.

Yin Cui, Feng Zhou, Jiang Wang, Xiao Liu, Yuanqing Lin, and Serge Belongie. Kernel pooling for
convolutional neural networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 2921–2930, 2017.

Xiyang Dai, Joe Yue-Hei Ng, and Larry S Davis. Fason: First and second order information fusion
network for texture recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 7352–7360, 2017.

Melih Engin, Lei Wang, Luping Zhou, and Xinwang Liu. Deepkspd: Learning kernel-matrix-based
spd representation for fine-grained image recognition. In Proceedings of the European Conference
on Computer Vision (ECCV), pp. 612–627, 2018.

Pengfei Fang, Jieming Zhou, Soumava Kumar Roy, Lars Petersson, and Mehrtash Harandi. Bilinear
attention networks for person retrieval. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 8030–8039, 2019.

Akira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach, Trevor Darrell, and Marcus Rohrbach.
Multimodal compact bilinear pooling for visual question answering and visual grounding. arXiv
preprint arXiv:1606.01847, 2016.

Yang Gao, Oscar Beijbom, Ning Zhang, and Trevor Darrell. Compact bilinear pooling. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pp. 317–326, 2016.

Zhi Gao, Yuwei Wu, Xiaoxun Zhang, Jindou Dai, Yunde Jia, and Mehrtash Harandi. Revisiting
bilinear pooling: A coding perspective. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 3954–3961, 2020.

10

Under review as a conference paper at ICLR 2023

Mengran Gou, Fei Xiong, Octavia Camps, and Mario Sznaier. Monet: Moments embedding net-
work. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
3175–3183, 2018.

Catalin Ionescu, Orestis Vantzos, and Cristian Sminchisescu. Matrix back propagation for deep net-
works with structured layers. In Proceedings of the IEEE International Conference on Computer
Vision, pp. 2965–2973, 2015.

Hervé Jégou, Matthijs Douze, and Cordelia Schmid. On the burstiness of visual elements. In 2009
IEEE conference on computer vision and pattern recognition, pp. 1169–1176. IEEE, 2009.

Jin-Hwa Kim, Kyoung-Woon On, Woosang Lim, Jeonghee Kim, Jung-Woo Ha, and Byoung-Tak
Zhang. Hadamard product for low-rank bilinear pooling. arXiv preprint arXiv:1610.04325, 2016.

Jin-Hwa Kim, Jaehyun Jun, and Byoung-Tak Zhang. Bilinear attention networks. In NeurIPS, 2018.

Shu Kong and Charless Fowlkes. Low-rank bilinear pooling for fine-grained classification. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 365–374,
2017.

Piotr Koniusz, Fei Yan, Philippe-Henri Gosselin, and Krystian Mikolajczyk. Higher-order occur-
rence pooling for bags-of-words: Visual concept detection. IEEE transactions on pattern analysis
and machine intelligence, 39(2):313–326, 2016.

Piotr Koniusz, Hongguang Zhang, and Fatih Porikli. A deeper look at power normalizations. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5774–
5783, 2018.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision work-
shops, pp. 554–561, 2013.

Peihua Li, Jiangtao Xie, Qilong Wang, and Wangmeng Zuo. Is second-order information helpful for
large-scale visual recognition? In Proceedings of the IEEE international conference on computer
vision, pp. 2070–2078, 2017a.

Peihua Li, Jiangtao Xie, Qilong Wang, and Zilin Gao. Towards faster training of global covariance
pooling networks by iterative matrix square root normalization. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 947–955, 2018.

Yanghao Li, Naiyan Wang, Jiaying Liu, and Xiaodi Hou. Factorized bilinear models for image
recognition. In Proceedings of the IEEE International Conference on Computer Vision, pp. 2079–
2087, 2017b.

Tsung-Yu Lin. Bilinear cnn models for fine-grained visual recognition. In Proceedings of the IEEE
international conference on computer vision, pp. 1449–1457, 2015.

Tsung-Yu Lin and Subhransu Maji. Improved bilinear pooling with cnns. arXiv preprint
arXiv:1707.06772, 2017.

Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun, Yong Yu, and Yi Ma. Robust recovery
of subspace structures by low-rank representation. IEEE transactions on pattern analysis and
machine intelligence, 35(1):171–184, 2012.

Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. Hierarchical question-image co-attention
for visual question answering. Advances in neural information processing systems, 29:289–297,
2016.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

Sébastien Marcel and Yann Rodriguez. Torchvision the machine-vision package of torch. In Pro-
ceedings of the 18th ACM international conference on Multimedia, pp. 1485–1488, 2010.

11

Under review as a conference paper at ICLR 2023

Qiang Meng, Shichao Zhao, Zhida Huang, and Feng Zhou. Magface: A universal representation
for face recognition and quality assessment. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 14225–14234, 2021.

Feiping Nie, Han Zhang, Rui Zhang, and Xuelong Li. Robust multiple rank-k bilinear projections
for unsupervised learning. IEEE Transactions on Image Processing, 28(5):2574–2583, 2018.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Hamed Pirsiavash, Deva Ramanan, and Charless C Fowlkes. Bilinear classifiers for visual recogni-
tion. In NIPS, volume 1, pp. 3, 2009.

Ariadna Quattoni and Antonio Torralba. Recognizing indoor scenes. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 413–420. IEEE, 2009.

Saimunur Rahman, Lei Wang, Changming Sun, and Luping Zhou. Redro: Efficiently learning large-
sized spd visual representation. In European Conference on Computer Vision, pp. 1–17. Springer,
2020.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Gilbert Strang, Gilbert Strang, Gilbert Strang, and Gilbert Strang. Introduction to linear algebra,
volume 3. Wellesley-Cambridge Press Wellesley, MA, 1993.

Lei Wang, Jianjia Zhang, Luping Zhou, Chang Tang, and Wanqing Li. Beyond covariance: Feature
representation with nonlinear kernel matrices. In Proceedings of the IEEE international confer-
ence on computer vision, pp. 4570–4578, 2015.

Qilong Wang, Peihua Li, and Lei Zhang. G2denet: Global gaussian distribution embedding network
and its application to visual recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2730–2739, 2017.

Qilong Wang, Jiangtao Xie, Wangmeng Zuo, Lei Zhang, and Peihua Li. Deep cnns meet global co-
variance pooling: Better representation and generalization. IEEE transactions on pattern analysis
and machine intelligence, 43(8):2582–2597, 2020.

Xing Wei, Yue Zhang, Yihong Gong, Jiawei Zhang, and Nanning Zheng. Grassmann pooling as
compact homogeneous bilinear pooling for fine-grained visual classification. In Proceedings of
the European Conference on Computer Vision (ECCV), pp. 355–370, 2018.

John Wright, Arvind Ganesh, Shankar Rao, Yigang Peng, and Yi Ma. Robust principal component
analysis: Exact recovery of corrupted low-rank matrices via convex optimization. Advances in
neural information processing systems, 22, 2009.

Lingxi Xie, Qi Tian, Richang Hong, Shuicheng Yan, and Bo Zhang. Hierarchical part matching
for fine-grained visual categorization. In Proceedings of the IEEE international conference on
computer vision, pp. 1641–1648, 2013.

Jieping Ye, Ravi Janardan, and Qi Li. Two-dimensional linear discriminant analysis. Advances in
neural information processing systems, 17:1569–1576, 2004.

Chaojian Yu, Xinyi Zhao, Qi Zheng, Peng Zhang, and Xinge You. Hierarchical bilinear pooling for
fine-grained visual recognition. In Proceedings of the European conference on computer vision
(ECCV), pp. 574–589, 2018.

Kaicheng Yu and Mathieu Salzmann. Statistically-motivated second-order pooling. In Proceedings
of the European Conference on Computer Vision (ECCV), pp. 600–616, 2018.

Tan Yu, Yunfeng Cai, and Ping Li. Toward faster and simpler matrix normalization via rank-1
update. In European Conference on Computer Vision, pp. 203–219. Springer, 2020.

12

Under review as a conference paper at ICLR 2023

Tan Yu, Xiaoyun Li, and Ping Li. Fast and compact bilinear pooling by shifted random maclaurin. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 3243–3251, 2021.

Tan Yu, Yunfeng Cai, and Ping Li. Efficient compact bilinear pooling via kronecker product. pp.
121–127, 2022.

Zhou Yu, Jun Yu, Jianping Fan, and Dacheng Tao. Multi-modal factorized bilinear pooling with
co-attention learning for visual question answering. In Proceedings of the IEEE international
conference on computer vision, pp. 1821–1830, 2017.

Jianjia Zhang, Lei Wang, Luping Zhou, and Wanqing Li. Beyond covariance: Sice and kernel based
visual feature representation. International Journal of Computer Vision, 129(2):300–320, 2021.

Xingfu Zhang and Xiangmin Ren. Two dimensional principal component analysis based indepen-
dent component analysis for face recognition. In 2011 International Conference on Multimedia
Technology, pp. 934–936. IEEE, 2011.

Heliang Zheng, Jianlong Fu, Zheng-Jun Zha, and Jiebo Luo. Learning deep bilinear transformation
for fine-grained image representation. Advances in Neural Information Processing Systems, 32,
2019.

Appendix

7 DEFINITIONS AND PROOFS

Definition 1: In the linear space Rm×n, the inner production between two matrices A ∈ Rm×n and
B ∈ Rm×n is defined as < A,B >= Tr(ABT).

Definition 2: {Wp}mn
p=1 is a group of complete bases of Rm×n, if and only if, for any matrix X ∈

Rm×n, there is an unique non-zero vector y = [y1, y2, · · · , ymn] to hold the following equation:

X =

mn∑
p=1

ypWp (12)

where yp is the projected coefficient of X on the p-th base Wp.

The vector y can be seen as the representation of the matrix X on the base set {Wp}mn
p=1.

Definition 3: Suppose Wm×n
k = {Wp ∈ Rm×n}mn

p=1 with maxp{rank(Wp)} = k. Wm×n
k is a

complete orthonormal base set of the matrix space Rm×n, if the following equation holds :

Tr(WT
p Wq) =

{
1 p = q
0 p ̸= q

(13)

Theorem 1. Suppose U = {up ∈ Rm×1}l1p=1 and V = {vq ∈ Rn×1}l2q=1 are two groups of
linear independent vectors in two spaces Rm×1 and Rn×1, respectively. If the vector set W =
{vec(Wi) ∈ Rm×n}mn

i=1 is constructed by Wi = upvTq where i = l1(q − 1) + l2, then W is a set of
linear independent vectors.

Proof. Suppose U = [u1, · · · ,ul1] and V = [v1, · · · , vl2]. Because vec(Wi) = vec(upvTq) = up ⊗
vq , there is U ⊗ V = [vec(u1vT

1), vec(u1vT2), · · · , vec(u1vTl2), · · · , vec(ul1vT1), · · · , vec(ul1vT
l2
)].

⊗ is the Kronecker product. Thus, columns in U⊗V are the vectors in W . According to the property
of Kronecker product, there is rank(U ⊗ V) = l1l2. Thus, W is full rank, and the column in W is
a group of linearly independent vectors.
□

Theorem 2. If the coefficient of X ∈Rm×n on the base upvTq is calculated as ypq = Tr(XT upvTq),
then the coefficients of X on the whole base set W = {upvTq |up ∈ U , vq ∈ V}m,n

p=1,q=1 are
{ypq}m,n

p=1,q=1 which can form a coefficient matrix Y ∈ Rm×n satisfying:

Y = UT XV (14)

where U = [u1, · · · ,um] ∈ Rm×m and V = [v1, · · · , vn] ∈ Rn×n.

13

Under review as a conference paper at ICLR 2023

Proof. Because ypq = Tr(XT upvT
q) = uT

p Xvq , so by arranging Ypq as a matrix, there is Y =

UT XV.
□

Corollary. Given a set of linear independent vectors {ui ∈ Rm×1}li=1, the symmetry matrices

S = { (uiuT
j +ujuT

i)

2 ∈ Rm×m}l,li=1,j=1 are also linear independent.

Proof. According to Theorem 2, we know the matrices {uiuT
j }

l,l
i=1,j=1 is a set of linear independent

matrices. Thus, the solution of following function is cij = 0.
l∑

i=1

l∑
j=1

cijuiuT
j = 0 (15)

Let us consider the following equations with variables C′ = {c′ij |i = 1, · · · , l; j = 1, · · · , l; i < j}.

l∑
i=1

c′iiuiuT
i +

l∑
i=1

∑
j<i

c′ij
(uiuT

j + ujuT
i)

2
= 0 (16)

If c′ij = 0, we let cij = c′ij/2 for i < j and cii = c′ii. The function in Eq.(16) has an non-zeros
solution. This violates the conclusion that cij = 0 for Eq.(16). Thus, all elements in C′ are 0. It
means the matrix set S is a group of linear independent matrices.

8 DISCUSSION ON BURSTINESS AND NORMALIZATION STRATEGIES

8.1 WHY THE BILINEAR POOLING CAN ENHANCE THE DISCRIMINANT ABILITY OF LOCAL
FEATURES

Given a local feature xi ∈ Rm×1, its corresponding bilinear feature is zi = vec(xixTi). Let us
calculate the inner product between bilinear features of xi and xj , there is

< zi, zj >= vec(xixT
i)

T vec(xjxTj) = (xT
i xj)2 (17)

Comparing Eq.(17) with the polynomial kernel function k(xi, xj) = (a(xT
i xj) + d)p, the inner

product between bilinear features equals to polynomial kernel function with a = 1, d = 0 and
p = 2. Therefore, we can claim that the bilinear feature is the explicit result of the non-linear
projection determined by the polynomial kernel function.

How to let the features outputted by the backbone fit well to the hyper-parameters of polynomial
kernel function is not the concern of our paper. Thus, we suppose the backbone can generate features
good enough to satisfy the hyper-parameters.

As for the local features Xi = [xi1, xi2, · · · , xic]×Rm×c, the bilinear pooling Zi = XiXT
i ∈ Rm×m

is just the sum of bilinear features of columns in Xi. So its enhanced discriminant ability can be also
interpreted by the polynomial kernel function.

As well known, the polynomial kernel function can improve the classification performance of the
support vector machines which is a linear discriminant classifier. Thus, the discriminant information
in bilinear features can be well depicted by the linear projection.

This is the basis that we can employ linear projections to reduce the dimensionality of bilinear
features, which is a crucial step to solve the burstiness problem of bilinear features.

8.2 HOW THE BURSTINESS REDUCE THE PERFORMANCE OF MODELS

Burstiness phenomenon on the image features is first analysed in the literature Jégou et al. (2009),
which focus on the feature vectors obtained by the bag-of-words frameworks.

In bag-of-words frameworks, each dimension of feature vectors corresponds to an visual word
collected from the whole image data. For the i-th image, the feature vector is xi =
[xi1, xi2, · · · , xim]T ∈ Rm×1 where the value of xij is the frequency of the j-th visual word ap-
peared in the i-th image. Suppose the label of i-th image is yi, so the average value of the j-th

14

Under review as a conference paper at ICLR 2023

dimension of the whole c-th class of samples is x̄j =
1
Nc

∑
yi=c xij where Nc is the sample number

of the c-th class.

In some cases, the j-the visual word may appear a lot of times in the i-th image but does not appear
so many times in other images. This will make the value of xij much larger than the average
value of the j-th dimension, i.e., x̄j . This is the burstiness phenomenon of bag-of-words features.
Geometrically, this burstiness phenomenon increases the variance of samples in each class in the
feature space.

Therefore, literature Wei et al. (2018) describes the burstiness phenomenon as “the problem that
the feature descriptor is not invariant enough where the feature elements may have large variances
within the same class.”

Thus, the burstiness problem can be summarized as the problem of large intra-class variance.

The burstiness of bilinear features is caused by the outer product on the local features. Let us
take the three-dimensional data as an example. Suppose there are three samples x1 = [1, 1, 1]T ,
x2 = [3, 1, 1], x3 = [1.2, 1.2, 1.2]T . The bilinear features of x1, x2, and x3 are z1 = vec(x1xT

1) =
[1, 1, 1, 1, 1, 1, 1, 1, 1]T , z2 = vec(x2xT

2) = [9, 3, 3, 3, 1, 1, 3, 1, 1, 1]T , and z3 = vec(x3xT3) =
[1.44, 1.44, 1.44, 1.44, 1.44, 1.44, 1.44, 1.44, 1.44]T .

We can calculate the average of z1 and z3, i.e., z̄ = z1+z2
2 =

[1.22, 1.22, 1.22, 1.22, 1.22, 1.22, 1.22, 1.22, 1.22]T . If most of local features are close to x1

and x3, z̄ can be considered as the average bilinear feature of the whole class. Thus, z2 is far away
from the average z. Because this phenomenon is similar to the burstiness of bag-of-words features,
it is also called as the burstiness of bilinear features, which also expands the intra-class variance.

For some images, there are the illumination variations and appearance changes in them Gao et al.
(2020); Wei et al. (2018), which make the features extracted by deep neural networks also have
some variances within each class. The variance may reflect the singular values of the matrix storing
local features, i.e., X =

∑T
i=1 uiσivTi where σi is the i-the singular value and ui and vi are the

corresponding singular vectors. Because the bilinear pooling on X is XXT =
∑T

i=1 uiσ
2
i uT

i . Those
variances will be expanded by the outer product and cause the burstiness of bilinear features in the
deep frameworks.

Because the burstiness will affect the similarity between bilinear features Wei et al. (2018), it will
affect the performance of models based on similarity.

For classification tasks, the bilinear features are likely linear discriminant. Due to the high dimen-
sionality of bilinear features, there are a lot of feasible solutions of classifiers can fit the training data
well. However, the large intra-class variance caused by the burstiness may let the classifier select
a bad solution which has the bad generalization on the test dataset, and the performance of bilinear
features is harmed. Thus, how to alleviate the burstiness problem is very important for learning the
bilinear features.

8.3 SIGNED ELEMENTWISE SQUARE-ROOT OPERATION

Signed elementwise square-root operation transforms a vector x = [x1, x2, ·, xm]T to a new vector
x̂ = [x̂1, x̂2, · · · , x̂m]T , in which x̂i is calculated as

x̂i = sgn(xi)
√

|xi| (18)

Consider the value of
√

|xi|, there is{ √
|xi| >= |xi|, |xi| <= 1√
|xi| < |xi|, |xi| > 1

(19)

In this way, we can find that
√
|xi| let the value |xi| close to 1. Let us consider the value sgn(xi),

Eq.(18) lets the vector x ∈ Rm×1 close to the centers [±1,±1, · · · ,±1] ∈ Rm×1 where the symbol
± is determined by sgn(xi).

Thus, if samples from different classes are well separated and are located in different quadrants in
the feature space, the elementwise square-root operation can reduce the intra-class variance well.

15

Under review as a conference paper at ICLR 2023

And the generalization is good. Such a requirement can be satisfied by the bag-of-words features.
It is because the bag-of-words frameworks generate feature vectors according the frequency of each
visual elements appeared in each image, where the visual elements are often generated by clustering
algorithms and thus have explicit similarity meanings.

The literature Wei et al. (2018) reveals the features extracted by the deep neural networks do not
meet the requirement signed Elementwise Square-root transformation.

8.4 L2-NORMALIZATION

L2-normalization is widely used in the deep neural networks to enhance the generalization ability
of learned features. For a vector xi ∈ Rm×1, the L2-normalization of xi is x̂i defined as

x̂i = xi/|xi|2 (20)

Therefore, the Euclidean distance between two x̂i and x̂j is |x̂i − x̂j |22 = 2 − x̂Ti x̂j . Thus, after
L2-normalization, the Euclidean distance between samples can be replaced by the cosine distance.
For the features extracted by deep neural networks, L2-normalization will reduce the variances in
each class Meng et al. (2021), because the variance information is along the radius direction in the
feature space.

8.5 HOW THE FACTORIZED BILINEAR POOLING ALLEVIATE THE BURSTINESS

Because the bilinear features are linear discriminant, so the dimension of bilinear features can be
reduced by a set of linear projections. In this way, the variance along those eliminated directions are
discarded. Then, the L2-normalization strategy is adopted to reduce the variance along the radius
direction in the low-dimensional feature space. In this way, the intra-class variances are reduced and
the burstiness problem is alleviated.

9 RELATED WORK

We review works improving bilinear pooling in two aspects: 1) Enhancing the bilinear feature’s
effectiveness; 2) Reducing the dimension of the bilinear feature for greater efficiency.

Effectiveness improvement. There are several different routines to improve the bilinear feature’s
effectiveness. For example, G2DeNet (Wang et al., 2017), FASON (Dai et al., 2017) and MoNet
(Gou et al., 2018) take the first-order statistics into consideration beside the bilinear pooling. KP (Cui
et al., 2017), HOK (Koniusz et al., 2016) and HOP (Cherian et al., 2017) extend the second-order
pooling to higher-order pooling. By considering bilinear pooling as depicting correlations across
different features in a specific kernel space, Ker-RP (Wang et al., 2015; Zhang et al., 2021) employs
kernel functions instead of inner-product to strengthen the representative capability of the bilinear
feature. Bilinear pooling can be enhanced by capturing correlations between features yielded by
different layers (Yu et al., 2018). Besides, the strategies of normalization are also proved to be
effective in improving the discriminant ability of bilinear features. For instance, improved bilinear
pooling (IBP) (Lin & Maji, 2017), MPN-COV (Li et al., 2018) and their variants (Koniusz et al.,
2018) explore the matrix normalization to moderate the singular values of the bilinear matrix. By
using those strategies, the discriminant ability of bilinear features is increased by a large margin
compared with the original bilinear features.

Dimension reduction. The bilinear feature is a high dimensional matrix, which limits its efficiency
and makes it prone to over-fitting. To speed up the classification and suppress over-fitting, FBN
(Li et al., 2017b) reduces the dimension of the weight matrices in the classifier by replacing each
weight matrix with a product of two low-rank matrices. In parallel, some methods focus on the
dimension reduction for the original first-order features before bilinear pooling. BCNN (Lin, 2015)
uses principal component analysis (PCA) to learn the projection matrix for reducing the dimension
of first-order features. Specifically, it uses the projection matrix learned from PCA as initialization
of a 1 × 1 convolution layer and then trains the network in an end-to-end manner. The PCA is
also utilized in LRBP (Kong & Fowlkes, 2017) and iSQRT-COV (Li et al., 2018) for dimension
reduction on the first-order features. Except those linear projection with learnable parameters, CBP

16

Under review as a conference paper at ICLR 2023

(Gao et al., 2016; Yu et al., 2021) approximates the operation of bilinear pooling by the polynomial
kernel function. Then CBP employs two kernel approximation methods to reduce the dimension
of bilinear feature, tensor sketch and random Maclaurin (RM), which achieve better performance
than the PCA. Inspired by CBP, the strategy of CBP is adopted in MLB (Fukui et al., 2016) for
cross-modal understanding. In CBP, the projections is formulated to reduce the dimension of the
first-order features by two random projections which is then fused by Hadamard product. Hadamard
product-based low-rank factorized bilinear pooling (HFBP) (Kim et al., 2016) replaces the random
matrices with two learnable matrices and obtains a new compact bilinear pooling algorithm. Such
technique is then adopted by HBP (Yu et al., 2018) for fusing features in different layers. Although
so many dimension reduction algorithms have been proposed in past years, there lacks a general
perspective to understand them. In this paper, we review the dimension reduction algorithms from
the perspective of finding appropriate projection directions. Moreover, we reveal that the projections
used in those algorithms tend to miss a lot of possible projecting directions, which reduces the
effectiveness of the compact bilinear feature.

9.1 INTERPRETATION OF BILINEAR FEATURES FROM THE PERSPECTIVE OF SUPERVISED
SPECTRAL GRAPH PARTITIONING

9.1.1 SPECTRAL GRAPH PARTITIONING

Let us consider the similarity between two samples x and y with polynomial kernel function
K(x, y) = (γ(xT y)+ d)2 where γ and d are two hyper-parameters adjusted for different data distri-
butions. If we calculate the inner product between two bilinear features vec(xxT) and vec(yT yT):
< (xxT , yyT >= (xyT)2, we can find that it is the special case of the similarity calculated by the
polynomial kernel function with γ = 1 and d = 0. The similarity matrix S on a data set can be used
to describe the discriminant information between

As well known, the polynomial kernel function can be adopted to solve the inseparable problem
by support vector machines (SVMs) and k-means algorithms. The ability to solve the inseparable
problem also enhance the discriminant ability of vectors x.

Let us adopt the spectral graph partitioning as a tool to analyze the performance of bilinear features.
Before doing this, we introduce the procedure of spectral graph partitioning.

Definition 4. Given a set of samples {xi}Ni=1, the adjacent matrix S is defined by

Sij =

{
K(xi, xj), i ̸= j

0, i = j
(21)

where K(xi, xj) is a kernel function whose value monotonically decreases with respective to the
distance between x and y, e.g., K(x, y) = exp(−γ|x − y|22) (γ > 0).

The normalized Laplace matrix is defined as L = I − D−1/2SD−1/2 where D is a diagonal matrix
with Dii =

∑
j=1 Sij . The following equation is held:

fT Lf =
N∑
i=1

N∑
j=1

Sij(
fi√
di

− fj√
dj

)2 (22)

where f = [f1, f2, · · · , fN]T ∈ RN×1. For traditional bi-class spectral graph partitioning, the
objective function is to minimize Normalized cuts whose the objective function is presented as
follows.

min
f∈{−1,1}N×1

N∑
i=1

N∑
j=1

Sij |
fi√
di

− fj√
dj

|22

Because the distance between xi and xj is smaller, the value of k(xi, xj) is larger, the solution in the
above optimization problem is

fi =

{ √
di, xi ∈ C1

−
√
di, xi ∈ C2

(23)

17

Under review as a conference paper at ICLR 2023

𝐶1 𝐶2 𝐶3 𝐶4

𝐶1

𝐶2

𝐶3

𝐶4

𝐶1 𝐶2 𝐶3 𝐶4

𝐶1

𝐶2

𝐶3

𝐶4

(a) (b)

Figure 7: (a) Traditional spectral graph partitioning. (b) Our designed spectral graph partitioning. There are
four classes {Ci}4i=1. When we use the bi-class based model to deal with the fourth classes, the partitioning of
two models are different. In (a), the first class consists of C1, and the second class consists of {C2, C3, C4};
in (b), the first class consists of {C1, C2}, and the second class consists of {C3, C4}. When we extend the
bi-class model to multi-class version, the strategy is different.

where Ci is the collection of samples in the i-th class.

The above is the traditional graph partitioning model. In our graph partitioning model, we let the ker-
nel function k(xi, xj) whose value monotonically increases with respective to the distance between
xi and yj . Thus, the objective function of our spectral clustering can be formulated as follows.

max
f∈{−1,1}N×1

N∑
i=1

N∑
j=1

Sij |
fi√
di

− fj√
dj

|22 (24)

Because the task only has two classes, we can obtain the solution presented in Eq.(23) by maximiz-
ing the objective function.

However, the two graph partitioning algorithms presented in Eq.(23) and Eq.(24) behavior quite
different when they are employed to solve the multi-class tasks. To clearly show the difference, we
suppose there are 4-classes of samples. The i-th class is denoted as Ci, and the samples from the
same class are listed together. The kernel matrix S of two methods are graphically shown in Figure
7. Both methods consider the fT Lf which equals sum of values in the dark-colored boxes in Figure
7. Because the tradition model minimizes the value of fT Lf, so it tends to find dark-colored boxes
consisting smaller areas. As for our model, it maximizes fT Lf, so it finds the dark-colored boxes
having the largest area. In this way, the two classes obtained by the traditional graph partitioning
model are {C1} and {C2, C3, C4}, which indicates that it separates one class of samples from the
reset classes. When we want to separate the 4 classes, we need 4 vectors {fi}4i=1 to indicates the
class-membership of samples.

However, as for our model, the obtained classes consist of samples in {C1, C2} and {C3, C4}, which
is not consistent to the ground-truth of samples.

But, if we further separate C1 from C2, and C3 from C4, i.e., obtain another partition {C1, C3}
and {C2, C4}, we can partition the data set well. Such a partitioning result corresponds to f1 =
[
√
d1,

√
d2,−

√
d3,−

√
d4] and f2 = [

√
d1,−

√
d2,

√
d3,−

√
d4]. Obviously, the two dimensional

samples [
√
d1,

√
d1], [

√
d2,−

√
d2], [−

√
d3,

√
d3], [−

√
d4,

√
d4] are the centers of the four classes,

and they are separated well. Thus, we can employ those two vectors {fi}2i=1 to extend the bi-class
model to a 4-class model.

And so on, for a C-class task, our model only need to employ k = log2(C) vectors {fi}ki=1 to
embedding the original samples. Compared with the traditional graph partitioning model needing
C vectors, the embedding of our model is extremely compact.

18

Under review as a conference paper at ICLR 2023

(b)
(a)

Figure 8: (a) Traditional spectral graph partitioning. (b) Our designed spectral graph partitioning. The tradi-
tional graph partition method needs C dimension to code C classes of samples, while our method can only use
log2(C) dimension to code C classes of samples.

Remark 5. Our proposed graph partitioning algorithm can only employ log2(C) dimensions to rep-
resent the embeddings of samples. Theoretically, we can employ 64-dimension to code 264 classes
of samples. The geometrical illustration of samples obtained by two types of graph partitioning
methods are shown in the Figure 8.

Now, we employ our proposed graph partitioning algorithm to extract the features. Our mult-class
graph partitioning model is formulated as

max
FT F=Dk

C∑
k=1

N∑
i=1

N∑
j=1

Sij |
fk
i√
di

−
fk
j√
dj

|22

⇐⇒ max
FT F=Dk

Tr(FT (I − D− 1
2 SD− 1

2)F)

⇐⇒ max
FT F=Dk

Tr(FT (−D−1/2SD−1/2)F)

⇐⇒ max
FT F=Dk

∥(D−1/2SD−1/2)− FFT ∥2F

(25)

where k = log2(C).

Remark 5. The solution of F in Eq.(25) is the log2(C)-th smallest eign-vectors of D−1/2SD−1/2.

Lemma. If the sample N is large enough, the eigen-vectors of D−1/2SD−1/2 are equal to the eigen-
vectors of S. Thus, the embedding F can be obtained by performing eign-value decomposition on S.
Proof: Because ii-th element in D−1/2 is di = 1√∑N

j=1 Sij

. Because, the Sij is the value of k(xi, xj)

which is monotonically increase with distance between xi and xj . If N is large enough, the error
∥di − dj∥ < ϵ. Under this assumption, there is that d1 ≈ d2 ≈ d3 ≈ · · · ≈ dN . Therefore, we can
let D−1/2SD−1/2 ≈ (di)

2S. Thus, we have that the embedding F can be approximated by the find
the log2(C)-th smallest eign-vectors S.

Theorem 3. When X is the bilinear features, S = XT X becomes the similarity matrix determined
by the second-order polynomial kernel function. Let us denote F as the solution in Eq.(25), thus
there exists a linear projection L to let F = LT X.

Proof. Because S =
∑r

i=1 σiuiuT
i , where σi is the i-th small eigen-value of S, thus,∑k

i=1 σiuiuT
i = FFT . Because S = XT X, there is X =

∑r
i=1

√
σiuivTi , there is∑k

i=1

√
σivT

i = [u1,u2, · · · ,uk]
T X = F.

Remark. The above theorem prove that the bilinear features can be reduced to an extremely
low dimensional space with there discriminant information being preserved. This is the theoretical
base why our method can reduce the bilinear features to 512.

19

Under review as a conference paper at ICLR 2023

10 RELATION WITH EXISTING METHODS

10.1 PCA BASELINE

PCA baseline is exploited in BCNN and iSQRT-COV for dimension reduction for bilinear features.
It adopts a 1 × 1 convolutional layer to reduce the dimension of the local feature from m to l1
(l1 < m). Then the bilinear pooling is performed on the l1 dimensional features to l21-dimensional
feature. To be specific, given N local features X̂ = [x1, x2, · · · , xN] ∈ Rm×N , PCA baseline
generate the compact local features by Y = UT X̂. Thus, the compact bilinear feature is obtained by

Z = UT X̂X̂U (26)

According to the theorem 1, the Eq.(26) actually employs a set of rank 1 matrix bases to reduce the
high-dimensional bilinear feature X̂X̂ to a compact one Z. According to our analysis, if the data
prefers large rank matrix bases, some discriminant information is lost in the dimension reduction
procedure.

To overcome this shortcoming, we should employ k projecting matrices {Ut}kt=1 to reduce the local
feature X̂ and calculate the compact bilinear feature Z as follows:

Z =

k∑
t=1

UT
t X̂X̂Ut (27)

10.2 RANDOM MACLAURIN (RM)

RM is employed in CBP (Gao et al., 2016) for compact bilinear pooling. inspired by the success of
CBP, many RM-based algorithms are proposed (Yu et al., 2021; Fukui et al., 2016). RM employed
two random projecting matrices U and V to reduce the dimension of bilinear features.

z =

N∑
i=1

UT xi ◦ UT xi (28)

where z is the compact bilinear feature, and ◦ is the Hadamard product.

Let us compare Eq.(28) with Eq.(4). If we set P as an identity matrix, Eq.(28) with Eq.(4) are the
same. The difference is that U and V in Eq.(4) are updated by gradient descent algorithms while
those in Eq.(28) are random variables found by sampling values from the random distributions. It
may be why methods of Eq.(4) outperform methods based on RM in terms of classification accuracy.
However, because the parameters in Eq.(4) do not need to update via gradient descent algorithm, it
involves less computation.

10.3 TWO-LEVEL KRONECKER-PRODUCT PRODUCT FACTORIZATION (TKPF)

TKPF supposes a projecting matrix P can be decomposed as the Kronecker product presented as
follows.

P =

Q∑
q=1

A(q) ⊗ B(q) (29)

Then, by further decomposing A(q) and B(q) as Aq = Ir ⊗ Â
(q)

and B(q) = Ir ⊗ B̂
(q)

, TKPF
formulates the compact bilinear pooling as

Z =

Q∑
q=1

(Ir ⊗ (B̂
(q)

)T)XXT (Ir ⊗ Â
(q)

) (30)

where ˆA(q) and ˆB(q) are learnable parameters. Because the scale of ˆA(q) and ˆB(q) can be adjusted
by the parameter r, TKPF can use very less parameters to reduce the dimension of bilinear feature.

However, we can find the TKPF has the following shortcoming.

20

Under review as a conference paper at ICLR 2023

TKPF assumes that every matrix P can be decomposed as Eq.(29). However, this assumption is
not true. If we construct the i-th column of P as pi =

∑k
r=1 ur

i ⊗ vri , where Ur = [ur
1, · · · ,ur

d],
Vr = [vr

1, · · · , vrd]. Consider Ur ⊗ Vr equals

Ur ⊗ Vr = [ur
1 ⊗ Vr,ur

2 ⊗ Vr, · · · ,ur
d ⊗ Vr]

= [ur
1 ⊗ vr

1,ur
1 ⊗ vr2, · · · ,ur

d ⊗ vrd]
(31)

P =

k∑
r=1

[ur
1 ⊗ vr

1,ur
2 ⊗ vr2, · · · ,ur

d ⊗ vrd] (32)

Compared Eq.(31) with Eq.(32), we know P = [p1, · · · ,pd] can not be decomposed as Eq.(29).

Besides, Aq = Ir ⊗ Â
(q)

is also a Kronecker product-based decomposition, which may be not hold.
This means KTPF ignores a lot of feasible projecting directions. If the data prefers those missed
feasible projecting directions, the performance is compact is bad.

Let us compare TKPF with our bilinear model. For easy comparison, we transform our bilinear
projection y = PT vec(

∑k
i=1 UT

i XVi) into a vector-based form presented as follows.

y = LT (

Q∑
q=1

VT
q ⊗ UT

q)vec(XXT) (33)

Then, the projecting matrix in Eq.(33) is

P̂ = LT (

Q∑
q=1

VT
q ⊗ UT

q) (34)

Obviously, Eq.(29) and Eq.(34) look similar. The difference between them is that Eq.(33) has a
matrix L while Eq.(29) does not. L plays the role to select the columns in VT

q ⊗UT
q to form a matrix

can not be decomposed by Kronecker product. This makes our P̂ can be any matrix. Therefore, the
minimal difference makes our proposed projection is an accurate one while the projection in Eq.(29)
is not.

Our proposed bilinear projection is general, it can be used to analyze the performance of other
dimension reduction algorithms for matrix data, such as two-dimensional principal analysis (Zhang
& Ren, 2011) and two-dimensional linear discriminant analysis (Ye et al., 2004).

As discussed above, TKPF employs some inappropriate matrix decompositions to construct the
projection, which means TKPF also can not find accurate projecting matrices. Although the per-
formance of TKPF looks good on its reported datasets, TKPF may suffer from a great performance
reduction in other applications. Thus, the application range of TKPF is limited. At last, compared
with our proposed bilinear model, the dimension of the compact bilinear feature is still high, e.g.,
for its best accuracy, the dimension is 96 ∗ 96.

10.4 CODE PERSPECTIVE OF BILINEAR POOLING

FBC Gao et al. (2020) proposes a general compact bilinear model from the coding perspective.
Given h low rank atoms {ViUT

i }, FBC Gao et al. (2020) encodes xsyTt into fi ∈ Rh×1 by solving
the following matrix-based sparse coding optimization problem:

min
f

∥xsyTt −
h∑

l=1

flUlVT
l ∥2F + λ∥f∥1 (35)

where λ is a trade-off between the reconstruction error and the sparsity. Ul ∈ Rm×k and Vl ∈ Rn×k

are two rank-k matrices decomposed from the l-th rank-k matrix atom. Here, Ul and Vl are learned
by the deep model through the whole set of original samples. The optimization problem in Eq.(35)
has a closed-form solution presented as follows:{

f′ = P((UT UPT ◦ VT VPT))−1P(UT xs ◦ VT yt)
f = sign(f′) ◦max(abs(f′)− λ

2
, 0)

(36)

21

Under review as a conference paper at ICLR 2023

where U = [U1, · · · ,Uh] ∈ Rm×hk and V = [V1, · · · ,Vh] ∈ Rn×hk are the learnable parameters
of the dictionary. P ∈ Rh×hk is a fixed binary matrix with only elements in the row l, columns
((l − 1)× h) + 1 to (lh) being “1”, where l ∈ [1, h].

Because the above formulation involves the matrix inverse operation, it adopts a relaxation strategy
((UT UPT ◦ VT VPT))−1P(UT xs ◦ VT yt) = (Û

T
xs ◦ V̂

T
yt).{

f′ = P(Û
T

xs ◦ V̂
T

yt)
f = sign(f′i) ◦max(abs(f′i)− λ

2 , 0)
(37)

However, we can prove that the coding model is mathematically equivalent to the traditional model.
And we can propose that a new coding-based model does not need relaxation. We consider the
vector-based coding model miny ∥x − WT y∥2F where y is the coefficient on of vector x on the
dictionary W. There is a solution y = (WWT)−1Wx. According to FBC, when we replace the x as
vec(xyT

t), the i-th column of W as ViUT
i , and y as f, we can obtain the formulation Eq.(35).

Similarly, we can construct another coding-model miny ∥x−WT (WWT)−1y∥2F . y is the coefficient
of x on the atoms W(WT W)−1. There is the solution y = WT x which is a linear projection.
Thus, according to the Eq.(36), if we replace W’ the i-th column wi as ViUT

i , the matrix-based
dictionary is P((UT UPT ◦ VT VPT))−1PRT . The i-th column of R is ui ⊗ vi where ui and vi are
the i-th column of U and V. This is because RT vec(xsyTt) = UT xs ◦ VT yt. Because ui ⊗ vi =

vec(uivTi), so P((UT UPT ◦ VT VPT))−1PRT can also be transformed to a set of matrices. Thus,
we have another type of matrix-based coding model, and the bilinear feature can be outputted by
f = PT (UT xs◦VT yt) which is equivalent to the formulation Eq.(37). And the solution is an accurate
one.

This is why we directly derive the bilinear pooling model from our general bilinear projection f =
PT vec(UT xsyTt V) other than the coding based framework.

10.5 FORMULATION OF RK-HFBP

Eq.(4) has a matrix P ∈ Rl×h, so l can not be very large. Thus, Eq.(4) is a rank-1 Hadamard
product-based FBiP. As discussed in FBC, the rank of projecting matrices are also very important.
So we improve Eq.(4) by giving its projecting matrices more rank. By employing the same strategy
of our proposed rank-k bilinear projection Z = UT (Ik ⊗ X)V =

∑k
i=1 UT

i XVi, we obtain a new
rank-k Hadamard product-based bilinear pooling (RK-HFBiP) presented as follows.

y = PT vec(
k∑

i=1

UT
i xs ◦ Viy

T
t) (38)

We will RK-HFBiP as a comparison method in our ablation experiments.

11 ABLATION EXPERIMENTS

Table 3: Accuracy (%) with different orders on variance datasets. (a, · · · , c) means the feature is constructed
by concatenating the a-th,· · · , c-th order statistic information.

T 2 3 4 (2,3) (2,4) (3,4) (2,3,4)

Indoor 83.8 83.1 82.1 85.1 85.2 84.9 85.0

MNIC 83.4 83.5 83.0 84.3 84.5 83.7 84.2

CUB-200 86.8 86.9 86.7 87.4 87.2 87.2 87.6

Cars-196 92.5 92.1 92.6 93.8 94.0 93.6 93.9

Number of orders. We can nest several RK-FBP modules together to learn compact representations
with high-order information, which we denoted as RK-FBP-M. We evaluate the influence of the
order T on RK-FBP-M. We set l1 = l2 = h = 512, and vary d among {2, 3, 4}. Because our model
allows us to concatenate the features with different orders, we have 7 types of features. As seen
from Table 3, the multi-linear features win the bilinear features by a significant margin. Besides,

22

Under review as a conference paper at ICLR 2023

with the increase of the order, the result is not always increased. To be specific, the (2, 3), (2, 4),
and (2, 3, 4) features achieve the similar accuracy. Thus, in our paper, we set the order parameter as
(2, 3) for our the multi-linear model.

Normalization Strategy. In the fully bilinear pooling approaches, the performance is cru-
cially dependent on the normalization strategy. Thus, we explore how the normalization
strategies affect our proposed RK-FBP. Thus, we add two normalization strategies adopted
by fully bilinear pooling Lin (2015) and improved bilinear pooling Lin & Maji (2017) be-
fore RK-FBP modules. We denote them by ’SgnSqrt’ normalization and ’SgnSqrt+log’
normalization, respectively. We also compare the result with only ’log’ normalization.
At last, all bilinear features should be normalized to an ‘unit’ vector by L2 normalization.
The results are shown in the Table 4. As seen from the results, we can find that the results are
similar with little variance. This is a bit different from Table 1, which employs normalization
strategies after projection. In Table 1 the combination of feature reduction and normalization
strategies increases the performance. This may be because the features after projection is still high,
there are still much information of large intra-class variance. So the normalization strategies can
improve the performance of models by removing the bad information. Because our RK-FBP does
not use ’SgnSqrt’ and ’log’ but achieves comparable results with those methods using normalization
strategies, it indicates our proposed model can solve the burstiness problem caused by large
intra-class variances.

Table 4: Accuracy (%) with normalization strategies on variance datasets.

Indoor MNIC CUB-200 Cars-196

RK-FBP 83.8 83.4 86.8 92.5

SgnSqrt 83.7 83.5 86.9 92.3

log 83.9 83.7 86.6 92.7

SgnSqrt+log 84.0 83.5 86.7 92.6

23

	Introduction
	Preliminary
	Dimension Reduction on Bilinear Features
	Shortcomings of Traditional Factorized Low-rank Bilinear Pooling

	General Bilinear Projection
	Decomposition of Matrix Bases
	Formulation of the General Bilinear Projection

	Rank-k Factorized Bilinear Pooling
	Formulation

	Experiments and Analysis
	Experimental Setting
	Ablation Experiment
	Comparison with the State-of-the-art Algorithms

	Conclusion
	Definitions and Proofs
	Discussion on Burstiness and Normalization Strategies
	Why the Bilinear Pooling Can Enhance the Discriminant Ability of Local Features
	How the Burstiness Reduce the Performance of models
	Signed Elementwise Square-root operation
	L2-normalization
	How the Factorized Bilinear Pooling Alleviate the Burstiness

	Related Work
	Interpretation of Bilinear Features from the Perspective of Supervised Spectral Graph Partitioning
	Spectral Graph Partitioning

	Relation with Existing Methods
	PCA Baseline
	Random Maclaurin (RM)
	Two-level Kronecker-Product product Factorization (TKPF)
	Code Perspective of Bilinear Pooling
	Formulation of RK-HFBP

	Ablation Experiments

