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ABSTRACT

Variational autoencoders (VAE) encode data into lower-dimensional latent vec-
tors before decoding those vectors back to data. Once trained, decoding a random
latent vector from the prior usually does not produce meaningful data, at least
when the latent space has more than a dozen dimensions. In this paper, we inves-
tigate this issue drawing insight from high dimensional physical systems such as
spin-glasses, which exhibit a phase transition from a high entropy random con-
figuration to a lower energy and more organised state when cooled quickly in the
presence of a magnetic field. The latent vectors of a standard VAE are by construc-
tion distributed uniformly on a hypersphere, and thus similar to the high entropy
spin-glass state. We propose to formulate the latent variables of a VAE using
hyperspherical coordinates, which allows compressing the latent vectors towards
an island on the hypersphere, thereby reducing the latent sparsity, analogous to a
quenched spin-glass. We propose a new parametrization of the latent space with
limited computational footprint that improves the generation ability of the VAE.

1 INTRODUCTION

In today’s machine learning landscape, and deep learning in particular, one of the main mathematical
tools to represent data (e.g. images) are high dimensional (HD) Euclidean spaces.

However, our intuition about Euclidean geometry stems from the physical world and everyday life,
which are low dimensional spaces (mostly two and three dimensions). This presents a challenge be-
cause HD spaces behave, mathematically speaking, in very different ways than their low dimensional
counterparts, often in ways that seem counterintuitive or even paradoxical if interpreted through low
dimensional intuition.

HD spaces have been used in physics, for example to model the state space of systems such as
magnetic materials. We will argue in this paper that the state space of some physical systems studied
in statistical physics has a remarkable similarity with the HD spaces created by generative models,
in particular Variational Autoencoders (VAE) (Diederik P Kingma, 2013). We will discuss how
our handling of HD spaces in machine learning can benefit from the intuition about those physical
systems.

We will highlight how issues associated with VAE are related to volume and entropy, that create
voids and sparsity in latent spaces, hampering their performance to generate meaningful new sam-
ples, even when reconstruction metrics can be optimized very well.

Finally, we will propose a method that parametrize latent data on the hypersphere with hyperspher-
ical coordinates. This allows manipulating the data distribution on the latent manifold more effec-
tively. In particular, we use it to compress the latent manifold volume and reduce the sparsity. This
is made possible thanks to an efficient transformation between Cartesian and hyperspherical coor-
dinates, which can be implemented with minimal computational overhead using a fully vectorized
algorithm, for high enough dimensions (it becomes costly in the very large case; but, as our results
show, those cases are of no practical interest from the point of view of the metrics we are checking,
see Fig.2).
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1.1 VARIATIONAL AUTOENCODER

An autoencoder (AE) is a common self-supervised method to encode the data into a latent space of
lower dimension n. Variational autoencoder (VAE) (Kingma & Welling, 2019) introduces a prior
to control the distribution of the latent, allowing to sample the latent space and untangle the dimen-
sions (Rolı́nek et al., 2019; Bhowal et al., 2024). In its simplest implementation, a VAE consists in a
probabilistic encoder which, for each input point x ∈ X from a dataset X , produces a latent distri-
bution qx = N (µx, σx). During training, the reparameterization trick is used: the encoder estimates
µ and σ, and a sample z from qx is computed as z = µ + ϵ ⊙ σ, where ⊙ denotes element-wise
multiplication. Then, the decoder is applied to this sample to obtain the reconstructed datapoint, xz .
The VAE’s loss can then be interpreted as an AE (with its Mean Square Error, MSE, loss) with an
additional term, KLD (N (µx, σx) ∥ N (0, I)), that regularizes the latent space by forcing each of
the encoded distributions to become similar to a prior one (N (0, I) in this implementation), where
KLD refers to the Kullback-Leibler divergence. The two mentioned terms are computed over a mini
batch of size Nb:

MSE(x, xz) =
1

Nb

Nb∑
l=1

∥ xl−xl
z ∥2, KLD(z, ϵ) = −1

2

Nb∑
l=1

n∑
k=1

(
1 + log (σ2

k,l)− µ2
k,l − σ2

k,l

)
(1)

The final cost to be optimized weighs the two terms with the gain β (Higgins et al., 2017):

L = MSE(x, xz) + βKLD(z, ϵ) (2)

The prior, and thus the latent, is a high dimensional independent multivariate Gaussian, which has
specific properties that we briefly recall in the next section, by way of background for the following
sections.

1.2 HIGH DIMENSIONAL SPACES IN MATHEMATICS

A multivariate Gaussian sampling in a HD Euclidean space of dimension n is such the probability
to find samples close to the origin is close to zero (despite having maximum probability density) and
most of the samples lie close to a (n − 1)−hypersphere, Sn−1√

n
, of radius

√
n. The distribution of

the norm of those samples follows a χ(n) distribution. Therefore, the samples are located within a
region very close to the hypersphere, region which becomes very thin in high dimensions, relative to
the radius

√
n. These effects are called ‘concentration of measure’, in the mathematical literature.

As n increases, a multivariate Gaussian tends towards the uniform distribution on that hypersphere.
In addition, any two samples from N (0, In) are always almost orthogonal to each other (this is
called almost-orthogonality). A formal description of these phenomena can be found elsewhere
(Vershynin, 2018). See also Appendix A.4.

These facts are closely related to how (hyper-)volume behaves in HD spaces: if we consider the
standard uniform measure on the hypersphere, then most of its volume or mass is concentrated in
very thin ‘equatorial’ bands for any randomly chosen north pole (this is, of course, just an intuitive
statement, for a formal description see Wainwright (2019)). The contrast with our intuition coming
from two dimensional spheres is remarkable. In the next section, we will review that similar HD
spaces exist for spin-glass systems.

1.3 HIGH DIMENSIONAL SPACES IN (STATISTICAL) PHYSICS

Consider a system consisting of n persons each simultaneously tossing a coin. After the tossing, we
can record the result with a vector x ∈ {H,T}n (H for heads, T for tails). For example, it could be
x0 = (H,H, T,H, ..., T ). Each of these vectors is called a possible microstate for the system.

Given a microstate, we could define a function FH(x) on microstates which for example, counts how
many heads are in that microstate: the value obtained is called a macrostate. Different microstates
can give rise to the same macrostate. In statistical mechanics, the (Boltzmann) entropy of a system
is proportional to the natural logarithm of the number of different microstates giving rise to a same
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macrostate. The configurations that maximize this number (and, thus, also entropy) are the thermal
equilibrium ones.

For a general continuum microstate space, the thermal equilibrium configurations are characterized
by the Gibbs probability measure: µ(dx) ∝ e−βH(x)ν0(dx), where β is the inverse temperature,
ν0(dx) is a fixed reference measure on the submanifold of Rn formed by all the possible microstates,
and H(x) is the energy function of the system (Bricmont, 2022).

There’s a class of systems that have been extensively studied called spin glasses (Parisi, 2002). In
these systems, the submanifold of microstates is given precisely by the (n− 1)-hypersphere, Sn−1√

n
,

and ν0(dx) by the standard uniform measure on it. The dimension n is taken to be very large. The
uniform measure is one of maximal entropy, even among all the measures of thermal equilibrium.

At very high temperatures, µ(dx) ≈ ν0(dx), two ‘replicas’ of the system are two i.i.d. samples from
the Gibbs measure. Their overlap, measured by their inner product, will be almost zero, because of
the almost-orthogonality effect of HD spaces mentioned before. This means that these samples are
in the ‘equatorial’ region, where most of the volume is concentrated. The system is said to be in a
‘replica symmetric phase’.

Until a critical temperature value, all solutions have this qualitative behaviour. This is to be expected
since the function whose stationary points define a general solution for these systems is indifferent
to a permutation of replicas. What is surprising in these systems is the emergence at low enough
temperatures of a different phase, which is not replica symmetric; that is, the inner product or
correlation between them is appreciably different from zero. This is called the ‘replica symmetry
breaking phase’ (Montanari & Sen, 2024). Two replicas, in this case, lie in a very thin band or
ring centered at a deep minimum of the energy function (Subag, 2017), center which is not in the
initial high volume equatorial region. This ring is a (n− 2)-hypersphere, submanifold of the initial
(n− 1)-hypersphere.

We discussed so far the ‘static’ structure of the Gibbs measure across the temperature range. A
separate and complicated question is how, starting from a high temperature state, one can reach dy-
namically, by some physical process1, the replica symmetry breaking phase; that is, to dynamically
achieve this phase transition.

This can be very tricky, since the local minima landscape of the energy in the high entropy region is
very rugged (with exponentially many local minima), and one would need to overcome it first in or-
der to reach the less entropic regions of the hypersphere (Arous & Jagannath, 2024). In practice, it’s
usually done by ‘quenching’ processes, where the system is suddenly cooled down in the presence
of externally applied magnetic fields. The energy function for a p−spin glass in the presence of an
external magnetic field h is given by H(x) = Pp(x) −

∑
j hjxj , where Pp(x) is a homogeneous

random p−polynomial (we omit the normalization constants).

The high entropy ‘replica symmetric phase’ of the spin-glass is analogous to the training of a VAE
where the KL term forces the latent samples to be uniformly distributed on the hypersphere (the
dynamics of spin glasses and the training process of some deep learning models has already received
some attention in the literature, for example in Baity-Jesi et al. (2018), and also Arous et al. (2022);
in this work, though, we will focus our attention on some other issues, more geometrical in nature).
In the next section, we argue that this brings an issue related to the sparsity of the resulting latent
space.

1.4 HIGH DIMENSIONAL SPACES IN GENERATIVE MODELS (VAE)

One use case of the VAE is to generate data. Since the latent distribution is known (high dimen-
sional multivariate Gaussian), one could sample from that distribution and decode the latent vector
to generate a novel data sample. This works very well for simple data and low dimension latent
spaces (e.g., MNIST with n = 2, as done in Diederik P Kingma (2013)), but not so well for more
complicated data or high dimensional latent (e.g., CIFAR10, or MNIST with n = 32 as in Cinelli
et al. (2021)). Indeed, variations of the VAE are commonly used in generative models of images and

1Typically, a Langevin dynamics of the form dxt = dBt − β∇H(xt)dt, for which the Gibbs measure is
stationary.
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videos (Jonathan Ho Ajay Jain, 2020), but the latent space is not sampled directly: instead, a reverse
diffusion process dynamically transforms a random sample into a valid latent location.

One of the reasons why VAE perform poorly when sampling directly the high dimensional latent
is because of conflicting constraints. On the one hand, high resolution images need many latent
dimensions to capture all the information they convey. Then, the VAE KL divergence term in the
loss encourages the system to distribute this HD latent uniformly on the hypersphere, that is, to
maximize entropy. By doing so, the latent becomes extremely sparse given the number of training
samples and the immensity of the latent hyperspherical manifold (the volume growing exponentially
with the number of dimensions; in these regimes, trying to find a specific microstate is akin to a
‘needle in the haystack’ kind of situation). The sparsity hampers any attempt to model the latent as
a continuous manifold (Peng et al., 2023). But, on the other hand, this usually leads to meaningless
decoding of random samples from the prior. These two opposing forces (sparsity due to HD spaces
needed to model high resolution images vs need for a continuous manifold for meaningful generation
from all of the latent space) conspire to severely limit the capacity of VAEs to function as generative
models.

From the previous sections, the regions of high entropy are such that, for a given macrostate, there’s
an enormous number of different microstates that can realize it. For tasks such as clustering, gen-
eration, interpolation, etc., one is interested in specific macrostates of the system. The disordered
high multiplicity of possible microstates that can give rise to these macrostates in the high entropy
regime may hinder the ability of the model to perform these tasks, as we will explicitly show in the
experimental section.

Since the samples in latent space live on the hypersphere, it comes naturally to consider using hy-
perspherical coordinates to describe latent variables.

2 RELATED WORKS

‘Hyperspherical Variational Auto-Encoder’ Davidson et al. (2018) proposed replacing the standard
Euclidean KL divergence with a KL divergence between a uniform distribution on the hypersphere
as a prior, and a von Mises-Fisher distribution as an approximate posterior. Elaborating in that
direction, Yang et al. (2023) used a von Mises-Fisher mixture model rather than a single distribution,
which ‘leads to spherical latent embeddings that are well-suited for clustering’.

A different way of building a Hyperspherical Variational Auto-Encoder is proposed in Bonet et al.
(2022), based on a spherical Sliced-Wasserstein discrepancy, and as an extension of the well-known
Euclidean models (Soheil Kolouri Phillip E. Pope, 2020). Hyperspherical aspects of data are studied
in Löwe et al. (2023), where high dimensional Rotating Features are introduced. Of particular
interest for our project, the authors remarked:

‘We represent Rotating Features in Cartesian coordinates rather than (hyper) spherical coordinates,
as the latter may contain singularities that hinder the model’s ability to learn good representations.
[...]. This representation can lead to singularities due to dependencies between the coordinates.
For example, when a vector’s radial component (i.e. magnitude) is zero, the angular coordinates
can take any value without changing the underlying vector. As our network applies ReLU activa-
tion on the magnitudes, this singularity may occur regularly, hindering the network from training
effectively’.

As we reviewed in Section 1.2, in high dimensions, the random samples of an independent multi-
variate Gaussian distribution fall in the equator of a hypersphere, and thus none of them is near the
singularities of the hyperspherical coordinates (the poles and the center of the hypersphere).

While the problem of formulating latent spaces given by non-Euclidean Riemannian manifolds, and
hyperspheres in particular has been studied, explicit use of hyperspherical coordinates is avoided.
At first look, the conversion from Cartesian to hyperspherical coordinates seems to require compu-
tationally expensive recurrent trigonometric formulas (see Appendix A.1). Instead, formulations of
Riemannian geometry that rely on Cartesian coordinates are used. Riemannian geometry is not just
about a curved metric, but also being able to express it in a convenient coordinate system adapted
to it (of central importance in physics).
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The possible use of hyperspherical coordinates has thus been discarded by all the works that we
reviewed. Notwithstanding the previous arguments, we believe that the use of hyperspherical coor-
dinates is feasible and can be beneficial, as our results show. In Appendix A.2 we provide a vec-
torized implementation for transforming between hyperspherical and Cartesian coordinates, which
adds only a small computational overhead for training a VAE.

Even if one could assemble a sufficiently large training dataset to densely populate the latent hy-
persphere (an impossible task in practice), the data in high dimensional latent spaces tend to form
manifolds with complicated topologies that include holes and cracks. If a random sample falls into
one of these holes, it will be decoded into something meaningless. This also affects interpolations,
since locations sampled on a trajectory between two valid latent locations are likely to fall between
clusters or classes (in the holes and cracks). This problem has been noted for VAE and called the
‘prior hole problem’ (Tomczak; Lin & Clark, 2020; Cinelli et al., 2021; Asperti et al., 2021; Singh
& Ogunfunmi, 2022; Hao & Shafto, 2023; Aneja et al., 2021). It highlights that the approximate
posterior of the data often fails to perfectly match the prior: in the case of a Gaussian distribution in
high dimensions the uniform distribution on the hypersphere has no hole.

Common approaches for tackling this problem include a learnable prior (rather than static, as in
the standard VAE), or using a mixture of Gaussians as a prior (rather than a single one, as in the
standard VAE); see Tomczak for discussion of both cases. A different approach is to dispose of
the continuum completely and work with discrete latent representations, as in Aaron van den Oord
(2018) where the latent vectors are quantized (VQ-VAE). These discrete representations are useful
for tasks dealing with a discrete sequence of symbols, otherwise a joint distribution on the dictionary
needs to be estimated after the VAE is trained (Salimans et al., 2017).

There are applications that necessitate and use VAEs with a latent continuum. For example, genera-
tive models for drug discovery often deal with chemical properties that span a continuous spectrum
(e.g. measure of synthesizability by living entities Ochiai et al. (2023)).

In the next section we formulate a VAE with the latent variables described using hyperspherical
coordinates.

3 METHOD: VAE WITH HYPERSPHERICAL COORDINATES

Our approach is based on formulating the initial KL divergence term with a prior from the original
VAE, which is in Cartesian coordinates, to one in hyperspherical coordinates. See Appendix A.1 for
the standard conversion formulas between Cartesian and hyperspherical in high dimension.

In Cartesian coordinates, the KLD divergence between the estimated posterior defined by µk and σk

and the prior defined by µp
k and σp

k can be written as (see A.13):

KLDw/Prior
CartCoords ≈

n∑
k=1

(
(Eb[σk]− σp

k)
2
+ σb[σk]

2 + (Eb[µk]− µp
k)

2
+ σb[µk]

2
)

(3)

where Eb and σb denote the batch statistics over mini batches of data of size Nb.

So far, not much has been gained other than rewriting the KL function (in Cartesian coordinates) in
terms of the batch statistics. This rewriting was partly inspired by the construction in Bardes et al.
(2021), and will be useful for our next step.

The similarity with the spin glass we described in section 1.3 is emerging from this expression.
The terms of the form (x − x0)

2 = x2 − 2xx0 + x2
0 can be interpreted in the following manner:

x2 contributes to the homogeneous polynomial part of the energy function, −2xx0 corresponds
to an external magnetic field 2x0, while x2

0 is a just an inconsequential constant term. The VAE
is not exactly a spin glass though, since the reconstruction part of the loss, given by the standard
MSE, is not a homogeneous polynomial. However, the analogy provides insight into the replica
symmetry breaking as a way to move away from the equator, and how the application of external
magnetic fields in the adequate manner can help achieve this, as we will see below, by applying
these ‘magnetic fields’ in all the angular directions provided by hyperspherical coordinates.
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We now introduce hyperspherical coordinates in the KL formulation. We start with the Cartesian
coordinates (µi, σi), given by the encoder, and transform these to their hyperspherical counterparts
(
µ
r,

µ
φk;

σ
r,

σ
φk) with r a scalar and k the index of the n− 1 spherical angles.

The KLD-like objective becomes for the angles φk:

KLDw/Prior
HSphCoords(φk) =

n−1∑
k=1

(
ασ,k

(
Eb[cos

σ
φk]− aσ,k

)2

+ βσ,k

(
σb[cos

σ
φk]− bσ,k

)2

+ αµ,k

(
Eb[cos

µ
φk]− aµ,k

)2

+ βµ,k

(
σb[cos

µ
φk]− bµ,k

)2
) (4)

and for the norm r:

KLDw/Prior
HSphCoords(r) = ασ,r

(
Eb[

σ
r]− aσ,r

)2

+ βσ,r

(
σb[

σ
r]− bσ,r

)2

+ αµ,r

(
Eb[

µ
r]− aµ,r

)2

+ βµ,r

(
σb[

µ
r]− bµ,r

)2
(5)

with the priors for the mean over the batch ai,j , the standard deviation over the batch bi,j , and the
gains for each term αi,j , βi,j , for i ∈ {σ, µ} and j ∈ {1, ..., n− 1, r}
We use the cosines rather than the angles to avoid costly extra computations of the corresponding
arccosines (Appendix A.1). The reparameterization trick is still done in the Cartesian coordinates
representation. The coordinate transformation is done using a vectorized implementation (code
provided in Appendix A.2). The coordinate transformation and the extra KLD terms add about 32%
computation time during training per epoch (measured at: 200 samples per batch, n = 200). For
more dimensions the increase is higher. The final cost to be optimized weighs the reconstruction
term and KLD terms with an overall gain β for similarity with the standard βVAE (2):

L = MSE(x, xz) + β
(

KLDw/Prior
HSphCoords(φk) + KLDw/Prior

HSphCoords(r)
)

(6)

3.1 VOLUME COMPRESSION OF THE LATENT MANIFOLD

We discussed previously that the standard VAE forces the latent samples to be uniformly distributed
on the hypersphere, maximising the entropy, which results, in high dimensions, in the data being
located within equators of the hypersphere where the volume is the greatest. A benefit of using
hyperspherical coordinates is the possibility to set a prior for the φk that forces the latent samples
away from the equator, thereby escaping these highly entropic regions. This can be done for each
angular coordinate, which are all uncorrelated with each other, by simply setting

aµ,k ̸= 0, ∀k. (7)

By doing so, the samples can be moved to a zone with much less volume, thereby increasing the
density of the latent, with the hope that random samples from that denser region will have better
quality decoding because of the reduced sparsity. This can be seen more directly by analysing the
hypervolume element of the hypersphere in hyperspherical coordinates. The volume can be reduced
much faster and effectively by reducing the angular coordinates (away from the equators), than by
either reducing just the radius of the hypersphere or, equivalently, all of the Cartesian coordinates.

The higher the dimension, the more pronounced this difference becomes because each added dimen-
sion k adds extra powers of sinφk in the hypervolume element (Appendix A.3). Then, the further
the angles from π/2, the smaller the infinitesimal hypervolume element becomes as it is multiplied
by an increasingly smaller quantity lower than 1. This is a purely geometric effect. It can already
be easily seen in the two-dimensional sphere, where a spherical coordinate rectangle of unvarying
angular coordinates size has smaller area when moved away from the equator towards any of the
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poles. Thus, high dimensions bring the problem of high entropy in the equators, but also a non-
Euclideanity to the manifold; we explored to which extent one can take advantage of the latter to
mitigate the former.

Finally, by setting

aµ,r =
√
n (8)

(and normalizing z, after sampling via the reparameterization trick, to the same radius
√
n) we can

force the latent samples to be on the hyperspherical surface of that radius.

4 EXPERIMENTAL RESULTS

4.1 MODEL AND IMPLEMENTATION

For all our experiments, we use a ResNet-type architecture (He et al., 2015) for both encoder and
decoder. When using the loss in hyperspherical coordinates (6), we use an annealing schedule
(Fu et al., 2019) for the gain β of the KL-like loss, consisting of an initial stage which increases
proportionally with

√
epoch for the first 100 epochs, and is constant afterwards. This was necessary

because we observed that too much compression of the volume was detrimental to the performance,
while a strong compression was still necessary at the initial stage. The total training was 300 epochs
in all cases.

4.2 CHOOSING THE GAIN FOR EACH LOSS TERMS

The constants αi,j , βi,j multiplying the elements of the hyperspherical loss are proportional to
1/

√
k + 1, where k is the coordinate index. This was necessary because, unlike the Cartesian co-

ordinates, the hyperspherical coordinates are asymmetric and vary with k. This can be seen in the
transformation formulas (Appendix A.1), where a product of an increasing amount of sine func-
tions is necessary as the coordinate index increases. We chose 1/

√
k + 1, guided by the fact that

the vector whose Cartesian coordinates are (1, 1, ..., 1) has a cosine of its spherical angles equal to
1/

√
k + 1 as the coordinate index, and because it gave the best results experimentally.

In this way, we were able to avoid lengthy calculations to obtain the mathematically exact formu-
las for both these constants and the KLD in hyperspherical coordinates, which we do not believe,
anyway, to be of the most importance for the particular goals we had in this work.

4.3 VISUALISATION OF THE HIGH ENTROPY LATENT IN STANDARD VAE

A standard VAE with 128 latent dimensions was trained using the MNIST dataset (Y.LeCun et
al, 1998). Generating and decoding random samples from the prior latent resulted in meaningless
decoded/generated data (Fig.1a), left panel).

The latent hypersphere can be visualized in 3D as shown in Fig.1b), left. This was done by averaging
the 128 latent dimensions into three (first 42, second 42, and the remaining 44), and normalizing each
of the resulting 3D vectors to the sphere. Each latent vector could thus be plotted as a point in 3D,
and shows a uniform-like distribution on the 2D sphere as expected.

This visualisation allows us to directly see the entropy. A k-NN classifier for the 10 classes of
MNIST from the latent had an accuracy of 0.95, and 10 clusters can readily be seen when projecting
the 128 latent dimensions into 2 (Fig.1c), left) using t-SNE. However, no particular clustering can
be observed on the 3D visualisation (Fig.1b), left). Such a direct visualisation of the latent space
cannot display clusters, because they are buried into the ‘disorder’ of the entropy of the hypersphere
equators, where most of the samples are located. There are many different possible microstates
(points in latent space) that can realize the same macrostate (the clustering).
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4.4 IMPROVED GENERATION WHEN THE LATENT MANIFOLD IS COMPRESSED

Next, we train the same VAE using the same dataset but now with the KL-type loss in hyperspher-
ical coordinates (6). The prior was set to compress the (hyper-)volume in latent space by using
aµ,k = 1, ∀k, which pushes all the φk towards 0. They could not be exactly 0 because the re-
construction would all be the same. The reconstruction term balances the KL term to spread the
latent samples away from the angles 0. Recall from section 1.3 that, in the replica symmetry break-
ing phase, two replicas in that case lie in a very thin band or ring centered at a deep minimum of
the energy function, center which is not in the initial high volume equatorial region; this ring is a
(n− 2)-hypersphere, submanifold of the initial (n− 1)-hypersphere. This situation corresponds to
sending the angle φ1 towards 0, the rest free. Thus, by sending all the angles towards 0, and gven
the geometrical interpretation of the hyperspherical coordinates, we aim to induce a similar replica
symmetry breaking transition also in the mentioned (n − 2)-hypersphere, as well as in all the re-
maining sub (n − k)-hyperspheres, ∀k. We call this process ‘Nested Replica Symmetry Breaking’
(NRSB), and it’s only in this regime where we get the results described below.

Figure 1: Comparison using MNIST between the standard βVAE (left) and the proposed compressed
version (right). The top panel (a) shows the original data (x), the reconstruction (x̂), and the gen-
eration sampling from the prior (xϵ). The middle panel (b) shows the 3D projection on the latent
2D-sphere of the test dataset: the βVAE posterior is a uniform distribution whereas the proposed
method compresses the latent vector on a small volume within an island of the hypersphere. The
bottom panel (c) shows that in both cases the classes are clustered in the latent (using t-SNE) and
that a k-NN classifier achieves good performance, with the compression βVAE resulting in lower
accuracy (0.88 Vs 0.95) because the lower volume of the latent manifold forces the classes to over-
lap more (as seen on the clustering of panel c).

In this configuration, for generating new data the latent was not randomly sampled on the whole
hypersphere, but from a von Mises–Fisher distribution with the same mean and covariance as the
ones empirically calculated from the latent embedding of the full test dataset. These decoded random
samples generated data with a quality close to the actual training dataset (Fig.1a), right panel), to be
compared to the meaningless decoding of the previous experiment when random sampling from the
prior was done (Fig.1a), left panel). By compressing the latent using hyperspherical coordinates, the
VAE became a functional generative model, despite having 128 latent variables.
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Furthermore, the 3−dimensional visualization shows something remarkable (Fig.1b), right): besides
showing that the latent samples are compressed towards a small ‘island’ on the hypersphere and
away from the equator, the classes are actually visible. We believe that it is because the samples are
now located away from the equator, in a region with a much lower entropy, where there are many
fewer possibilities to realize this clustering in terms of different possible microstates. In other words,
the VAE’s latent space has made a phase transition. The same k-NN classifier from the latent space
shows a similar accuracy, of 0.88, and the class clusters can also be seen in a t-SNE 2D projection
(Fig.1c), left).

4.5 TRADE OFF BETWEEN RECONSTRUCTION AND GENERATION

The reconstruction quality of a VAE improves as the number of latent dimensions increases, as
measured by the MSE between x and x̂. However, the quality of data generation (from decoding
random sampling of the latent) decreases as the number of latent dimensions increases. We have
argued in this paper that the later is due to the increased sparsity of the latent, as demonstrated
qualitatively in the previous experiment when that sparsity is reduced by compressing the latent
using our proposed method.

The quality of randomly generated data can be measured using the Frechet Inception Distance (FID)
(Heusel et al., 2017). FID compares the distribution of features between the images of the train-
ing/testing dataset and an equivalent number of randomly generated images. We used in this experi-
ment CIFAR10 (Krizhevsky, 2009), a more challenging dataset, and an FID computed using 10,000
samples (we compare the random decoded samples with the reconstructed testing set).

In a VAE, the quality of the reconstruction, still measured by the MSE, also varies with the gain β
of the loss: the more weight for the KL term, the more the latent matches the prior and the worse
the reconstruction (Cf. βVAE Higgins et al. (2017)). We show in Appendix A.5 this behaviour by
comparing the results for several values of β.

We can now explore quantitatively the quality of the reconstruction (using MSE) and the quality of
the generation (using FID) when the number of latent dimensions increases and the β varies. We
compared the standard VAE with our proposed compressed VAE.

These two metrics (MSE and FID), should give us a good idea regarding how good our models are
for the general generative task: the fist measures how ‘crisp/sharp’ the reconstructed images are,
while the second how close the random decoded images resemble images from the (reconstructed)
training dataset. A good VAE-based generative model should minimize both of these metrics si-
multaneously: that is, to be able to generate random samples which are in-distribution wrt the
reconstructed dataset (low FID), and such that the latter actually resembles the original dataset
(low MSE).

Fig.2 sumarizes the results with more details provided in Appendix A.5. As expected, the MSE
decreases as one increases the latent space dimension, while the exact opposite is true for the FID.
To obtain a good generative model in the way we defined it can be a very difficult task, involving
a very delicate balance between these two opposing trends we just described, and often relying on
off-equilibrium configurations.

The results show that the compression VAE version improves on absolute terms over the standard
VAE over any combination of β and dimension of the latent.

5 CONCLUSION

We propose to convert the latent variables of a VAE to hyperspherical coordinates. This allows to
move the latent vectors on a small island of the hypersphere, reducing sparsity. We showed that
this improves the generation quality of a VAE. The following points will require further attention in
regards to the present work:

• the improvement in generation was only evaluated for the purposes of hypothesis testing,
and not as absolute performance.

• we did not evaluate the method for high resolution and larger datasets such as Imagenet.
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Figure 2: Effect of latent dimension and β on the trade off between reconstruction and generation
on CIFAR10. Each curve represents a VAE for a given β while spanning the number of latent
dimensions from low (50, bottom right endpoints) to high (1000 top left corner endpoints). The
standard VAEs are shown using dashed lines, whereas the compressed versions are shown using
solid lines. We excluded from our discussion the regimes where generation was of very poor quality
(FID> 40) or the reconstruction was too blurry (MSE> 8), with the best trade off close to the
bottom left corner. In that useful area, the compressed VAEs outperformed their standard equivalent
for any combination of β and latent size (solid lines closer to the bottom left corner than the dashed
lines).

• the extra computing time is about 32 per cent more per epoch for 200 latent dimensions. In
(much) higher dimensions, the added computation increases and might become prohibitive.

• future research can focus in optimizing this method (or other method that takes into account
the hypothesis about sparsity) for obtaining state-of-the-art results in generation and other
tasks, in VAEs and other models.

• the use of latent representations in hyperspherical coordinates can also be further explored
in several other applications (perhaps unrelated to compression and generation), by the use
of the provided script for the conversion and inspired by its proof of concept of practical
feasibility in the present paper.
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Sindy Löwe, Phillip Lippe, Francesco Locatello, and Max Welling. Rotating Features for Object
Discovery. 6 2023. URL http://arxiv.org/abs/2306.00600.

Andrea Montanari and Subhabrata Sen. A Friendly Tutorial on Mean-Field Spin Glass Techniques
for Non-Physicists. 4 2024. URL http://arxiv.org/abs/2204.02909.

Jean-Christophe Mourrat. An informal introduction to the Parisi formula. 10 2024. URL http:
//arxiv.org/abs/2410.12364.

Toshiki Ochiai, Tensei Inukai, Manato Akiyama, Kairi Furui, Masahito Ohue, Nobuaki Matsumori,
Shinsuke Inuki, Motonari Uesugi, Toshiaki Sunazuka, Kazuya Kikuchi, Hideaki Kakeya, and
Yasubumi Sakakibara. Variational autoencoder-based chemical latent space for large molecular
structures with 3D complexity. Communications Chemistry, 6(1), 12 2023. ISSN 23993669. doi:
10.1038/s42004-023-01054-6.

Stephen G Odaibo. Tutorial: Deriving the Standard Variational Autoencoder (VAE) Loss Function.
Technical report, 2019.

Giorgio Parisi. The physical Meaning of Replica Symmetry Breaking. Technical report, 2002.

Dehua Peng, Zhipeng Gui, and Huayi Wu. Interpreting the Curse of Dimensionality from Distance
Concentration and Manifold Effect. Technical report, 2023.

Michal Rolı́nek, Dominik Zietlow, and Georg Martius. Variational Autoencoders Pursue PCA Di-
rections (by Accident). Technical report, 2019.

Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P. Kingma. PixelCNN++: Improving the
PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications. 1 2017. URL
http://arxiv.org/abs/1701.05517.

Aman Singh and Tokunbo Ogunfunmi. An Overview of Variational Autoencoders for Source Sepa-
ration, Finance, and Bio-Signal Applications, 1 2022. ISSN 10994300.

Charles E Martin Gustavo K Rohde Soheil Kolouri Phillip E. Pope. Sliced-Wasserstein Autoen-
coder: An Embarrassingly Simple Generative Model. 2020. URL https://arxiv.org/
abs/1804.01947.

Eliran Subag. The geometry of the Gibbs measure of pure spherical spin glasses. Inventiones
Mathematicae, 210(1):135–209, 10 2017. ISSN 00209910. doi: 10.1007/s00222-017-0726-4.

J Tomczak. Priors (blogpost). URL https://jmtomczak.github.io/blog/7/7_
priors.html.

Roman Vershynin. High-Dimensional Probability. Cambridge University Press, 4 2018. ISBN
9781108231596. doi: 10.1017/9781108231596. URL https://doi.org/10.1017/
9781108231596.

12

https://arxiv.org/abs/2006.11239
https://www.nowpublishers.com/article/Details/MAL-056
https://www.nowpublishers.com/article/Details/MAL-056
http://arxiv.org/abs/2009.00088
http://arxiv.org/abs/2306.00600
http://arxiv.org/abs/2204.02909
http://arxiv.org/abs/2410.12364
http://arxiv.org/abs/2410.12364
http://arxiv.org/abs/1701.05517
https://arxiv.org/abs/1804.01947
https://arxiv.org/abs/1804.01947
https://jmtomczak.github.io/blog/7/7_priors.html
https://jmtomczak.github.io/blog/7/7_priors.html
https://doi.org/10.1017/9781108231596
https://doi.org/10.1017/9781108231596


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Martin J. Wainwright. Concentration of measure. In High-Dimensional Statistics, chapter 3,
pp. 58–97. Cambridge University Press, 2 2019. doi: 10.1017/9781108627771.004. URL
https://www.cambridge.org/core/books/highdimensional-statistics/
concentration-of-measure/A649A3B05DC79C2B10BF1C80CC6F5F10.

Lin Yang, Wentao Fan, and Nizar Bouguila. Deep Clustering Analysis via Dual Variational Autoen-
coder With Spherical Latent Embeddings. IEEE Transactions on Neural Networks and Learning
Systems, 34(9):6303–6312, 9 2023. ISSN 21622388. doi: 10.1109/TNNLS.2021.3135460.

Y.LeCun et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 11 1998.

A APPENDIX

A.1 CONVERSION BETWEEN CARTESIAN AND HYPERSPHERICAL COORDINATES

For reference, we note here the standard formulas for converting between cartesian and spherical
coordinates (as they appear in https://en.wikipedia.org/wiki/N-sphere).

In n dimensions, given a set of cartesian coordinates xk with k ∈ {1, . . . , n}, the hyperspherical
coordinates are defined by a radius r and n− 1 angles φk with k ∈ {1, . . . , n− 1}; φk ∈ [0, . . . , π]
for k ∈ {1, . . . , n− 2} and φn−1 ∈ [0, . . . , 2π).

From hyperspherical to cartesian conversion:

x1 =r cos(φ1)

x2 =r sin(φ1) cos(φ2)

x2 =r sin(φ1) sin(φ2) cos(φ3)

...
xn−1 =r sin(φ1) sin(φ2) . . . sin(φn−2) cos(φn−1)

xn =r sin(φ1) sin(φ2) . . . sin(φn−2) sin(φn−1)

(9)

From cartesian to hyperspherical conversion:

r =
√
x2
n + x2

n−1 + . . .+ x2
2 + x2

1

cos(φ1) =
x1√

x2
n + x2

n−1 + . . .+ x2
2 + x2

1

cos(φ2) =
x2√

x2
n + x2

n−1 + . . .+ x2
2

...

cos(φn−2) =
xn−2√

x2
n + x2

n−1 + x2
n−2

cos(φn−1) =
xn−1√

x2
n + x2

n−1

(10)

A.2 VECTORIZED CODE FOR CONVERTING BETWEEN CARTESIAN AND HYPERSPHERICAL
COORDINATES

This code is accessible here and provided below for reference.
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import torch

def r (x):

r = torch.linalg.norm (x, dim=1)

return r

def cart_to_cos_sph (x, device):

m = x.size(0)

n = x.size(1)

mask = torch.triu(torch.ones(n, n)).to(device)

mask = torch.unsqueeze(mask, dim=0)

mask = mask.expand(m, n, n)

X = torch.unsqueeze(x, dim=1).expand(m, n, n)

X_squared = torch.square(X)

X_squared_masked = X_squared * mask

denom = torch.sqrt(torch.sum(X_squared_masked, dim=2)+0.001)

cos_phi = x / denom

return cos_phi[:, 0:n-1]

def cart_to_sin_sph (x, device):

return torch.sqrt (1 - cart_to_cos_sph (x, device).pow(2))

def cart_to_sph (x, device):

m = x.size(0)

n = x.size(1)

mask = torch.triu(torch.ones(n, n)).to(device)

mask = torch.unsqueeze(mask, dim=0)

mask = mask.expand(m, n, n)

X = torch.unsqueeze(x, dim=1).expand(m, n, n)

X_squared = torch.square(X)

X_squared_masked = X_squared * mask

denom = torch.sqrt(torch.sum(X_squared_masked, dim=2)+0.001)

phi_plus = torch.arccos (x / denom)

phi_minus = 2*3.141592654 - phi_plus

phi = phi_plus
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phi[:, n-2] = torch.where (x[:, n-1] >= 0, phi_plus[:, n-2],
phi_minus[:, n-2])

return phi[:, 0:n-1]

def sph_to_cart (R, phi, device):

m = phi.size(0)

n = phi.size(1)+1

mask = torch.tril(torch.ones(n-1, n-1)).to(device)

mask = torch.unsqueeze(mask, dim=0)

mask = mask.expand(m, n-1, n-1)

PHI = torch.unsqueeze(phi, dim=1).expand(m, n-1, n-1)

sin_PHI = torch.sin(PHI)

mask_ = torch.unsqueeze(torch.triu(torch.ones(n-1, n-1),
diagonal=1).to(device), dim=0).expand(m, n-1, n-1)

sin_PHI_masked = sin_PHI * mask + mask_

sin_prod = torch.prod (sin_PHI_masked, dim=2)

ones = torch.ones(m).to(device)

sin_PROD = torch.column_stack((ones, sin_prod))

cos_R = torch.mul (torch.column_stack((torch.cos (phi), ones)),
torch.unsqueeze(R, dim=1))

x = torch.mul (sin_PROD, cos_R)

return x

A.3 HYPERVOLUME ELEMENT IN HYPERSPHERICAL COORDINATES

The hypervolume element of the hypersphere Sn−1
R is given by the following expression when using

hyperspherical coordinates (see https://en.wikipedia.org/wiki/N-sphere):

dVSn−1
R

= Rn−1 sinn−2(φ1) sin
n−3(φ2) · · · sin(φn−2)dφ1dφ2 · · · dφn−1 (11)

In the small angle regime, where sinφ ≈ φ, we can approximately integrate this expression for an
angular coordinate hypercube [0, φ0]

n−1, and the result is proportional to v0 = Rn−1φ
n(n−1)/2
0 . If

now we reduce the size of the angular coordinate hypercube by a schedule of the form φt = φ0(1−
t), t ∈ [0, 1], then we can compare the percentage of hypervolume being reduced from the initial
value, while keeping R fixed, to the percentage obtained by reducing the size of the hypersphere
by an schedule of the form Rt = R(1 − t), t ∈ [0, 1], while keeping φ0 fixed (this second case is
equivalent to reducing all the Cartesian coordinates at once, because r2 = x2

n+x2
n−1+. . .+x2

2+x2
1).

Indeed, we get, respectively, vt = v0(1 − t)n(n−1)/2 and vt = v0(1 − t)n−1. In Fig. 3 we plot the
behavior of vt/v0 in terms of the reduction of the coordinate, given by (1− t), for three, increasing
values of dimension n. As we can see, already in dimension 20 (right figure in the panel), there’s
a sharp decrease in volume in the angular case as soon as one decreases the angular coordinates
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by a minimal amount; in comparison to the radial/Cartesian coordinate case, the abrupt decrease in
volume looks almost discontinuous.

Figure 3: Hypervolume element reduction comparison.

A.4 CONCENTRATION OF MEASURE EFFECTS

In this appendix, we collect the results of simple experiments that clearly show the concentration
of measure effects that occur in high dimensions. In Fig. 4a), we show the distribution of a simple
Normal distribution in 2 dimensions (left), and the histogram for the norm of the samples (right). In
b), the same but for a Normal distribution in 100 dimensions. In Fig. 5a), we show the histogram for
the angle between two random samples from a Normal distribution in 2 dimensions (left), and the
same but for a Normal distribution in 100 dimensions (right). In b), we display a schematic diagram
of the mass concentration of the uniform measure of the hypersphere in very high dimensions. The
intuition in this diagram comes from the more precise result (Wainwright, 2019) which states that,
for any given y ∈ Rn, if we define on the hypersphere an ‘equatorial’ slice of width ϵ > 0 as
Ty(ϵ)

.
=

{
z ∈ Sn−1/ | (z, y) |≤ ϵ/2

}
, then its volume according to the uniform measure satisfies

the following concentration inequality:

P [Ty(ϵ)] ≥ 1−
√
2π exp(−nϵ2

2
). (12)

The previous inequality shows that, in very high dimensions, the equatorial slice Ty(ϵ) occupies a
huge portion of the total volume, even for a very small width.

Finally, with this in place, we can understand the peculiar shape that a high dimensional Normal
distribution takes when expressed in hyperspherical coordinates (Fig.6).
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Figure 4: Measure concentration, norm (left image in b), adapted from Vershynin (2018))

Figure 5: a) Measure concentration, angle; b) Schematic diagram of the mass concentration of the
uniform measure of the hypersphere in very high dimensions: most of the volume is in the equator.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 6: High dimensional Normal distribution in hyperspherical coordinates. For the first three
images from the left, each horizontal slice at some vertical index value shows the color coded his-
togram (red, high density; blue, low density) for the range of the coordinate of that index; the vertical
axis stacks all the histograms for all the dimensions (in this example, 40). The white dots represent
the mean and the black dots represent the standard deviation of the corresponding histogram. The
numbers on top are the total mean and standard deviation of all these previous values taken together.
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A.5 ADDITIONAL ANALYSIS OF CIFAR10 RESULTS

Here, we continue the analysis of the experimental results that we obtained for CIFAR10. Fig.7
shows the same results as Fig.2, but we now make a more detailed breakdown of the dependencies
of both the MSE and FID wrt both the number of latent space dimensions and the total gain β (as
in Fig.2, solid lines correspond to the compression model, while dashed lines to the standard one).
In the standard VAE, for a fixed β, as we increase the latent dimension, the FID increases (worse
generation), but the MSE decreases (more sharp, less blurry images); for a fixed latent dimension,
as we increase β, the FID decreases (better generation), but the MSE increases (less sharp, more
blurry images).

Fig.8 shows the typical training of a standard VAE in one of our experimental rounds. In the up-
per panel we show, from left to right, the histograms of µ, σ, and z, respectively, using the same
conventions as in Fig.6. The fourth histogram in this panel shows the norm histograms of µ and z,
as well as the ‘replica angle’ (dashed red lines) between the testing samples and the mean for all
the test set (this value should give an idea about the angular size of the island as well as to signal
if there’s an overall replica symmetry breaking in our model; in this particular example, there’s no
such phase transition, since the mean value of the replica angle is close to π/2). The second, middle
panel shows the behavior of the MSE and KLD loses during training for the test set. The bottom
panel corresponds to the histogram of the cosine of the hyperspherical coordinates of µ (cf. Fig.6).

Fig.9 shows the typical training of our compression VAE in one of our experimental rounds. The
conventions are the same as in Fig.8. Of note is that the replica angle value in this case shows
the desired phase transition. The middle panel shows the annealing schedule used for training our
model. Finally, we can see how in the histogram of the cosine of the hyperspherical coordinates
all of them are shifted towards a cosine value of 1, which corresponds to an angle equal to 0, as
expected.
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Figure 7: CIFAR10 results breakdown. MSE and FID in terms of both the number of latent space
dimensions and the total gain β (cf. Fig.2).
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Figure 8: Results of standard VAE training with a balanced β.
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Figure 9: Results of a compressed VAE training.
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A.6 THE DIFFERENT REGIMES OF THE STANDARD βVAE IN HD

In this appendix, we illustrate with several examples from our experiments the different regimes
in which a βVAE can operate according to the value of the parameter β, while maintaining the
dimension of the latent space fixed but high enough. This is important, since it’s known (see, e.g.,
Cinelli et al. (2021), section 5.5.2) that HD VAEs are prone to exhibit a phenomenon known as
posterior collapse when β is too high: “[...] [a] state where the variational posterior and true model
posterior collapse to the prior, the posterior encodes no information about the input x, and no useful
latent representation was learned” (quoted from the mentioned reference). This of course, is a
problem, since the collapsed latent dimensions become inoperative for the model and in-utilizable
for other tasks. Furthermore, if used, they can introduce errors in those analysis.

In practice, a simple solution to avoid this issue that often works is to simply reduce the value of β,
which acts as a gain for the KLD term in the VAE loss function. One can check for any collapse by
inspecting the histograms of the means µ of the latent encoding and making sure that the standard
deviation (std) there is appreciably away from zero for each latent dimension. A threshold value can
be implemented, but we will keep the discussion qualitative in that aspect.

In Fig.27 we show a standard VAE trained with a high β (= 1.00) in HD (n = 200), it has more than
half of its dimensions collapsed yet the FID remains the lowest for the examples (for the standard
VAE, that is) in this dimension as we decrease the β (cf. Fig.7, second row, right; this is the case
for all the dimensions we checked except the lowest, n = 50; see A.12 for this latter case). Thus,
posterior collapse here acts as an effective dimensional reduction mechanism for the generation,
since the collapse actually improves the FID profile (we believe that what happens here is that the
weights of the network corresponding to these dimensions are inactive or close to 0 and, therefore,
the decoder simply ignores the dimensions in question). Nevertheless, since many dimensions are
ignored, the model’s latent space lacks representation capacity, which translates into poor recon-
structions (MSE = 9.92): the model works similarly to a non-collapsed one with a much more
lower latent dimension.

In Fig.28 we show a standard VAE trained with a medium/balanced β (= 0.20). In this case, there
are more functional dimensions than collapsed or almost collapsed ones. Thus, the model has more
representation capacity and this is reflected in a lower reconstruction error (MSE = 7.12). Nev-
ertheless, since the decoder now actually operates with a much higher number of dimensions, then
the sparsity and high hypervolume of HD spaces becomes an issue, and this is reflected in a worse
generative performance (higher FID than the previous case). In Fig.29, we show a standard VAE
trained with a low β (= 0.09) VAE. In this example, the mentioned trends continue and intensify,
now with a much better reconstruction (MSE = 6.32), but very poor generation.
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Figure 10: Results of a high β (= 1.00) VAE training (MSE = 9.92, poor). Notice the collapsed
dimensions in the histograms for µ (the variance, black dots, for each of those dimensions is very
close to 0). Good generation.

Figure 11: Results of a medium/balanced β (= 0.20) VAE training (MSE = 7.12, regular). There
are more functional dimensions than collapsed or almost collapsed ones. Regular generation.
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Figure 12: Results of a low β (= 0.09) VAE training (MSE = 6.32, good). There are no collapsed
dimensions, but the model becomes almost an autoencoder (i.e., the VAE’s σ is close to 0). Bad
generation.
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A.7 AVOIDING POSTERIOR COLLAPSE IS NOT ENOUGH TO IMPROVE GENERATION IN A HD
VAE

In this appendix, we show an example in which we encourage the mean of the radial coordinate
µ
r

of the encoded means µ to lie on the hypersphere of radius
√
n, i.e., aµ,r =

√
n, and the means

of the (cosine) hyperspherical angles
µ
φk to lie in the equators, i.e., aµ,k = 0, ∀k; furthermore, we

also balance the variance of the (cosine) angles
µ
φk by encouraging it to be in the same direction as

the vector whose Cartesian coordinates are (1, . . . , 1), i.e., bµ,k = 1/
√
k + 1, ∀k. With this setup,

our experiments show that posterior collapse is avoided (in both the Cartesian and hyperspherical
coordinates representations), while the distribution of µ is still similar to a uniform distribution on
the hypersphere, like in the standard VAE (cf. Bardes et al. (2021)). Nevertheless, as expected from
the discussion in the previous section, this is not enough to guarantee good generation (Fig.13).

Figure 13: Results of a non-collapsed, non-compressed VAE training. We repeated the experiments
for several target values for σ and β, but the results were qualitatively the same as in the present
figure.
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A.8 HIGH HYPERVOLUME COMPRESSION REDUCES SPARSITY AND IMPROVES GENERATION
IN HD VAES

Continuing the analysis of the previous section and figure, then, now that we are sure that we don’t
have any collapsed latent dimensions and thus are using the full representation capacity of the HD
space, we can try to improve the poor generation. If our hypothesis about the sparsity introduced by
the exponentially (wrt the dimension) diverging hypervolume in the equators being the root cause of
this issue is true, then by implementing our compression via hyperspherical coordinates we should
be able to improve this generation while remaining on the hyphersphere, un-collapsed and thus re-
taining the full expressive capacity of the HD space (unless we compress too much and the excessive
overlap hinders the reconstruction).

In Fig.14 we start with a moderate amount of compression by encouraging the mean of the (cosine)
angles

µ
φk to be in the same direction as the vector whose Cartesian coordinates are (1, . . . , 1),

i.e., aµ,k = 1/
√
k + 1, ∀k. Indeed, recall from appendix A.3 that the closer we get to the north

pole, the lower the volume. Nevertheless, this moderate compression is not enough to significantly
improve the generation. Thus, in Fig.15 we go to full compression mode by setting aµ,k = 1, ∀k,
which encourages all the points to converge and condense at the north pole. It’s only in this regime
of very high compression that we get a significantly appreciably improvement in the generation.
Furthermore, we consider this a direct proof of our hypothesis regarding the sparsity of HD spaces
and their impact on generation. In Fig.2 of the main text we showed our experimental results for the
more challenging dataset CIFAR10 regarding how we can use this to systematically take advantage
of the better representation capacity of un-collapsed HD latent spaces to maintain a good and stable
reconstruction, while we use our method of volume compression to improve at the same time the
quality of the generation. This allowed us to reach more valuable zones of the MSE-FID plane which
are not accessible via the standard VAE in any combination of the parameters n (latent dimension)
and β.

As an additional comment, by looking at the histogram for µ in Cartesian coordinates in Fig.15,
one may think that the lower (in coordinate index) latent dimensions seem heavily collapsed. But
this is not the case: the latent data distribution lies exactly on the hypersphere, and this forces cor-
relations in the Cartesian coordinates, reason by which the fact that one or many more Cartesian
coordinates (and their variance) are close to 0 is not conclusive of the irrelevance of many of the la-
tent dimensions; indeed, if we now check the histogram for the (cosine) angles

µ
φk in hyperspherical

coordinates (which are a set of uncorrelated coordinates on the hypersphere, by construction), then
we see that there’s no collapse in any dimension there. Adding to this point, we can see in Fig.8
that, in the standard VAE, the collapse in Cartesian coordinates (e.g., around index 20 in the first
histogram to the left in the first row) translates into a collapse in the (cos) hyperspherical coordinates
(third row histogram, same index), while this is not the case in our compression VAE in Fig.9, where
the apparent collapse in Cartesian coordinates around, e.g., index 20, doesn’t translate into an anal-
ogous collapse in the (cos) hyperspherical coordinates: we believe that the reason for this is that, in
the standard VAE, we are not exactly on the hypersphere (in the fourth histogram to the right in the
first row in Fig.8, we can see that the norm of µ, in orange, has a non-zero variance, since the prior
is still a multivariate Gaussian, not exactly a uniform distribution on the hypersphere), while our
compression VAE is indeed exactly on the hypersphere (analogous norm histogram in Fig.9), since
we explicitly encourage the variance of the radial coordinate of µ to be 0. Thus, we emphasize that
the improvements in generation by our compression method cannot be explained by selective pos-
terior collapse (as in Fig.27), where the HD collapsed latent representation is effectively equivalent
to a non-collapsed one in lower dimensions, since this comes at the cost of loosing reconstruction
quality; but our method is able to improve generation while retaining some amount of better recon-
struction, and this is why some of the best performative examples in Fig.2 cannot be re-obtained by a
standard VAE with a different combination of parameters n and β (possibly in a selective collapsed
mode). The improvement in our method is coming from the reduction of the sparsity by compression
of the latent hypervolume and by performing this in a key angular way due to the peculiar equatorial
nature of the volume in HD spaces.
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Figure 14: Results of a moderately compressed VAE training.
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Figure 15: Results of a fully compressed VAE training.
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A.9 THE SPIN GLASS ANALOGY DURING TRAINING

We described in Section 4.1 of the main text the following training schedule and the reasons behind
this choice: “[...] we use an annealing schedule for the gain β of the KL-like loss, consisting of an
initial stage which increases proportionally with

√
epoch for the first 100 epochs, and is constant

afterwards. This was necessary because we observed that too much compression of the volume
was detrimental to the performance, while a strong compression was still necessary at the initial
stage[...]”. The gain β here has the role2 of the inverse temperature, β = 1/T . In spin glasses and
complex systems, the energy function has exponentially many local minima in the equatorial region
of the hypersphere. To overcome them, a very strong signal or bias towards the desired region is
necessary at the beginning, together with a rapid cooling or quenching. Thus, our initial high β (i.e.,
very low temperature T ) setting, and in the presence of the high intensity (regulated by the β−1

factor in front of the MSE) hyperspherical external magnetic fields as bias in directions away from
the equator, should make the gradient descent dynamics to quickly tend towards a low temperature
distribution with replica symmetry breaking. Indeed, this is what we observed in our experiments,
since we check for the replica angle, as mentioned before. This initial strong compression helps
escaping those undesirable equatorial minima (Fig.16). Nevertheless, the obtained state shows too
much overlapping between samples, so we then perform the annealing (i.e., lower the β, or increase
the temperature T , and also lower the intensity of the magnetic fields) in order to allow the system to
relax the strong order introduced by the initial bias and, in this way, transition to a replica symmetry
breaking state with a bigger angle between replicas (that is, to go back up a bit in the ultrametricity
tree/hierarchy of the replica angle values; cf. Mourrat (2024)). This decreases the MSE and makes
the decoded images more sharp, at the cost of some generation quality (Fig.17). Note how the replica
angle (red dashed lines in fourth histogram to the left in second row) doesn’t fully go back to π/2,
even when the KLD term (where the external magnetic fields are) stops optimizing at this stage of
the training process (red line in third row), but instead jumps to a different value, higher than the
initial one but still below π/2. This is fully consistent with the spin glass analogy in a quenched
and then annealed system, where the glass, always in the replica symmetry breaking phase, jumps
from one so-called ‘pure state’ to a different pure state, i.e., goes back up a bit in the ultrametricity
tree/hierarchy of the replica angle values, as mentioned before. But the system has escaped the zone
with exponentially many local minima in the equator.

2L = β
(
β−1MSE(x, xz) + KLDw/Prior

HSphCoords(φk, r)
)

= βH. cf. footnote 1, where ∇L = β∇H for the
gradient descent dynamics on L.
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Figure 16: Results of a typical fully compressed VAE training at epoch 100.
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Figure 17: Results of the same fully compressed VAE training at final epoch 300.
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A.10 RESULTS ON CELEBA64

In this appendix we include additional experimental results conducted on the dataset CelebA (Liu
et al., 2015), resized to a 64× 64 image size.

The analysis is of the same type as the one we performed on CIFAR10 (cf. Figs.2, 7), and the results
show qualitatively the same trends (Figs.19, 20).

Figure 18: Effect of latent dimension and β on the trade off between reconstruction and generation
on CelebA64 (as in CIFAR10, solid lines closer to the bottom left corner than the dashed lines).
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Figure 19: CelebA64 results breakdown. MSE and FID in terms of both the number of latent space
dimensions and the total gain β.
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Figure 20: Results of standard VAE training with a balanced β (in the 3-D embedding diagram, the
samples are normalized by the overall mean of the radial coordinate, rather than set exactly to the
sphere; thus, rather than looking like a uniform-like distribution on the 2-D sphere, it looks like a
normal distribution in 3-D, but this difference is only merely in the convention being used regarding
the radial normalization for the 3-D embedding). MSE = 5.43 and FID = 34.94, n = 600.
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Figure 21: Results of a compressed VAE training. MSE = 5.41 and FID = 28.43, n = 600.
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A.11 INTERPOLATIONS ON MNIST

Here we complement the results and associated claims of Fig.1 with interpolations experiments on
the same models. They highlight the lack of continuity in the standard VAE case (Fig.22), while
they show the gained continuity and how densely packed the clusters are in our compressed version
(Fig.23).

Figure 22: Interpolations on the standard VAE. a) from 0 to 1; b) from 7 to 2; c) from 0 to 4.

Figure 23: Interpolations on the compression VAE. a)-b) Idem as previous figure.
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A.12 THE DIFFERENT REGIMES OF THE STANDARD βVAE IN LOW DIMENSIONS

In this appendix, we perform a similar analysis as the one in A.6, but now for the model with the
lowest latent dimension (n = 50).

In this situation, the trends actually reverse: de-collapsing the model (that is, going from Figs.24 to
25 and so on) improves the generation as measured by the FID (cf. Figs.27 to 28 and so on, in the
HD case, where it becomes worse). See also Fig.7, second row, right.

Nevertheless, these cases are pathological and not very useful, since all of them have very high MSE,
that is, the images are too ‘blurry’. Thus, both the collapsed and the non-collapsed cases fall into
the bottom far right of Fig.2, way outside the more useful area of the MSE-FID plane.

Figure 24: Results of a high β (= 1.00) VAE training (MSE = 12.27, very poor). Notice the
collapsed dimensions in the histograms for µ (the variance, black dots, for each of those dimensions
is very close to 0). Good generation.
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Figure 25: Results of a medium/balanced β (= 0.20) VAE training (MSE = 9.97, poor). There
are more functional dimensions than collapsed or almost collapsed ones. Better generation than
previous figure.

Figure 26: Results of a low β (= 0.09) VAE training (MSE = 9.59, poor). There are no collapsed
dimensions, but the model becomes almost an autoencoder (i.e., the VAE’s σ is close to 0). Even
better generation than previous figure.
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A.13 RE-WRITING OF THE KLD TERM

In this appendix, we make explicit the steps to go from the standard form of the KLD term in the
VAE to the one we used as a starting point for our own KLD in hyperspherical coordinates.

In Cartesian coordinates, the KL divergence between the estimated posterior defined by µk and σk

and the prior defined by µp
k and σp

k is (Odaibo, 2019):

KLDw/Prior
CartCoords =

1

2

n∑
k=1

[(
σk

σp
k

)2

− log

(
σk

σp
k

)2

− 1 +
(µk − µp

k)
2

(σp
k)

2

]
(13)

A Taylor approximation (up to second order) of the part for sigma around its prior yields for some
constants γk and γ̃k:

KLDw/Prior
CartCoords ≈

n∑
k=1

[
γk (σk − σp

k)
2
+ γ̃k (µk − µp

k)
2
]

(14)

In practice, the optimization is performed over mini batches of data (of size Nb), using the objective
below:

KLDw/Prior
CartCoords ≈

1

Nb

Nb∑
l=1

n∑
k=1

(
γk (σk,l − σp

k)
2
+ γ̃k (µk,l − µp

k)
2
)

(15)

If we denote the corresponding batch statistics as Eb and σb, then, by using the basic formula,

Eb[X
2] = Eb[X]2 + σb[X]2, (16)

we can write this objective as (we omit the constants for ease of reading)

KLDw/Prior
CartCoords ≈

n∑
k=1

(
(Eb[σk]− σp

k)
2
+ σb[σk]

2 + (Eb[µk]− µp
k)

2
+ σb[µk]

2
)

(17)
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A.14 THE DIFFERENT REGIMES OF THE STANDARD βVAE IN HD: CELEBA64

This is a complete analogue of A.6 but for the CelebA64 dataset with n = 1000.

Figure 27: Results of a high β (= 1.00) VAE training (MSE = 5.22, good). Regular to bad
generation.
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Figure 28: Results of a medium/balanced β (= 0.20) VAE training (MSE = 3.74, good). Bad
generation.

Figure 29: Results of a low β (= 0.09) VAE training (MSE = 3.31, good to very good). Very poor
generation.
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