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Abstract—Cardiovascular disease (CVD) is a leading cause of
global mortality, accounting for an estimated 17.9 million deaths
annually. CVD is broadly defined as a group of medical conditions
influenced by modifiable or non-modifiable risk factors that
affect the heart’s ability to function properly. Machine learning
(ML) has emerged as a powerful tool for analyzing complex
medical data, aiding in early detection and accurate diagnosis of
CVD and improving patient outcomes. Recent studies proposed
various deep learning (DL) architectures for detecting CVD,
yet there is a lack of robust benchmarks for comparing their
performance on large-scale databases. In this work, we bench-
mark six state-of-the-art DL architectures for multi-label heart
disease classification using 12-lead electrocardiogram (ECG) data
from the large-scale publicly available Medical Information
Mart for Intensive Care (MIMIC) database. Specifically, we
evaluate a 1-dimensional convolutional neural network (CNN)
with residual blocks (1D-CNN-ResNet); bidirectional long-short-
term-memory neural network with convolutional layers (CNN-
Bi-LSTM); spectrogram-based CNN (SpG-CNN); convolution-
attention-transformer network (CAT-Net); hierarchical attention
network (HAN), and structured state space sequence (S4) model;
on a multi-label heart disease classification task with seven
diagnostic targets. Model accuracy is assessed using the Hamming
distance and its complexity is measured by number of model
parameters. By contrasting models’ accuracies versus their com-
plexity, we establish a reliable benchmark providing constructive
insights for advancing automated cardiovascular diagnostics.

Index Terms—Cardiovascular disease prediction, ECG-based
multi-label classification, MIMIC-IV database, deep learning
architectures for healthcare diagnostics.

I. INTRODUCTION

Cardiovascular diseases (CVDs) remain the leading cause
of mortality worldwide, highlighting the need for accurate and
efficient diagnostic tools. Among the various clinical instru-
ments available, the 12-lead ECG provides a comprehensive
view of the heart’s electrical activity by capturing signals
from multiple anatomical perspectives. Electrodes placed on
the chest, arms, and legs enhance the ability to detect subtle
or localized abnormalities that might be missed with fewer
leads [1], improving the diagnostic accuracy of arrhythmias,
ischemic events, and other cardiac conditions. Despite its di-
agnostic value, 12-lead ECG interpretation remains a complex
challenge, often requiring expert cardiologists to distinguish
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subtle patterns indicative of disease. The difficulty in inter-
preting overlapping ECG signals [2] has spurred interest in
developing ML and DL models for automated ECG analysis.
In recent years, ML and DL techniques have demonstrated
significant potential in ECG-based heart disease classification.
However, several critical limitations persist. For instance, a
major drawback of existing ECG-based ML classification stud-
ies is their reliance on small, private, or proprietary datasets,
hindering their reproducibility as well as fair comparison of
distinct model architectures [3]-[5]. Moreover, many studies
focus on single-lead ECG data, neglecting the richer diag-
nostic information available in 12-lead ECGs [6]. Absence
of standardized benchmarks for model evaluation has led to
inconsistent performance reporting, making it difficult to fairly
compare distinct architectures and assess/validate their clinical
applicability. These challenges highlight the critical need for a
unified, publicly available, large-scale evaluation benchmark,
yielding fair and reproducible comparisons across DL models.
To address these gaps, this work leverages the MIMIC-
IV database, one of the largest publicly available repositories
of 12-lead ECG recordings [7]. The MIMIC-IV database
provides a publicly available large-scale resource for bench-
marking DL models under standardized and clinically relevant
conditions, overcoming issues related to dataset variability
and evaluation inconsistencies. By proposing a consistent
preprocessing pipeline and standard evaluation metrics for
various model architectures, our work aims to establish a
comprehensive benchmark for 12-lead ECG-based multi-label
heart disease classification. Specifically, we evaluate a diverse
range of state-of-the-art DL architectures, including a 1D-
CNN-ResNet [8], CNN-Bi-LSTM [9], SpG-CNN [10], CAT-
Net [11], HAN [12], and S4 [13]. These models are chosen
to capture both short-term local dependencies, using convo-
lutional approaches, and long-range temporal patterns, using
recurrent, attention-based, and/or state space architectures.
Overall, this study aims to furnish a ground for similar
large-scale benchmarks, improving the reliability and trust of
automated ECG-based diagnostic tools and advancing data-
driven cardiovascular research. The remainder of the paper
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is organized as follows. Section II discusses related work.
Section III presents the MIMIC-IV dataset. Section IV outlines
the data preprocessing steps. Section V introduces the DL
architectures of interest. Section VI describes our experimental
methodology, including hyperparameter tuning and evaluation
metrics. Section VII presents and discusses the results.

II. RELATED WORK

Recent studies explored using ECG data for DL models
in cardiovascular as well as general medical diagnostics. For
instance, [13] trained a DL model on MIMIC-IV-ECG data
linked to hospital discharge diagnoses, predicting a wide range
of cardiac and non-cardiac conditions and demonstrating the
potential of Al-enhanced ECG analysis as a unified screening
tool. This model achieved high predictive performance across
253 International Classification Diseases (ICD) codes covering
81 cardiac and 172 non-cardiac conditions. [14] investigated
various DL architectures including CNNs, LSTMs, and self-
supervised learning (SSL) models with auto-encoders, for
cardiac arrhythmia classification using digitized ECG datasets.
CNN-based models achieved the highest accuracy (~92%),
yet, [14] focused primarily on Lead II heartbeats, limiting its
ability to capture spatial dependencies across multiple leads.
In contrast, our work evaluates models trained on full 12-
lead ECGs to fully leverage the rich diagnostic information
available in multi-lead ECG data.

Another study [15] introduced a constrained transformer
network for ECG signal processing and arrhythmia classifi-
cation, proposing an end-to-end DL framework that integrates
CNNs with the transformer network to enhance spatial and
temporal feature extraction. The study incorporates a link con-
straint in the loss function to improve classification accuracy
by making the embedding vectors of similar ECG classes
more alike. Extensive experiments on real-world ECG datasets
show that this model outperforms traditional architectures like
CNNs and recurrent neural networks (RNNs) by capturing
long-range dependencies. However, it lacks benchmarking
against a standardized dataset like MIMIC-IV-ECG, limiting
its generalizability assessment. In contrast, our work ensures
standardized evaluation by testing all models under the same
conditions, facilitating direct performance comparison.

Other studies have revisited various DL architectures for
ECG classification. For instance, [8] developed a deep neural
network (DNN) for multi-label classification of cardiac ar-
rhythmias using 12-lead ECG recordings, achieving an average
AUC exceeding 0.95 and an average Fl-score of 0.813, out-
performing traditional ML methods. [8] also found that using
all 12 leads simultaneously outperforms single-lead models.
However, their study lacked a comparison of multiple DL
models on the same benchmark dataset, limiting the assess-
ment of which architectures generalize best. In contrast, our
work systematically evaluates various DL model architectures
under uniform conditions and data pre-processing steps to
establish a fair and reliable benchmark for ECG classification.

Another study [16] developed a hybrid DL model combining
AlexNet and a custom CNN for ECG classification, achieving
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an average accuracy of 99.58% across three heart diseases
and outperforming traditional methods. This demonstrates the
effectiveness of hybrid architectures, yet it is limited in scope,
focusing only on a small subset of cardiac diseases rather than
a broader range of ECG abnormalities. In contrast, our work
provides a more extensive evaluation by benchmarking models
across seven diagnostic categories, ensuring a more compre-
hensive understanding of their strengths and limitations.

III. DATABASE

The MIMIC-IV database version-3.1 (latest release) offers a
large-scale publicly available resource providing de-identified
health-related data from over 65,000 ICU and 200,000 emer-
gency department (ED) admissions at Beth Israel Deaconess
Medical Center. The MIMIC-IV-ECG module, a key compo-
nent of the database, includes approximately 800,000 12-lead
diagnostic ECGs from nearly 160,000 distinct patients. These
ECG readings are essential for analyzing heart function and
used in this work to benchmark various DL architectures in
assessing a wide range of cardiovascular conditions [7].

A. ECG Data and Format

The MIMIC-IV’s ECG data is obtained using 12 standard
leads, namely, leads I, II, III, aVF, aVR, aVL, and V1-V6.
Each ECG recording is 10 seconds long and sampled at a fre-
quency of 500 Hz, ensuring high-resolution data by capturing
rapid heart rate fluctuations and fine electrical patterns.

B. Linking ECG Data to Clinical Diagnoses

The MIMIC-IV database assigns each patient a unique
subject ID, allowing data and diagnoses to be linked across
modules, but does not directly associate ECG recordings with
specific clinical diagnoses. In this work, we utilize the MIMIC-
IV-ECG-Ext-ICD extension dataset [13], which links ECG
recordings to clinically validated diagnoses from ED and
hospital discharge records, and enhances ECG data by aligning
recording times with patient admission and discharge events.
This facilitates the development of accurate ML models for
ECG-based CVD classification. We leverage this alignment to
retrieve ICD-10 codes for each patient’s discharge diagnoses,
linking ECGs recorded in the ED or hospital to relevant
diagnoses based on the timing of ECG recording and patient’s
admission/discharge. Each patient can have up to nine ICD-
10 codes for ED visits and 39 codes for hospital admissions,
providing a comprehensive representation of their clinical di-
agnoses. These ICD-10 codes serve as critical labels, offering
essential ground truth for evaluating and benchmarking ML
models. By incorporating these structured diagnostic labels,
we enhance the ability of DL models to predict CVD with
greater reliability and clinical relevance.

IV. DATA PREPROCESSING

Data preprocessing ensures the quality and consistency of
input data in ML models. We employ a standard preprocessing
pipeline for the 12-lead MIMIC-IV-ECG-Ext-ICD dataset to
address common ECG signal processing challenges, including
noise, missing data, and complex diagnostic labels.
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A. Data Cleaning and Formatting

The MIMIC-IV-ECG-Ext-ICD dataset includes a wide range
of medical conditions, many unrelated to circulatory system
diseases [13]. To focus on heart diseases, we conduct extensive
data cleaning and filtering. We filter the dataset to include only
patients with hospital discharge or ED diagnoses within ICD-
10 Chapter IX (codes 100-199) [17], covering a broad spectrum
of cardiovascular conditions such as coronary artery disease,
arrhythmias, heart failure, and other cardiac and vascular
disorders. This process excludes ECG recordings linked to
non-circulatory system diagnoses, resulting in a refined dataset
of approximately ~ 361,000 ECG recordings. We also apply
“complete-case analysis” by excluding rows with missing
ECG values, which are minimal and unlikely to impact the
results significantly. Removing incomplete records ensures that
models are trained on high-quality data, minimizing the risk
of introducing biases or errors during training.

In this work, we address a multi-label classification prob-
lem, where each patient can have one or more cardiovascular
conditions. To represent the seven CVD categories of interest
(chronic ischemic, atrial fibrillation, heart failure, hyperten-
sive, acute myocardial infarction, valve disorders, and others),
we use a 7 x 1 binary vector, where *1’ indicates the presence
and ’0’ indicates the absence of a specific disease category.
By employing multiple classification heads in all DL models
in our benchmark, we enable the simultaneous prediction
of multiple cardiovascular conditions, reflecting the realistic
scenario where a patient may have more than one condition.

B. Denoising ECG Signals

We apply a denoising procedure to reduce noise and artifacts
from raw ECG recordings, arising from sources like muscle ac-
tivity, electrode movement, or electrical interference [18]. This
noise can obscure critical ECG features such as P-waves, QRS
complexes, and T-waves, essential for accurate heart rhythm
detection. Denoising improves accuracy of downstream ML
models by enhancing the signal-to-noise ratio, allowing them
to focus on clinically relevant patterns in the ECG data. This
step is vital for ensuring that models can reliably distinguish
between different cardiac conditions [19].

As standard, we denoise the ECG signals using the discrete
wavelet transform (DWT), which decomposes the signal into
multiple frequency components across different scales. DWT
effectively captures both time and frequency information, mak-
ing it suitable for non-stationary signals like ECG. The signal
is filtered through high-pass and low-pass filters, producing
high-frequency (detailed) and low-frequency (approximation)
components. This process is iterated, further decomposing the
approximation component into multiple levels. High-frequency
components, typically containing noise, are thresholded, with
coefficients below the threshold set to zero. This removes
noise while preserving key signal characteristics. Finally, the
denoised signal is reconstructed by combining the processed
high-frequency components with the approximation compo-
nent, reversing the decomposition and yielding a cleaner
version of the original signal, as shown in Figures 1 and 2.
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Fig. 2: Denoised ECG signal

C. Diagnostic Labeling and ICD-10 Codes

To link ECG recordings to clinically validated diagnoses,
we focus on a subset of ICD-10 Chapter IX codes relevant
to CVDs, building on previous research that demonstrates
the feasibility of predicting these conditions using deep DL
techniques [20]. DL models have been shown to effectively
learn patterns from ECG signals associated with diseases
like ischemic heart disease, heart failure, and arrhythmias,
including atrial fibrillation and myocardial infarction [21].
By focusing on these established categories, we align our
study with current advancements in ML for CVD diagnosis,
leveraging existing research to apply DL models to a broad
range of clinically significant heart diseases. As in [13], to
manage the hierarchical complexity of ICD-10 codes, we
group diagnoses by the first two digits, ensuring each category
represents a distinct class of CVDs. This approach simplifies
the classification problem while retaining specificity for accu-
rate disease prediction. The diagnostic labels of interest are:

o Chronic Ischemic Heart Disease (125): Characterized
by reduced blood flow to the heart due to narrowed
arteries, this condition is a leading cause of morbidity
and mortality worldwide.

o Atrial Fibrillation (148): A common arrhythmia associ-
ated with an irregular and often rapid heart rate, increas-
ing the risk of stroke and heart failure.

o Heart Failure (150): A condition where the heart is unable
to pump blood effectively, leading to symptoms such as
shortness of breath and fatigue.

o Hypertensive Heart Diseases (111, 112, 113, 115, 116):
Conditions resulting from high blood pressure, including
hypertensive heart failure and hypertrophy.

o Acute Myocardial Infarction (121): Commonly known as
a heart attack, this condition occurs when blood flow to
a part of the heart is blocked, causing tissue damage.

o Valve Disorders (107, 108, 134, 135): Conditions affecting
the heart valves, such as stenosis or regurgitation, which
can impair blood flow within the heart.

e Other: A category for other cardiovascular conditions not
covered by the above categories.

While many previous studies have used resampling techniques
to address class imbalances in ECG datasets, the MIMIC-1V-
ECG data is relatively well-balanced (see Table I) and reflects
the typical distribution of CVDs in clinical settings. Therefore,
we did not apply any resampling methods.
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TABLE I: Distribution of diagnostic labels

CIHD AF HF HHD VD AMI | Other
21.1% | 18.1% | 17.9% | 153% | 7.4% | 6.6% | 13.6%

V. PRELIMINARIES
The DL architectures in our benchmark can be categorized
into four broader classes: (1) CNN-based, (2) Hybrid CNN-
RNN, (3) Attention-based and (4) State space architectures,
representing distinct methodological approaches to processing
ECG signals and extracting relevant features for classification.

A. CNN-based Architectures

CNNs, or pure-convolutional feed-forward models, utilize
convolutional layers to extract spatial and short-term temporal
features from ECG signals. These models are effective in
capturing local patterns and invariant features in physiological
signals [22]. Our benchmark includes two CNN-based archi-
tectures, adapted from notable recent research:

1. One-Dimensional Convolutional Neural Network with
Residual Blocks (1D-CNN-ResNet): We utilize this model,
adapted from [8], which employs a deep ResNet CNN archi-
tecture for classifying 12-lead ECG data across 9 diagnostic
labels. The residual connections help mitigate the vanishing
gradient problem, allowing for deeper architectures that can
learn more complex feature maps. This model achieves an
average Fl-score of 0.813 on the China Physiological Signal
Challenge 2018 (CPSC2018) dataset [23]. See Table II below
for a description of the model’s layers.

TABLE II: 1D-CNN-ResNet architecture

Layer Description

Input ECG signals
ConvlD 1D Convolution layer
BNI1D Batch normalization
ReLU Activation function
Pooling Downsampling layer

Residual Block x4 4 stacked residual blocks
Pooling Downsampling layer
Dense Fully connected layer
Sigmoid (9) Sigmoid activation with 9 output classes

Output Final output layer

2. Spectrogram-based CNN (SpG-CNN): This model
is adapted from the GitHub repository! guided by [10]. It
transforms raw ECG signals into logarithmic spectrograms,
representing time-frequency distributions, and uses a stack
of convolutional layers for feature extraction. Due to the
variable-length input data, temporal aggregation is performed
by averaging feature maps across time. By leveraging the
spectral representation of ECG waveforms, the model captures
frequency-domain features useful for distinguishing cardiac
conditions. We adapt this model to accept 12-lead data sam-
pled at 500 Hz, and modify the output layer and loss function
to accommodate the multi-label classification problem.

B. Hybrid CNN-RNN Architecture

Hybrid deep models combine convolutional layers with
recurrent architectures, such as bidirectional long short-term
memory (Bi-LSTM) networks, to capture both spatial and

Uhttps://github.com/awerdich/physionet.
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sequential dependencies in ECG signals. We benchmark the
following hybrid CNN-RNN architecture:

3. Bi-LSTM with Convolutional Layers (CNN-Bi-LSTM):
This model, introduced by [9], uses convolutional layers
to extract local spatial features from ECG waveforms, fol-
lowed by BiLSTM layers that model temporal dependencies.
BiLSTMs capture both forward and backward dependencies,
which is critical for identifying patterns across time. The
model achieves a weighted Fl-score of 0.82 on a multi-class
problem with three classes: Atrial Fibrillation, Normal, and
Other. We adapted this model to accept 12 leads and updated
its final layer to match our multi-label classification problem.

ECG Segments 1DCNN - Bi-LSTM —D[Fully-connec(edH Softmax ]

Fig. 3: CNN Bi-LSTM architecture

C. Attention-based Architectures.

Attention-based models, including the transformer [24], are
designed to handle long-range dependencies and efficiently
process long ECG sequences, capturing complex temporal
relationships. For our benchmark, we consider the following
two state-of-the-art attention-based architecture:

4. Hierarchical Attention Network (HAN): The HAN,
adapted from [25], applies hierarchical attention mechanisms
to focus on different levels of ECG features, enabling multi-
scale feature aggregation. It captures both short and long-term
dependencies through its hierarchical structure. Designed for
single-lead ECG analysis, the HAN in [12], [26] uses R-peak
fusion to break down ECG signals into a hierarchical structure,
capturing local and global dependencies across multiple scales.
In this work, we extend the model to handle multi-lead
ECG signals using multi-R-peak fusion across all 12 leads,
enhancing its ability to capture spatial relationships between
leads, and modify the final layer for multi-label classification.

5. Convolution, Attention, and Transformer Network
(CAT-Net): CAT-Net, introduced by [11], combines convo-
Iutional feature extraction with attention mechanisms and
transformer-based processing to enhance detecting long-range
dependencies in ECG signals; see Table III. CNN layers
extract local features, while attention modules focus the model
on the most relevant signal regions. We adapt this model
to accept 12-lead data and the output layer for multi-label
classification. Unlike the MIT-BIH dataset used in [11] which
labels individual heartbeats (doesn’t require R-peak detection),
the MIMIC-IV-ECG readings do not contain R-peak labels.
TABLE III: CAT-Net architecture: Convolution, attention, and
transformer based network

Layer
Input
Ist Conv Block
2nd Conv Block
3rd Conv Block
4th Conv Block

Positional Encoding

Transformer Encoder

Flatten Layer

Dense Layer 1

Dense Layer 2
Output

Description
ECG signal (500 x 1)

Conv, BN, Attn, Pool (500 x 16) — (150 x 16)
Conv, BN, Attn, Pool (150 x 16) — (75 x 32)
Conv, BN, Attn, Pool (75 x 32) — (38 x 64)

Conv, BN, Attn (38 x 64) — (38 x 128)
Applied to features
MHA, Add & Norm, FFN, Add & Norm
Converts 2D to 1D (38 x 128) — 4864
Fully connected (128 neurons)
Fully connected (5 output classes)
Predicted classes
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D. State Space Architectures.

Much like attention-based models, state space architectures
are intended to handle very long-range dependencies and effi-
ciently process long ECG sequences. For our benchmark, we
consider the following state-of-the-art state space architecture:

6. Structured State Space Sequence (S4) Model: S4,
introduced in [27], employs a state space representation to
efficiently model long-range dependencies in ECG signals.
Unlike recurrent models, S4 avoids vanishing gradients by
using structured state space layers, making it highly effective
for capturing long-term relationships in sequential data. The
S4 architecture begins with a Conv1D layer, followed by S4
blocks with LayerNorm and skip connections, and concludes
with an average pooling layer and a linear classification head.
The code was sourced from the implementation in [13].

VI. METHODOLOGY AND EXPERIMENTS

A. Experimental Setup and Hyperparameter Tuning

We partition the MIMIC-IV-ECG-Ext-ICD dataset into
training, validation, and test sets using an 80%-10%—10%
split, respectively. To ensure robust model performance, mit-
igate overfitting, and enhance generalizability, each DL ar-
chitecture in our benchmark underwent extensive systematic
hyperparameter tuning for ECG classification. The tuning
process involves optimizing the following hyperparameters:
- Learning Rates ranging from 0.0001 to 0.1 were tested,
with StepLR decreasing the rate by a factor v (ranging from
0.1 to 0.3) and at fixed intervals (every 10 to 20 epochs).
- Batch Size, evaluated within a range of 16-512 to optimize
computational efficiency and generalization.
- Network-depth and hidden units. LSTM-based models are
examined with 1-3 layers, while CNN layers are examined
with varying number of hidden units (ranging from 64 — 1024)
to assess their feature extraction capacity.
- Dropout-rate, configured between 0.1-0.5 to minimize
overfitting while maintaining effective learning.
- Regularization weight. L1 & L2 regularization are applied
to reduce model complexity and improve generalization (tested
values ranged from 0.01 — 0.0001).

B. Optimal hyperparameter configurations

Table IV summarizes the best-performing hyperparameters
for each model, based on validation error performance. Addi-
tional model-specific configurations include: 1D-CNN-ResNet
utilizes binary cross-entropy (BCE) loss, Adam optimizer and
a dropout-rate of 0.2 in residual blocks. CNN-BiLSTM employs
step-LR scheduler (step size 10, gamma 0.1), 256 LSTM
hidden units, and dropout rates of 0.1 for CNN layers and
0.2 for LSTM layers. HAN uses channel attention with 32
filters and segment attention with 64 units. CAT-Net features
4 attention heads, a model dimension of 64 and a feed-forward
dimension of 64.2 S4: uses SGD optimizer with weight decay
of 1 x 10~ and a dropout rate of 0.1.

ZModel dimension is defined as the size of feature vectors for each ECG
time step after convolution and attention. The feedforward dimension is the
size of the hidden layer in the transformer’s feed-forward network
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TABLE IV: Optimal hyperparameter configuration for bench-
mark models.

Model Learning Rate | Batch Size | Epochs
1D-CNN-ResNet 0.001 32 50
SpG-CNN 0.001 32 40
CNN-BILSTM 0.01 32 50
HAN 0.01 512 20
CAT-NET 0.001 64 50
S4 0.01 32 50

C. Evaluation metrics

For our multi-label benchmark, we use the Hamming loss
metric to quantify classification accuracy over 5 seeds of the
7 diagnostic labels (Table I). Table V summarizes the results.

D. Reproducibility

To ensure transparency and reproducibility, we have made
all code, data preprocessing scripts, model architectures, train-
ing configurations, and evaluation metrics publicly available.
The full implementation can be accessed at: https://github.
com/MIMIC-Benchmarking

VII. DISCUSSION

Our benchmarking results show that DL models can effec-
tively distinguish between different cardiac conditions using
12-lead ECG data. Evaluating multiple architectures provided
insights into the trade-offs between model complexity, com-
putational requirements, and classification performance. Table
VI summarizes model complexity in terms of total, trainable,
and non-trainable parameters.

The results indicate that larger models, such as 1D-CNN-
ResNet and CNN-BiLSTM, require substantial computational
resources due to their high number of trainable parameters.
These models demonstrated strong classification performance
by leveraging their large capacity to capture intricate ECG
signal patterns. However, their increased complexity results in
higher memory requirements and longer inference times, mak-
ing them less suitable for real-time applications in resource-
constrained environments. In contrast, smaller models like
HAN and CAT-Net showed significantly lower parameter
counts while maintaining competitive classification perfor-
mance. HAN, with only 84K total parameters, offers an
efficient alternative for real-time applications where compu-
tational efficiency is crucial [26]. Additionally, CAT-Net and
SpG-CNN demonstrated the ability to balance accuracy and
efficiency, making them viable candidates for deployment in
mobile and edge computing scenarios.

TABLE VI: Model Complexity Analysis

Model Total Param | Trainable Param
1D-CNN-ResNet 139.6M 139.6M
CNN-BIiLSTM 38.07M 38.07M

S4 6.4M 6.4M
CAT-NET 2.66M 2.66M
SpG-CNN 3.56M 3.55M

HAN 84K 83.9K

Examining the trade-off between model complexity and
predictive performance is a crucial aspect of this study. Models
with higher parameter counts capture richer features but re-
quire more extensive computational resources for training and
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TABLE V: Model Performance

ResNet BILSTM SpG-CNN

HAN

CAT S4

0.24+0.002 | 0.22£0.002 | 0.204 = 0.002

0.24+0.01

0.196 £ 0.001 | 0.20 = 0.002

inference. In contrast, lightweight models are computation-
ally efficient but may need architectural enhancements, such
as attention mechanisms or feature selection techniques, to
achieve comparable accuracy. These findings have important
implications for ECG-based disease diagnosis. In clinical
settings with access to high-performance computing, models
like 1D-CNN-ResNet and CNN-BiLSTM can be deployed
to maximize diagnostic accuracy. Conversely, in remote or
resource-limited environments, more compact models such as
HAN and CAT-Net offer feasible alternatives with reduced
energy consumption and faster inference speeds. Future re-
search should explore hybrid approaches that integrate model
compression techniques and transfer learning to optimize both
performance and computational efficiency.

Overall, our benchmarking framework provides valuable in-
sights into the selection of DL models for ECG classification,
facilitating informed decisions based on specific deployment
constraints and performance objectives.
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