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Abstract

We introduce a test-time adaptive agent that performs exploratory inference through
posterior-guided belief refinement without relying on gradient-based updates or
additional training for LLM agent search operation under partial observability.
Our agent maintains a structured belief over the environment state, iteratively
updates it via action-conditioned observations and selects actions by maximizing
predicted information gain over the belief space. We estimate information gain
using a lightweight LL.M-based surrogate and assess world alignment through a
novel reward that quantifies the consistency between posterior belief and ground-
truth environment configuration. Experiments show that our method outperforms
inference-time scaling baselines such as prompt-augmented or retrieval-enhanced
LLMs, in aligning with latent world states with significantly lower integration
overhead.

1 Introduction

Agents operating in partially-observable environments continuously encounter incomplete information
in the course of achieving their goals [10, 9]. The key capability in such settings is exploratory
decision making. That is, the agent should not only act to achieve the target objective but also to
collect information that refines its internal belief about the world. The interaction between action,
observation, and belief refinement forms the basis of effective behavior under uncertainty.

In this paper, we consider exploratory decision making under uncertainty, focusing on the task of
object search in embodied settings, which is the basic task for more advanced tasks, and examine
inference-time world understanding under such partial observability. While large language models
(LLMs) have shown promise in zero-shot task execution [3} [17]], their static reasoning often fails
to adapt to the unfolding dynamics of environments with partial observability. Prior approaches to
such partial observability include inference-time scaling methods (e.g., prompt tuning [12], retrieval
augmentation [11, 22]] and static prompting) and train-time policy optimization via supervised or
reinforcement learning (e.g., SFT [18], DPO [21]] and MCTS-style planners [31} 4]]). However, the
former lacks adaptive interaction with the environment, while the latter requires substantial training
cost and limits deployment flexibility.

To overcome such drawbacks, we propose a novel, lightweight but effective agent architecture that
performs inference-time exploratory reasoning through posterior-guided belief refinement. Our core
idea is as follows: the agent maintains a structured posterior belief over object locations, updates it
based on observations, and selects actions that reflect this evolving belief. Thus, our behavior policy is
driven not by memorized patterns but by a dynamically refined understanding of the world. Crucially,
all our adaptation occurs at test time without gradient updates, fine-tuning, or additional environment
models. Empirical results show that our inference-time alignment strategy outperforms search-based
and world-model baselines, while achieving substantially lower computational overhead by operating
exclusively at test time. Our proposed method generalizes across diverse object types, room layouts
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and interaction histories without requiring task-specific training or reward-based tuning. To the best
of our knowledge, this is the first test-time inference agent that performs Bayesian posterior reasoning
entirely via language; simulating observations, updating structured belief distribution, and selecting
actions that optimize epistemic utility. Our contributions are summarized below:
* We propose a lightweight object search agent that performs test-time exploratory learning
through posterior belief refinement, requiring no training or gradient updates.

* Our agent selects actions by dynamically aligning its behavior with evolving beliefs, enabling
efficient object localization under partial observability.

* Experiments show that our method surpasses inference-time scaling baselines and competes
with train-time world models.

2 Motivation

Modern language agents trained with supervised
trajectories often overfit to specific search be-
haviors seen in expert demonstrations. To val- 4
idate this, we ran an experiment in which an
LLM search agent trained with supervised learn- ¢
ing is given diverse search missions (Appendix [C). Seen Unseen
When the agent is given search tasks in seen envi- . "y suecess
ronments, the agent succeeds with high probability
as seen in Figure Ekleft). On the other hand, when
the agent is given search tasks in unseen test-time environments in which the room layout is similar
to the trained layout but object locations are different, the agent persistently reproduces train-time
room visitation sequences even in these test-time environments with 84.8 (=52.7+31.8) % out of total
search sequences with some deviations, as seen in Figure [I{right). Notably, over 50% of failures
occur in the case of train-like search sequences, indicating that the agent is not adapting based on
what it observes but performs blindly according to what it expects. This highlights a core limitation
of static imitation agent: the inability to dynamically adjust when confronted with uncertainty or
distribution shift. To address this limitation, in the following section we propose an inference-time
agent named Align While Search (AWS) that performs belief-driven search, bridging exploration and
alignment via posterior-guided belief refinement, enabling agents to adaptively deviate from training
habits to align with the true environment through interaction.

3 Proposed Method

Our inference-time aligning agent is inspired by Bayesian active learning in which the agent selects
an action a that maximizes the posterior utility as follows:
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Figure 1: Failures in Supervised Learning. (Left)
Similarity and success. (Right) Error case breakdown.
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where U (b, b;11) is the posterior utility based on current belief b; and updated belief b, (a function
of (b, a, 0) with o being observation induced by action a). Simply saying, the belief b; can be the
probability distribution of a target object over different locations. Our key idea is not to select action
a to go to the location with the maximum probability in b; as in conventional methods but to select
action a to maximize the posterior utility considering both current b; and updated b, for more
informative and robust action selection. To realize this idea, we exploit inference-time LLM-based
belief simulation and posterior evaluation rather than relying on environment-tuned models or offline
optimization, which enables our method to be plug-and-play compatible with existing world models.

3.1 Overview

Belief

Action Action Reward Belief
Selection /Observation Update

- Candidate Action Generation
- Utility Estimation

Figure 2: Inference-time loop of our agent

Our idea for accelerating alignment with the true world state and enabling fast search is to select
an action that is expected to maximize the information gain over a belief space. Once alignment



improves, the agent’s belief becomes a reliable proxy for the environment, enabling accurate search
purely based on beliefs. Thus, our method maintains and updates a hierarchical belief state over the
environment and selects the action by reasoning about the expected informativeness and alignment
reward of each candidate action based on the maintained belief. Our agent runs an inference-time
exploratory learning loop as shown in Figure 2] where two main operations of action selection and
belief update alternate. This loop enables the agent to align with its environment and infer object
locations solely depending on belief refinement without any offline fine-tuning. In the following
sections, we detail each component: hierarchical belief design in §3.2] utility-based action selection
and belief update rules in and finally termination strategy in

3.2 Hierarchical Belief Representation

We propose a structured belief system over the environment, represented as a hierarchical couple
(G, S) corresponding to global- and object-level abstractions:
* G: global hypotheses over user intent and scene layout, e.g.,

"The user has a tendency to accumulate and display personal items, which may contribute to clutter:
The presence of a houseplant, a statue, and a vase (previously observed) on the countertop and
sinkbasin suggests that the user values aesthetics and may have a tendency to accumulate and display
personal items. This could contribute to clutter and make it difficult for the user to maintain a tidy
kitchen."

» S: low object-level candidate locations, e.g.,

mug: {cabinet: 0.145, drawer: 0.430, shelf: 0.423, countertop: 0.000, sinkbasin: 0.000, coffeemachine:
0.001, fridge: 0.001, garbagecan: 0.000, microwave: 0.000, stoveburner: 0.000, toaster: 0.000}

Note that the belief in G is stored as language, whereas the belief in S is stored as a probability
distribution, as seen in the above examples. Concretely, the belief b in S is modeled as a categorical
distribution over symbolic locations:

bS (k) = Pr(target is located at k), Vk € £, 2)

where L9 is the set of all symbolic locations of S.

3.3 Exploratory Action Selection via Expected Utility

At each step, the agent must decide which unexplored symbolic location to visit next. We formu-
late this as an inference-time decision-making process that optimizes an expected utility function,
balancing information gain and alignment.

Information Gain as Utility via LLM-Based Simulation If the belief b° is perfect and sufficient
statistic, the optimal action is to visit the location with maximum probability in b5 due to maximum
a posteriori decision principle. Under partial observability and LLM-based operation, however,
the belief is not perfect. To overcome this imperfectness and devise a robust action selection rule
without additional training or gradient-based test-time tuning, we adopt the following parameter-free
action selection method based on LLM-based simulation. We first take top K, actions from current
object-level belief b° as candidate actions. For each candidate action a, we use an LLM-based
observation predictor mp,q to sample K, plausible observations {6} conditioned on the current

belief and candidate action a. Then, we apply belief update to get an updated belief bS" based on
current belief, candidate action and predicted observation by using a belief updator, which will be
explained shortly. Then, we define the step-wise reward of candidate action a as the information gain,
i.e., expected reduction in entropy of the object-level belief in S after simulated belief update with
predicted observation, given by

IG(a) =E, |H(bS) — H®S | 6)| , ?3)

where H (-) denotes entropy over locations, b® is the current object-level belief, and b " is the belief
after a simulated update with predicted observation 6 ~ mpreq(6 | B, a) with current full belief B
and candidate action a. Then, we choose the action from the candidate action set that yields the
maximum information gain. Note that the object being found is equivalent to an impulse distribution
b°. Hence, maximum entropy reduction at each step implies fastest search.



Belief Update Current full belief B on (G, S) denoted as B = (BY, B®) should be updated after
observation o induced by action a. For this, we adopt the following two-step approach considering
the linguistic nature of BY and numeric nature of BS:

g9
TrBU’O

B9 12w’ g9 _, Bs’, )
That is, we first update BY to B9 based on an LLM-based updator 7%, based on observation o.
Then, from the update global belief BY" we extract the updated object-level belief BS / using one of
the following two methods (see Appendix [E.3|for details):
* Similarity-Based Scaling: Adjust belief scores using lexical similarity between candidate
symbols and the updated global hypothesis.
* LLM-Based Prior Scaling: Use an LLM 7%, to predict which locations should be boosted
or suppressed given a global hypothesis.
The above two variants yield different belief structures over time, ranging from localized refinement
to semantic jumps, ultimately driving distinct exploration paths and belief shaping. The different
belief-shaping behavior between the two methods will be discussed further in Section 4.6
3.4 Instance-Level Grounding and Termination
After selecting a symbolic location (e.g., cabinet), the agent samples one unexplored instance
(e.g., cabinet3) uniformly from the set of candidates associated with that symbol, and executes the
corresponding action. If the instance is not directly observable (e.g., closed), an open action is issued
beforehand. The search loop terminates either when the target object is found or when the average
alignment score over the past k steps exceeds a predefined threshold.

Go to livingroom shelf 1 > Go to countertop 1
- =D Success!
See chips See “banana”
“Snacks found in non-
kitchen area - this user
stores food openly”
“Banana likely in = x
cabinet or fridge.” ; Fail
Go to cabinet 1 = Go to cabinet 2 or
. See plate See knife
IG Scores per Action: delayed
[Shelf] (chosen)  gxpected kitchen
[Fridge] [N item - belief stays
[Cabinet] I unchanged. .

Figure 3: Overview of our Align-While-Search agent

Our strategy extends Bayesian active learning to symbolic domains by replacing feature-space
uncertainty with semantic hypotheses (e.g., room-object mappings, user intent cues). Figure [3]
illustrates our search agent. The agent begins with an initial belief composed of both semantic G and
numeric S, interacts with the environment to refine it through search and observation, and iteratively
aligns its belief to the true environment. The entropy of the belief decreases while alignment improves
over time, enabling effective inference-time adaptation.

4 Experiments
We evaluate the effectiveness of our belief-guided object search agent in simulated environments
under partial observability. Our experiments are designed to answer three key questions:
* Does inference-time belief refinement improve search efficiency compared to static or
prior-only baselines?
¢ Is the predicted information gain (IG) aligned with actual improvements in belief accuracy?
* What factors affect the success or failure of belief-based search?
4.1 Experimental Settings
Environments We evaluate our method on ALFWorld [25]], a household object search benchmark
that requires goal-directed navigation and interaction. We follow Song et al. [27] for trajectory con-
struction and supervised training. Full dataset and environment details are provided in Appendix [H]

Evaluation Metrics We report the Success Rate (SR(%)) as our primary metric. Two additional
analysis metrics, Average Steps and Final Belief Alignment, are discussed in Section[4.3]
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(a) Comparison with training-time and inference-time LLM (b) Comparison of scaling strategies
agents on ALFWorld. (Bold indicates the best in each across base models on ALFWorld

column; shaded rows show our best variants.) (MPO-inferred [30]).

Table 1: Comparison of Performance on ALFWorld: across different agent types (a) and scaling
variants for each base model (b).

Baselines We compare our method (AWS) against three categories of baselines: (1) Training-time
world model baselines, including ETO [27], WKM [20]], and MPO [30]; (2) Inference-time scaling
baseline, such as RAFA [14]]. Reproduction and implementation details are in Appendix [G]

Model Backbones Note that AWS requires 4, 7, and 7y, and uses the same LLM for all
three with different prompting. We evaluate AWS using both open-source and proprietary LLMs:
LLaMAZ2-7B [5], LLaMA3.1-8B [5], LLaMA3.1-70B [5]l, GPT-40-mini [8], and GPT-4 [8]. Model
usage and performance variations are detailed in Appendix [H]

4.2 Main Results

We evaluate our method on ALFWorld, comparing against both inference-time scaling and train-time
world model baselines. As shown in Table [T[a), our method AWS achieves the highest average
performance across seen and unseen splits, outperforming both scaling-only LLMs and fine-tuned
agents. Compared to prior world models such as WKM [20] and MPO [30]], our method achieves
comparable or better accuracy while avoiding training overhead. Notably, on ALFWorld unseen tasks,
our method reaches 85.3% success rates, surpassing all fine-tuned baselines. Table[T|b) summarizes
the performance of our two scaling strategies in Section [3.3] both of which yield comparable or
consistent gains across diverse backbone LLMs-including LLaMA-3.1-8B-SFT(+12.8%), LLaMA-
3.1-8B(+46.8%), LLaMA-3.1-70B(+10.6%), and GPT-40-mini(+16.5%) on both fine-tuned and
instruction-tuned models. Notably, our method synergizes with alternative world models such as
MPO [30], achieving new state-of-the-art results of 94.0% on ALFWorld (Unseen). GPT-4 exhibits
counterintuitive behavior: its vanilla performance surpasses ours, and the performance gap between
seen and unseen tasks is unusually large. We suspect this is because the proprietary API of GPT-4
model may have been exposed to ALFWorld unseen split data during training. These results highlight
that posterior-guided exploratory reasoning enables efficient inference-time adaptation and scalable
deployment across environments and models.

4.3 Ablations

To understand the contribution of individ- Method Prior Undate IG MCTSISR (%) S
ual components, we conduct controlled ab- etho rior Update ‘ (%) Steps (1)

lations and strategy replacements. Table[2] Random Search — x X X X 74.6 19.8
reports the success rate and efficiency of Flat Prior Search v/ X X X 82.8 145
alternative search strategies. We test four Greedy NoIG) v v x x| 824 117
key variants: (1) random unexplored ac- MCTS NoIG) v v ox v | 8.0 147
tion (random), (2) no belief updates with Ours v v v v | 84 138

greedy selection (fixed prior), (3) using Table 2: Ablation Results. Removing either belief up-
a greedy action selection while updating date or IG reduces alignment and success rate, confirm-
beliefs (greedy), and (4) using an MCTS- ing both are essential for inference-time performance
style action selection without IG estimation  (best in bold, second best in underline).

(MCTS).
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Figure 4: Belief Alignment Analysis. (Left) We plot belief alignment scores over time by tracking
the agent’s belief in the correct object location (b;(y*)) across interaction steps. Our method shows a
notable rise in alignment during later stages, highlighting the benefit of inference-time refinement.
Shaded regions indicate 95% confidence intervals. (Right) We group predicted information gain
scores into deciles and measure the corresponding change in belief alignment (A R#i&"), Higher IG
deciles consistently lead to larger improvements, validating the utility of IG-based action ranking.

Our results show that belief updates are essential for maintaining alignment over time, removing
them leads to significant drops in success and increases in episode length. Notably, belief updates
alone do not yield gains (Flat Prior—Greedy), but becomes evident when coupled with structured
exploration. Similarly, removing IG (Ours—MCTS) results in inefficient exploration, confirming
that our lightweight IG predictor provides a strong signal. Together, these results highlight that
posterior-guided exploration is most effective when belief updates, IG estimation, and structured
search operate in concert, enabling accurate alignment inference-time behavior.

4.4 Analysis: Belif Alignment Curve (Alignment vs. Step)

To evaluate how effectively the agent refines its belief during exploration, we measure an align-
ment reward that reflects how well the predicted observation 6, matches the actual environ-
ment observation o, after actually executing action a. Specifically, we define Align(a) =
similarity(0q,0,), Where 0, = Tpyeda(B,a) and the similarity(-,-) function is described in Ap-
pendix [E] Then we plot the alignment trajectory, i.e., the belief mass assigned to the ground-truth
object location b;(y*), over interaction steps. As shown in Figure [4] (left), our method initially
maintains moderate alignment, but exhibits a clear rising trend in the later steps, demonstrating
that belief-guided exploration accumulates useful information over time. While the early steps
(1-6) show limited gains due to the agent’s need to disambiguate possible hypotheses, steps 7-10
demonstrate consistent improvement in alignment, even under high variance resulting from reduced
sample counts. The upward shift in the alignment curve, coupled with tight confidence intervals in the
early stages, indicates that our agent learns to prioritize informative actions. Overall, this trajectory
supports our hypothesis that inference-time belief refinement enables robust adaptation, particularly
in underexplored or ambiguous environments.

4.5 Factors on Success of Belief-based Search

Ordinal IG vs. AR Alignment Consis- plGBased Belief score Distribution
tency To evaluate whether LLM-predicted

IG scores are reliable indicators of belief
refinement, we analyze the correlation be-
tween predicted IG rankings and actual
changes in belief alignment, defined as

ARYE = R(byy1) — R(bt), where R(b) a0 anant et T s
denotes the alignment reward (i.e., belief Figure 5: Evaluating IG-Based Action Ranking and
mass on the true location). We group pre- Belief Accuracy. (Left) Success rate under different
dicted IG scores into deciles and compute IG-based selection strategies. Performance consistently
the average AR¥" per bin. As shown in degrades when the selected action deviates from the
Figure fright), higher IG bins are associ- best IG candidate, confirming the utility of IG in action
ated with greater alignment gains, forming ranking. (Right) Distribution of belief scores at visited
a broadly monotonic trend. While per-step locations, grouped by whether the target object was
predictions are noisy, the global ordinal present (hit) or absent (miss). Higher belief mass aligns
structure remains consistent-particularly in ~ with true object presence, validating the belief prior as
successful episodes where exploration is a reliable proxy for environmental structure.

Success Rate (%)




well-executed. These results validate the effectiveness of ordinal-scale LLM reasoning as a
lightweight yet reliable proxy for belief-shifting action selection.

Exploration Value of Information Gain To evaluate the effectiveness of information gain as a guide
for exploration, we analyze how the choice of action based on IG ranking impacts downstream task
success. Rather than relying on the absolute value of IG, we test whether selecting the top-ranked IG
candidate among available actions leads to better outcomes. As shown in Figure [5|left), selecting
the top-1G action yields the highest success rate (87% on seen and 85.3% on unseen environments).
Performance drops when choosing the second-best IG candidate (77.85% / 76.31%) and degrades
further with the lowest-IG choice (58.33% / 63.38%). These results indicate that IG serves as an
effective relative ranking signal for epistemic utility, enabling the agent to prioritize informative
actions that ultimately improve task performance.

Belief Prior vs. Ground Truth Matching. To evaluate how well the agent’s belief prior aligns with
actual object presence, we analyze the belief scores assigned to visited locations and compare them
against whether the target object was found (it) or not (miss).

For each exploration step, we extract the belief probability assigned to the visited receptacle and label
the outcome based on object presence. As shown in Figure[5|right), hit locations receive substantially
higher belief scores than miss locations. Specifically, the average belief score for hit cases was 0.452
(std = 0.133, n = 117), while for miss cases it was 0.314 (std = 0.143, n = 555). This difference is
highly significant, with a t-test yielding ¢ = 10.06 and p = 3.98 x 10719, These results confirm that
belief priors provide meaningful guidance for search, effectively distinguishing promising targets
from distractors. Rather than serving as a passive estimate, the belief prior plays an active role in
structuring efficient exploration, even under partial observability.

4.6 Case Study

To better understand how our belief-guided search enables effective exploration, we conduct a case
study comparing two variants, similarity-based and LLM-based belief updates, on the same task. As
shown in Figure[6] both variants successfully discover the target object, but they exhibit distinct belief
dynamics and exploration strategies. The similarity-based agent gradually increases its cabinet belief
through localized refinement (Figure[6h), maintaining high entropy early on before committing to
high-probability regions (Figure[6; blue). In contrast, the LLM-based agent exhibits a sharper belief
shift ( Figure[6p) and faster entropy reduction by leveraging global cues extracted from past object
co-occurrence or spatial semantics (Figure [Bf; yellow). These belief dynamics translate to different
search paths (Figure[6d): the similarity-based agent narrows down its focus through nearby locations,
while the LLM-based agent performs semantically informed jumps to higher-yield receptacles early
in the episode. In Appendix Table[d] we further compare the step-by-step hypotheses evolution of
both agents, highlighting how their reasoning structures emerge over time.
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Figure 6: Belief Update and Search Behavior Comparison. (a) Similarity-based belief scaling:
step-wise belief dynamics (b) LLM-based scaling: step-wise belief dynamics (c) For Similarity-based
scaling, belief changes gradually while for LLM-based scaling, belief dynamics and cabinet-related
entropy show more focused belief shaping. (d) The LLM agent explores semantically distant locations
early, whereas the similarity-based agent refines search in localized clusters.

5 Conclusion and Future Work

We have presented a test-time adaptive agent that refines its belief through exploratory reasoning to
align actions with evolving understanding of the world. Without training or fine-tuning, our method
improves localization efficiency by selecting actions that maximize belief alignment. Beyond search,
this framework offers a scalable foundation for inference-time adaptation.



As future work, we plan to extend our framework to other domains such as grid-based object
interaction environments and interactive fiction benchmarks. Also, we plan to integrate procedural
rule reasoning and recovery, enabling broader alignment across spatial and semantic domains.
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A Notations

Notation Glossary
* B;: Belief state at timestep ¢, composed of (G, R, St)
* a € A;: Candidate symbolic action (e.g., “go to shelf”) at time ¢
* 0: Predicted observation under action a, sampled from P(o | a, ;)
* u(B, 6): Utility of the predicted observation 6 when incorporated into the belief state
* IG,: Information gain induced by taking action a and observing o
» Align,: Alignment reward computed by comparing 0 to actual environment observation
* \: Weighting factor to trade off information utility and alignment score
* H(-): Shannon entropy of a probability distribution
* G: Global belief consisting of high-level language hypotheses
* Ss: Subject-level belief distribution over locations for target object s
» M;: Set of object mentions parsed from observation o at time ¢
* sim(m, h): Similarity function between parsed object mention m and hypothesis &
* symb(a): Symbolic keyword extracted from action a (e.g., "cabinet" from "go to cabinet 2")
* Tpred: Observation prediction model
* 7%, Ty Belief update model for global(g) and object(s)-level beliefs

B Related Works

LLM Agents via Prompting and Tuning. Language models have been adapted for decision-making
through prompting-based agents [2} 6] and instruction tuning [18| [34]. Preference optimization
methods like DPO [21] and RFT [32] improve alignment but remain static at test time. RAFA [[14]]
augments LLMs via retrieval and sketch-based prompting but lacks belief refinement or uncertainty
modeling. Other works-Reflexion [24f], ETO [27], IPR [29]-train agents with feedback or trajectory
memory. In the same vein, [15]. In contrast, our method performs no tuning or memory learning. It
enables inference-time adaptation purely via posterior-guided belief refinement.

Symbolic Memory and World Models. Grounded agents often use symbolic memory [31]], knowl-
edge graphs [7], or learned world models [36]. These typically rely on static environments or
pretraining. Meanwhile, Zhou et al. [35] proposes augmenting LLM agents with rule-based world
alignment by explicitly learning environment-specific preconditions and effects, enabling improved
planning via model-predictive control; however, their method requires repeated exploration with
execution-time verification and external rule storage. Likewise, Singh et al. [26]] introduces a prob-
abilistic object-centric world model that maintains belief over latent object states via sequential
Monte Carlo sampling, but assumes structured environment priors and is trained offline with oracle
supervision. We maintain a structured belief over symbolic locations, updating it online through
LLM-based posterior reasoning without external memory or rewards.

Exploration and Inference-Time Scaling. Exploration has been studied through intrinsic motivation
[19], Bayesian surprise [23]], and uncertainty-driven strategies. Recent test-time adaptation methods
[28l [16] update models without retraining, but often lack structured belief modeling. TPO [13]]
adapts behavior through rollout-based optimization, but incurs high computational cost due to
sampling and gradient updates. RAFA [14] is the only inference-time scaling baseline that combines
LLM-based agentic planning with Bayesian adaptive control. It formulates interaction as a loop
of plan-then-act, using past experience to reason over future value and select the next best action
without fine-tuning. However, RAFA does not maintain structured belief or represent uncertainty
over symbolic hypotheses, limiting its ability to model latent world dynamics. In contrast, our
method performs symbolic belief refinement via posterior updates, leveraging LLMs to reason over
task-relevant hypotheses and actively align with environment rules at inference time.

C DMotivation: Experimental Detail

Objective. This experiment evaluates whether SFT agents reuse train-time search behaviors at test
time and whether such behavior leads to successful task completion. We analyze both the degree of
behavioral copying and its effectiveness across environments that differ from training.

Setup. We define two evaluation sets:

* Seen Set (Same Room): Rooms and object locations identical to training.
* Unseen Set (Similar Room): Rooms with similar layouts but different object placements.
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Each trajectory begins with a natural language room description followed by a sequence of actions.
From each trajectory, we extract a search sequence, defined as a maximal consecutive chain of go
to actions. We then compute:

* Room similarity: Cosine similarity between the test-time room description and each training
room description, using sentence embeddings (e.g., all-MiniLM-L6-v2).

» Trajectory similarity: Sequence similarity (via normalized edit distance) between the
test search sequence and the most similar training trajectory from rooms with matching
descriptions.

We retain only test trajectories with high room similarity (> 0.9) to isolate cases where the room
appears similar, but object locations may differ.

Case Classification. We categorize each test trajectory based on (1) its trajectory similarity and (2)
success outcome:

* Train-like — Success: Trajectory similarity > 0.9, task succeeded.

* Train-like — Failure: Trajectory similarity > 0.9, task failed.

* Deviated — Success: Trajectory similarity < 0.9, task succeeded.

* Deviated — Failure: Trajectory similarity < 0.9, task failed.

D Method: Definitions

Global Belief (G). The global belief captures abstract hypotheses about how the environment is
structured or how a user organizes objects in the household. Formally, G = g1, g2, g3 is a set of
natural language statements generated by an LLM at the beginning of the episode. These statements
reflect user-specific organizational tendencies (e.g., “’kitchen is well-organized” or “coffee-related
items are grouped near the counter”) and serve as a latent prior that conditions downstream inference
and action selection.

Subject Belief (S). Given a search target s, the subject belief S, is represented as a normalized
categorical distribution over all symbolic locations (e.g., cabinet”, drawer”) and their instances
(e.g., “cabinet3”) in the environment. Each score p(l | s) reflects the agent’s current estimate of the
likelihood that object s resides at location [. Subject priors are initialized from room beliefs and are
progressively refined through both simulated and actual observations as the agent explores.

E Method: Implementation

E.1 Belief Update Pipeline

At each timestep ¢, the agent updates its belief state hierarchically, following the top-down structure
of (G, S). These updates can occur in two modes: (1) simulated updates for evaluating hypothetical
actions using predicted observations, and (2) actual updates after executing an action and receiving a
true environment observation.

Step 1: Global Belief Update. Given an observation o (real or predicted), the agent invokes a
language model to revise its global belief G. This involves generating a new set of high-level
hypotheses that reinterpret how the environment may be structured given o. This update enables
adaptive abstraction, allowing the agent to reinterpret user-specific tendencies over time.

Step 2: Subject Belief Update. The subject-level belief S is refined based on the updated room
scores. For a given subject s, the location prior p(l | s) is adjusted such that locations associated with
highly scored rooms receive a proportional boost. If [ € r, then:

p(l|s) ocp(l|s)-p(r)

This propagation ensures that high-level beliefs about the environment ultimately influence fine-
grained search behavior.

This belief update process provides a flexible mechanism for belief propagation across abstraction
levels, and serves as the foundation for estimating information gain and alignment in the action
selection process.

E.2 Common Module

Global Hypothesis Initialization To bootstrap the agent’s environment understanding, we use the
following prompt to initialize global-level hypotheses:
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Prompt:

You are helping an agent search for the object "mug” in a household environment.

Generate 3 plausible hypotheses about how the user organizes their space or uses the room.

Each hypothesis should describe user habits or room-level behaviors (e.g., "kitchen is well-organized",
"cabinets contain cups").

Return as a numbered list.

This prompt is passed to the LLM once per episode. The result is used to instantiate a GlobalBelief
object, which stores a list of hypotheses guiding subsequent inference.

Observation Simulation An observation of a candidate action is simulated based on the following
prompt based on language-based belief:

Prompt: LLM-Based Observation Sampling

[Room Belief Summary]

[Current Action] The agent goes to:

[Prediction Task] List different sets of objects that the agent might observe at the location ’{action}’, based
on the current belief. Each line should contain 3 likely objects, separated by commas.

Example: 1. mug, plate, spoon 2. fork, mug, cup...

A number of simulated observations are used to quantify an information gain and an alignment score,
which measures the similarity between predicted and real observations.

Hypothesis Update from Observation The global hypotheses are revised based on new environment
observations:

Prompt: Global Hypothesis Update

You previously assumed the following about the user:
1. kitchen is well-organized

2. cabinets contain cups

3. mugs are often in the sink

Now the agent observed: "the sink is empty”
Based on this new information, revise or expand the global hypotheses.
Return 3 updated hypotheses as a numbered list.

The updated hypotheses are used to refine prior scores or generate new priors.

E.3 Variants in Belief Adjustment

We experiment with two inference-time belief adjustment variants, both operating on top of the
shared global belief.

LLM-Based Prior Scaling Given a global hypothesis (e.g., "cabinets contain cups") and the known
list of room-level symbols (e.g., ["cabinet”, "drawer”, "sink"]), we use the following prompt:

Prompt: LLM-Based Prior Scaling

Given the hypothesis: "cabinets contain cups”

Among the locations ["cabinet”, "drawer"”, "sink"], decide which to boost or suppress.
Return only a JSON object with this format:

{"boost": [...]1, "suppress”: [...]1}

The returned result adjusts room scores: boosting adds +1.0, suppressing applies a 0.5 multiplier. The
scores are then normalized. This process is repeated for each global hypothesis. Optionally, we log
the decisions for interoperability.

Similarity-Based Prior Scaling. Upon receiving an environment observation o € O, after taking
action a € A, we refine the room-level belief R by comparing observed object mentions against
each room’s symbolic hypotheses.

Let R = {ry,7a,...,7y,} denote the set of rooms, and H, the set of symbolic hypotheses associated
with room r. Given the extracted set of object mentions M; = {my, ..., my} from the observation
o, we compute the adjustment score s,. for each room r € R as:

Sp = Z Z sim(m, h) + 6, (a)

meMy¢ heH,
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where sim(m, h) € [0,1] is a similarity function (e.g., cosine similarity), and the symbolic match
bonus d,.(a) is defined as:

_ [0.2 ifsymb(a) €r
Or(a) = {O otherwise

Room scores are then updated additively:
scorey(r) < score;—1(r) + S
Finally, scores are normalized to form a belief distribution:

score(r)
> ew score (1)

This mechanism allows the agent to update R, using soft semantic evidence derived from symbolic
observations, without needing predefined rules.

E.4 Implementation Details

Symbolic Location Selection. The agent ranks top-k unexplored symbols from the belief prior
(k=3), estimates information gain for each, and selects the best action.

Observation Sampling. For each action, we sample K =3 predicted observations using a frozen
LLM (temperature 0.7), each containing 2—4 likely objects.

Belief Update. Upon observing o after action a, the agent updates its belief via a similarity-weighted
rule:

scores (1) +

b/e(l) X be(l) ' ¢(O, la Cl)
where ¢(0,1,a) approximates P(o | [, a) using model predictions or observation similarity. The
belief hierarchy is updated recursively across levels. Belief is updated over normalized categorical
priors via similarity- or LLM-based scaling.
Reward Computation. Alignment is computed as set precision and averaged over recent steps for
convergence detection. We use a set-overlap score for similarity:

Align(a) |Predicted(a) NActual(a)l
gma) = Actual(a)]

When used in forward planning, we approximate expected alignment via:

EéNT{pred(Bﬂl) [Slm(é7 0)]

where o denotes a sampled candidate outcome. This allows us to estimate how well an action aligns
with the latent world model under the current belief.

Termination. The loop ends when the target is found or when average alignment over the past 3
steps exceeds 0.75.
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F Method: Algorithms

F.1 Full Algorithm

Algorithm 1: Inference-Time Belief Alignment with Multi-Level Update

Input: Target subject s, environment £
Initial beliefs: Global Bf, Subject B
Predictor mpreq, LLM 7y 1m

Parameters: max steps 7', sample count N, top-k actions, threshold 8,jign, weight A

Output: Final belief state, alignment log, found/not-found status

Initialize tracker, set ¢ < 0

fort =1to 7T do

A€ < Top-k unexplored symbols from B}

foreach a € A° do

IGList + ]

fori=1to N do

) Tpred (B, @) _
BY « Btg.update(ég),ﬂLLM)
B*' « Bj{.adjust_from_global(BY')
IGList.append(H (B§) — H(B*"))

end

E[IG](a) < mean(IGList)

NG
o4

end
a* < argmax,e ac E[IG](a)
x* + SelectInstance(a*)
or < E.step(z*)
Log: tracker.log_action(z™, os)
Bf+1 — Btg.update(ot7 7TLLM)
B}, | < Bj.adjust_from_global(BY, )
B;,,.update_with_observation(s,z*, 0;)
Oalign <= Tpred (Bi11,27)
Talign <— AlignScore(baign, 0t)
tracker.log_alignment(z™, 04, Oalign, Talign)
if Tatign > Outign 07 5 € 0, then

| return FOUND, tracker
end

end
return NOT FOUND, tracker

// Candidate actions

// Predict observation

F.2 Algorithm for LLM-based Observation Sampling

Algorithm 2: Predictor.sample_observation()

Input: Belief context B, action a, samples N
Result: Predicted observations {6", ..., 6™}
fori =1to N do

Construct prompt p; with B and a

o) mim(ps)
end
return {6 ..., 6™}

// LLM response
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F.3 Algorithm for Belief Update in Detail

Algorithm 3: SubjectBelief.update_with_observation()

Input: Subject s, location x, observation o

Data: Belief P(x|s) overz € X

Result: Updated P’ (z|s)

O, < parse_subjects_from(o) // Extract objects at =
foreach 2’ € X do

if 2’ = x then
if s € O, then
| P'(z'|s)  P(a']s) - // Boost
else
| P'(z'|s) « P(a'|s)- B // Decay
end
else
| P'(a]s) < P(2']s)
end

end
Normalize P’ (x'|s) over z’

G Baseline Details

ETO Song et al. [27] introduces a novel learning framework for LLM agents that leverages both
successful and failed trajectories to enhance performance. By iteratively collecting failure trajectories
during exploration and applying contrastive learning (e.g., DPO loss) between failure-success pairs,
ETO refines agent policies beyond traditional imitation learning.
WKM Qiao et al. [20]] enhances LLM-based agents with structured task-level and state-level knowl-
edge extracted from expert trajectories. At inference time, the agent leverages global task knowledge
for high-level planning and dynamic state knowledge for step-wise action grounding, reducing hal-
lucinated or inefficient behavior. This approach improves generalization across unseen tasks and
environments by integrating procedural context directly into the action selection process. As the
original paper does not report scores for LLaMA 3.1, we reproduced their method under the same
environment and evaluation setting.
MPO Xiong et al. [30] introduces a plug-and-play framework that enhances LLM-based agents by
providing high-level, abstract meta plans to guide task execution. By leveraging feedback from agent
performance, MPO refines these meta plans, leading to improved task completion efficiency and
generalization across unseen scenarios. WebShop results are not reported in the original paper, so we
were unable to include them in the Table[T]
RAFA Liu et al. [14] introduces a principled framework that integrates long-term reasoning and
short-term acting for autonomous LLM agents. By modeling reasoning as Bayesian adaptive MDP
planning and employing in-context learning for policy updates, RAFA achieves provable v/T regret
and demonstrates strong empirical performance across multiple benchmarks.
Code repositories are as follows:

e ETO [27]]: https://github.com/Yifan-Song793/ETO

e WKM [20]]: https://github.com/zjunlp/WKM

* MPO [30]: https://github.com/WeiminXiong/MPO

* RAFA [14]: https://github.com/agentification/RAFA_code

H Experiment Configuration

Environment. We evaluate our method on two partially observable instruction-following benchmarks:
ALFWorld. In ALFWorld, the agent is tasked with finding a target object (e.g., mug, toiletpaper, soap)
within a simulated household, navigating and interacting with discrete actions (go, open, search) to
gather natural language feedback (e.g., ““You open cabinet 1. It is empty.”). Observations do not
explicitly name the target unless correctly found. We cap the maximum number of steps per episode
at 30 for ALFWorld to enforce consistent evaluation with baselines.

Agent Configuration. We evaluate both open-source and proprietary LLMs as agents. For open-
source models, we use LLaMA 2 and LLaMA 3.1-8B variants, testing both task-specific fine-tuned
models and unmodified (zero-shot) versions. Proprietary models such as GPT-40-mini and GPT-4
are accessed via the OpenAl API and used as-is without any additional adaptation. All models are
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prompted using a unified instruction-following format across tasks. We set the maximum output
token length to 1024. Temperature is set to 0.7 for observation sampling tasks and defaults otherwise.
Task Protocol. In ALFWorld, we follow the standard evaluation splits introduced in prior work,
using 140 seen and 134 unseen tasks from the reference benchmark. Each task is executed once
without retries. Success is measured by correct object localization or item selection within the step
limit.

Task type #train #seen # unseen
Pick & Place 790 35 24
Examine in Light 308 13 18
Clean & Place 650 27 31
Heat & Place 459 16 23
Cool & Place 533 25 21
Pick Two & Place 813 24 17
All 3,553 140 134

Table 3: Six ALFWorld task types with heldout seen and unseen evaluation sets.

Computation Resources. All experiments were conducted using NVIDIA A100 (40GB) and RTX
3090 (24GB) GPUs on internal compute clusters. Experiments with open-source models were

performed on 1-2 GPUs per run. Proprietary models (e.g., GPT-4) were accessed through the OpenAl
APL

I Additional Experimental Result

I.1 Step-Wise Hypothesis Evolution

To better understand how each variant adapts global hypotheses over time, we present a step-wise
comparison of inferred world structures during the mug search task (see Table ). At each step,
the agent forms hypotheses about room structure and object placement, conditioned on recent
observations.

Step Agent Hypothesis Summary Interpretation
1 Similarity "Centralized kitchen counter” Used for daily tools (sponge, spoon, knives)
LLM "Countertops used for daily activity"  Includes non-kitchen items (e.g., credit card, potato)
5 Similarity "Multi-zone structure emerging" Breakfast prep zone, Plant care zone
LILM "Countertop clutter" No dedicated item location
3 Similarity "Meal/snack prep inferred" Tomato and potato — cooking zone emerging
LLM "Sinkbasin & countertop = temp Multi-purpose usage (cluttered logic remains)
workspace"
4 Similarity "Storage strategy detected" Soap + bottles categorized into cabinet
LLM "Zone cleaning in progress" Begins forming structure (cleaning-based policy)
5 Similarity "Gaps in storage logic" Cabinets partially filled, inconsistent
LLM "Temporary vs. designated storage Sponge & bottle in cabinet — early categorization
co-exist"
6 Similarity "Category mismatch in cabinet Salt & pepper in different cabinets
items"
LLM "Systematic labeling emerging" Forks numbered — category grouping via labels
7 Similarity "Storage pattern identified" Mug observed in cabinet with soap — final confir-
mation
LLM "Consistent categorization & order" Spatula 2 in drawer, cabinets tidied — structured

conclusion

Table 4: Step-wise evolution of global hypotheses for each agent. The similarity-based variant exhibits
gradual zone-based inference, while the LLM-based variant begins with cluttered understanding and
quickly transitions to structured categorization.

Similarity-Based Variant. This agent builds structure incrementally. It first assumes the kitchen
counter is a centralized utility zone, then refines this into functional subregions (e.g., breakfast prep,
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plant care) as more items are observed. Later, it detects inconsistencies (e.g., salt and pepper in
different cabinets) and ultimately confirms a coherent storage pattern-such as a mug stored alongside
cleaning items-highlighting a gradual, zone-based interpretation process.

LLM-Based Variant. The LLM-based agent starts with less grounded hypotheses, interpreting
surfaces as generic and cluttered workspaces. However, as structural signals emerge (e.g., numbered
forks, categorized placements), it transitions rapidly to a policy-driven world model based on cleaning
routines or semantic labeling. By the final step, it exhibits consistent categorization and spatial order.
In summary, while both variants succeed, their reasoning paths differ: Similarity-Based infers
structure gradually via bottom-up spatial cues, whereas LLM-Based generalizes early from sparse
patterns, leading to faster semantic organization.
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