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Abstract
We introduce a test-time adaptive agent that performs exploratory inference through1

posterior-guided belief refinement without relying on gradient-based updates or2

additional training for LLM agent search operation under partial observability.3

Our agent maintains a structured belief over the environment state, iteratively4

updates it via action-conditioned observations and selects actions by maximizing5

predicted information gain over the belief space. We estimate information gain6

using a lightweight LLM-based surrogate and assess world alignment through a7

novel reward that quantifies the consistency between posterior belief and ground-8

truth environment configuration. Experiments show that our method outperforms9

inference-time scaling baselines such as prompt-augmented or retrieval-enhanced10

LLMs, in aligning with latent world states with significantly lower integration11

overhead.12

1 Introduction13

Agents operating in partially-observable environments continuously encounter incomplete information14

in the course of achieving their goals [10, 9]. The key capability in such settings is exploratory15

decision making. That is, the agent should not only act to achieve the target objective but also to16

collect information that refines its internal belief about the world. The interaction between action,17

observation, and belief refinement forms the basis of effective behavior under uncertainty.18

In this paper, we consider exploratory decision making under uncertainty, focusing on the task of19

object search in embodied settings, which is the basic task for more advanced tasks, and examine20

inference-time world understanding under such partial observability. While large language models21

(LLMs) have shown promise in zero-shot task execution [3, 17], their static reasoning often fails22

to adapt to the unfolding dynamics of environments with partial observability. Prior approaches to23

such partial observability include inference-time scaling methods (e.g., prompt tuning [12], retrieval24

augmentation [11, 22] and static prompting) and train-time policy optimization via supervised or25

reinforcement learning (e.g., SFT [18], DPO [21] and MCTS-style planners [34, 4]). However, the26

former lacks adaptive interaction with the environment, while the latter requires substantial training27

cost and limits deployment flexibility.28

To overcome such drawbacks, we propose a novel, lightweight but effective agent architecture that29

performs inference-time exploratory reasoning through posterior-guided belief refinement. Our core30

idea is as follows: the agent maintains a structured posterior belief over object locations, updates it31

based on observations, and selects actions that reflect this evolving belief. Thus, our behavior policy is32

driven not by memorized patterns but by a dynamically refined understanding of the world. Crucially,33

all our adaptation occurs at test time without gradient updates, fine-tuning, or additional environment34

models. Empirical results show that our inference-time alignment strategy outperforms search-based35

and world-model baselines, while achieving substantially lower computational overhead by operating36

exclusively at test time. Our proposed method generalizes across diverse object types, room layouts37

and interaction histories without requiring task-specific training or reward-based tuning. To the best38

of our knowledge, this is the first test-time inference agent that performs Bayesian posterior reasoning39
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entirely via language; simulating observations, updating structured belief distribution, and selecting40

actions that optimize epistemic utility. Our contributions are summarized below:41

• We propose a lightweight object search agent that performs test-time exploratory learning42

through posterior belief refinement, requiring no training or gradient updates.43

• Our agent selects actions by dynamically aligning its behavior with evolving beliefs, enabling44

efficient object localization under partial observability.45

• Experiments show that our method surpasses inference-time scaling baselines and competes46

with train-time world models.47

2 Motivation48

Figure 1: Failures in Supervised Learning. (Left)
Similarity and success. (Right) Error case breakdown.

Modern language agents trained with supervised49

trajectories often overfit to specific search be-50

haviors seen in expert demonstrations. To val-51

idate this, we ran an experiment in which an52

LLM search agent trained with supervised learn-53

ing is given diverse search missions (Appendix C).54

When the agent is given search tasks in seen envi-55

ronments, the agent succeeds with high probability56

as seen in Figure 1(left). On the other hand, when57

the agent is given search tasks in unseen test-time environments in which the room layout is similar58

to the trained layout but object locations are different, the agent persistently reproduces train-time59

room visitation sequences even in these test-time environments with 84.8 (=52.7+31.8) % out of total60

search sequences with some deviations, as seen in Figure 1(right). Notably, over 50% of failures61

occur in the case of train-like search sequences, indicating that the agent is not adapting based on62

what it observes but performs blindly according to what it expects. This highlights a core limitation63

of static imitation agent: the inability to dynamically adjust when confronted with uncertainty or64

distribution shift. To address this limitation, in the following section we propose an inference-time65

agent named Align While Search (AWS) that performs belief-driven search, bridging exploration and66

alignment via posterior-guided belief refinement, enabling agents to adaptively deviate from training67

habits to align with the true environment through interaction.68

3 Proposed Method69

Our inference-time aligning agent is inspired by Bayesian active learning in which the agent selects70

an action a that maximizes the posterior utility as follows:71

a∗ = argmax
a∈A

Eô∼p(ô|a)

[
U
(
bt, b̂t+1(bt, a, ô)

)]
, (1)

where U(bt, bt+1) is the posterior utility based on current belief bt and updated belief bt+1 (a function72

of (bt, a, o) with o being observation induced by a). Simply saying, the belief bt can be the probability73

distribution of a target object over different locations. Our key idea is not to select action a to go to74

the location with the maximum probability in bt as in conventional methods but to select action a to75

maximize the posterior utility considering both current bt and updated bt+1 for more informative and76

robust action selection.To realize this idea, we exploit inference-time LLM-based belief simulation77

and posterior evaluation rather than relying on environment-tuned models or offline optimization,78

which enables our method to be plug-and-play compatible with existing world models.79

3.1 Overview80

Figure 2: Inference-time loop of our agent
Our idea for accelerating alignment with the true world state and enabling fast search is to select81

an action that is expected to maximize the information gain over a belief space. Once alignment82

improves, the agent’s belief becomes a reliable proxy for the environment, enabling accurate search83

purely based on beliefs. Thus, our method maintains and updates a hierarchical belief state over the84
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environment and selects the action by reasoning about the expected informativeness and alignment85

reward of each candidate action based on the maintained belief. Our agent runs an inference-time86

exploratory learning loop as shown in Figure 2, where two main operations of action selection and87

belief update alternate. This loop enables the agent to align with its environment and infer object88

locations solely depending on belief refinement without any offline fine-tuning. In the following89

sections, we detail each component: hierarchical belief design in §3.2, utility-based action selection90

and belief update rules in §3.3, and finally termination strategy in §3.4.91

3.2 Hierarchical Belief Representation92

We propose a structured belief system over the environment, represented as a hierarchical couple93

(G,S) corresponding to global- and object-level abstractions:94

• G: global hypotheses over user intent and scene layout, e.g.,95

"The user has a tendency to accumulate and display personal items, which may contribute to clutter:
The presence of a houseplant, a statue, and a vase (previously observed) on the countertop and
sinkbasin suggests that the user values aesthetics and may have a tendency to accumulate and display
personal items. This could contribute to clutter and make it difficult for the user to maintain a tidy
kitchen."

96

• S: low object-level candidate locations, e.g.,97

mug: {cabinet: 0.145, drawer: 0.431, shelf: 0.425, countertop: 0.000, sinkbasin: 0.000, coffeemachine:
0.001, fridge: 0.001, garbagecan: 0.000, microwave: 0.000, stoveburner: 0.000, toaster: 0.000}

98

Note that the belief in G is stored as language, whereas the belief in S is stored as a probability99

distribution, as seen in the above examples. Concretely, the belief bS in S is modeled as a categorical100

distribution over symbolic locations:101

bS(k) = Pr(target is located at k), ∀k ∈ LS , (2)
where LS is the set of all symbolic locations of S.102

3.3 Exploratory Action Selection via Expected Utility103

At each step, the agent must decide which unexplored symbolic location to visit next. We formu-104

late this as an inference-time decision-making process that optimizes an expected utility function,105

balancing information gain and alignment.106

Information Gain as Utility via LLM-Based Simulation If the belief bS is perfect and sufficient107

statistic, the optimal action is to visit the location with maximum probability in bS due to maximum108

a posteriori decision principle. Under partial observability and LLM-based operation, however,109

the belief is not perfect. To overcome this imperfectness and devise a robust action selection rule110

without additional training or gradient-based test-time tuning, we adopt the following parameter-free111

action selection method based on LLM-based simulation. We first take top Ka actions from current112

object-level belief bS as candidate actions. For each candidate action a, we use an LLM-based113

observation predictor πpred to sample Ko plausible observations {ô} conditioned on the current114

belief and candidate action a. Then, we apply belief update to get an updated belief bS
′

based on115

current belief, candidate action and predicted observation by using a belief updator BU , which will116

be explained shortly. Then, we define the step-wise reward as the information gain of candidate117

action, i.e., expected reduction in entropy of the object-level belief in S after simulated belief update118

with predicted observation, given by119

IG(a) = Eô

[
H(bS)−H(bS

′
| ô)

]
, (3)

where H(·) denotes entropy over locations, bS is the current object-level belief, and bS
′

is the belief120

after a simulated update with predicted observation ô ∼ πpred(ô | B, a) with current full belief B121

and candidate action a. Then, we choose the action from the candidate action set that yields the122

maximum information gain. Note that the object being found is equivalent to an impulse distribution123

bS . Hence, maximum entropy reduction at each step implies fastest search.124

Belief Update Current full belief B on (G,S) denoted as B = (BG , BS) should be updated after125

observation o induced by action a. For this, we adopt the following two-step approach considering126

the linguistic nature of BG and numeric nature of BS :127

BG πg
BU , o
−−−−→ BG′

→ BS′
. (4)
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That is, we first update BG to BG′
based on an LLM-based updator πg

BU based on observation o.128

Then, from the update global belief BG′
we extract the updated object-level belief BS′

using one of129

the following two methods (see Appendix E.3 for details):130

• Similarity-Based Scaling: Adjust belief scores using lexical similarity between candidate131

symbols and the updated global hypothesis.132

• LLM-Based Prior Scaling: Use an LLM πs
BU to predict which locations should be boosted133

or suppressed given a global hypothesis.134

The above two variants yield different belief structures over time-ranging from localized refinement135

to semantic jumps, ultimately driving distinct exploration paths and belief shaping. The different136

belief-shaping behavior between the two methods will be discussed further in Section 4.6.137

3.4 Instance-Level Grounding and Termination138

After selecting a symbolic location (e.g., cabinet), the agent samples one unexplored instance139

(e.g., cabinet3) uniformly from the set of candidates associated with that symbol, and executes the140

corresponding action. If the instance is not directly observable (e.g., closed), an open action is issued141

beforehand. The search loop terminates either when the target object is found or when the average142

alignment score over the past k steps exceeds a predefined threshold.143

Figure 3: Overview of our Align-While-Search agent

Our strategy extends Bayesian active learning to symbolic domains by replacing feature-space144

uncertainty with semantic hypotheses (e.g., room-object mappings, user intent cues). Figure 3145

illustrates our search agent. The agent begins with an initial belief composed of both semantic G and146

numeric S , interacts with the environment to refine it through search and observation, and iteratively147

aligns its belief to the true environment. The entropy of the belief decreases while alignment improves148

over time, enabling effective inference-time adaptation.149

4 Experiments150

We evaluate the effectiveness of our belief-guided object search agent in simulated environments151

under partial observability. Our experiments are designed to answer three key questions:152

• Does inference-time belief refinement improve search efficiency compared to static or153

prior-only baselines?154

• Is the predicted information gain (IG) aligned with actual improvements in belief accuracy?155

• What factors affect the success or failure of belief-based search?156

4.1 Experimental Settings157

Environments We evaluate our method on ALFWorld [26], a household object search benchmark158

that requires goal-directed navigation and interaction. We follow Song et al. [28] for trajectory con-159

struction and supervised training. Full dataset and environment details are provided in Appendix H.160

Evaluation Metrics We report the Success Rate (SR(%)) as our primary metric. Two additional161

analysis metrics, Average Steps and Final Belief Alignment, are discussed in Section 4.3.162

Baselines We compare our method (AWS) against three categories of baselines: (1) Training-time163

world model baselines, including ETO [28], WKM [20], and MPO [33]; (2) Inference-time scaling164

baseline, such as RAFA [14] and (3) Preference alignment baselines such as IPR [32], SteCa [30]165

(evaluated in Appendix I). Reproduction and implementation details are in Appendix G.166
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Paradigm Method ALFWorld AverageSeen Unseen

Scaling-only
LLM

GPT family
GPT-4 [1] 42.9 38.1 40.5
GPT-4 + RAFA [14] 46.0 39.5 42.7 (+5.43%)
GPT-4 + AWS (Ours) 78.7 91.0 84.8 (+109%)

LLaMA family
LLaMA-3.1-70B [5] 72.8 75.3 74.0
LLaMA-3.1-70B + RAFA [14] 50.0 41.1 45.5 (-38.5%)
LLaMA-3.1-70B + AWS (Ours) 77.1 78.3 77.7 (+5.00%)

Fine-tuned
World Model

LLaMA family
LLaMA-3.1-8B + SFT [36] 79.3 71.6 75.4
LLaMA-3.1-8B + ETO [28] 77.1 76.4 76.7 (+1.73%)
LLaMA-3.1-8B + WKM [20] 77.1 78.2 77.6 (+2.92%)
LLaMA-3.1-8B + MPO [33] 80.7 81.3 81.0 (+7.43%)
LLaMA-3.1-8B + AWS (Ours) 87.5 85.3 86.4 (+14.6%)

(a) Comparison with training-time and inference-time LLM
agents on ALFWorld. (Bold indicates the best in each
column; shaded rows show our best variants.)

Base Model Method ALFWorld (Unseen)

(A) Fine-tuned Models

LLaMA-3.1-8B
[36]

Vanilla 81.3
LLM-Scaling 88.8 (+9.20%)
Similarity-Scaling 91.7 (+12.8%)

(B) Instruction-tuned Models

LLaMA-3.1-8B
(base model)

Vanilla 46.2
LLM-Scaling 52.9 (+14.5%)
Similarity-Scaling 67.9 (+46.8%)

LLaMA-3.1-70B
(base model)

Vanilla 85.0
LLM-Scaling 91.0 (+7.06%)
Similarity-Scaling 94.0 (+10.6%)

GPT-4o-mini
(base model)

Vanilla 76.8
LLM-Scaling 86.6 (+12.7%)
Similarity-Scaling 89.5 (+16.5%)

GPT-4
(base model)

Vanilla 93.2
LLM-Scaling 92.0 (-1.29%)
Similarity-Scaling 92.5 (-0.75%)

(b) Comparison of scaling strategies
across base models on ALFWorld
(MPO-inferred [33]).

Table 1: Comparison of Performance on ALFWorld: across different agent types (a) and scaling
variants for each base model (b).
Model Backbones Note that AWS requires πpred, πg

BU and πs
BU and use the same LLM for all167

three with different prompting. We evaluate AWS using both open-source and proprietary LLMs:168

LLaMA2-7B [5], LLaMA3.1-8B [5], LLaMA3.1-70B [5], GPT-4o-mini [8], and GPT-4 [8]. Model169

usage and performance variations are detailed in Appendix H.170

4.2 Main Results171

We evaluate our method on ALFWorld, comparing against both inference-time scaling and train-time172

world model baselines. As shown in Table 1(a), our method AWS achieves the highest average173

performance across seen and unseen splits, outperforming both scaling-only LLMs and fine-tuned174

agents. Compared to prior world models such as WKM [20] and MPO [33], our method achieves175

comparable or better accuracy while avoiding training overhead. Notably, on ALFWorld unseen tasks,176

our method reaches 85.3% success rates, surpassing all fine-tuned baselines. Table 1(b) summarizes177

the performance of our two scaling strategies in Section 3.3, both of which yield comparable or178

consistent gains across diverse backbone LLMs-including LLaMA-3.1-8B-SFT(+12.8%), LLaMA-179

3.1-8B(+46.8%), LLaMA-3.1-70B(+10.6%), and GPT-4o-mini(+16.5%) on both fine-tuned and180

instruction-tuned models. Notably, our method synergizes with alternative world models such as181

MPO [33], achieving new state-of-the-art results of 94.0% on ALFWorld (Unseen). These results182

highlight that posterior-guided exploratory reasoning enables efficient inference-time adaptation and183

scalable deployment across environments and models.184

4.3 Ablations185

To understand the contribution of individual components, we conduct controlled ablations and strategy186

replacements. Table 2 reports the success rate and efficiency of alternative search strategies. We test187

four key variants: (1) random unexplored action(random), (2) no belief updates with greedy selection188

(fixed prior), (3) using a greedy action selection while updating beliefs (greedy), and (4) using an189

MCTS-style action selection without IG estimation (MCTS).190

Method Prior Update IG MCTS SR (%) Steps (↓)
Random Search × × × × 74.6 19.8
Flat Prior Search ✓ × × × 82.8 14.5
Greedy (No IG) ✓ ✓ × × 82.4 11.7
MCTS (No IG) ✓ ✓ × ✓ 85.0 14.7
Ours ✓ ✓ ✓ ✓ 87.4 13.8

Table 2: Ablation Results. Removing either belief up-
date or IG reduces alignment and success rate, confirm-
ing both are essential for inference-time performance
(best in bold, second best in underline).

Our results show that belief updates are191

essential for maintaining alignment over192

time-removing them leads to significant193

drops in success and increases in episode194

length. Notably, belief updates alone do195

not yield gains (Flat Prior→Greedy), but196

becomes evident when coupled with struc-197

tured exploration. Similarly, removing IG198

(Ours→MCTS) results in inefficient ex-199

ploration, confirming that our lightweight200

IG predictor provides a strong signal. To-201

gether, these results highlight that posterior-202

guided exploration is most effective when belief updates, IG estimation, and structured search operate203

in concert, enabling accurate alignment inference-time behavior.204
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Figure 4: Belief Alignment Analysis. (Left) We plot belief alignment scores over time by tracking
the agent’s belief in the correct object location (bt(y∗)) across interaction steps. Our method shows a
notable rise in alignment during later stages, highlighting the benefit of inference-time refinement.
Shaded regions indicate 95% confidence intervals. (Right) We group predicted information gain
scores into deciles and measure the corresponding change in belief alignment (∆Ralign). Higher IG
deciles consistently lead to larger improvements, validating the utility of IG-based action ranking.

We also compare our method against alignment-tuned agents (Table 4), such as IPR and SteCa in205

Appendix I. Our method achieves the best performance on unseen tasks, compared to both supervised206

and reinforcement-based preference tuning methods. This shows that our belief-guided adaptation207

offers good generalization compared to fixed alignment policies.208

4.4 Analysis: Belif Alignment Curve (Alignment vs. Step)209

To evaluate how effectively the agent refines its belief during exploration, we measure an align-210

ment reward that reflects how well the predicted observation ôa matches the actual environ-211

ment observation oa after actually executing action a. Specifically, we define Align(a) =212

similarity(ôa, oa), where ôa = πpred(B, a) and the similarity(·, ·) function is described in Ap-213

pendix E. Then we plot the alignment trajectory, i.e., the belief mass assigned to the ground-truth214

object location bt(y
∗), over interaction steps. As shown in Figure 4(left), our method initially215

maintains moderate alignment, but exhibits a clear rising trend in the later steps, demonstrating that216

belief-guided exploration accumulates useful information over time. While early steps (1–6) show217

limited gains due to the agent’s need to disambiguate possible hypotheses, steps 7–10 demonstrate218

consistent alignment improvement, even under high variance from reduced sample counts. The up-219

ward shift in the alignment curve, coupled with tight confidence intervals in the early stages, indicates220

that our agent learns to prioritize informative actions. Overall, this trajectory supports our hypothesis221

that inference-time belief refinement enables robust adaptation, particularly in underexplored or222

ambiguous environments.223

4.5 Factors on Success of Belief-based Search224

Ordinal IG vs. ∆R Alignment Consistency To evaluate whether LLM-predicted IG scores225

are reliable indicators of belief refinement, we analyze the correlation between predicted IG226

rankings and actual changes in belief alignment, defined as ∆Ralign = R(bt+1) − R(bt),227

Figure 5: Evaluating IG-Based Action Ranking and
Belief Accuracy. (Left) Success rate under different
IG-based selection strategies. Performance consistently
degrades when the selected action deviates from the
best IG candidate, confirming the utility of IG in action
ranking. (Right) Distribution of belief scores at visited
locations, grouped by whether the target object was
present (hit) or absent (miss). Higher belief mass aligns
with true object presence, validating the belief prior as
a reliable proxy for environmental structure.

228

where R(b) denotes the alignment reward229

(i.e., belief mass on the true location).230

We group predicted IG scores into deciles231

and compute the average ∆Ralign per bin.232

As shown in Figure 4(right), higher IG233

bins are associated with greater alignment234

gains, forming a broadly monotonic trend.235

While per-step predictions are noisy, the236

global ordinal structure remains consistent-237

particularly in successful episodes where238

exploration is well-executed. These results239

validate the effectiveness of ordinal-scale240

LLM reasoning as a lightweight yet reliable241

proxy for belief-shifting action selection.242

Exploration Value of Information Gain243

To evaluate the effectiveness of information244

gain as a guide for exploration, we analyze245
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how the choice of action-based on IG ranking-impacts downstream task success. Rather than relying246

on the absolute value of IG, we test whether selecting the top-ranked IG candidate among available247

actions leads to better outcomes. As shown in Figure 5(left), selecting the top-IG action yields the248

highest success rate (87% on seen and 85.3% on unseen environments). Performance drops when249

choosing the second-best IG candidate (77.85% / 76.31%) and degrades further with the lowest-IG250

choice (58.33% / 63.38%). These results indicate that IG serves as an effective relative ranking signal251

for epistemic utility, enabling the agent to prioritize informative actions that ultimately improve task252

performance.253

Belief Prior vs. Ground Truth Matching. To evaluate how well the agent’s belief prior aligns with254

actual object presence, we analyze the belief scores assigned to visited locations and compare them255

against whether the target object was found (hit) or not (miss).256

For each exploration step, we extract the belief probability assigned to the visited receptacle and label257

the outcome based on object presence. As shown in Figure 5(right), hit locations receive substantially258

higher belief scores than miss locations. Specifically, the average belief score for hit cases was 0.452259

(std = 0.133, n = 117), while for miss cases it was 0.314 (std = 0.143, n = 555). This difference is260

highly significant, with a t-test yielding t = 10.06 and p = 3.98× 10−19. These results confirm that261

belief priors provide meaningful guidance for search, effectively distinguishing promising targets262

from distractors. Rather than serving as a passive estimate, the belief prior plays an active role in263

structuring efficient exploration, even under partial observability.264

4.6 Case Study265

To better understand how our belief-guided search enables effective exploration, we conduct a case266

study comparing two variants, similarity-based and LLM-based belief updates, on the same task. As267

shown in Figure 6, both variants successfully discover the target object, but they exhibit distinct belief268

dynamics and exploration strategies. The similarity-based agent gradually increases its cabinet belief269

through localized refinement (Figure 6a), maintaining high entropy early on before committing to270

high-probability regions (Figure 6c; blue). In contrast, the LLM-based agent exhibits a sharper belief271

shift ( Figure 6b) and faster entropy reduction by leveraging global cues extracted from past object272

co-occurrence or spatial semantics (Figure 6c; yellow). These belief dynamics translate to different273

search paths (Figure 6d): the similarity-based agent narrows down its focus through nearby locations,274

while the LLM-based agent performs semantically informed jumps to higher-yield receptacles early275

in the episode. In Appendix Table 5, we further compare the step-by-step hypotheses evolution of276

both agents, highlighting how their reasoning structures emerge over time.277

Figure 6: Belief Update and Search Behavior Comparison. (a) Similarity-based belief scaling:
step-wise belief dynamics (b) LLM-based scaling: step-wise belief dynamics (c) For Similarity-based
scaling, belief changes gradually while for LLM-based scaling, belief dynamics and cabinet-related
entropy show more focused belief shaping. (d) The LLM agent explores semantically distant locations
early, whereas the similarity-based agent refines search inlocalized clusters.

5 Conclusion and Future Work278

We have presented a test-time adaptive agent that refines its belief through exploratory reasoning to279

align actions with evolving understanding of the world. Without training or fine-tuning, our method280

improves localization efficiency by selecting actions that maximize belief alignment. Beyond search,281

this framework offers a scalable foundation for inference-time adaptation.282

As future work, we plan to extend our framework to other domains such as grid-based object283

interaction environments and interactive fiction benchmarks. Also, we plan to integrate procedural284

rule reasoning and recovery, enabling broader alignment across spatial and semantic domains.285
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A Notations378

Notation Glossary379

• Bt: Belief state at timestep t, composed of (Gt,Rt,St)380

• a ∈ At: Candidate symbolic action (e.g., “go to shelf”) at time t381

• ô: Predicted observation under action a, sampled from P (o | a,Bt)382

• u(Bt, ô): Utility of the predicted observation ô when incorporated into the belief state383

• IGa: Information gain induced by taking action a and observing ô384

• Aligna: Alignment reward computed by comparing ô to actual environment observation385

• λ: Weighting factor to trade off information utility and alignment score386

• H(·): Shannon entropy of a probability distribution387

• G: Global belief consisting of high-level language hypotheses388

• Ss: Subject-level belief distribution over locations for target object s389

• Mt: Set of object mentions parsed from observation o at time t390

• sim(m,h): Similarity function between parsed object mention m and hypothesis h391

• symb(a): Symbolic keyword extracted from action a (e.g., "cabinet" from "go to cabinet 2")392

• πpred: Observation prediction model393

• πg
BU , πs

BU : Belief update model for global(g) and object(s)-level beliefs394

B Related Works395

LLM Agents via Prompting and Tuning. Language models have been adapted for decision-making396

through prompting-based agents [2, 6] and instruction tuning [18, 37]. Preference optimization397

methods like DPO [21] and RFT [35] improve alignment but remain static at test time. RAFA [14]398

augments LLMs via retrieval and sketch-based prompting but lacks belief refinement or uncertainty399

modeling. Other works-Reflexion [25], ETO [28], IPR [32]-train agents with feedback or trajectory400

memory. In the same vein, [15]. In contrast, our method performs no tuning or memory learning. It401

enables inference-time adaptation purely via posterior-guided belief refinement.402

Symbolic Memory and World Models. Grounded agents often use symbolic memory [34], knowl-403

edge graphs [7], or learned world models [39]. These typically rely on static environments or404

pretraining. Meanwhile, Zhou et al. [38] proposes augmenting LLM agents with rule-based world405

alignment by explicitly learning environment-specific preconditions and effects, enabling improved406

planning via model-predictive control; however, their method requires repeated exploration with407

execution-time verification and external rule storage. Likewise, Singh et al. [27] introduces a prob-408

abilistic object-centric world model that maintains belief over latent object states via sequential409

Monte Carlo sampling, but assumes structured environment priors and is trained offline with oracle410

supervision. We maintain a structured belief over symbolic locations, updating it online through411

LLM-based posterior reasoning without external memory or rewards.412

Exploration and Inference-Time Scaling. Exploration has been studied through intrinsic motivation413

[19], Bayesian surprise [23], and uncertainty-driven strategies. Recent test-time adaptation methods414

[29, 16] update models without retraining, but often lack structured belief modeling. TPO [13]415

adapts behavior through rollout-based optimization, but incurs high computational cost due to416

sampling and gradient updates. RAFA [14] is the only inference-time scaling baseline that combines417

LLM-based agentic planning with Bayesian adaptive control. It formulates interaction as a loop418

of plan-then-act, using past experience to reason over future value and select the next best action419

without fine-tuning. However, RAFA does not maintain structured belief or represent uncertainty420

over symbolic hypotheses, limiting its ability to model latent world dynamics. In contrast, our421

method performs symbolic belief refinement via posterior updates, leveraging LLMs to reason over422

task-relevant hypotheses and actively align with environment rules at inference time.423

C Motivation: Experimental Detail424

Objective. This experiment evaluates whether SFT agents reuse train-time search behaviors at test425

time and whether such behavior leads to successful task completion. We analyze both the degree of426

behavioral copying and its effectiveness across environments that differ from training.427

Setup. We define two evaluation sets:428

• Seen Set (Same Room): Rooms and object locations identical to training.429

• Unseen Set (Similar Room): Rooms with similar layouts but different object placements.430
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Each trajectory begins with a natural language room description followed by a sequence of actions.431

From each trajectory, we extract a search sequence, defined as a maximal consecutive chain of go432

to actions. We then compute:433

• Room similarity: Cosine similarity between the test-time room description and each training434

room description, using sentence embeddings (e.g., all-MiniLM-L6-v2).435

• Trajectory similarity: Sequence similarity (via normalized edit distance) between the436

test search sequence and the most similar training trajectory from rooms with matching437

descriptions.438

We retain only test trajectories with high room similarity (≥ 0.9) to isolate cases where the room439

appears similar, but object locations may differ.440

Case Classification. We categorize each test trajectory based on (1) its trajectory similarity and (2)441

success outcome:442

• Train-like → Success: Trajectory similarity ≥ 0.9, task succeeded.443

• Train-like → Failure: Trajectory similarity ≥ 0.9, task failed.444

• Deviated → Success: Trajectory similarity < 0.9, task succeeded.445

• Deviated → Failure: Trajectory similarity < 0.9, task failed.446

D Method: Definitions447

Global Belief (G). The global belief captures abstract hypotheses about how the environment is448

structured or how a user organizes objects in the household. Formally, G = g1, g2, g3 is a set of449

natural language statements generated by an LLM at the beginning of the episode. These statements450

reflect user-specific organizational tendencies (e.g., “kitchen is well-organized” or “coffee-related451

items are grouped near the counter”) and serve as a latent prior that conditions downstream inference452

and action selection.453

Subject Belief (S). Given a search target s, the subject belief Ss is represented as a normalized454

categorical distribution over all symbolic locations (e.g., cabinet”, drawer”) and their instances455

(e.g., “cabinet3”) in the environment. Each score p(l | s) reflects the agent’s current estimate of the456

likelihood that object s resides at location l. Subject priors are initialized from room beliefs and are457

progressively refined through both simulated and actual observations as the agent explores.458

E Method: Implementation459

E.1 Belief Update Pipeline460

At each timestep t, the agent updates its belief state hierarchically, following the top-down structure461

of (G,S). These updates can occur in two modes: (1) simulated updates for evaluating hypothetical462

actions using predicted observations, and (2) actual updates after executing an action and receiving a463

true environment observation.464

Step 1: Global Belief Update. Given an observation o (real or predicted), the agent invokes a465

language model to revise its global belief G. This involves generating a new set of high-level466

hypotheses that reinterpret how the environment may be structured given o. This update enables467

adaptive abstraction, allowing the agent to reinterpret user-specific tendencies over time.468

Step 2: Subject Belief Update. The subject-level belief Ss is refined based on the updated room469

scores. For a given subject s, the location prior p(l | s) is adjusted such that locations associated with470

highly scored rooms receive a proportional boost. If l ∈ r, then:471

p(l | s) ∝ p(l | s) · p(r)

This propagation ensures that high-level beliefs about the environment ultimately influence fine-472

grained search behavior.473

This belief update process provides a flexible mechanism for belief propagation across abstraction474

levels, and serves as the foundation for estimating information gain and alignment in the action475

selection process.476

E.2 Common Module477

Global Hypothesis Initialization To bootstrap the agent’s environment understanding, we use the478

following prompt to initialize global-level hypotheses:479
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Prompt:
You are helping an agent search for the object "mug" in a household environment.
Generate 3 plausible hypotheses about how the user organizes their space or uses the room.
Each hypothesis should describe user habits or room-level behaviors (e.g., "kitchen is well-organized",
"cabinets contain cups").
Return as a numbered list.

480

This prompt is passed to the LLM once per episode. The result is used to instantiate a GlobalBelief481

object, which stores a list of hypotheses guiding subsequent inference.482

Hypothesis Update from Observation The global hypotheses are revised based on new environment483

observations:484

Prompt: Global Hypothesis Update
You previously assumed the following about the user:
1. kitchen is well-organized
2. cabinets contain cups
3. mugs are often in the sink

Now the agent observed: "the sink is empty"
Based on this new information, revise or expand the global hypotheses.
Return 3 updated hypotheses as a numbered list.

485

The updated hypotheses are used to refine prior scores or generate new priors.486

E.3 Variants in Belief Adjustment487

We experiment with two inference-time belief adjustment variants, both operating on top of the488

shared global belief.489

LLM-Based Prior Scaling Given a global hypothesis (e.g., "cabinets contain cups") and the known490

list of room-level symbols (e.g., ["cabinet", "drawer", "sink"]), we use the following prompt:491

Prompt: LLM-Based Prior Scaling
Given the hypothesis: "cabinets contain cups"
Among the locations ["cabinet", "drawer", "sink"], decide which to boost or suppress.
Return only a JSON object with this format:
{"boost": [...], "suppress": [...]}

492

The returned result adjusts room scores: boosting adds +1.0, suppressing applies a 0.5 multiplier. The493

scores are then normalized. This process is repeated for each global hypothesis. Optionally, we log494

the decisions for interoperability.495

Similarity-Based Prior Scaling. Upon receiving an environment observation o ∈ Ot after taking496

action a ∈ At, we refine the room-level beliefRt by comparing observed object mentions against497

each room’s symbolic hypotheses.498

LetR = {r1, r2, . . . , rn} denote the set of rooms, andHr the set of symbolic hypotheses associated499

with room r. Given the extracted set of object mentionsMt = {m1, . . . ,mk} from the observation500

o, we compute the adjustment score sr for each room r ∈ R as:501

sr =
∑

m∈Mt

∑
h∈Hr

sim(m,h) + δr(a)

where sim(m,h) ∈ [0, 1] is a similarity function (e.g., cosine similarity), and the symbolic match502

bonus δr(a) is defined as:503

δr(a) =

{
0.2 if symb(a) ∈ r

0 otherwise
Room scores are then updated additively:504

scoret(r)← scoret−1(r) + sr
Finally, scores are normalized to form a belief distribution:505

scoret(r)←
scoret(r)∑

r′∈R scoret(r′)
This mechanism allows the agent to updateRt using soft semantic evidence derived from symbolic506

observations, without needing predefined rules.507
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E.4 Implementation Details508

Symbolic Location Selection. The agent ranks top-k unexplored symbols from the belief prior509

(k=3), estimates information gain for each, and selects the best action.510

Observation Sampling. For each action, we sample K=3 predicted observations using a frozen511

LLM (temperature 0.7), each containing 2–4 likely objects.512

Belief Update. Upon observing o after action a, the agent updates its belief via a similarity-weighted513

rule:514

b′ℓ(l) ∝ bℓ(l) · ϕ(o, l, a)
where ϕ(o, l, a) approximates P (o | l, a) using model predictions or observation similarity. The515

belief hierarchy is updated recursively across levels. Belief is updated over normalized categorical516

priors via similarity- or LLM-based scaling.517

Reward Computation. Alignment is computed as set precision and averaged over recent steps for518

convergence detection. We use a set-overlap score for similarity:519

Align(a) =
|Predicted(a) ∩ Actual(a)|

|Actual(a)|

When used in forward planning, we approximate expected alignment via:520

Eô∼πpred(B,a) [sim(ô, o)]

where o denotes a sampled candidate outcome. This allows us to estimate how well an action aligns521

with the latent world model under the current belief.522

Termination. The loop ends when the target is found or when average alignment over the past 3523

steps exceeds 0.75.524
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F Method: Algorithms525

F.1 Full Algorithm526

Algorithm 1: Inference-Time Belief Alignment with Multi-Level Update
Input: Target subject s, environment E
Initial beliefs: Global Bg

0 , Subject Bs
0

Predictor πpred, LLM πLLM
Parameters: max steps T , sample count N , top-k actions, threshold θalign, weight λ
Output: Final belief state, alignment log, found/not-found status
Initialize tracker, set t← 0
for t = 1 to T do

Ac ← Top-k unexplored symbols from Bs
t // Candidate actions

foreach a ∈ Ac do
IGList← [ ]
for i = 1 to N do

ô
(i)
a ← πpred(B

r
t , a) // Predict observation

Bg′ ← Bg
t .update(ô

(i)
a , πLLM)

Bs′ ← Bs
t .adjust_from_global(B

g′
)

IGList.append(H(Bs
t )−H(Bs′))

end
E[IG](a)← mean(IGList)

end
a∗ ← argmaxa∈Ac E[IG](a)
x∗ ← SelectInstance(a∗)
ot ← E .step(x∗)
Log: tracker.log_action(x∗, ot)
Bg

t+1 ← Bg
t .update(ot, πLLM)

Bs
t+1 ← Bs

t .adjust_from_global(B
g
t+1)

Bs
t+1.update_with_observation(s, x

∗, ot)
ôalign ← πpred(B

r
t+1, x

∗)
ralign ← AlignScore(ôalign, ot)
tracker.log_alignment(x∗, ot, ôalign, ralign)
if ralign ≥ θalign or s ∈ ot then

return FOUND, tracker
end

end
return NOT FOUND, tracker

527

F.2 Algorithm for LLM-based Observation Sampling528

Algorithm 2: Predictor.sample_observation()
Input: Belief context B, action a, samples N
Result: Predicted observations {ô(1), ..., ô(N)}
for i = 1 to N do

Construct prompt pi with B and a

ô(i) ← πLLM(pi) // LLM response
end
return {ô(1), ..., ô(N)}

529
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F.3 Algorithm for Belief Update in Detail530

Algorithm 3: SubjectBelief.update_with_observation()
Input: Subject s, location x, observation o
Data: Belief P (x|s) over x ∈ X
Result: Updated P ′(x|s)
Ox ← parse_subjects_from(o) // Extract objects at x
foreach x′ ∈ X do

if x′ = x then
if s ∈ Ox then

P ′(x′|s)← P (x′|s) · α // Boost
else

P ′(x′|s)← P (x′|s) · β // Decay
end

else
P ′(x′|s)← P (x′|s)

end
end
Normalize P ′(x′|s) over x′

531

G Baseline Details532

ETO Song et al. [28] introduces a novel learning framework for LLM agents that leverages both533

successful and failed trajectories to enhance performance. By iteratively collecting failure trajectories534

during exploration and applying contrastive learning (e.g., DPO loss) between failure-success pairs,535

ETO refines agent policies beyond traditional imitation learning.536

WKM Qiao et al. [20] enhances LLM-based agents with structured task-level and state-level knowl-537

edge extracted from expert trajectories. At inference time, the agent leverages global task knowledge538

for high-level planning and dynamic state knowledge for step-wise action grounding, reducing hal-539

lucinated or inefficient behavior. This approach improves generalization across unseen tasks and540

environments by integrating procedural context directly into the action selection process. As the541

original paper does not report scores for LLaMA 3.1, we reproduced their method under the same542

environment and evaluation setting.543

MPO Xiong et al. [33] introduces a plug-and-play framework that enhances LLM-based agents by544

providing high-level, abstract meta plans to guide task execution. By leveraging feedback from agent545

performance, MPO refines these meta plans, leading to improved task completion efficiency and546

generalization across unseen scenarios. WebShop results are not reported in the original paper, so we547

were unable to include them in the Table 1548

IPR Xiong et al. [32] introduces a framework that enhances LLM agent training by providing step-549

level supervision through Monte Carlo-estimated rewards. By generating contrastive action pairs550

from discrepancies between agent actions and expert trajectories, IPR improves action efficiency and551

generalization across tasks.552

STeCa Wang et al. [30] introduces a framework that enhances LLM agent learning by identifying553

suboptimal actions through step-level reward comparisons during exploration. By constructing554

calibrated trajectories using LLM-driven reflection, STeCa enables agents to learn from improved555

decision-making processes, leading to enhanced robustness in long-horizon tasks556

RAFA Liu et al. [14] introduces a principled framework that integrates long-term reasoning and557

short-term acting for autonomous LLM agents. By modeling reasoning as Bayesian adaptive MDP558

planning and employing in-context learning for policy updates, RAFA achieves provable
√
T regret559

and demonstrates strong empirical performance across multiple benchmarks.560

Code repositories are as follows:561

• ETO [28]: https://github.com/Yifan-Song793/ETO562

• WKM [20]: https://github.com/zjunlp/WKM563

• MPO [33]: https://github.com/WeiminXiong/MPO564

• IPR [32]: https://github.com/WeiminXiong/IPR565

• STeCa [30]: https://github.com/WangHanLinHenry/STeCa566

• RAFA [14]: https://github.com/agentification/RAFA_code567
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H Experiment Configuration568

Environment. We evaluate our method on two partially observable instruction-following benchmarks:569

ALFWorld. In ALFWorld, the agent is tasked with finding a target object (e.g., mug, toiletpaper, soap)570

within a simulated household, navigating and interacting with discrete actions (go, open, search) to571

gather natural language feedback (e.g., “You open cabinet 1. It is empty.”). Observations do not572

explicitly name the target unless correctly found. We cap the maximum number of steps per episode573

at 30 for ALFWorld to enforce consistent evaluation with baselines.574

Agent Configuration. We evaluate both open-source and proprietary LLMs as agents. For open-575

source models, we use LLaMA 2 and LLaMA 3.1–8B variants, testing both task-specific fine-tuned576

models and unmodified (zero-shot) versions. Proprietary models such as GPT-4o-mini and GPT-4577

are accessed via the OpenAI API and used as-is without any additional adaptation. All models are578

prompted using a unified instruction-following format across tasks. We set the maximum output579

token length to 1024. Temperature is set to 0.7 for observation sampling tasks and defaults otherwise.580

Task Protocol. In ALFWorld, we follow the standard evaluation splits introduced in prior work,581

using 140 seen and 134 unseen tasks from the reference benchmark. Each task is executed once582

without retries. Success is measured by correct object localization or item selection within the step583

limit.584

Task type # train # seen # unseen

Pick & Place 790 35 24
Examine in Light 308 13 18
Clean & Place 650 27 31
Heat & Place 459 16 23
Cool & Place 533 25 21
Pick Two & Place 813 24 17

All 3,553 140 134
Table 3: Six ALFWorld task types with heldout seen and unseen evaluation sets.

Computation Resources. All experiments were conducted using NVIDIA A100 (40GB) and RTX585

3090 (24GB) GPUs on internal compute clusters. Experiments with open-source models were586

performed on 1–2 GPUs per run. Proprietary models (e.g., GPT-4) were accessed through the OpenAI587

API.588

I Additional Experimental Result589

We conduct additional experiments to evaluate the generality of our method across different alignment590

strategies. Also, we analyze the hypotheses’ evolution over steps.591

I.1 Comparison with Alignment-based Baselines.592

Table 4 compares our method against prior alignment-tuned agents, including SFT, PPO, and recent593

RL-based approaches such as IPR and SteCa. Our method (AWS) achieves the highest performance594

on the ALFWorld benchmark, outperforming all prior alignment strategies on both seen and unseen595

tasks.596

Method ALFWorld (Unseen)

Llama-2-7B-Chat + PPO [24] 29.1
Llama-2-7B-Chat + SFT [36] 67.2
Llama-2-7B-Chat + RFT [35] 66.4
Llama-2-7B-Chat + Step-PPO [31] 69.7
Llama-2-7B-Chat + ETO [28] 72.4
Llama-2-7B-Chat + IPR [32] 74.7
Llama-2-7B-Chat + SteCa [30] 76.1

Llama-2-7B-Chat + AWS (Ours) 76.8
Table 4: Comparison between different alignment strategies. Our method (AWS) achieves the
highest average performance across seen and unseen splits, outperforming prior supervised and
RL-tuned baselines. Bold numbers indicate the best in each column.
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I.2 Step-Wise Hypothesis Evolution597

To better understand how each variant adapts global hypotheses over time, we present a step-wise598

comparison of inferred world structures during the mug search task (see Table 5). At each step,599

the agent forms hypotheses about room structure and object placement, conditioned on recent600

observations.601

Step Agent Hypothesis Summary Interpretation

1 Similarity "Centralized kitchen counter" Used for daily tools (sponge, spoon, knives)
LLM "Countertops used for daily activity" Includes non-kitchen items (e.g., credit card, potato)

2 Similarity "Multi-zone structure emerging" Breakfast prep zone, Plant care zone
LLM "Countertop clutter" No dedicated item location

3 Similarity "Meal/snack prep inferred" Tomato and potato → cooking zone emerging
LLM "Sinkbasin & countertop = temp

workspace"
Multi-purpose usage (cluttered logic remains)

4 Similarity "Storage strategy detected" Soap + bottles categorized into cabinet
LLM "Zone cleaning in progress" Begins forming structure (cleaning-based policy)

5 Similarity "Gaps in storage logic" Cabinets partially filled, inconsistent
LLM "Temporary vs. designated storage

co-exist"
Sponge & bottle in cabinet → early categorization

6 Similarity "Category mismatch in cabinet
items"

Salt & pepper in different cabinets

LLM "Systematic labeling emerging" Forks numbered → category grouping via labels

7 Similarity "Storage pattern identified" Mug observed in cabinet with soap → final confir-
mation

LLM "Consistent categorization & order" Spatula 2 in drawer, cabinets tidied → structured
conclusion

Table 5: Step-wise evolution of global hypotheses for each agent. The similarity-based variant exhibits
gradual zone-based inference, while the LLM-based variant begins with cluttered understanding and
quickly transitions to structured categorization.

Similarity-Based Variant. This agent builds structure incrementally. It first assumes the kitchen602

counter is a centralized utility zone, then refines this into functional subregions (e.g., breakfast prep,603

plant care) as more items are observed. Later, it detects inconsistencies (e.g., salt and pepper in604

different cabinets) and ultimately confirms a coherent storage pattern-such as a mug stored alongside605

cleaning items-highlighting a gradual, zone-based interpretation process.606

LLM-Based Variant. The LLM-based agent starts with less grounded hypotheses, interpreting607

surfaces as generic and cluttered workspaces. However, as structural signals emerge (e.g., numbered608

forks, categorized placements), it transitions rapidly to a policy-driven world model based on cleaning609

routines or semantic labeling. By the final step, it exhibits consistent categorization and spatial order.610

In summary, while both variants succeed, their reasoning paths differ: Similarity-Based infers611

structure gradually via bottom-up spatial cues, whereas LLM-Based generalizes early from sparse612

patterns, leading to faster semantic organization.613
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