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Abstract—The aim of this note is to prove a lower
bound of the L1-norm of non-harmonic trigonometric
polynomials of the form
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where T > 1, C = C(T ) is an explicit constant that
depends on T only, �k are real numbers with |�k −
�l| ≥ 1 and ak are complex numbers. This extends to
the non-harmonic case the Littlewood conjecture as
solved by McGehee, Pigno, Smith [6] and Konyagin
[5] and was previously obtained by Nazarov [7] with
a non-explicit constant C .

Index Terms—Hardy’s Inequality, Littlewood con-
jecture, Besicovitch norm

I. INTRODUCTION

The aim of this note is to give a control
of coefficients of a non-harmonic (non-periodic)
trigonometric polynomial

∑

cke2i��kt in terms of
its L1-norm or its Besicovitch 1-norms. Recall
that when p < +∞, the Besicovitch p-norms are
defined by

‖Φ‖pp = lim
T→+∞

1
T ∫[−T ∕2,T ∕2]

|Φ(x)|p dx.

Those norms are the right substitute to
Lp([−1∕2, 1∕2])-norms to investigate non-
harmonic trigonometric polynomials and their
limits (that is, Besikovitch-almost periodic
functions).
Let us start by recalling some facts about L2-

theory where those questions have a long ranging
history. First, note that the problem is trivial for
harmonic trigonometric polynomials (�j = j) when
I has length at least 1, since the exponentials are
orthogonal in L2([−1∕2, 1∕2]), so the estimate of
the L2-norm is given by Parseval’s relation. The
same is true for non-harmonic trigonometric poly-
nomial in the 2-Besicovitch norm. The question
becomes more interesting for L2(I)-norms with I a
fixed interval and has been answered in a celebrated
paper by Ingham [3]. First the frequencies (�j)j≥1
need to be separated, so WLOG |�j − �k| ≥ 1 and
then |I| needs to be > 1 if one does not impose
further regularity conditions on (�j) and then:

Theorem I.1 (Ingham). Let (�j)j=1,…,N ⊂ ℝ be

such that |�j −�k| ≥ 1 and T > 1. Let C(t) = 3�2
64

for 1 < T ≤ 2 and C(T ) =
�2(T 2 − 1)

8T 3
when

T > 2. Then, for every (aj)j=1,…,N ⊂ ℂ,
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Of course, one can then take N → +∞. In
functional analysis language, this states that the
exponentials (e2i��j ) form a Riesz sequence. This
is of course closely related to the frame property
of this system and can be traced back at least to
the work of Duffin and Schaeffer [1] which lead to
the development of frame theory.
When considering L1-type norms the situation

is much more delicate. The question was origi-
nally investigated by Littlewood in the 50s and
concerned only (periodic) trigonometric polynomi-
als with {0, 1} coefficients (so called idempotent
trigonomatric polynomials) and it was speculated
that such a polynomial had minimal L1-norm when
the frequencies (�j) formed an arithmetic sequence,
that is by the L1-norm of the Dirichlet kernel
‖DN‖1. Littlewood actually conjectured that, at
least up to a constant, ‖DN‖1 provides the right
lower bound of the L1-norm of idempotent trigono-
matric polynomials. The question was solved in
the early 80s independently by McGehee, Pigno,
Smith [6] and Konyagin [5]. Moreover, both papers
proved the conjecture as a corollary of a statement
for arbitrary periodic trigonometic polynomials.
The result relevant for this paper is the following:

Theorem I.2 (McGehee, Pigno, Smith [6]). There
exists a constant C such that, for every N , if
�1,… , �N are distinct integers and (ak)k=1,…,N ⊂
ℂ then
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In [6], the constant C is explicit, C = 1
30

and is
valid for arbitrary ak’s. When the ak’s are restricted
to {0, 1}, this can be improved to C = 4

�3
(see

[9], [10]). It is still a conjecture that this theorem
is valid for the best (largest) possible constant 4

�2
(which is obtained by taking �k = k and ak = 1, in
view of standard estimates of the Dirichlet kernel).
In view of Ingham’s work (and its applica-

tions), it is then natural to ask for corresponding
results when the frequencies are real. A clever
approximation argument allows to deduce the result
from Theorem I.2 (the converse direction being
obvious):

Theorem I.3 (Hudson & Leckband). For every
N , if �1,… , �N are distinct real numbers and
(ak)k=1,…,N ⊂ ℂ then
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where C is the constant in Theorem I.2.

The next natural question is then to see what
happens for L1([−T ∕2, T ∕2])-norms rather than
1-norms. Note that such a result implies Theorem
I.3 and it turns out that the question was answered
a bit earlier by Nazarov [7] and, as for Ingham,
requires T > 1. However, the constant in [7] is
not explicit. In a recent paper [4], we have shown
how a modification of Nazarov’s argument allows
to obtain this result directly and further to obtain
the best constants known today:

Theorem I.4. Let �1 < �2 < ⋯ < �N be N
distinct real numbers and a1,… , aN be complex
numbers. Then
i) we have
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ii) If further a1,… , aN all have modulus larger
than 1, |ak| ≥ 1 then
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iii) Assume further that for k ≠ l ∈ {1,… , N},
|�k − �l| ≥ 1, then for T ≥ 72 we have
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Let us make two observations. Nazarov’s result
is the third statement of this theorem and, further,
is valid for every T > 1 (which is better than our
result) but with a non-explicit constant C instead
of 1

122
(our computations show that Nazarov’s

proof gives something of the order of (T − 1)−12).
To obtain our constant, we introduce an auxilary
function ', in (II.2), that differs from the one used
by Nazarov. While Nazarov’s function is better
adapted for small intervals, our construction allows
to exploit the fact that the interval [−T ∕2, T ∕2] is
large. A second difference with Nazarov’s proof,
is that we introduce several parameters that are
optimised in the last step of the proof. In order
to present a simpler argument, we here avoid
introducing those parameters and do not explicit
constants. The constants obtained with this simpler
proof are anyway far from those of the statement
of Theorem I.4. To further simplify things, we also
restrict our attention to (I.1), to which we devote
the remaining of the paper.

II. THE PROOF OF (I.1)
By A ≲ B we mean A ≤ CB for some C .
Next observe that in (I.1), we may scale the

sequence �j and thus assume that |�j − �k| ≥ 1.
We write |aj| = ajuj , |uj| = 1. Then we define

Φ(t) =
N
∑

j=1
aje

2i��j t, U (t) =
N
∑

j=1

uj
j + 7

e2i��j t

S =
N
∑

j=1

|aj|
j + 7

. (II.1)

Here the +7 is harmless and only changes numer-
ical constants (and amounts to adding 7 zeroes at
the beginning of the sequences (aj) and 7 extra
frequencies). We are going to prove the following:
take T = 2K a large enough even integer, then

S ≲ 1
2K ∫[−K,K]

|Φ(t)| dt.

Our modifications, more precisely improvements
on Nazarov arguments happens here and in the
following step.

A. First step: an auxilary function
We now define

' = 21[−K∕2,K∕2] ∗ ★k1[−1∕2,1∕2] (II.2)

where ★k denotes the k-fold convolution of  
by itself. More precisely,

★2 (x) =  (x) ∗  (x) = ∫ℝ
 (t) (x − t) dt



is the usual convolution of  by itself and, for k ≥
2, we then define ★k+1 = ★k ∗  .
The Fourier transform of ' is

 ['](�) = 2sinK��
��

( sin��
��

)K

and one easily checks that ' is even, non negative
with ‖'‖∞ ≤ 2 and  ['](0) = ‖'‖1 = 2K while
| ['](�)| ≤ 2K

(��)K
. Then

Lemma II.1. For 1 ≤ k ≤ N ,
∑

1≤j≤N
j≠k

| ['](�j − �k)|
j + 7

≤ 1
2

1
k + 7

. (II.3)

Proof. We split the sum into two parts, E1 where
we sum of the j′s for which j + 7 ≥ (k + 7)∕2
and E2 for the remaining terms. To estimate E1,
we note that |�j − �k| ≥ |j − k| and use the bound
on  ['] to get

E1 ≤ 2K
�K (k + 7)

∑

1≤j≤N
j≠k

1
|j − k|K

≤ 4K
�K (k + 7)

∞
∑

l=1

1
lK

≤ 1
4(k + 7)

if K is large enough.
For the second sum, note that �k − �j ≥ k− j ≥

(k + 7)∕2. The bound on  ['] then gives

E2 ≤
∑

j+7<(k+7)∕2
| ['](�j − �k)|

≤ k K2K
(

�(k + 7)
)K

since there are at most k terms in this sum. It
remains to notice that

E2 ≤
k

k + 7
K2K+1

�K7K−2
1

k + 7
≤ 1
4(k + 7)

if K is large enough.

From this, we deduce the following:

Corollary II.2. For k = 1,… , N
|

|

|

|

|

1
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U (t)e2i��kt'(t) dt −
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|
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4K

1
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Proof. Indeed, we write the integral as

=
N
∑

j=1

uj
j + 7

1
2K ∫[−K,K]

e−2i��j te2i��kt'(t) dt

=
N
∑

j=1

uj
j + 7

1
2K

 ['](�j − �k).

Separating the term j = k and estimating the
remaing ones with lemma II.1 gives the result.

It remains to multiply (II.4) by |ak|, and then to
sum over k on both sides to obtain

Proposition II.3. If K is large enough

S ≤ 5
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1
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U (t)Φ(t)'(t) dt
|

|

|

|

|
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Here we need an explicit constant (5∕4 is an
upper bound of 4K∕(4K − 1) when K is large
enough).

B. Modification of U into a uniformly bounded V
First, up to adding a few zero terms at the end

of the sequence (aj), we can assume that N + 7 =
2n+1 − 1. We will now decompose U into dyadic
blocs: write j = {k ∈ ℕ ∶ 2j ≤ k < 2j+1} and

fj(t) =
∑

r+7∈j

ur
r + 7

e−2i��rt

so that U =
n
∑

j=3
fj . We will now modify U into

an other sum V that is near to U but uniformly
bounded. We start by estimating the norms of the
fj’s:

Lemma II.4. With the above notation, we have
1) ‖fj‖L2([−K,K]) ≤ 2

− j
2
√

2K + 1;
2) ‖fj‖∞ ≤ 1.

Proof. This is a standard fact. Set vr =
ur
r + 7

, then

‖fj‖
2
L2([−K,K]) =

∑

r,s∈j−7
vrvs ∫

K

−K
e2i�(�s−�r)t dt.

One then isolates the term r = s in the sum
and estimate the remaining ones using Hilbert’s
Inequality [8].

For a function F ∈ L2(IK ) and s ∈ ℤ, we write
its Fourier coefficients

cKs (F ) =
1
2K ∫

K

−K
F (t)e−i�

st
K dt.

To each |fj| ∈ L2(IK ) we associate ℎj ∈
L2(IK ) defined via its Fourier series as

ℎj(t) = cK0 (|fj|) + 2
∞
∑

s=1
cKs (|fj|)e

−i� stK .

Lemma II.5. For 3 ≤ j ≤ n, the following two
properties hold
1) Re(ℎj) = |fj| ≥ 0 and ℜ(ℎj) ∈

L∞([−K,K]).



2) ‖ℎj‖L2([−K,K]) ≲ 2
− j
2
√

2K + 1.

Proof. First, as |fj| is real valued, cK0 (|fj|) is also
real, and cKs (|fj|) = cK−s(|fj|) for every s ≥ 1. A
direct computation then shows that Re(ℎj) = |fj|
while Parseval shows that ‖ℎj‖2 ⩽

√

2‖fj‖2.
Finally, as fj is a trigonometric polynomial, it

is a bounded function thus so is Re(ℎj).

We now take a parameter 0 < � ≤ 1 that will be
a small number (� = 10−3 would do) and define a
sequence (Fj)j=3,…,n inductively through

F3 = f3 and Fj+1 = Fje
−�ℎj+1 + fj+1.

Lemma II.6. For 3 ≤ j ≤ n, ‖Fj‖∞ ≲ �−1.

Proof. Set E ∶= sup0<x≤1
x

1 − e−�x
= 1

1 − e−�
and note that �−1 ≤ E ≤ 2�−1.

By definition of E, if C ≤ E and 0 ≤ x ≤ 1,
then Ce−�x + x ≤ Ee−�x + x ≤ E.
We can now prove by induction over j that

|Fj| ≤ E from which the lemma follows. First,
when j = m, from Lemma II.4 we get ‖F3‖∞ =
‖f3‖∞ ≤ 1 ≤ E.
Assume now that ‖Fj‖∞ ≤ E, then

|Fj+1(t)| = |Fj(t)e
−�ℎj+1(t) + fj+1(t)|

≤ |Fj(t)|e
−�ℜ

(

ℎj+1(t)
)

+ |fj+1(t)|
= |Fj(t)|e

−�|fj+1(t)| + |fj+1(t)|.

As |fj+1(t)| ≤ 1 and |Fj(t)| ≤ E, we get
|Fj+1(t)| ≤ E as claimed.

Lemma II.7. For 3 ≤ k ≤ n and j = 3,… , k let
gj,k = e

−�Hj,k with

Hj,k =

{

ℎj+1 +…+ ℎk when j < k
0 when j = k

.

Then Fk =
k
∑

j=3
fjgj,k. Moreover

‖Hj,k‖L2([−K,K]) ≲ 2
− j
2
√

2K + 1.

Proof. The first part is easily obtained by induction
on k. For the second, the triangular inequality and
Lemma II.5 give a sum of a geometric series.

The next lemma is a direct consequence of [6,
Lemma, p 614]:

Lemma II.8. Let 3 ≤ k ≤ n and 3 ≤ j ≤ k, then
1) the negative Fourier coefficients of gj,k(t) − 1

vanish so that its Fourier series writes

gj,k(t) − 1 =
∑

s⩾0
cKs (gj,k − 1)e

i� stK ;

2) ‖gj,k − 1‖L2([−K,K]) ≲ �2−
j
2
√

2K + 1 so that
|cks (gj,k − 1)| ≲ 2

− j
2
√

2K + 1.

We now recall the definition of U and define V :

U (t) =
n
∑

j=3
fj and V = Fn =

n
∑

j=3
fjgj,n.

Proposition II.9. There is an � such that, for K
large enough and for 1 ≤ k ≤ N we have
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)

e2i��kt'(t) dt
|
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2

1
k + 7

.

Proof. To simplify notation, we will simply write
gj = gj,n. We fix k ∈ [1, N] and denote by l the
unique integer such that k + 7 ∈ l . We want to
bound R1 + R2 where

R1 =
1
2K ∫[−K,K]

∑

3≤j≤l−2
fj(gj − 1)e2i��kt'(t) dt,

and

R2 =
1
2K ∫[−K,K]

∑

l−1≤j≤n
fj(gj − 1)e2i��kt'(t) dt.

Let us first bound R1. For this, notice that if
s ∈ ℤ, then

∫[−K,K]
fj(t)'(t)e2i��kte

−2i� s
K t dt

= ∫[−K,K]

∑

r+7∈j

ur
r + 7

'(t)e−2i�(�r−�k+
s
K ) dt

=
∑

r+7∈j

ur
r + 7

 [']
(

�r − �k +
s
K

)

.

It follows that ∫[−K,K]
fj(gj − 1)e2i��kt'(t) dt =

∫ [−K,K]fj(t)'(t)e2i��kt
∑

s≥0
cKs (gj − 1)e

2i� stK dt

=
+∞
∑

s=0
cKs (gj − 1)∫[−K,K]

fj(t)'(t)e
2i��kt+

2i�st
K dt

=
+∞
∑

s=0
cKs (gj − 1)×

×
∑

r+M∈j

ur
r + 7

 [']
(

�r − �k −
s
K

)

.



Inverting both sums and injecting the result in the
definition of R1, we obtain

R1 =
1
2K

∑

3≤j≤l−2

∑

r+7∈j

ur
r +M

×

×
∞
∑

s=0
cKs (gj − 1) [']

(

�r − �k −
s
K

)

.

Now set cs(r) = cKs (gj − 1) when r + 7 ∈ j
and use parity of  ['] to rewrite

R1 = 1
2K

∑

8≤r+7<2l−1

ur
r + 7

×
∞
∑

s=0
cs(r) [']

(

�k − �r +
s
K

)

.

Using |cs(r)| ≲
√

2K + 1 we get

|R1| ≲
√

2K + 1
∑

8≤r+7<2l−1

1
r + 7

Er (II.5)

with

Er =
∞
∑

s=0

1
2K

|

|

|

|

 [']
(

�k − �r +
s
K

)

|

|

|

|

.

To bound Er, one first notices that the choice of l
and of the cutoff in the sum implies that

�k − �r − 1 ≥ k − r − 1 ≥ 1
8
(k + 7).

One then uses the bound on  ['] and compare the
sum in Er with an integral to get

Er ≲
8K

�K
1

(k + 7)K−1
.

Then

|R1| ≲ 8K

�K

√

2K + 1
(k + 7)K−1

∑

8≤r+7≤2l−1

1
r + 7

≲ 8K

�K

√

2K + 1
(k + 7)K−2

since the sum has at most 2l−1 ≲ k+M terms ≤ 1.
We thus obtain, for K large enough, R1 = o(k−1).
As for R2, using the fact that ' is bounded and

Cauchy-Schwarz we get that |R2| is

≲
∑

l−1≤j≤n

1
2K

‖fj‖L2([−K,K])‖gj − 1‖L2([−K,K])

≲2K + 1
2K

�
∑

l−1⩽j⩽n
2−j ≲

�
k + 7

since we have chosen l so that 2−l−1 ≤ 1
k + 7

.

It follows that

|R1| + |R2| ≲
(

� + o(1)
) 1
k + 7

≤ 1
2

1
k + 7

if � is a small enough number (that depends only
on the constant in the bound of R2) and K is large
enough.

Corollary II.10.
|

|

|

|

|

1
2K ∫[−K,K]

(

U (t) − V (t)
)

Φ(t)'(t) dt
|

|

|

|

|

≤ 1
2
S

Proof. As Φ(t) =
∑N
k=1 ake

2i��kt, it suffices to use
the triangular inequality and Proposition II.9.
C. End of the proof
The end of the proof consists in applying first

Proposition II.3

S ≤ 5
4

|

|

|

|

|

1
2K ∫[−K,K]

U (t)Φ(t)'(t) dt
|

|

|

|

|

.

Then, applying Corollary II.10 we get

S ≤ 5
4

|

|

|

|

|

1
2K ∫[−K,K]

(

U (t) − V (t)
)

Φ(t)'(t) dt
|

|

|

|

|

+5
4

|

|

|

|

|

1
2K ∫[−K,K]

V (t)Φ(t)'(t) dt
|

|

|

|

|

≤ 5
8
S + 5

4
‖V ‖∞‖'‖∞

1
2K ∫[−K,K]

|Φ(t)| dt

This gives the desired bound

S ≲ 1
2K ∫[−K,K]

|Φ(t)| dt.
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