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ABSTRACT

Open-vocabulary object detection (OVOD) aims to detect the objects beyond the
set of classes observed during training. This work presents a simple yet effective
strategy that leverages the zero-shot classification ability of pre-trained vision-
language models (VLM), such as CLIP, to directly discover proposals of possible
novel classes. Unlike previous works that ignore novel classes during training and
rely solely on the region proposal network (RPN) for novel object detection, our
method selectively filters proposals based on specific design criteria. The result-
ing sets of identified proposals serve as pseudo-labels of potential novel classes
during the training phase. This self-training strategy improves the recall and ac-
curacy of novel classes without requiring additional annotations or datasets. We
further propose a simple offline pseudo-label generation strategy to refine the ob-
ject detector. Empirical evaluations on three datasets, including LVIS, V3Det,
and COCO, demonstrate significant improvements over the baseline performance
without incurring additional parameters or computational costs during inference.
In particular, compared with previous F-VLM, our method achieves a 1.7% im-
provement on the LVIS dataset. We also achieve over 6.5% improvement on the
recent challenging V3Det dataset. Our method also boosts the strong baseline by
6.4% on COCO. The code and models will be publicly available.

1 INTRODUCTION

Object detection is a fundamental task in computer vision, involving localization and recognition of
objects within images. Previous detection methods (Ren et al., 2015; He et al., 2017; Lin et al., 2017)
are limited to detecting only predefined categories learned during the training phase. This limita-
tion results in a considerably smaller vocabulary compared to human cognition. Although directly
extending the categories of large datasets would be an ideal solution, it requires an overwhelming
amount of manual annotation. Recently, Open-Vocabulary Object Detection (OVOD) (Zareian et al.,
2021; Zhou et al., 2022b; Gu et al., 2022; Lin et al., 2023) has emerged as a promising research di-
rection to overcome the constraints of a fixed vocabulary and enable the detection of objects beyond
predefined categories.

Typical solutions of OVOD rely on pre-trained VLMs (Radford et al., 2021; Jia et al., 2021). These
VLMs have been trained on large-scale image-text pairs and possess strong zero-shot classification
capability. Prior works (Zareian et al., 2021; Gu et al., 2022; Zhou et al., 2022b) have attempted to
leverage VLMs for OVOD by replacing learned classifiers in traditional detectors with text embed-
dings derived from VLMs. Leveraging VLMs’ exceptional zero-shot classification ability enables
the detector to assign objects to novel classes based on their semantic similarity to the embedded
text representations. Moreover, several recent approaches (Gu et al., 2022; Lin et al., 2023; Wu
et al., 2023a) aim to distill knowledge from VLMs by aligning individual region embeddings with
visual features extracted from VLMs via diverse distillation loss designs. This alignment process
facilitates the transfer of semantic understanding from VLMs to the object detectors. Additionally,
some studies (Kuo et al., 2023; Xu et al., 2023; Yu et al., 2023; Wu et al., 2023b) attempt to build
open-vocabulary detectors directly upon frozen visual foundation models. Although these methods
have demonstrated impressive performance in detecting novel objects, a substantial gap exists be-
tween training and testing for novel classes when the vocabulary size (Gupta et al., 2019; Wang et al.,
2023a) is larger, since all novel classes are seen as background classes in training. For example, a
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Figure 1: Illustration of our motivation and framework. (a). Our DST-Det incorporates novel class
labels to supervise the detection head during training. (b). Experiments on OV-COCO and OV-
LVIS using CLIP with ground truth box for zero-shot classification. We observe high top-1 and
top-5 accuracy in classifying novel classes. (c). Illustration of our dynamic self-training pipeline
with the pseudo labels.

more recent dataset V3Det (Wang et al., 2023a) contains over 10,000 classes. There are over 5,000
classes as novel classes. However, during training, all these classes are treated as background.

In this work, we rethink the training pipeline of OVOD and propose a new dynamic self-training
approach by exploiting the novel class knowledge of VLMs. As shown in Fig. 1(a), all previous
OVOD methods adopt the same training pipeline by using the base class annotations and treating
novel objects as background. During testing, the novel objects are discovered by the region proposal
network (RPN). Thus, a conceptual gap exists between the training and testing phases when dealing
with novel classes. Our approach aims to bridge this gap by utilizing the outputs of CLIP (Radford
et al., 2021) models as pseudo labels during the training phase.

To substantiate our motivation, we first conduct a toy experiment as illustrated in Fig. 1(b), where we
calculate the top-1 and top-5 accuracy for both base classes and novel classes on LVIS and COCO
datasets by using CLIP’s visual features and text embeddings. Specifically, we use the ground-
truth boxes to obtain visual features from the feature maps of CLIP and calculate cosine similarity
with text embeddings for zero-shot classification. Our results show that the top-5 accuracy for
novel classes on LVIS and COCO datasets is already remarkably high. This observation inspires
us to consider directly using CLIP outputs as pseudo labels during the training phase. As shown in
Fig. 1(a, c), we present the DST-Det (dynamic self-training detection) framework, which directly
adopts the large vocabulary information provided by CLIP for training.

To reduce the extra computation cost of the CLIP visual model, we let the object detection and the
pseudo-labeling generation share the frozen CLIP visual backbone. This decision was supported by
recent developments in exploiting frozen foundation models (Kuo et al., 2023; Wu et al., 2023b; Yu
et al., 2023). Our DST-Det is based on the two-stage detector Mask R-CNN (He et al., 2017) and
incorporates a dynamic pseudo-labeling module that mines novel classes from negative proposals
during training. Those proposals with high novel class scores can be considered foreground objects.
Adopting simple threshold and scoring operation, we effectively suppress noises in the pseudo la-
bels, such as substantial background contents and useless image crops. These designs do not incur
any additional learnable parameters for novel class discovery and the process in dynamic since
region proposals vary in each iteration. We apply this operation to both the RPN and the Region-of-
Interest Head (RoIhead) in the training stage: during RPN training, we force the discovered novel
objects to be foreground objects; during RoIHead training, we add the novel class labels directly
to the classification target. Moreover, we propose an offline refinement process using the trained
detector to generate pseudo labels, boosting performance since the final detector has converged and
can directly output more stable proposals.

We show the effectiveness of DST-Det on the OV-LVIS (Gupta et al., 2019), OV-V3Det (Wang
et al., 2023a) and OV-COCO (Lin et al., 2014) benchmarks. Our proposed method consistently
outperforms existing state-of-the-art methods (Lin et al., 2023; Wu et al., 2023a; Kuo et al., 2023)
on LVIS and V3Det without introducing any extra parameters and inference costs. Specifically,
DST-Det achieves 34.5% rare mask AP for novel categories on OV-LVIS. With the Faster-RCNN
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framework (Ren et al., 2015), our method achieves 13.5% novel classes mAP on V3Det, which
boosts previous methods by 6.8 % mAP. Moreover, our method improves considerably on the smaller
vocabulary dataset COCO compared to the baseline method. We also provide detailed ablation
studies and visual analyses, both of which validate the effectiveness of the DST-Det framework.
Moreover, compared with previous pseudo label methods (Gao et al., 2022; Huynh et al., 2022),
our method does not use external datasets or extra learnable network components, which makes our
approach a plug-in-play method for various datasets.

2 RELATED WORK

Close-Set Object Detection. Modern object detection methods can be broadly categorized into one-
stage and two-stage. One-stage detectors (Redmon et al., 2016; Liu et al., 2015; Tian et al., 2021;
Lin et al., 2017; Zhou et al., 2019; 2021; Zhang et al., 2019; Tan et al., 2020b) directly classify and
regress bounding boxes using a set of predefined anchors, where anchors can be defined as corners
or center points. Recently, several works have adopted query-based approaches (Carion et al., 2020;
Zhu et al., 2021; Sun et al., 2021; Liu et al., 2022) to replace the anchor design in previous works.
Meanwhile, long-tail object detection aims to address class imbalance issues in object detection. To
tackle this challenge, various methods have been proposed, such as data re-sampling (Gupta et al.,
2019; Liu et al., 2020; Wu et al., 2020), loss re-weighting (Ren et al., 2020; Tan et al., 2020a; 2021;
Zhang et al., 2021; Wang et al., 2021), and decoupled training (Li et al., 2020; Wang et al., 2020).
However, all these methods cannot be generalized to novel categories. Our method focuses on the
open-vocabulary detection setting.

Open-Vocabulary Object Detection (OVOD). This task extends the detector’s vocabulary at the
inference time, where the detector can recognize objects not encountered during the training. Re-
cently, OVOD (Zareian et al., 2021; Gu et al., 2022; Zhong et al., 2022; Zang et al., 2022; Zhou
et al., 2022b; Du et al., 2022; Feng et al., 2022; Wu et al., 2023a; Rasheed et al., 2022; Li* et al.,
2022; Lin & Gong, 2023; Gao et al., 2022; Zhao et al., 2022; Ma et al., 2022; Minderer et al., 2023;
Arandjelovi’c et al., 2023; Zhang et al., 2023; Kaul et al., 2023a; Cho et al., 2023; Song & Bang,
2023; Shi & Yang, 2023; Bravo et al., 2022; Minderer et al., 2022; Chen et al., 2022; Wang & Li,
2023; Buettner & Kovashka, 2023; Shi et al., 2023) has drawn increasing attention due to the emer-
gence of vision-language models (Radford et al., 2021; Jia et al., 2021). On the one hand, several
works (Gu et al., 2022; Wu et al., 2023a; Du et al., 2022; Zang et al., 2022) attempt to improve
OVOD performance by letting the object detector learn knowledge from advanced VLMs. For in-
stance, ViLD (Gu et al., 2022) effectively distills the knowledge of CLIP into a Mask R-CNN (He
et al., 2017). DetPro (Du et al., 2022) improves the distillation-based method using learnable cate-
gory prompts, while BARON (Wu et al., 2023a) proposes to lift the distillation from single regions
to a bag of regions. On the other hand, F-VLM (Kuo et al., 2023) directly builds a two-stage detec-
tor upon frozen VLMs (i.e. CLIP) and trains the detector heads only. It fuses the predicted score
and the CLIP score for open-vocabulary recognition. Moreover, several works (Kim et al., 2023a;b)
aim for better VLMs pre-training for OVOD. Both types of open-vocabulary object detectors treat
novel objects as background during training but target them as foreground objects in testing. This
gap hinders the detector from discovering objects of novel categories. We aim to bridge this gap
by leveraging stronger vision-language models, enabling improved detection performance for novel
classes. Several works (Gao et al., 2022; Huynh et al., 2022) also propose pseudo labels to improve
OVD tasks. However, these works require extra VLM tuning and large caption datasets for pre-
labeling, which makes the pipeline complex. In contrast, our method is simpler and elegant, without
extra pipelines or parameter tuning.

Vision-Language Pre-training and Alignment. Several works (Radford et al., 2021; Jia et al.,
2021; Kim et al., 2021; Li et al., 2021; 2022) study the pre-training of VLMs in cases of improving
various downstream tasks, including recognition, captioning, and text generation. In particular,
contrastive learning has achieved impressively aligned image and text representations by training
VLMs on large-scale datasets, as demonstrated by several works (Radford et al., 2021; Jia et al.,
2021; Alayrac et al., 2022). For example, the representative work, CLIP (Radford et al., 2021), can
perform zero-shot classification on ImageNet (Deng et al., 2009) without fine-tuning or re-training.
Inspired by CLIP’s generalizability in visual recognition, various attempts have been made to adapt
CLIP’s knowledge to dense prediction models such as image segmentation (Xu et al., 2023; Rao
et al., 2022; Ghiasi et al., 2022; Zhou et al., 2022a) and object detection (Gu et al., 2022; Zang et al.,
2022) in the context of open-vocabulary recognition. Meanwhile, several works (Zhou et al., 2022a;
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Shi et al., 2022) use CLIP to extract pseudo labels for dense prediction tasks. Our method effectively
explores CLIP’s ability in the case of OVOD, where CLIP models help discover the object of novel
categories to bridge the conceptual gap between training and testing.

3 METHOD

3.1 PRELIMINARIES

Problem Setting. Given an image I, the object detector should output a set of boxes bi and their
corresponding class labels ci. Here, bi is a vector of length four representing the coordinates of the
bounding box around the object, ci is a scalar indicating the class label assigned to that object. The
OVOD detector has a significantly larger vocabulary size for class labels. During the training phase,
the OVOD detector can only access the detection labels of base classes CB . But it is required to
detect objects belonging to both the base classes CB and the novel classes CN at test time. The
novel objects are unavailable during the training and are always treated as the background.

Architecture Overview. Most previous OVOD methods adopt a two-stage detector. Therefore, we
take the Mask R-CNN (He et al., 2017) as an example to demonstrate how it can be adapted to the
OVOD task by leveraging the textual information from pre-trained vision-language models. Mask
R-CNN consists of two stages: a Region Proposal Network (RPN) and a Region-of-Interest Head
(RoIHead). The RPN denoted as ΦRPN generates object proposals, and the RoIHead denoted as
ΦRoI refines the proposals’ locations and predicts their corresponding class labels. This process can
be formulated as follows:

{ri}Mi=1 = ΦRoI ◦ ΦRPN ◦ ΦEnc(I), (1)

{bi, ci}Mi=1 = {Φbox(ri),Φcls(ri)}Mi=1, (2)
where ΦEnc is an image encoder 1 that maps the input image I to a series of multi-scale feature maps.
M is the number of proposals generated by ΦRPN. ΦRoI extracts the region embedding ri from the
feature maps given a box proposal. Then the box regression network Φbox refines the coordinates of
the bounding boxes, and the classification network Φcls predicts the class label of the object within
the bounding box. We use ◦ to represent the cascade of different components.

The classification head is learnable in closed-vocabulary object detection and maps the region em-
bedding into predefined classes. However, in the open-vocabulary scenario (Zhou et al., 2022b; Gu
et al., 2022), the classifier is substituted with text embeddings generated by pre-trained VLMs (i.e.,
CLIP) and is frozen during the training. The text embedding tc for the c-th object category is gener-
ated by sending the category name into a CLIP text encoder using either a single template prompt,
”a photo of category,” or multiple template prompts. And for a region embedding r, its classification
score of c-th category is calculated as follows:

pc =
exp(τ · < r, tc >)∑C
i=0 exp(τ · < r, ti >)

(3)

where < ·, · > is the cosine similarity, and τ is a learnable or fixed temperature to re-scale the value.

Frozen CLIP as Backbone. To reduce computation cost and strengthen the open-vocabulary ability
of the object detector, we use the CLIP image encoder as the detector backbone in ΦEnc. We keep
the parameters of our backbone fixed to preserve the vision-language alignment during training
following F-VLM (Kuo et al., 2023). Then, the inference stage of the detector can benefit from
both the detection score described in Eq. 3 and the CLIP score obtained by replacing the region
embedding in Eq. 3 with the CLIP representation of the corresponding region proposal as depicted
in Fig. 2(c). Specifically, we apply the RoIAlign function ΦRoI to the top-level feature map of ΦEnc.
Then, the CLIP representations of the region proposals are obtained by pooling the outputs of the
RoIAlign via the attention pooling module of the CLIP image encoder. Given a region proposal
during the inference, the score of the c-th candidate category is obtained by merging the two types
of scores via geometric mean:

sc =

{
p1−α
c · qαc if i ∈ CB

p1−β
c · qβc if i ∈ CN

(4)

1In this paper, we ignore the Feature Pyramid Network (FPN) (Lin et al., 2017) for brevity.
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Figure 2: Illustration of DST framework. (a) The meta-architecture of DST-Det. (b) The proposed
pseudo-labeling module (PLM). The PLM is inserted into the two stages of the detector, including
the RPN and RoIHead. During training, PLM takes the top-level feature map from the CLIP image
encoder and text embedding of object classes as input and generates the pseudo labels for the RPN
and the RoIHead. (c) The process of extracting CLIP representation for region proposals. The
RoIAlign operation is applied to the top-level feature map, the output of which is then pooled by the
Attention Pooling layer (AttnPooling) of the CLIP image encoder.

where qc is the CLIP score, α, β ∈ [0, 1] control the weights of the CLIP scores for base and novel
classes, and CB and CN represent the base classes and novel classes, respectively.

3.2 DST-DET: DYNAMIC SELF-TRAINING FOR OVOD

Motivation of DST-Det. Previous works have addressed the problem of open-ended classification in
OVOD by utilizing the text embeddings from pre-trained VLMs (e.g., CLIP). However, a conceptual
gap still exists between training and testing for novel classes. As shown in Fig. 1, annotations for
novel objects are considered background during training. However, during the test phase, they
are expected to be detected as foreground and classified into a specific novel class based on their
detection score. A new training strategy is needed to bridge the gap between the training and test
phases by utilizing CLIP’s outputs as pseudo labels for novel classes. In the toy experiments depicted
in Fig. 1(b), we treat the ground-truth bounding boxes as region proposals and get the CLIP score for
each region proposal, and use the CLIP scores to verify the zero-shot classification ability of CLIP
on OV-COCO and OV-LVIS datasets. How to get the CLIP score has been illustrated in Sec. 3.1
and Fig. 2(c). The results indicate that the top-5 accuracy suffices for discovering novel classes,
which motivates us to consider using CLIP outputs as pseudo labels during training, given the RPN
proposals and a large pre-defined vocabulary.

Pseudo-Labeling Module (PLM). We believe that negative proposals, which have a low overlap
with the ground truth boxes, may contain objects of potential novel classes. Therefore, we introduce
the Pseudo-Labeling Module (PLM) to avoid treating these proposals as background. As shown in
Fig. 2(b), we first extract the CLIP representations (named as region embeddings in the figure) of the
negative proposals using the approach depicted in Fig. 2(c). Then, we calculate the cosine similarity
scores between the region embeddings and the text embeddings of the object class names. After
obtaining the similarity scores, we filter out those proposals classified as base classes or background
classes and those with CLIP scores lower than a threshold. The remaining few proposals can be
identified as novel objects, and we randomly select K proposals as pseudo labels and change the
classification target of these proposals during training. We typically set K to 4 by the trade-off of
computation and final results. The targets of the positive proposals remain unchanged in this process.
More details can be found in the appendix.

Deployment on RPN and RoIHead. During the RPN stage, it typically produces numerous neg-
ative proposals due to the dense anchor head. To reduce the computation cost of the PLM, we
leverage Non-Maximum Suppression (NMS) to eliminate redundant proposals and limit the number
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of negative proposals to a fixed amount, such as 1000. In contrast, there are fewer negative proposals
during the RoIHead stage than in the RPN stage. Therefore, we send all negative proposals to the
PLM. The PLM will change the target of some negative proposals. We convert the classification
target from background to foreground for the RPN head, a class-agnostic region proposal network.
For the classification branch of RoIHead, we change the classification target of negative proposals
from background to pseudo labels generated by the PLM. Note that we only apply the pseudo labels
produced by PLM to classification losses. The box regression and mask losses are unchanged.

Offline Refinement For Self-Training. Moreover, we propose an offline self-training strategy for
OVOD in addition to dynamic self-training. This strategy involves using the trained model to predict
the training dataset. The prediction for novel classes with high classification scores will be saved as
pseudo labels. The pseudo labels with origin base annotations in the training set will be served as
new training sets. The offline refinement works like the teacher-student model. It is only applied af-
ter the detector is trained. The generated high-quality pseudo labels are dumped as new supervision.
In Sec. 4.3, we present evidence demonstrating the effectiveness of both approaches. Both PLMs
and offline refinement serve as two components of our DST framework.

Discussion. The proposed PLM is only used during the training without introducing extra parame-
ters and computation costs during the inference. The pseudo-labeling process requires a vocabulary
that contains potential novel object classes. We can either obtain the novel classes from the detection
datasets following Detic (Zhou et al., 2022b) or collect a wider range of object classes from external
sources, e.g., the classes defined in image classification datasets (Deng et al., 2009). We validate the
effectiveness of both choices in Table 2f.

3.3 TRAINING AND INFERENCE

The training losses adhere to the default settings of Mask R-CNN (He et al., 2017), which
comprises three primary losses: classification loss, box regression loss, and mask segmentation
loss. Specifically, only the classification loss will be changed based on the pseudo labels, while
other losses will remain unmodified. It is important to note that the generated labels are uti-
lized for recognition purposes rather than localization. Therefore, the final loss is expressed
as:L = λps clsLpl cls + λboxLbox + λmaskLmask. λ denotes the weight assigned to each loss, and
Lpl cls is our modified pseudo label classification loss. Specifically, we set a weight of 0.9 for the
background class and 1.0 for all other classes. For inference, we adopt the same score fusion pipeline
(Equ. 4) as stated in Sec. 3.1.

4 EXPERIMENT

4.1 EXPERIMENT SETTINGS

Datasets and Metrics. We carry out experiments on three detection datasets, including OV-
LVIS (Gu et al., 2022), OV-COCO (Zareian et al., 2021), and recent challenging OV-V3Det (Wang
et al., 2023a). For LVIS, we adopt the settings proposed by ViLD (Gu et al., 2022) and mainly report
the APr, representing the AP specifically for rare categories. We report box AP at a threshold of 0.5
for COCO and mean AP at threshold 0.5 ∼ 0.95 for V3Det.

Implementation Details. We follow the settings of F-VLM (Kuo et al., 2023) for a fair comparison.
We use the Mask R-CNN (He et al., 2017) framework with feature pyramid network (Lin et al.,
2017) as our detector. All the class names are transferred into CLIP text embedding, following (Gu
et al., 2022). For the ”background” category, we input the word ”background” into the multiple
templates prompt and get a fixed text embedding from the CLIP text encoder. We only use the base
boxes for training and all class names as of the known vocabulary as the pre-knowledge of PLM.
For the final results on LVIS, we train the model for 59 epochs. For ablation studies, we train the
model for 14.7 or 7.4 epochs. For the COCO dataset, we follow the previous works (Kuo et al.,
2023). For V3Det dataset, we adopt the default setting of the origin baselines (Wang et al., 2023a).
More details of other dataset training and testing can be found in the appendix.
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Table 1: Results on open-vocabulary object detection benchmarks. We achieve state-of-the-art re-
sults on both OV-LVIS and V3Det benchmarks.

(a) OV-LVIS benchmark

Method Backbone mAPr

ViLD (Gu et al., 2022) RN50 16.6
OV-DETR (Zang et al., 2022) RN50 17.4

DetPro (Du et al., 2022) RN50 19.8
OC-OVD (Rasheed et al., 2022) RN50 21.1

OADP (Wang et al., 2023b) RN50 21.7
RegionCLIP (Zhong et al., 2022) RN50x4 22.0

CORA (Wu et al., 2023b) RN50x4 22.2
BARON (Wu et al., 2023a) RN50 22.6

VLDet (Lin et al., 2023) SwinB 26.3
EdaDet (Shi & Yang, 2023) RN50 23.7

MultiModal (Kaul et al., 2023b) RN50 27.0
CORA+ (Wu et al., 2023b) RN50x4 28.1
F-VLM (Kuo et al., 2023) RN50x64 32.8
Detic (Zhou et al., 2022b) SwinB 33.8

RO-ViT (Kim et al., 2023b) ViT-H/16 34.1
baseline RN50x16 26.3
DST-Det RN50x16 28.4
baseline RN50x64 32.0
DST-Det RN50x64 34.5

(b) OV-COCO benchmark

Method Backbone APnovel
50

OV-RCNN (Zareian et al., 2021) RN50 17.5
RegionCLIP (Zhong et al., 2022) RN50 26.8

ViLD (Gu et al., 2022) RN50 27.6
Detic (Zhou et al., 2022b) RN50 27.8
F-VLM (Kuo et al., 2023) RN50 28.0

OV-DETR (Zang et al., 2022) RN50 29.4
VLDet (Lin et al., 2023) RN50 32.0

RO-ViT (Kim et al., 2023b) ViT-L/16 33.0
RegionCLIP (Zhong et al., 2022) RN50x4 39.3

baseline RN50x64 27.4
DST-Det RN50x64 33.8

(c) OV-V3Det benchmark

Method Backbone APnovel

Detic (Zhou et al., 2022b) RN50 6.7
RegionClip (Zhong et al., 2022) RN50 3.1

baseline RN50 3.9
DST-Det RN50 7.2
baseline RN50x64 7.0
DST-Det RN50x64 13.5

4.2 MAIN RESULTS

Results on LVIS OVOD. Tab. 1 (a) shows the results of our approaches with other state-of-the-art
approaches on LVIS dataset. Due to the limited computing power, we use a smaller batch size (64 vs.
256) and shorter training schedule (59 epochs vs. 118 epochs) to build our baseline, which results
in 32.0 % mAP, which is lower than F-VLM (Kuo et al., 2023). After applying our methods, we
obtain 34.5% mAP on rare classes, about 1.7% mAP higher than F-VLM (Kuo et al., 2023), without
introducing any new parameters and cost during inference. Compared with other stronger baselines,
including VLDet (Lin et al., 2023) and Detic (Zhou et al., 2022b), our method does not use any
extra data and achieves about 0.7-8.2% mAP gains. We also find consistent gains over different
VLM baselines.

Results on COCO OVOD. Tab. 1 (b) shows the results of our approaches with other state-of-the-art
approaches on COCO dataset. We achieve 27.4% novel box AP when adopting the frozen Mask
R-CNN baseline. After using our offline refinement for the self-training module, our method can
achieve 6.4% improvement on novel box AP. Both experiment results indicate the effectiveness and
generalization ability of our approach.

Results on V3Det OVOD. V3Det is a more challenging dataset with a larger vocabulary size than
both LVIS and COCO. As shown in Tab. 1 (c), our methods achieve new state-of-the-art results
on different backbones. In particular, with RN50x64, our method achieves 13.5 % mAP on novel
classes, significantly outperforming previous STOA by 6.8 %. Moreover, with different backbones,
our methods can still improve the strong baseline via 3.3-6.5%.

4.3 ABLATION STUDY AND ANALYSIS

In this section, we conduct detailed ablation studies and analyses on our DST-Det. More results and
analysis can be found in the appendix (Sec. 6).

Effectiveness of PLM. In Tab. 2a, we first verify the effectiveness of PLM. Adding PLM in RPN
obtains 1.9 % mAP improvements, while inserting PLM in RoI heads leads to 1.2% gains. This
indicates the novel classes are more sensitive to RPN. As shown in the last row, combining both
yields better results, thereby confirming the orthogonal effect of the two classification losses. As a
result, the PLM results in a notable improvement of over 3.0%.
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Table 2: Ablation studies and comparative analysis on LVIS 1.0 dataset. PLM1 means PLM in
RPN and PLM2 means PLM in RoI head. By default, we add two PLMs. We mainly report APr

for reference. APall is also used for all classes. All methods use the strong RN50x64 backbone on
LVIS. For results on COCO, we report results using RN50.

(a) Effectiveness of PLM.

baseline PLM1 PLM2 APr

✓ - - 28.3
✓ ✓ - 30.4
✓ - ✓ 29.5
✓ ✓ ✓ 31.8

(b) Loss Choices of PLM.

Setting APr APall

baseline 28.3 30.2
box loss 10.3 13.6

class + box loss 20.3 25.2
class loss 31.8 31.5

(c) Training Schedule. e: epoch.

Setting Schedule APr

baseline 7.4 e 28.3
w DST 7.4 e 32.2
baseline 14.7 e 31.2
w DST 14.7 e 33.4

(d) Effectiveness of Offline Refinement
(OR).

dataset method APr

LVIS baseline + PLM 31.8
LVIS w OR 32.2

COCO baseline + PLM 24.5
COCO w OR 28.5

(e) More Design Choices of
PLM.

CLIP score K APr

0.5 4 23.3
0.8 4 31.8
0.4 4 13.2
0.8 15 25.6

(f) Supervision Vocabulary During
Training.

Source APr ARall

base names only 28.3 30.2
using LVIS rare 31.8 31.5
using ImageNet 31.5 31.2

Ablation on Loss Design in PLMs. In PLM, we only adopt the classification loss of generated
labels and ignore the box loss. This is motivated by the fact that most generated proposals are
inaccurate, adversely affecting the localization ability developed using normal base annotations.
To validate this assertion, we add the box loss into the PLM. As shown in Tab. 2b, we observe
a significant drop in both APr and APall. Furthermore, our objective is to enable the detector to
recognize the novel objects or part of the novel objects. As shown in Fig. 4, repetitive proposals still
persist even with filtering operations in PLMs.

Ablation on Effect of Pseudo Score and Pseudo Label Number. We adopt CLIP score and training
samples K to select the possible proposals, since most proposals are background noises. As shown
in Tab. 2e, decreasing the CLIP score and increasing training samples lead to inferior performance.
Decreasing the score may involve more irrelevant objects or context. Increasing training examples
may result in more repeated and occluded objects. Moreover, we also visualize the embeddings of
novel proposals during the training with different K in Fig. 3(a). With more training examples, the
novel class embeddings become less discriminative, contributing to increased noise. Thus, we set K
to 4 and the CLIP score to 0.8 by default.

Ablation on Offline Refinement. In Tab. 2d, we further show the effectiveness of offline refinement
(OR). On both COCO and LVIS datasets, we find the improvements. However, the improvement of
COCO is more significant than LVIS. This is because the total number of novel objects in COCO is
larger than in LVIS. In summary, both OR and PLM work in complementary, which indicates that
simple offline refinement is not a trivial extension.

Ablation on Various Schedules. In Tab. 2c, we verify the effectiveness of longer schedule training.
After extending the schedule into 14.7 epochs, we still observe over 2.0% improvements. Finally,
we extend the training schedule to 59 epochs and still obtain 2.5% improvements, as shown in Tab. 1
(a). This indicates our method can be scaled up with longer training and stronger baselines.

Ablation on Source of Vocabulary. We also verify the vocabulary source for novel classes in
Tab. 2f. We experiment with two types of sources: the classes (including rare classes) defined in
LVIS (Gupta et al., 2019) and the classes defined in ImageNet (Deng et al., 2009). As shown in
Tab. 2f, our approach achieves considerable performance even when we do not have access to the
novel classes in the test dataset and use an external source of potential novel classes, i.e., ImageNet.

Qualitative Novel Class Example in DST. We further visualize the generated novel examples in
Fig. 3. Most visual examples exhibit satisfactory quality after the filtering operation in PLMs. Com-
pared with previous methods, which treat the novel classes as background, our method directly
forces the detector to train the classification head with the assistance of VLM. Despite overlapping
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(a), Novel proposals embeddings.
K=4 (top), K=20 (bottom)

(b), Visual improvements over strong baseline.
Baseline (left), Ours (right)

Figure 3: Visual Analysis of DST framework. (a), We present a t-SNE analysis on the novel region
embeddings during training. Different color represents different classes. We find that using fewer
training samples works well. (b), We show visual improvements over the strong baseline. Our
method can detect and segment novel classes, as shown on the right side of the data pair.

or repetitive proposals, we can successfully train the detector by modifying only the classification
loss within the RPN and RoI heads. Additional visual examples are presented in the appendix.

Visual Improvements Analysis. In Fig. 3 (b), we present several visual improvements over a strong
baseline (32.0 APr) on LVIS. Compared to the baseline, our method demonstrates effective detection
and segmentation of novel classes, such as soup and beer bottles.

Figure 4: Visual examples. Left: We visualize the class-agnostic ground truth bounding boxes. The
green boxes represent the ground truth of base classes and will be used as foreground supervision,
while the red boxes represent the ground truth of possible novel classes that are not allowed during
training. Right: The red boxes represent the pseudo labels we selected from negative proposals.

5 CONCLUSION

This paper presents DST-Det, a novel open vocabulary object detection method that incorporates a
dynamic self-training strategy. By rethinking the pipeline of previous two-stage open vocabulary
object detection methods, we identified a conceptual gap between training and testing for novel
classes. To address this issue, we introduce a dynamic self-training strategy that generates pseudo
labels for novel classes and iteratively optimizes the model with the newly discovered pseudo labels.
Our experiments demonstrate that this approach can significantly improve the performance of mask
average precision (AP) for novel classes, making it a promising approach for real-world applications.
We hope our dynamic self-training strategy can help the community mitigate the gap between the
training and testing for the OVOD task.
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6 APPENDIX

In this supplementary, we provide the following details:

• Sec. A presents more training, evaluation, and PLM module details.

• Sec. B report more ablation studies and detailed results of three OV-detection benchmarks.

• Sec. C gives more visualization results, including pseudo labels during the training, visual
improvements, and failure case examples.

We discuss the limitations and broader impact of our DST-Det at the end of the appendix.

A MORE MODEL DETAILS.

Dataset and Training Details on OV-V3Det. OV-V3Det (Wang et al., 2023a) is a vast vocabulary
visual detection dataset. It contains extremely large categories, which consist of 13,029 categories
on real-world images. The train split of V3Det 1,361,181 objects in 184,523 images, the val split has
178,475 objects in 30,000 images, and the test split has 190,144 objects in 30,000 images. For the
open vocabulary object detection setting, V3Det randomly samples 6,501 categories as base classes
Cbase and the remaining 6,528 categories as the novel classes Cnovel. For training a detector for
V3Det, we use the SGD optimizer with a weight decay of 1e-4, a momentum of 0.9, and a learning
rate of 0.02. We train our model for 2x with a batch size of 32.

Dataset and Training Details on OV-LVIS. LVIS (Gupta et al., 2019) has a large vocabulary and
a long-tailed distribution of object instances. The LVIS dataset contains bounding box and instance
labels for 1203 classes across 100k images from the COCO dataset. The classes are categorized
into three sets based on their occurrence in training images – rare, common, and frequent. And
for open vocabulary object detection, we adopt the settings proposed by ViLD (Gu et al., 2022).
In this approach, annotations that belong to common and frequent categories are categorized as
base categories. On the other hand, annotations belonging to rare categories are treated as novel
categories. We use the SGD optimizer with a learning rate of 0.36 and a weight decay of 1e-4. We
train our model for 46.1k iterations with a batch size of 256.

Dataset and Training Details on OV-COCO. We follow the setting of ovr-cnn (Zareian et al.,
2021) and split COCO2017 into 48 base classes and 17 novel classes. We train our model in this
setting for 11.25k interactions with a batch size of 64. Other settings are the same as OV-LVIS.

Evaluation Protocol on Each Dataset. We evaluate the model on the standard COCO, LVIS, and
V3Det datasets to assess its performance. We report the box average precision at threshold 0.5 of
novel classes and mask average precision for rare classes box mean average precision at different
threshold (i.e., 0.5 ∼ 0.95) of novel classes for COCO, LVIS, and V3Det respectively.

Baseline Models in Main Results. We follow Mask R-CNN (He et al., 2017) pipeline as our
detector and use frozen resnet (He et al., 2016) from the CLIP visual encoder and use the text
embeddings from the CLIP text encoder as the classifier. The model will obtain two classification
scores for each proposal during inference through the detection and VLM branches. The fused score
of these two scores serves as the final score for each proposal.

Algorithm Details of PLM. In Alg. 1, we present a more detailed algorithm description for our
proposed PLM for RPN and RoI head. We will release our code and model for further research.

Different baseline: OVR-CNN. For OVR-CNN, we add the extra CLIP vision encoder to extract
RoI features that are used in PLM (details can be found in the main paper and Alg. 1). Otherwise,
the remaining parts, including the learnable backbone and RoI heads, are the same as the OVR-
CNN (Zareian et al., 2021).

B MORE DETAILED EXPERIMENT RESULTS

GFLops and Parameter Analysis. In Tab. 3, we list the GFLops and number of parameters during
training and inference. Our method uses a frozen backbone and a learnable detection head and the
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Algorithm 1 Pseudo-Labeling Module
Input: negative proposal set PN , score S of PN , top-level features F from frozen backbone,

text embeddings t for all categories, classification label Lcls

Output: pseudo classification label L′
cls

1: candidates = []
2: for i, p in enumerate(PN ) do
3: if Si > 0 then
4: ri ← RoIAlign(F, p) /* region embeddings */
5: si ← MatMul(ri, t)
6: if max(si) > 0.8 and argmax(si) ∈ novel classes then
7: candidates← i
8: end if
9: end if

10: end for
11: selected idx← randomly select K proposals from candidates
12: L′

cls ← Lcls

13: L′
cls[selected idx]← foreground or pseudo novel classes

14: Use L′
cls[selected idx] to train the RPN and RoI head for the classification branch.

Table 3: GFLops and Parameter Analysis. Our method does not bring extra flops or parameters
during inference.

Method Backbone GFLops Learnable Param. Frozen Param.

Train
Baseline CLIP RN50 343G 22.9M 38.3M

CLIP RN50x64 1565G 23.9M 420M

Ours CLIP RN50 561G 22.9M 38.3M
CLIP RN50x64 4961G 23.9M 420M

Inference
Baseline CLIP RN50 813G 22.9M 38.3M

CLIP RN50x64 8157G 23.9M 420M

Ours CLIP RN50 813G 22.9M 38.3M
CLIP RN50x64 8157G 23.9M 420M

parameters mainly come from the backbone. When using a large backbone, CLIP RN50x64 (Rad-
ford et al., 2021), the number of learnable parameters accounts for only one-twentieth of the total
number. During training, our method will get 512 proposals per image and obtain its embeddings
through RoIAlign (He et al., 2017) and AttentionPool operation of CLIP. Compared to the baseline
model, our method contributes a significant amount of GFLops from AttentionPool operation. Dur-
ing inference, we use the same inference pipeline in the baseline method and use 1000 proposals per
image. And a larger number of proposals leads to a higher GFLops.

More Ablation on Offline Refinement. In Tab. 4a and Tab. 4b, we conduct a more detailed analysis
of our proposed offline refinements. In Tab. 4a, we find that the OR greatly improves COCO dataset
performance, while the limited improvement is on large vocabulary datasets. This is because the
detectors trained on the COCO dataset better recall novel objects, which is also verified by previous
works (Gu et al., 2022). Since our PLM already improves both AR and AP in LVIS and V3Det, the
gains of OR are limited. We argue a stronger detector will have more gains. We also explore the
score in OR in Tab. 4b, where we find keeping a higher score is important in offline pseudo labels
generation.

Detailed Comparison on LVIS, COCO, and V3Det. We present more detailed comparison in
three OV-benchmarks in Tab. 5, Tab. 6, and Tab. 7. Our method does not introduce extra datasets or
components compared with other works.
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Table 4: More Ablation Studies on Offline Refinement (OR).

(a) Effectiveness of OR on different datasets.

Method Backbone Dataset APnovel gains

baseline + PLM RN50 COCO 24.5 -
+OR RN50 COCO 28.5 4.0

baseline +PLM RN50x64 LVIS 31.8 -
+OR LVIS RN50x64 32.2 0.4

baseline + PLM RN50 V3Det 6.9 -
+OR V3Det RN50 7.2 0.3

(b) Effectiveness of score in OR on
COCO.

Setting APnovel APall

baseline + PLM 24.5 38.3
using GT box 34.5 40.5

score = 0.9 28.5 38.5
score = 0.7 27.2 37.8
score = 0.5 23.3 37.5

Table 5: The detailed results of the COCO dataset. We use the 48 and 17 categories from all 80
categories as base and novel classes, respectively, following previous work (Zareian et al., 2021).
The Novel AP and AP metrics indicate the average precision (AP50) for 17 novel classes and all
48+17 classes, respectively. Additionally, PLM and OR represent the pseudo-labeling module and
offline refine. We only report several representative works in this table.

Method Vision
Backbone

Trainable
Backbone Extra Data APnovel

50 APbase
50 AP50

OVR-CNN (Zareian et al., 2021) RN50 ✓ COCO Captions 22.8 46.0 39.9
Detic (Zhou et al., 2022b) RN50 ✓ COCO Captions 27.8 47.1 45.0
VL-PLM (Zhao et al., 2022) RN50 ✓ - 34.4 60.2 53.5
OV-DETR (Zang et al., 2022) ViT-B/32 ✓ - 29.4 61.0 52.7
MEDet (Chen et al., 2022) ViT-B/32 ✓ COCO Captions 32.6 54.0 49.4
CORA (Wu et al., 2023b) RN50x4 ✓ - 41.7 44.5 43.8
F-VLM (Kuo et al., 2023) RN50 ✗ - 28.0 43.7 39.6
RegionCLIP (Zhong et al., 2022) RN50 ✓ COCO Captions (Lin et al., 2014) 26.8 54.8 47.5
RegionCLIP (Zhong et al., 2022) RN50x4 ✓ CC3M (Sharma et al., 2018) 39.3 61.6 55.7
baseline RN50x64 ✗ - 27.4 43.6 39.4
DST-Det (Ours) RN50x64 ✗ - 33.8 56.4 50.5

C MORE VISUALIZATION

Pseudo Labels Visualization. This section presents additional visualization results. Specifically,
we present the pseudo labels generated by our pseudo-labeling module for LVIS (Gupta et al., 2019)
and COCO (Lin et al., 2014) in Fig. 5 and Fig. 6. The visualization results are alongside the ground
truth annotations for comparison. Our pseudo labels can successfully recall the novel class annota-
tions not seen during training. We also present the visual examples from PLM in the V3Det dataset
in Fig. 7.

Improvement Visualization In Fig. 8, we show some visualization results predicted by the baseline
(left) and our method (right). Our method can accurately detect and segment novel classes with
greater precision.

Failure Cases Visualization. In Fig. 9, we present several failure examples on LVIS. Although our
method has introduced the pseudo-labeling module for novel classes during training, many objects
of novel classes cannot be detected or classified correctly.

Boarder Impacts. Our method designs the first dynamic self-training on OVOD via mining the self-
knowledge from the VLM model and RPN heads. Without extra training data or learnable compo-
nents, we obtain significant boosts among strong baseline on COCO and LVIS datasets. Our method
can be easily extended into other related domains, including open vocabulary instance/semantic seg-
mentation. This will be our further work. Rather than achieving STOA results, our goal is to fully
explore the potential of VLM in the detector, which makes our method a generalized approach for
various VLM and detectors.

Limitation. Our proposed approach leverages a better VLMs model to generate high-quality pseudo
labels, where the zero-shot ability of VLMs affects the quality of novel class labels. However, with
more strong VLMs in the future (Radford et al., 2021; Li et al., 2023), our method is more feasible
for large vocabulary applications.
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Figure 5: The visualization of pseudo labels on the LVIS dataset. The green and red boxes in the left
image are the ground truth annotations, and the red boxes in the right image are the pseudo labels.
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Figure 6: The visualization of pseudo labels on the COCO dataset. The green boxes and red boxes
in the left image are the ground truth annotations, and the red boxes in the right image are the pseudo
labels.

_＿t

Figure 7: The visualization of pseudo labels on the V3Det dataset. The green boxes and red boxes in
the left image are the ground truth annotations, and the red boxes in the right image are the pseudo
labels.
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Figure 8: Improvement examples compared to baseline on LVIS dataset. The left is the baseline,
and the right is our method.

Figure 9: Failure case visualization. The red boxes on the left images represent the ground truth
annotations of novel classes; the right images are our predictions.
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Table 6: The detailed results of LVIS dataset. We use rare categories as novel classes and frequent
and common as base categories. The mask average precision of novel classes is our primary metric.
We also report mask AP of all classes for reference.

Method Vision
Backbone

Trainable
Backbone Extra Data APr APc APf APall

ViLD-ens (Gu et al., 2022) RN50 ✓ - 16.6 24.6 30.3 25.5
RegionCLIP (Zhong et al., 2022) RN50 ✓ CC3M (Sharma et al., 2018) 17.1 27.4 34.0 28.2
Detic (Zhou et al., 2022b) RN50 ✓ IN-L (Deng et al., 2009) 19.5 - - 30.9
OV-DETR (Zang et al., 2022) RN50 ✓ - 17.4 25.0 32.5 26.6
DetPro (Du et al., 2022) RN50 ✓ - 19.8 25.6 28.9 25.
F-VLM (Kuo et al., 2023) RN50 ✗ - 18.6 - - 24.2
BARON (Wu et al., 2023a) RN50 ✓ - 22.6 27.6 29.8 27.6
OADP (Wang et al., 2023b) RN50 ✓ - 21.7 26.3 29.0 26.6
GridCLIP (Lin & Gong, 2023) RN50 ✓ - 15.0 22.7 32.5 25
Detic (Zhou et al., 2022b) Swin-B ✓ IN-L (Deng et al., 2009) 23.9 40.2 42.8 38.4
VLDet (Lin et al., 2023) Swin-B ✓ CC3M (Sharma et al., 2018) 26.3 39.4 41.9 38.1
F-VLM (Kuo et al., 2023) RN50x64 ✗ - 32.8 - - 34.9
baseline RN50x64 ✗ - 32.0 32.7 33.1 32.8
DST-Det (Ours) RN50x64 ✗ - 34.5 33.7 33.5 34.6

Table 7: The detailed results of V3Det dataset. We use 6,501 categories as base classes and the
remaining 6,528 as novel classes. We concentrate on the average precision of novel classes at the
threshold (i.e., 0.5 ∼ 0.95). We re-implement F-VLM using the same codebase for reference.

Method Vision
Backbone

Trainable
Backbone Extra Data mAPnovel mAPbase mAPall

Detic (Zhou et al., 2022b) RN50 ✓ IN-L (Deng et al., 2009) 6.7 30.2 17.7
RegionClip (Zhong et al., 2022) RN50 ✓ CC3M (Sharma et al., 2018) 3.1 22.1 12.6
F-VLM (Kuo et al., 2023) RN50x64 ✗ - 7.0 17.2 14.5
DST-Det (Ours) RN50x64 ✗ - 13.5 16.9 18.2
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