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Abstract

In many domains, the most successful AI models tend to be the largest, indeed
often too large to be handled by AI players with limited computational resources.
To mitigate this, a number of compression methods have been developed, including
methods that prune the network down to high sparsity whilst retaining performance.
The best-performing pruning techniques are often those that use second-order cur-
vature information (such as an estimate of the Fisher information matrix) to score
the importance of each weight and to predict the optimal compensation for weight
deletion. However, these methods are difficult to scale to high-dimensional param-
eter spaces without making heavy approximations. Here, we propose the FishLeg
surgeon (FLS), a new second-order pruning method based on the Fisher-Legendre
(FishLeg) optimizer. At the heart of FishLeg is a meta-learning approach to amor-
tising the action of the inverse FIM, which brings a number of advantages. Firstly,
the parameterisation enables the use of flexible tensor factorisation techniques to
improve computational and memory efficiency without sacrificing much accuracy,
alleviating challenges associated with scalability of most second-order pruning
methods. Secondly, directly estimating the inverse FIM leads to less sensitivity
to the amplification of stochasticity during inversion, thereby resulting in more
precise estimates. Thirdly, our approach also allows for progressive assimilation
of the curvature into the parameterization. In the gradual pruning regime, this
results in a more efficient estimate refinement as opposed to re-estimation. We
find that FishLeg achieves higher or comparable performance against two common
baselines in the area, most notably in the high sparsity regime when considering a
ResNet18 model on CIFAR-10 (84% accuracy at 95% sparsity vs 60% for OBS)
and TinyIM (53% accuracy at 80% sparsity vs 48% for OBS).

1 Introduction

The current staggering growth of AI models is threatening to sideline small and medium-sized AI
contributors with limited access to compute resources, who cannot afford to run the largest models
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and must therefore compromise on performance. Large models are also expensive to serve and hard to
deploy on low-power devices. Consequently, there is a growing need for methods that can compress
these models down to a fraction of their original size whilst retaining their performance (Liu and
Wang, 2023), or indeed train models from scratch to be sparse (Liu et al., 2023b).

Some of the most promising directions for neural compression revolve around leveraging second order
information in order to selectively prune least important parameters, while simultaneously updating
those that remain. Several recent studies have shown that second-order parameter importance scores
are more accurate than more rudimentary measures derived from weight magnitudes and/or gradients
(Gale et al., 2019; Sanh et al., 2020), yielding more effective pruning in convolutional (Singh and
Alistarh, 2020; Theis et al., 2018) or transformer (Kurtic et al., 2022; Kuznedelev et al., 2022a)
architectures. Moreover, second-order methods have shown some promise in pruning benchmarks
specifically chosen to “fail current sparse neural networks” (Liu et al., 2023a). However to obtain
state-of-the-art performance, compressed models often require a period of retraining after or during
the process of model compression which necessitates hand-crafted compression recipes to be designed
– usually switching between compression and training phases (Kuznedelev et al., 2022b).

Despite the promise of OBS-derived approaches, they are faced with a severe tradeoff between
scalability and accuracy that has proven hard to navigate. Specifically, both the importance scores
and the weight updates rely on estimating the action of the inverse Hessian H−1 (or, in our case, the
inverse Fisher matrix F−1) on a high-dimensional parameter space (v 7→ H−1v), which inevitably
calls for approximations. Indeed, all recent applications of the OBS framework to pruning have had
to make significant simplifications, such as (i) ignoring correlations between most weights or groups
of weights (Kurtic et al., 2022; Kuznedelev et al., 2022a), even those that belong to the same layer, or
(ii) making low-rank approximations to the Hessian (Frantar et al., 2021; Singh and Alistarh, 2020)
which are as good as the memory they consume. Moreover, in the gradual pruning regime where the
model changes little from stage to stage, what has been learned about the curvature at the current
stage is often unduly discarded in the next one.

In parallel to the advancements of second-order pruning techniques, optimization has also been the
subject of many improvements that tackle similar computational challenges. In particular, the FishLeg
optimizer introduced by (Garcia et al., 2023) attacks the scalability-accuracy dilemma by learning to
directly amortize F−1v products in an easy-to-evaluate Q(λ)v form. This is done by minimizing
an auxiliary loss A(λ) derived from Legendre duality principles, w.r.t. a set of auxiliary parameters
λ (details in Appendix A). In contrast to low-rank approximations of the Fisher matrix that require
hundreds of gradients to be stored, FishLeg allows the progressive distillation of a large number of
gradients into the auxiliary parameter set λ. This direct and gradual learning of F−1 in Q(λ) is
particularly relevant to the gradual pruning setting, where other methods typically have to recompute
F from scratch following pruning, and re-invert it. By means of low-parameter tensor factorization
techniques, the size of λ can be kept within a small multiple of the size of the model itself, enabling
pruning of large models with limited memory. Whilst such memory efficiency can also be attained
through KFAC-based methods (Martens and Grosse, 2015; Wang et al., 2019), FishLeg’s direct
estimation of the inverse Fisher is less sensitive to gradient noise. Moreover, the form of KFAC’s
F−1 follows rigidly from approximate mathematical derivations, whereas FishLeg’s Q(λ) can be
any user-specified positive-definite quadratic form, yielding greater flexibility and accuracy. We
use this flexibility to develop a novel variation on the well-known Kronecker-factored curvature
approximation for dense layers, as well as new approximations for the convolutional layer.

In this work, we introduce the FishLeg Surgeon (FLS) — a novel pruning algorithm that exploits the
inverse curvature estimation machinery of the Fisher-Legendre (FishLeg) optimizer (Garcia et al.,
2023). We build on the Optimal Brain Surgeon (OBS; Hassibi and Stork, 1992; LeCun et al., 1989),
a classical approach to pruning that approximates the network’s loss function in quadratic form to
determine (i) the importance (or saliency) of each weight and (ii) the optimal way of compensating
for their deletion.

Our contributions are:

• We provide the first example of using a second-order optimizer for unstructured and semi-
structured pruning – allowing for the Fisher matrix to be updated online during prun-
ing/training.

• We modify the auxiliary lossA(λ) to facilitate assessment of its convergence and to promote
learning of the full F−1 as required for pruning (as opposed to learning the action of F−1
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on the subspace of momentary noisy gradients, as relevant to the optimization setting of
Garcia et al., 2023).

• We propose a new preconditioner for this (often ill-conditioned) auxiliary loss, and show
analytically that it accelerates convergence asymptotically.

• We propose a new initialization scheme for Q(λ) that leads to better estimation of F−1

especially when it is ill-conditioned.

• We evaluate our proposed method on CIFAR-10 Krizhevsky et al., 2009 and TinyIM Le and
Yang, 2015 datasets with a ResNet18 model in the unstructured and N:M semi-structured
pruning regimes and compare these against readily available baselines.

2 Neural Compression with FishLeg

Algorithm 1 FishLeg Surgeon (FLS)

1: Goal: gradual pruning to fend% sparsity.
2: Choose hyperparameters: damping factor γ, learning rate η, Adam parameters, sparsity schedule
{ft}.

3: Pretrain Q(λ0). ▷ starts with a good estimate of the inverse FIM
4: t← 0, w0 ← w∗

5: while not finished do
6: ▷ Pruning step ◁
7: Select and prune the (ft+1−ft)% least important weights using wt+1 = w2

t /diag(F−1
γ (wt))

and the latest approximation F−1
γ (wt) ≈ Q(λt), where wt is the masked parameters from

the previous sparsity level.
8: for s = 1 : S do
9: L, g ← value and gradient of loss evaluated at the masked w̃s on a data minibatch

10: ▷ Fine-tuning ◁
11: w̃s+1 ← w̃s − η[Q(λ̃s)g] ▷ masked update that preserves current sparsity
12: ▷ Update the inverse FIM approximation, taking into account the new parameters ◁
13: Perform one step of auxiliary loss minimization, yielding a new λ̃s+1.
14: ▷ resume pruning with the fine-tuned parameters and updated inverse FIM estimate ◁
15: wt+1 ← w̃S ,λt+1 ← λ̃S , t← t+ 1

Under the standard assumption that the gradient at the current point w is negligible for a pretrained
model, the OBS formulas for the optimal weight to be pruned wp and the corresponding update δp
can be derived by writing the locally quadratic problem under the constraint that element p of δp is
equal to −wp, which means that wp is zero after applying the update to w. This problem has the
following Lagrangian:

L(δp, λ) = δ⊤p Hδp + λ(e⊤p δp − (−wp)), (6) (1)

where H denotes the Hessian at w and ep is the p-th canonical basis vector.

The inverse FIM used to score and update the weights is typically recomputed at regular intervals in
current second order pruning methods. The reason for this being that OBS derived methods are based
around inverting an estimation of the empirical Fisher. However during pruning, as parameters
are removed and others updated, the inverse FIM estimation becomes increasingly inaccurate,
necessitating a complete re-estimation of the empirical Fisher before its explicit inversion.†

Here, we reason that FishLeg’s parametric estimation of the inverse FIM, Q(λ), can be actively
updated in a rolling fashion between consecutive pruning steps by simply performing a certain number
of auxiliary loss minimization steps. Crucially, by amortizing the re-computation of the inverse FIM
in this way, we can afford to update our model directly (for which we use the FishLeg optimizer, also
based on the running estimate Q(λ)), as outlined in Algorithm 1. Hence, unlike previous approaches
to gradual second-order pruning, we need not re-estimate and re-invert the Fisher matrix from scratch
after each pruning step – we simply refine our current estimate.

†Indeed, much of the advancements of OBS methods revolve around efficient inversion techniques.
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2.1 Memory efficient parameterization of the inverse Fisher approximation

For scalability, we approximate F−1 in block-diagonal form, with each layer contributing one block.
Note that these blocks are orders of magnitude larger than the ones used in previous second-order
approaches that implemented direct inversion (e.g. Kurtic et al., 2022 used blocks of size 50).

Our choice of structure for Q(λ) is slightly more constrained by our pruning objective than it is for
the FishLeg optimizer: we require efficient evaluation of not only Qv products (which essentially
sketch the curvature in the direction of steepest descent), but also diag(Q) (required in Equation 28).
For dense layers with ni inputs and no outputs, we parameterize the corresponding inverse Fisher
block as

Q(λ) ≜ D(LL⊤ ⊗RR⊤)D (2)
where L ∈ Rno×no and R ∈ Rni×ni are two parameter matrices, D is a diagonal matrix with
(ni + 1)no parameters, and ⊗ denotes the Kronecker product. This construction is such that, for
V ∈ Rno×ni ,

Q(λ)vec(V ) = D ⊙ vec(LL⊤(V ⊙ D̄)RR⊤) (3)
with the (unusual) convention that vec(·) vectorizes row-wise (corresponding to a no-copy reshape
in numerical code), and ⊙ denotes elementwise (Hadamard) product. Here, D̄ ∈ Rno×(ni+1) is the
un-vectorized version of the diagonal of D. Similarly,

diag(Q) = diag(D)2 ⊙ (diag(LL⊤)⊗ diag(RR⊤)) (4)

can be evaluated efficiently, with diag(LL⊤) = (L⊙ L)(1, . . . , 1)⊤. Note that the inclusion of D
makes it more expressive than the standard KFAC approximation which is limited to the Kronecker
product. For completeness in Appendix F, we compare the above parameterisation with a pure
diagonal parameterisation and also a more restrictive block diagonal structure similar to other second-
order pruning methods (i.e. oBERT & M-FAC).

For convolutional layers, we follow a similar tensor factorization strategy. Filter parameters are
tensors of dimensions no(output channels)× ni(input channels)×K(kernel size). Whilst we could
parameterize the inverse Fisher block as a 3-way Kronecker product, Grosse and Martens (2016)’s
KFAC derivation for convolutional layers suggests combining together the input and kernel-size
dimensions. We therefore use the same structure as in Equation 2, but with R of size niK and D of
size noniK.

2.2 Initialization of Q

Our experiments with FishLeg have revealed that the minimization of the auxiliary loss is very
sensitive to initialization – to the point that getting it wrong can yield useless estimates of F−1

γ . In
the context of neural network optimization, Garcia et al. (2023) advocated an identity initialization
Q0 = αI . To choose the value of α, they observed that this identity initialization implied that
the FishLeg update wt+1 ← wt − ηQ(λ)∇wL would initially correspond to SGD. Thus, given a
learning rate ηSGD known to work well for SGD, they set α ≜ ηSGD/η. However, in the context of
pruning this rationale no longer applies; we therefore revisited the choice of α.

We found that good pruning results could only be obtained for sufficiently large α. To understand this,
we studied the idealized dynamics of auxiliary loss gradient descent (Figure 1; see also Appendix C).
Let F = UΞU⊤ be the eigendecomposition of the Fisher matrix, with Ξ = diag(ξ1, . . . , ξn).
Assuming u ∼ N (0, In), the auxiliary loss (Equation 9) reduces to A(λ) = 1

2Tr(QFγQ)− Tr(Q)).
Expressing Q in the eigenbasis of F as Q = UβU⊤, the gradient flow for this deterministic loss
function takes the form β̇ = −(Ξ + γI)β + I with β(0) = αI . It is then easy to see that β will
remain diagonal throughout, and that the ith eigenvalue of Q has the following dynamics:

(ξi + γ)−1︸ ︷︷ ︸
time constant

dβi

dt
= −βi + (ξi + γ)−1︸ ︷︷ ︸

optimal steady state

with βi(0) = α. (5)

Thus, the eigenvalues of Q – all initially equal to α – converge at very different speeds depending
on their optimal steady states: eigenvalues that must reach large (resp. small) values evolve slowly
(resp. fast). We therefore conclude that a good initialization is to set α to be as large as the largest
eigenvalues of F−1

γ , namely (min{ξi}+ γ)−1 ≈ γ−1. This way, the eigenvalues of Q that would
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Figure 1: The initialization of Q(λ) matters much. In this toy experiment, the true Fisher matrix
(n = 100) was chosen so that its ith eigenvalue is ξi ≜ 1/i2, and the damping parameter γ was
set to 10−3. Thus, the eigenvalues of F−1

γ lie roughly in the [1 − 1000] range. The auxiliary loss
A(Q) = 1

2Tr(QFQ)− Tr(Q) (left) was minimized by gradient descent w.r.t. the Cholesky factor of
Q(λ), initialized such that Q(λ) = I (black) or Q(λ) = γ−1I = 1000× I (red). The learning rate
was optimized separately for each case. This simulation shows that it is clearly better to initialize Q to
be large rather than small. Indeed, a simple derivation shows that each eigenvalue βi of Q approaches
its target 1/(ξi + γ) at a speed proportional to (ξi + γ) (Equation 5). In other words, the eigenvalues
of Q that must end up large are also those that evolve the slowest. It, therefore makes sense to
initialize them to be large so they have less to travel; the eigenvalues that must end up small will
become small rapidly anyway. The right panels illustrate this behaviour by plotting the eigenvalues
of Q against their respective targets, at regular intervals during optimization (color-coded), for both
initialization schemes. The auxiliary loss is minimized when βi = 1/(ξi + γ), i.e. when the dots lie
along the identity line (dashed grey).

normally slowly evolve towards γ−1 are positioned there from the outset, and the eigenvalues that
are set to decrease do so rapidly. Figure 1 illustrates this behaviour and shows that large initialization
of Q (with α ≈ γ−1) results in faster minimization of the auxiliary loss.

2.3 Preconditioning of the auxiliary loss

Learning the full F−1 is a hard problem when F is ill-conditioned, as the auxiliary loss inherits
this ill-conditioning. Our theoretical analysis of this problem (Appendix C) has led to the discovery
of a good preconditioner which only costs a single additional Q(λ)v product per iteration. This
preconditioner greatly accelerates asymptotic convergence of the auxiliary loss (Figure 5A), leading
to better estimates of the inverse FIM.

3 Empirical Investigations

In order to validate our approach for pruning and training in the same breath using a second order
optimizer such as FishLeg, we provide initial studies with a ResNet18 model with a single layer
classification layer on CIFAR-10 and TinyIM. We consider two pruning approaches that are common
in the field: unstructured and semi-structured pruning. Across all experiments we consider the same
dense models trained with Adam to 83.4% test accuracy on CIFAR-10 and 55.4% test accuracy on
TinyIM. Results are reported as mean over 3 random seeds. All experiments were run on a single
NVIDIA GeForce RTX 2080 GPU with 8GB of VRAM.

In addition to the results presented in this section, in Appendix F we provide extensive ablation
studies for the methods introduced in Section 2 – including a direct comparison between the block
diagonal approximation used in OBS methods across multiple block sizes.

3.1 Unstructured Pruning

Unstructured pruning consists of choosing parameters across the entire network to prune and achieve
some non-uniformly sparse model which maintains performance on a task. In these experiments, the
non-zero parameters were fine-tuned for 1 epoch (with SGDm for magnitude and OBS) after each
pruning step following a exponential sparsity schedule. Figure 2 displays a marked improvement
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Figure 2: Test accuracy as a function of model sparsity for ResNet18 on CIFAR-10 (left) and TinyIM
(right). Different pruning frameworks are used, which are magnitude pruning (blue), OBS (orange)
and FLS (green).

over magnitude and OBS pruning methods across both CIFAR-10 and TinyIM experiments – with
only a reduction of ∼ −2.5% from dense performance at 99% sparsity on CIFAR-10. In addition to
this, FLS benefits from being able to continually adapt its second-order information between pruning
steps. By amortizing the overhead in recomputing the empirical FIM we afford efficient second-order
updates during the finetuning phases – which, combined with some potential effect from Occam’s
razor (Blumer et al., 1987), explains the slight increase in performance across the experiment.

3.2 Semi-Structured Pruning

Method Test Accuracy (%)
CIFAR-10 TinyIM

Magnitude 80.28 47.53
OBS 81.50 52.04
FLS (Ours) 84.03 51.09

Figure 3: 2:4 semi-structured pruning performance
of ResNet18 model finetuned on CIFAR-10 and
TinyIM data.

Semi-structured (N:M) pruning involves prun-
ing N parameters in each block of M parame-
ters. This repeated pattern can be readily applied
to Sparse Tensor Cores which perform calcula-
tions on a compressed version of a sparse ma-
trix. Here we consider the setting of 2:4 sparsity
which results in a 50% sparse network. Simi-
lar to the unstructured setting, all models were
pruned with an exponential schedule up to a 2:4
pattern and retrained for 1 epoch after each prun-
ing step. Our method achieves greater or similar
performance when compared to the baselines, and even improves upon the dense model performance
in the case of CIFAR-10.

4 Discussion, limitations and future work

We have introduced a new perspective on second-order pruning that blurs the lines between second-
order optimization and compression. We have identified challenges with the naive approach of
using an “optimization" sketch of the FIM for compression and addressed these with expanded
parameterisations, which we have justified theoretically and thorough ablation studies. In addition,
we have provided empirical evidence which demonstrates our method on ResNet18 with CIFAR-10
and TinyIM.

Despite this, pruning with FishLeg has several limitations. One of the key assumptions in our approach
is that the inverse Fisher F−1

γ (w⋆) can be well approximated by a specific form of positive definite
matrix Q(λ); however, the structure chosen for Q is largely dictated by scalability requirements, and
may not be appropriate under certain conditions. We have proposed memory-efficient factorizations
of Q which we have found effective for dense and convolutional layers, and we leave the development
of other types of neural network layers to future research. Indeed, it remains to be seen whether these
results scale to larger models, other compression techniques (i.e., fully structured, quantisation, a
mixed setting etc.) and to a wider variety of layers. We hope that further research in these areas will
likely extend and refine the capabilities of the proposed method.
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A Fisher-Legendre (FishLeg) Optimizer

FishLeg (Garcia et al., 2023) is a scalable second-order optimizer that approximates the natural
gradient F−1∇wℓ(w,D) based on the following insights. Let w be a fixed set of model parameters.
Consider the regularized cross entropy between p(D|w) and p(D|w + δ),

Hγ(δ) = ED∼p(D|w)ℓ(w + δ,D) + γ

2
∥δ∥2, (6)

where γ > 0 is a small damping parameter. The Legendre-Fenchel conjugate ofHγ(δ) is defined as

H⋆
γ(u) ≜ min

δ
Hγ(δ)− u⊤δ with minimizer denoted by δ̃γ(u). (7)

Garcia et al. were able to prove that, if the negative log-likelihood ℓ(w,D) = − log p(D|w) is twice
differentiable, then the inverse damped Fisher information matrix exists and is equal to

F−1
γ ≜ [F + γI]−1 = ∇uδ̃γ(0). (8)

FishLeg meta-learns a parametric approximation δ(u,λ) of δ̃γ(u), by minimizing the auxiliary
loss A(λ,u) ≜ Hγ(δ(u,λ))− u⊤δ(u,λ) w.r.t. meta-parameters λ, as prescribed by Equation 7.
Importantly, Equation 8 shows that one only needs to learn the local behaviour of the vector field
δ̃γ(u) around small u; thus, Garcia et al. directly parameterized its (symmetric, positive definite)
Jacobian Q(λ) at u = 0, corresponding to the choice δ(u,λ) ≜ Q(λ)u. Furthermore, considering
the limit of small u and averaging over a relevant distribution (more on this below and in Appendix B),
the auxiliary loss becomes

A(λ) ≜ Eu

{
1

∥u∥2

[
1

2
u⊤Q(λ)FγQ(λ)u− u⊤Q(λ)u

]}
(9)

which can be estimated and differentiated efficiently in a number of ways (details in Section 2).

Practical note: as Q(λ) converges towards F−1
γ , the auxiliary loss as defined by Equation 9 converges

towards
〈
−u⊤F−1

γ u/∥u∥2
〉
, which is problem-dependent; this makes it hard to assess the quality of

our inverse Fisher estimation. We therefore assess convergence by computing a slightly modified
auxiliary loss where we drop the 1

2 factor; this should converge to zero.

Taking the gradient of Equation 9 w.r.t. λ makes is clear that Q(λ) will learn to approximate the action
of F−1

γ on the subspace spanned by the u’s. Given their application to natural gradient optimization,
Garcia et al. took those u’s to be stochastic gradients of the model’s primary loss function. For our
pruning purposes, however, Equation 27 suggests that we must accurately estimate the action of F on
the entire parameter space; we will therefore work with a more isotropic distribution of u (Section 2).

Directly estimating the inverse Fisher matrix, and doing so in this way, brings a number of advantages.
First, the FishLeg approach is flexible: one can specify any form of Q(λ), and in particular combine
structured approximations obtained through mathematical derivations (as in e.g. KFAC; George et al.,
2018; Grosse and Martens, 2016; Martens and Grosse, 2015) with a variety of parametric adjustments
for greater expressiveness. We give examples of such choices in Section 2.1. Second, the FishLeg
approach is less biased than KFAC and related methods. These methods start by assuming that F
has a certain structure (e.g. block diagonal), obtain a good approximation of F conforming to this
structure, and then invert it. One expects both systematic errors as well as stochasticity in the estimate
of F to propagate to F−1. In contrast, FishLeg ‘fits’ a parametric approximation to F−1 directly,
conveniently avoiding inversion. Relatedly, a key property of Equation 9 is that it is not biased by
stochasticity in the estimate of Fγ (Appendix D; Figure 4) – unlike other seemingly sensible auxiliary
loss functions such as Eu∥Q(λ)F̂γu− u∥2 or Eu∥F̂γQ(λ)u− u∥2 whose quadratic terms in F̂γ

do survive averaging.

B Auxiliary loss derivation

Starting from the auxiliary loss definition given in Equation 9 and in Equation 15 of Garcia et al.
(2023), we can expand the first term with a Taylor Expansion as:

Hγ(δ(u,λ)) = Hγ(0) +∇δ̄Hγ(θ, δ)|δ̄=0δ +
1

2
δ
⊤∇2

δ̄Hγ(θ, δ)|δ̄=0δ. (10)
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As stated in Appendix A.2 of Garcia et al. (2023), each term in this Taylor expansion can be expressed
as:

∇δHγ(θ, δ)|δ=0 = ED∼p(D|θ)∇θℓ(θ,D) + 0 = 0 (11)

∇2
δHγ(θ, δ)|δ=0 = ED∼p(D|θ)∇2

θℓ(θ,D) + γI = I(θ) + γI = Fγ . (12)

where the 0th order term follows from the fact that we define the minimum at δ = 0, the 1st order
term is zero since we are at a minimum and the 2nd order term characterizes the Fisher information
matrix.

Using the above definitions, one can arrive at,

A(λ,u) = 1

2
δ(u,λ)⊤Fγδ(u,λ)− u⊤δ(u,λ) (13)

where the second term in Equation 9 is unchanged.

C Analysis of FishLeg’s auxiliary loss & preconditioning

In this section, we analyze the minimization dynamics of a generalized version of FishLeg’s auxiliary
loss:

A(Q) = ⟨1
2
u⊤Q⊤PFγQu− u⊤Q⊤Pu⟩u∼N (0,I) (14)

where F is the model’s (damped) Fisher information matrix, P is a symmetric positive definite matrix,
and Q is our approximation of F−1

γ . For simplicity, we will assume that the parameterization of Q is
non-limiting, i.e. we will consider the minimization of A directly as a function of Q.

This loss can be evaluated analytically:

A(Q) =

〈
Tr

(
1

2
Q⊤PFγQuu⊤ −Q⊤Puu⊤

)〉
u∼N (0,I)

(15)

= Tr
[(

1

2
Q⊤PFγQ−Q⊤P

)〈
uu⊤〉

u∼N (0,I)

]
(16)

= Tr
(
1

2
Q⊤PFQ−Q⊤P

)
(17)

The optimal Q⋆ must satisfy

0 =
∂A
∂Q

∣∣∣∣
Q=Q⋆

= P (FQ⋆ − I) (18)

Therefore, if P and Fγ are both invertible, then Q⋆ = F−1
γ as desired. To understand how quickly Q

will converge to this solution, it is useful to analyze the gradient flow

dQ

dt
= −P (FγQ(t)− I) (19)

with initial condition Q(0) = αI . Let F = UΛU⊤ be the eigendecomposition of the Fisher
matrix, with Λ = diagm(λ1, . . . , λn) and U⊤U = UU⊤ = I . We will assume that P has the same
eigenvectors as F , i.e. P = Udiagm(p1, . . . , pn)U

⊤. Rewriting the above gradient flow in the
eigenbasis of F , we obtain

d

dt
(U⊤Q(t)U) = −U⊤P (FγQ− I)U (20)

= −U⊤Udiagm(p1, . . . , pn)U
⊤(U(Λ + γI)U⊤Q− I)U (21)

= −diagm(p1, . . . , pn)((Λ + γI)U⊤QU − I) (22)

We see that if U⊤QU is diagonal at time t, it will remain diagonal. Given that U⊤QU = U⊤(αI)U =
αI is diagonal, we conclude that at any time t, U⊤Q(t)U = diagm(β1(t), . . . , βn(t)). Thus,
Equation 22 boils down to a set of n decoupled, scalar flows,

dβi

dt
= −pi [(λi + γ)βi − 1] with βi(0) = α (23)
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Figure 4: Assessing FishLeg’s inverse curvature estimation in a controlled setting. In this
figure, the true Fisher matrix F ∈ R100×100 is constructed to have a random orthonormal eigenbasis
and eigenvalues λi ∝ e−i/30. All results are averaged over 20 independent realizations of the
corresponding experiment with different random seeds. (A): standard affine-invariant Riemannian
distance between FishLeg’s Q and F−1

γ (γ = 0.01), as a function of the number of data mini-batches
of size m consumed so far. Each Adam step of auxiliary loss minimization consumes one minibatch.
In this case, we use a full parameterization Q = LL⊤ that contains the solution F−1

γ ; in that case,
FishLeg’s inverse curvature estimation is consistent and the error goes to zero. As a baseline, we
show the behaviour of a simple but biased estimator that estimates Fγ on each new minibatch, inverts
that noisy estimate, and averages the result over minibatches; inverting noisy estimates yields a bias
that persists asymptotically. (B-D): In these panels, the inverse Fisher is estimated in structured form
(B: diagonal; C: block-diagonal, 5 blocks; D: Kronecker product, (5× 5)⊗ (20× 20). This is done
either by FishLeg assuming a correspondingly structured form for Q (red), or by (i) approximating
Fγ in structured form for each minibatch (for the Kronecker approximation, we use a permuted SVD
to find the nearest Kronecker product in the least-squares sense; Van Loan and Pitsianis (1993)), (ii)
averaging over minibatches (for the Kronecker approximation the two factors are averaged separately,
as in KFAC), and (iii) inverting the result (black; note that in this case, the inverse inherits the
structure). We report the squared error between Qu and F−1

γ u, averaged over u ∼ N (0,Σu), and
normalized by the average norm of F−1

γ u. Here, to reflect the need of accurately estimating the
action of F−1

γ on the least salient parameter dimensions, we have chosen Σu = F−1.

These equations are more easily interpreted when rewritten as

β⋆
i

pi

dβi

dt
= −βi + β⋆

i (24)

where β⋆
i = (λi + γ)−1 is the corresponding eigenvalue of the solution Q⋆ (the “target eigenvalues”).

The solution to these dynamics is

βi(t) = β⋆
i + (α− β⋆

i ) exp

(
−t
τi

)
with τi ≜

β⋆
i

pi
. (25)

For P = I , i.e. pi = 1, we recover the result of the main text (c.f. Figure 1): βi converges
exponentially to its target β⋆

i , but on a timescale τi proportional to β⋆
i itself. This is a problem when

Fγ is poorly conditioned, such that there is a broad range of β⋆
i : in this case, some βi’s will converge

rapidly, and some others will converge very slowly.

Equation 25 suggests a solution based on a judicious choice of the preconditioner P . If somehow we
could precondition the loss with P = F−1

γ , then pi = β⋆
i and therefore τi = 1 for all i – this case

we have rapid uniform convergence of the inverse Fisher in all directions. While we do not know
F−1
γ (indeed this is what we are trying to learn . . . ), we do know that Q(t) is supposed to converge

(albeit slowly) towards F−1
γ . Thus, we propose a simple time-dependent preconditioner P (t) = Q(t).

Empirically, we do find that this choice leads to better asymptotic convergence of the auxiliary loss,
as illustrated in Figure 5A. Note that this only costs a single additional Qv product in every iteration.

D FishLeg inverse curvature estimation: flexible and accurate

In this section, we report on a series of simple experiments that show that FishLeg’s inverse curvature
estimation is typically more accurate and flexible than more conventional approaches.
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First, Figure 4A shows that – when the parameterization of FishLeg’s Q is sufficiently expressive to
include F−1

γ , Q converges to F−1
γ as desired, despite only having access to stochastic estimates of F .

This is because, using standard unbiased estimates of the Fisher matrix (or, practically, Fisher-vector
products) on mini-batches in Equation 9, FishLeg’s auxiliary loss and its gradient are also unbiased.
With sufficiently small learning rate, we therefore expect Q to converge to the inverse damped Fisher
solution. In contrast, a more naive scheme that computes an average of inverses of noisy Fisher
estimates (‘est. – inv. – avg.’ in Figure 4A) yields a bias that persists asymptotically.

Second, when F−1
γ lies outside the domain of the structured approximation (e.g. when it is not

exactly a single Kronecker product, or a block-diagonal matrix), there is an advantage to directly
approximating F−1

γ in the desired structured form Q (FishLeg’s strategy), rather than approximating
F in such a form and then inverting the result. For one, (Garcia et al., 2023) had already argued
that the former is more flexible than the latter, because one can use structured forms that need not
be easily inverted (indeed FishLeg does not invert anything). Here, we show that even when the
structured form is easily inverted, FishLeg still has a marked advantage (Figure 4B-D). In particular,
the auxiliary loss allows the specification of a distribution of vectors u (specifically, their covariance)
to promote learning the action of F−1

γ on select directions in parameter space. This is not possible in
a more conventional approach whereby the Fisher matrix is first approximated in structured form,
then averaged, and finally inverted.

E Second-order Pruning: OBS-based methods

Most second-order pruning methods are based on the Optimal Brain Surgeon (OBS; Hassibi and
Stork, 1992). OBS begins with a quadratic approximation of the loss function around the pre-trained
parameter set w⋆, typically assumed to be a minimum of the loss,

δL(δw) ≜ L(w⋆ + δw)− L(w⋆) ≈ 1

2
δw⊤H(w⋆)δw, (26)

where H(w⋆) is the Hessian of the loss at w⋆. Here, we will approximate the Hessian by the Fisher
F (w⋆); most other works use the empirical Fisher matrix instead. This quadratic approximation
leads to an analytical solution to the problem of optimally compensating for the deletion of a given
weight wi:

δw⋆ = − w⋆
i

[F−1(w⋆)]ii
F−1(w⋆)ei (27)

where ei is the ith canonical basis vector (Hassibi and Stork, 1992). The corresponding (minimal)
increase in loss resulting from the deletion of weight wi is taken as its importance score:

ρi =
w2

i

2[F−1(w⋆)]ii
. (28)

These equations have also been extended to handle the semi-structured pruning setting whereby small
blocks of weights are treated as single units (Kurtic et al., 2022).

Existing second-order pruning methods mostly differ in the way they estimate F−1v products to
compute Equations 27 and 28. All scalable methods make a block-diagonal approximation for F .
WoodFisher (Singh and Alistarh, 2020) and oBERT (Kurtic et al., 2022) partition the parameter space
into small blocks assumed to be independent, and use the Woodbury identity to recursively update an
estimate of the inverse empirical Fisher F̂−1

B for each block B. These approaches have substantial
memory requirements (O(|B|n), where |B| is the block size and n is the total number of parameters
in the model). M-FAC (Frantar et al., 2021) modifies this recursion to operate directly on F̂−1

B v

products, in a way that obviates the need for storing F̂−1
B (some parts of the computation can be

cached and reused for any v). This is typically much slower but requires less memory. In our work,
FLS too approximates F−1 in block-diagonal form, but with much larger blocks corresponding to
entire layers, and with blocks structured to guarantee computational and memory efficiency.

F Ablation Experiments

For the experiments discussed in this section, a simple linear layer with n inputs and a single output
is used to perform controlled ablations and compare various approximations of the inverse Fisher
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Figure 5: Ablation experiments on synthetic data in a toy setup to show: (A) the utility of
preconditioning the auxiliary loss, (B) the predicted quality of the approximated Fisher in different
scenario’s, (C) the one-shot pruning performance of various Fisher approximations (including other
baselines) and (D) the effect of implementing a block diagonal FishLeg approximation and it’s
comparison to oBERT (an OBS-derived approach) at various block sizes.

and their impact on one-shot pruning. In Figure 5A-C we choose n = 100 and in Figure 5D we
set n = 500. The layer weights are drawn from N (0, 1/n), and inputs are drawn from N (0,Σx),
where Σx is a random covariance matrix with eigenvalues {λi ∝ e−i/10}. Results are reported as
mean ± s.e.m. over random seeds. Across all experiments, a batch size of 100 is chosen along with
a damping parameter γ = 0.01. Note that in this toy example, the Fisher matrix is F = Σx, and
does not depend on the weights. Figure 5A shows the effect of preconditioning the FishLeg auxiliary
loss using the momentary approximation Q(λ) of the inverse Fisher matrix. We observe that this
preconditioning does indeed lead to faster asymptotic convergence. This is shown here for the ‘full’
approximation Q = LL⊤, which – in this case – is as expressive as the Kronecker parameterization
of dense layers we have used in the experiments from the main text.

Figure 5B displays the quality of approximation of the inverse damped Fisher matrix, as measured by
FishLeg’s auxiliary loss after convergence†, for various parameterizations of Q(λ). We compare the
‘full’ parameterization Q = LL⊤ (orange), a positive diagonal parameterization (purple), and a set of
positive-definite block-diagonal approximations with various block sizes (blues). These results show
very clearly that a full approximation can achieve a much lower auxiliary loss when compared to less
powerful approximations in this case.

Following from this, Figure 5C is reporting the one-shot pruning performance (test MSE) for the
various FishLeg parameterizations shown in Figure 5B, as well as for magnitude pruning (black),
MFAC (m = 10; green) and ‘exact FLS’ with F = Σx appropriately masked and inverted before each
pruning step (red). One can observe that the full approximation achieves a far closer performance
to the ‘exact’ result across all other baselines in this study. Note that in this case, the ‘exact FLS’
characterises the limit of performance for second-order pruning methods. In this setting, we therefore
find a strong correlation between the quality of the iFIM approximation (as measured by Garcia et al.
(2023)’s auxiliary loss after convergence) and one-shot pruning performance (comparing Figure 5B
and Figure 5C). In particular, block-diagonal approximations (as used by OBS/oBERT) perform

†Where the Adam learning rate is separately tuned for each approximation.
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worse than the Kronecker-factored approximation (in this case also exact) and, indeed not much
better than magnitude pruning or a simple diagonal approximation of the iFIM. Likewise, FLS with a
Kronecker-factored Q performs better than MFAC (with rank parameter m generously set to 10, i.e.
10% of the parameter count, which would normally be intractable memory-wise).

Finally, Figure 5D provides a comparison between FLS with block-diagonal parameterization and
oBERT for various block sizes (5, 10, 20, 50). In particular, this ablation study shows benefits of
directly estimating the inverse FIM than estimating the FIM and inverting it. oBERT utilizies the
WSM formula for effective estimation without explicit inversion, resulting in iterative update of the
inverse of moving average for the empricial Fisher matrix. In the top panels, we present one-shot
pruning performance (test MSE) as a function of sparsity for the two methods. In the middle panels,
the standard affine-invariant Riemannian distance between the masked approximate block-diagonal
inverse and the true masked Fisher inverse are shown, for each method. In the bottom panels, the
wall-clock time as a function of sparsity is shown. For these experiments, oBERT uses 512 gradients
at each pruning step, whereas FLS performs 20 steps of auxiliary loss minimization between pruning
updates. These results show a systematic improvement in the inverse FIM estimates when using FLS,
which implies that directly approximating the inverse Fisher in block-diagonal form (FLS) is better
than approximating the Fisher in block-diagonal form before inverting each block (oBERT).

G Additional Experimental Details

Across all experiments we used a batch size of 128 and additionally applied standard flipping and
cropping augmentations. Table 1 show the hyperparameter values used for each of the experimental
setups, for the FishLeg optimizer. For other methods, we used an implementation of SGDm (with
learning rate set at 1e − 3 and a momentum value of 0.9 and all others set at the PyTorch SGDm
default) which preserved the sparsity map. More details of the experiments can be found in Section 3.

Hyperparameter CIFAR-10 TinyIM
Batch Size 128 2048

η 10−3 10−2

α 10−5 10−5

ηaux 10−5 10−6

β 0.9 0.9
Damping γ 10−3 1.0

Scale 10 1
Warmup 100 100

Table 1: Optimal hyperparameter values for FishLeg, identified as the result of a grid search. These
hyperparameters were chosen to minimise the training loss across pruning. Any parameters not
shown are left as default values in the FishLeg optimizer library.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims made in the abstract and introduction are reflected in the paper. To
the best of our knowledge we show the first example of a tractable second-order optimizer
being used for unstructured and semi-structured pruning. We provide explanations and
extensive ablations to explain the modifications made to the FishLeg estimator and we then
study these modifications on CIFAR-10 and TinyIM in Section 3.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed in Section 4.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We do not consider any formal theoretical proofs. Nevertheless, theoretical
modifications to FishLeg are discussed and motivated in the main body and Appendices.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all details about architecture, datasets, and hyperparameters in the
main text and appendix. Code will be made available in the final version of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper adheres to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper is a first investigation into pruning techniques with a second-
order optimizer. The experiments, although not small, are still at a proof-of-concept stage.
Therefore this paper does not contain any direct societal impact.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: the paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: we provide a reference for the datasets used in this paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: the paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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