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ABSTRACT

Previous research has shown that fully-connected neural networks with small
initialization and gradient-based training methods exhibit a phenomenon known
as condensation during training. This phenomenon refers to the input weights of
hidden neurons condensing into isolated orientations during training, revealing
an implicit bias towards simple solutions in the parameter space. However, the
impact of neural network structure on condensation remains unknown. In this
study, we study convolutional neural networks (CNNs) as the starting point to
explore the distinctions in the condensation behavior compared to fully-connected
neural networks. Theoretically, we firstly demonstrate that under gradient descent
(GD) and the small initialization scheme, the convolutional kernels of a two-layer
CNN condense towards a specific direction determined by the training samples
within a given time period. Subsequently, we conduct a series of systematic
experiments to substantiate our theory and confirm condensation in more general
settings. These findings contribute to a preliminary understanding of the non-linear
training behavior exhibited by CNNs.

1 INTRODUCTION

As large neural networks continue to demonstrate impressive performance in numerous practical
tasks, a key challenge has come to understand the reasons behind the strong generalization capabilities
often exhibited by over-parameterized networks (Breiman, 1995; Zhang et al., 2021). A commonly
employed approach to understanding neural networks is to examine their implicit biases during the
training process. Several studies have shown that neural networks tend to favor simple solutions. For
instance, from a Fourier perspective, neural networks have a bias toward low-frequency functions,
which is known as the frequency principle (Xu et al., 2019; 2020) or spectral bias (Rahaman et al.,
2019). In the parameter space, (Luo et al., 2021) observed a condensation phenomenon, i.e., the input
weights of hidden neurons in two-layer ReLU neural networks condense into isolated orientations
during training in the non-linear regime, particularly with small initialization. Fig. 1 presents an
illustrative example in which a large condensed network can be reduced to an effective smaller
network with only two neurons. Based on complexity theory (Bartlett and Mendelson, 2002), as
the condensation phenomenon reduces the network complexity, it might provide insights into how
over-parameterized neural networks achieve good generalization performance in practice. (Zhang
and Xu, 2022) drew inspiration from this phenomenon and found that dropout (Hinton et al., 2012;
Srivastava et al., 2014), a commonly used optimization technique for improving generalization,
exhibits an implicit bias towards condensation through experiments and theory. Prior literature
has predominantly centered on the study of fully-connected neural networks, thereby leaving the
emergence and properties of the condensation phenomenon in neural networks with different structural
characteristics inadequately understood. Consequently, this paper aims to investigate the occurrence
of condensation in convolutional neural networks (CNNs).

The success of deep learning relies heavily on the structures used, such as convolution and attention.
Convolution is an ideal starting point for investigating the impact of structure on learning outcomes,
as it is widely used and has simple structure. To achieve a clear condensation phenomenon in CNNs,
we adopt a strategy of initializing weights with small values. Small weight initialization can result in
rich non-linearity of neural network (NN) training behavior (Mei et al., 2019; Rotskoff and Vanden-
Eijnden, 2018; Chizat and Bach, 2018; Sirignano and Spiliopoulos, 2020). Over-parameterized NNs
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with small initialization can, for instance, achieve low generalization error (Advani et al., 2020)
and converge to a solution with maximum margin (Phuong and Lampert, 2020). In contrast to
the condensation in fully-connected networks, each kernel in CNNs is considered as a unit, and
condensation is referred to the behavior, that a set of kernels in the same layer evolves towards the
same direction.

Figure 1: Illustration of condensation. The color and its intensity of a line indicate the strength of
the weight. Initially, weights are random. Soon after training, the weights from an input node to all
hidden neurons are clustered into two groups, i.e., condensation. Multiple hidden neurons can be
replaced by an effective neuron with low complexity, which has the same input weight as original
hidden neurons and the same output weight as the summation of all output weights of original hidden
neurons.

Understanding the initial condensation can benefit understanding subsequent training stages (Fort
et al., 2020; Hu et al., 2020; Luo et al., 2021; Jiang et al., 2019; Li et al., 2018). Previous research
has shown how neural networks with small initialization can condense during the initial training
stage in fully-connected networks (Maennel et al., 2018; Pellegrini and Biroli, 2020; Lyu et al., 2021;
Zhou et al., 2022; Chen et al., 2023; Wang and Ma, 2023). This work aims to demonstrate the initial
condensation in CNNs during training. A major advantage of studying the initial training stage of
neural networks with small initialization is that the network can be approximated accurately by the
leading-order Taylor expansion at zero weights. Further, the structure of CNNs may cause kernels
in the same layer to exhibit similar dynamics. Through theoretical proof, we show that CNNs can
condense into one or a few directions within a finite training period with small initialization. This
initial condensation serves an important role in resetting the neural network of different initializations
to a similar and simple state, thus reducing the sensitivity of initialization and facilitating the tuning
of hyper-parameters of initialization. Our contribution is summarized as follows:

• Under gradient descent and the small initialization scheme, we demonstrate in theory that the
convolutional kernels of two-layer CNNs exhibit the initial condensation phenomenon. This
phenomenon reveals that the kernels tend to cluster toward a specific direction determined
by the training samples within a given training period.

• Our experimental settings are designed to be more general than the counterparts in the
theoretical analysis. Specifically, we demonstrate that kernel weights within the same layer
of a three-convolution-layer CNN still tend to cluster together during training when subjected
to the small initialization and gradient-based training methods and partly remain till the end.
This observation is consistent with the initial condensation phenomenon observed in our
theory, and it reinforces our understanding of the non-linear training behavior exhibited by
CNNs.

2 RELATED WORKS

For fully-connected neural networks, it has been generally studied that different initializations can
lead to very different training behavior regimes (Luo et al., 2021), including linear regime (similar to
the lazy regime) (Jacot et al., 2018; Arora et al., 2019; Zhang et al., 2020; E et al., 2020; Chizat and
Bach, 2019), critical regime (Mei et al., 2019; Rotskoff and Vanden-Eijnden, 2018; Chizat and Bach,
2018; Sirignano and Spiliopoulos, 2020) and condensed regime (non-linear regime). The relative
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change of input weights as the width approaches infinity is a critical parameter that distinguishes the
different regimes, namely 0, O(1), and +∞. (Zhou et al., 2022) demonstrated that these regimes also
exist for three-convolution-layer ReLU neural networks with infinite width. Experiments suggest that
condensation is a frequent occurrence in the non-linear regime(Zhou et al., 2022; Luo et al., 2021).

(Zhang et al., 2021a;b)discovered an embedding principle in loss landscapes between narrow and
wide neural networks, based on condensation. This principle suggests that the loss landscape of a
deep neural network (DNN) includes all critical points of narrower DNNs, which is also studied in
(Fukumizu and Amari, 2000; Fukumizu et al., 2019; Simsek et al., 2021). The embedding structure
indicates the existence of global minima where condensation can occur. (Zhang et al., 2022) has
demonstrated that NNs exhibiting condensation can achieve the desired function with a substantially
lower number of samples compared to the number of parameters. However, these studies fail to
demonstrate the training process’s role in causing condensation.

CNN is one of the fundamental structures in deep learning (Gu et al., 2018). (He et al., 2016)
introduced the use of residual connections for training deep CNNs, which has greatly enhanced the
performance of CNNs on complex practical tasks. Recently, there are also many theoretical advances.
(Zhou, 2020) shows that CNN can be used to approximate any continuous function to an arbitrary
accuracy when the depth of the neural network is large enough. (Arora et al., 2019) exactly compute
the neural tangent kernel of CNN. Provided that the signal-to-noise ratio satisfies certain conditions,
(Cao et al., 2022) have demonstrated that a two-layer CNN, trained through gradient descent, can
obtain negligible training and test losses. In this work, we focus on the training process of CNNs.

3 PRELIMINARIES

3.1 SOME NOTATIONS

For a matrix A, we use Ai,j to denote its (i, j)-th entry. For a high-dimensional tensor, for example,
a four-dimensional tensor W, we use Wi,j,k,l to denote its (i, j, k, l)-th entry. We also use Wi,j,k,:

to denote the i, j, k-th row, and so on for other indices. W:,:,k,l is denoted as the two-dimensional
tensor at the k, l-th entry.

We let [n] = {1, 2, . . . , n}. We set N (µ,Σ) as the normal distribution with mean µ and covariance
Σ. We set a special vector 1 := (1, 1, 1, . . . , 1)⊺, whose dimension varies. For a vector v, we use
∥v∥2∥v∥∞ to denote its Euclidean maximum norm, and we use ⟨·, ·⟩ to denote the standard inner
product between two vectors. Finally, for a matrix A, we use ∥A∥2→2 to denote its operator norm.

3.2 PROBLEM SETUP

We focus on the empirical risk minimization problem given by the quadratic loss:

min
θ

RS(θ) =
1

2n

n∑
i=1

(f(xi,θ)− yi)
2
. (1)

In the above, n is the total number of training samples, {xi}ni=1 are the training inputs, {yi}ni=1 are
the labels, f(xi,θ) is the prediction function, and θ are the parameters to be optimized, which is
modeled by a (L+ 1)-layer CNN with filter size m×m. We denote x[l](i) as the output of the l-th
layer with respect to the i-th sample for l ≥ 1, and x[0](i) := xi is the i-th training input. For any
l ∈ [0 : L], we denote the size of width, height, channel of x[l] as Wl, Hl, and Cl, respectively, i.e.,
{x[l](i)}ni=1 ⊂ RWl×Hl×Cl . We introduce a filter operator χ(·, ·), which maps the width and height
indices of the output of all layers to a binary variable, i.e., for a filter of size m×m, the filter operator
reads

χ(p, q) =

{
1, for 0 ⩽ p, q ⩽ m− 1
0, otherwise, (2)
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then the (L+ 1)-layer CNN with filter size m×m is recursively defined for l ∈ [2 : L],

x
[1]
u,v,β :=

[
C0∑
α=1

(
+∞∑
p=−∞

+∞∑
q=−∞

x
[0]
u+p,v+q,α ·W [1]

p,q,α,β · χ(p, q)

)]
+ b

[1]
β ,

x
[l]
u,v,β :=

Cl−1∑
α=1

(
+∞∑
p=−∞

∞∑
q=−∞

σ
(
x
[l−1]
u+p,v+q,α

)
·W [l]

p,q,α,β · χ(p, q)

)+ b
[l]
β ,

f(x,θ) := fCNN(x,θ) :=
〈
a, σ

(
x[L]

)〉
=

CL∑
β=1

WL∑
u=1

HL∑
v=1

au,v,β · σ
(
x
[L]
u,v,β

)
,

where σ(·) is the activation function applied coordinate-wisely to its input, and for each layer l ∈ [L],
all parameters belonging to this layer are initialized by: For p, q ∈ [m− 1], α ∈ [Cl−1] and β ∈ [Cl],

W
[l]
p,q,α,β ∼ N (0, β2

1), b
[l]
β ∼ N (0, β2

1). (3)

Note that for a pair of α and β, W [l]
·,·,α,β is called a kernel. Moreover, for u ∈ [WL] and v ∈ [HL],

au,v,β ∼ N (0, β2
2), (4)

and for convenience in theory, we set β1 = β2 = ε, where ε > 0 is the scaling parameter.

Cosine similarity: The cosine similarity between two vectors u1 and u2 is defined as

D(u1,u2) =
u⊺
1u2

(u⊺
1u1)1/2(u

⊺
2u2)1/2

. (5)

We remark that in order to compute the cosine similarity between two kernels, each kernel W [l]
·,·,α,β

shall be vectorized.

Before we proceed to our theoretical findings, as we consider two-layer CNNs (L = 1), the upper
case [l] can be omitted since the number of weight vectors is equal to 1, i.e., W·,·,α,β := W

[1]
·,·,α,β . We

denote M := C1, the number of channels in x[1](i). As for two-layer NNs, with slight misuse of no-
tations, we denote by x

[1]
r := ⟨wr,x⟩, then the output function of a two-layer neural networks (NNs)

reads

fTwoLayer(x,θ) :=

M∑
r=1

arσ(x
[1]
r ) =

M∑
r=1

〈
ar, σ(x

[1]
r )
〉
:=

M∑
r=1

⟨ar, σ(⟨wr,x⟩)⟩ ,

and it is noteworthy that the outmost inner product in the above equation is simple multiplication or
is with dimension 1, i.e., ⟨·, ·⟩ : R× R → R.. By comparison, also with slight misuse of notations,
as we denote aβ := vec(au,v,β) and x

[1]
β := vec(x

[1]
u,v,β) for all u ∈ [W1] and v ∈ [H1], then the

output function of two-layer CNNs reads

fCNN(x,θ) :=

M∑
β=1

〈
aβ , σ

(
x
[1]
β

)〉
=

M∑
β=1

WL∑
u=1

HL∑
v=1

au,v,β · σ
(
x
[L]
u,v,β

)
,

except that in this case, the outmost inner product in the above equation is with dimension W1H1,
i.e., ⟨·, ·⟩ : RW1H1 × RW1H1 → R. Hence, the number of channels M in x[1](i) can be heuristically
understood as the ‘width’ of the hidden layer in the case of two-layer NNs.

4 THEORY: CONDENSATION OF THE CONVOLUTIONAL KERNEL

In this section, we demonstrate that when subject to the small initialization scheme (Assumption 3)
and under the finite spectral gap condition (Assumption 4), kernels within the same layer condense
toward a specific direction within a period of time Teff . We consider the dataset with one input channel,
i.e. C0 = 1, and omit the third index in W in the following discussion. Multi-channel analysis is
similar and is shown in the Appendix. D. We begin this part by some technical conditions (Zhou
et al., 2022, Definition 1) on the activation function σ(·).
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Definition 1 (Multiplicity r). σ(·) : R → R has multiplicity r if there exists an integer r ≥ 1, such
that for all 0 ≤ s ≤ r − 1, the s-th order derivative satisfies σ(s)(0) = 0, and σ(r)(0) ̸= 0.
Assumption 1 (Multiplicity 1). The activation function σ ∈ C2(R), and there exists a universal
constant CL > 0, such that its first and second derivatives satisfy∥∥∥σ(1)(·)

∥∥∥
∞

≤ CL,
∥∥∥σ(2)(·)

∥∥∥
∞

≤ CL. (6)

Moreover,
σ(0) = 0, σ(1)(0) = 1. (7)

Remark 1. We remark that σ has multiplicity 1. σ(1)(0) = 1 can be replaced by σ(1)(0) ̸= 0, and
we set σ(1)(0) = 1 for simplicity, which can be easily satisfied by replacing the original activation
σ(·) with σ(·)

σ(1)(0)
.

Assumption 2. The training inputs {xi}ni=1 and labels {yi}ni=1 satisfy that there exists a universal
constant c > 0, such that given any i ∈ [n], then for each u ∈ [W0], v ∈ [H0] and α ∈ [C0], the
following holds

1

c
≤ |xu,v,α(i)| , |yi| ≤ c.

We assume further that
Assumption 3. The following limit exists

γ := lim
M→∞

− log ε2

logM
. (8)

We initialize the parameters following
W 0

p,q,β ∼ N (0, ε2), b0β ∼ N (0, ε2), a0
u,v,β ∼ N (0, ε2),

and as we denote
θβ :=

(
W0,0,1/,β ,W0,1,1/,β , · · · ,W0,m−1,1/,β ;W1,0,1/,β , · · · ,W1,m−1,1/,β ; · · · · · ·Wm−1,m−1,1/,β ;

W0,0,2/,β ,W0,1,2/,β , · · · ,W0,m−1,2/,β ;W1,0,2/,β , · · · ,W1,m−1,2/,β ; · · · · · ·Wm−1,m−1,2/,β ;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
W0,0,C0// ,β ,W0,1,C0// ,β , · · · ,W0,m−1,C0// ,β ; · · · ,W1,m−1,C0// ,β ; · · · · · ·Wm−1,m−1,C0// ,β ; bβ ;

a1,1,β ,a1,2,β , · · · ,a1,H1,β ;a2,1,β , · · · ,a2,H1,β ; · · · · · ·aW1,H1,β

)⊺
,

and
θW ,β := (W0,0,β ,W0,1,β , · · · ,W0,m−1,β ;W1,0,β , · · · ,W1,m−1,β ; · · · · · ·Wm−1,m−1,β ; bβ)

⊺
,

θa,β := (a1,1,β ,a1,2,β , · · · ,a1,H1,β ;a2,1,β , · · · ,a2,H1,β ; · · · · · ·aW1,H1,β)
⊺
,

then θβ =
(
θ⊺
W ,β ,θ

⊺
a,β

)⊺
. We are able to identify the vectorized parameters θβ as variables of

order 1 by setting θβ = εθ̄β , with the following initialization

W
0

p,q,β ∼ N (0, 1), b̄0β ∼ N (0, 1), ā0
u,v,β ∼ N (0, 1).

In the following discussion throughout this paper, we always refer to the above rescaled dynamics
and drop all the “bar”s of θ̄ for notational simplicity. For all i ∈ [n], as we denote that ei := ei(θ) :=

f(xi,θ)− yi, and under the condition γ > 1, ε < 1√
M

, hence as
∣∣∣∑M

β=1 ε
2
〈
aβ , σ

(
x
[1]
β (i)

)〉∣∣∣ ≤
M logMε2 ≪ 1, the relation ei =

∑M
β=1 ε

2
〈
aβ , σ

(
x
[1]
β (i)

)〉
− yi ≈ −yi holds. By means of

perturbation expansion with respect to ε with multiplicity r = 1, we obtain that

dWp,q,β

dt
≈ 1

n

n∑
i=1

yi ·

(
W1∑
u=1

H1∑
v=1

au,v,β · xu+p,v+q(i)

)
=

W1∑
u=1

H1∑
v=1

au,v,β · zu+p,v+q

dbβ
dt

≈ 1

n

n∑
i=1

yi ·
W1∑
u=1

H1∑
v=1

au,v,β =

W1∑
u=1

H1∑
v=1

au,v,β · z,

dau,v,β
dt

≈ 1

n

n∑
i=1

yi · x[1]
u,v,β(i) =

(
m−1∑
p=0

m−1∑
q=0

zu+p,v+q ·Wp,q,β

)
+ bβ · z.
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as we set zu+p,v+q := 1
n

∑n
i=1 yixu+p,v+q(i) and z := 1

n

∑n
i=1 yi. To sum up, we approximate the

initial GD dynamics by the following linear dynamics

dθβ
dt

= Aθβ , (9)

with

A :=

[
0(C0m2+1)×(C0m2+1) Z⊺

Z 0W1H1×W1H1

]
, (10)

and Z is detailed described by multi channel (70) and single channel (35) in appendix, whose entries
consist of zu+p,v+q and z. By performing singular value decomposition (SVD) on Z,

Z = UΛV ⊺, (11)

where
U = [u1,u2, · · · ,uW1H1

] , V = [v1,v2, · · · ,vm2+1] ,

and as we denote r := rank(Z), naturally, r ≤ min{W1H1,m
2 + 1}, we have r singular values,

λ1 ≥ λ2 ≥ · · · ≥ λr > 0.

We remark that for two-layer NNs, as Z “degenerates” to vector z := 1
n

∑n
i=1 yixi (Chen et al.,

2023), hence the rank r ≤ min{W1H1, 1} is at most equals to 1, or even 0 if z = 0. We proceed to
impose a technical condition on Z to ensure that the kernels θβ condense toward the direction of the
largest eigenvector v1.

Assumption 4 (Spectral Gap of Z). The singular values {λk}rk=1 of Z satisfy that

λ1 > λ2 ≥ · · · ≥ λr > 0, (12)

and we denote the spectral gap between λ1 and λ2 by

∆λ := λ1 − λ2.

We remark that in the case of two-layer NNs, the spectral gap is always finite as long as the vector
z = 1

n

∑n
i=1 yixi ̸= 0 is non-zero (Assumption 3 in (Chen et al., 2023).) We also remark that the

experiments conducted in Fig. 2a serves to demonstrate the universality of finite spectral gap for
some commonly used datasets such as CIFAR10.

In order to study the phenomenon of condensation, we concatenate the vectors {θW ,β}Mβ=1 into

θW := vec
(
{θW ,β}Mβ=1

)
, and we denote further that

θW ,v1
:= (⟨θW ,1,v1⟩ , ⟨θW ,2,v1⟩ , · · · ⟨θW ,M ,v1⟩)⊺ ,

where v1 is the eigenvector of the largest eigenvalue of Z⊺Z, or the first column vector of V . In
appendix Appendix C.5, we prove that for any η0 > γ−1

100 > 0, there exists Teff satisfying

Teff >
1

λ1

[
log

(
1

4

)
+

(
γ − 1

4
− η0

)
log(M)

]
, (13)

We observe that Teff is of order at least log(M), and we hereby present a heuristic explanation. For the
linear dynamics (9), as its solution reads θβ(t) = exp(tA)θβ(0), consequently for θW ,β , its solution
approximately takes the form θW ,β(t) ≈

∑r
k=1 exp(tλk) ⟨θW ,β(0),vk⟩vk. Then, under the finite

spectral gap condition, the direction of v1 is the direction of attraction for θW ,β since it has the
largest exponential growth rate. Moreover, in order for the condensation phenomenon to be observed,
it is required for θβ to grow from order one at time t = 0, i.e., θβ(0) ≈ M0, to the order of δ i.e.,
θβ(t) ≈ Mδ , for some δ > 0, while still maintaining the asymptotic relation ei ≈ −yi. Since γ > 1

based on Assumption 3, then as we choose δ = γ−1
4 , we guarantee the existence of δ. Consequently,

as v1 is the direction of dominance, θW ,β(T ) ≈ exp(Tλ1)θW ,β(0), i.e., M δ ≈ exp(Tλ1)M
0, it

takes time at least of order T ≈ δ
λ1

logM for the condensation phenomenon to be observed.
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Theorem 1. Given any δ ∈ (0, 1), under Assumption 1, Assumption 2, Assumption 3 and Assump-
tion 4, if γ > 1, then with probability at least 1− δ over the choice of θ0, we have

lim
M→+∞

sup
t∈[0,Teff ]

∥θW (t)− θW (0)∥2
∥θW (0)∥2

= +∞, (14)

and

lim
M→+∞

sup
t∈[0,Teff ]

∥θW ,v1(t)∥2
∥θW (t)∥2

= 1. (15)

The above theorem demonstrates in the settings of overparametrization (M → ∞), within a finite
period Teff , the relative change of kernel weight tends to infinity, while the kernel weight concentrates
on a specific direction v1 determined by the training samples.

Fig. 2a presents an illustrative example of the eigenvalues of Z⊺Z for the CIFAR10 dataset.
Notably, a substantial spectral gap is observed, thereby satisfying Assumption 4. Subsequently, we
delve into the study of the eigenvector corresponding to the maximum eigenvalue. Given that the
input sample comprises 3 channels, we decompose the eigenvector of the largest eigenvalue into
three corresponding parts. Our investigation reveals that the inner product of each part with 1 is
approximately 1, with values of 0.9891±0.0349, 0.9982±0.0009, and 0.9992±0.0003, respectively,
computed from 50 independent trials, where each trial involves the random selection of 500 images.
Based on these findings, we predict that the convolutional kernels have a propensity to condense
towards the direction of 1, given that 1 is the eigenvector of the largest eigenvalue. As validated in
Fig. 2, our prediction holds true. Thus, we can confidently conclude that this example effectively
demonstrates how the theoretical framework guides the experimental investigations. The spectral gap
for MNIST is displayed in Fig. 12.

Through our careful analysis, we discovered that the primary difference between condensation in
fully-connected neural networks and CNNs at the initial stage is that in fully-connected neural
networks, condensation occurs among different neurons within a given layer (Zhou et al., 2022),
whereas in CNNs, condensation arises across different convolutional kernels within each convolution
layer. This difference in condensation is mainly caused by the structure of the local receptive field
and weight-sharing mechanism in CNNs.

5 EXPERIMENTS: CONDENSATION OF THE CONVOLUTIONAL KERNELS

In the following section, we present an extensive empirical analysis to enhance the understanding of
the condensation phenomenon among convolutional kernels. Our investigation particularly focuses
on several key aspects, including the selection of activation functions, loss functions, and optimizers,
as well as the utilization of different image datasets. The primary objectives of our experiments are
twofold. Firstly, they serve as a means to substantiate the theoretical framework we have established,
which primarily focus on two-layer convolutional neural networks trained with gradient descent. Sec-
ondly, our experimental design extends beyond the confines of our theoretical analysis. Remarkably,
we observe that CNNs with three convolution layers also exhibit similar kernel condensation behavior
when subjected to alternative first-order optimization methods such as ADAM. These empirical
findings provide valuable insights into the universal occurrence of of kernel condensation phenomena
across diverse training settings and optimization methods.

5.1 EXPERIMENTAL SETUP

For the CIFAR10 dataset: 500 samples are randomly selected from CIFAR10 dataset for training. The
used CNN has H convolution layers, followed by an output layer with d neurons in Fig. 2b and an
extra fully-connected hidden layer with 1024 neurons between the convolution layers and the output
layer in Fig. 3 and Fig. 4. Each convolution layer has 32 channels. The output dimension d = 10 or 1
is used for the classification problem or for the regression problem, respectively. The parameters of
the convolution layer is initialized by the N (0, σ2

1), and the parameters of the linear layer is N (0, σ2
2).

σ1 is given by ( (cin+cout)∗m2

2 )−γ where cin and cout are the number of in channels and out channels
respectively, σ2 is given empirically by 0.0001. The training method is GD or Adam with full batch
and learning rate lr. The training loss of each experiment is shown in Fig. 13 in Appendix.
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5.2 CIFAR10 EXAMPLES

(a) eigenvalues (b) condensation (c) direction

Figure 2: Left: The largest 15 eigenvalues of Z⊺Z of CIFAR10 dataset. A clear spectral gap
(∆λ := λ1 − λ2) could be observed, which satisfies Assumption 4 and leads to condensation in
Theorem 1. Middle: Condensation of two-layer CNNs. The activation functions are tanh(x). The
numbers of step selected is epoch = 4500 with accuracy less than 20%. The color indicates D(u,v)
of two different kernels, whose indexes are indicated by the abscissa and the ordinate, respectively.
If kernels are in the same beige block, D(u,v) ∼ 1 (navy-blue block, D(u,v) ∼ −1), their input
weights have the same (opposite) direction. Right: Left ordinate (red): the amplitude of each kernel;
Right ordinate (blue): cosine similarity between kernel weight and 1. The training data is CIFAR10
dataset. ReLU is used for linear layer, MSE for loss function and full batch GD for optimizer. m = 3,
lr = 5× 10−6, and γ = 4.

(a) layer 1 (b) layer 2 (c) layer 3

(d) layer 1 (e) layer 2 (f) layer 3

Figure 3: Condensation of three-convolution-layer CNNs. The activation functions are tanh(x). The
numbers of steps selected in (a)-(c) are the final stage after training, while the numbers of steps
selected in (d)-(f) are epoch = 300 with accuracy less than 20%. The NN is only trained once. The
color indicates D(u,v) of two different kernels, whose indexes are indicated by the abscissa and
the ordinate, respectively. The training data is CIFAR10 dataset. ReLU is used for linear layer,
softmax for output layer, cross-entropy for loss function and full batch Adam for optimizer. m = 5,
lr = 2× 10−6, and γ = 2.

We first conduct the experiments under the theoretical setting, i.e., a one-layer convolutional neural
network with the gradient descent (GD) method and MSE loss (softmax is also attached with the
output layer), and verify the theoretical results. Fig. 2 illustrates that with GD, the kernel weights of a
two-layer CNN undergo condensation at two opposite directions during training, which is consistent
with our theory. Moreover, we observe that the direction of the condensation is v = 1. Fig. 2(b)
and (c) show that the cosine similarity between each kernel weight and 1 is almost equal to 1 or -1.
Besides, three-convolution-layer mse examples with and without softmax are also shown in Fig. 6
and Fig. 7 in appendix.
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Then, we try to further understand the condensation of CNN through more experiments. Experiments
show that when initialized with small weights, the convolutional kernels of a tanh(x) CNN undergo
condensation during the training process. As shown in Fig. 3(a)-(c), we train a CNN with three
convolution layers by cross-entropy loss until the training accuracy reaches 100% (the accuracy
during training is shown in Fig. 5 in appendix). In each layer, we compute the cosine similarity
between each pair of kernels. This reveals a clear condensation phenomenon after training.

Understanding the mechanism of condensation phenomenon is challenging, no matter experimentally
or theoretically. To this end, we still focus on the initial training stage. We then study the initial
condensation in CNNs by more experiments.

The initial stage (accuracy less than 20%) of Fig. 3(a)-(c) is shown in Fig. 3(d)-(f). For each layer,
all kernels are nearly condensed into two opposite directions in Fig. 3(d)-(f).

We further examine the different activation functions. For illustration, we consider two-layer CNNs
with activations ReLU(x), Sigmoid(x), or tanh(x). As shown in Fig. 4, we can still see a very clear
condensation phenomenon. Note that, as the learning rate is rather small to see the detailed training
process, the epoch selected for studying the initial stage may appear large.

(a) ReLU(x) (b) Sigmoid(x) (c) tanh(x)

Figure 4: Condensation of two-layer CNNs. The activation functions are indicated by the sub-captions.
The numbers of steps selected in the sub-pictures are epoch= 1000, epoch= 5000 and epoch= 300,
respectively. The color indicates D(u,v) of two different kernels, whose indexes are indicated by the
abscissa and the ordinate, respectively. The training data is CIFAR10 dataset. ReLU is used for linear
layer, softmax for output layer, cross-entropy for loss function and full batch Adam for optimizer.
m = 5, lr = 5× 10−7, and γ = 2.

Similar results of MNIST dataset are also shown in Figs. 8 for CNNs with different activations, Fig.
9 for three-convolution-layer tanh CNN in appendix. Also, two-layer CNNs with 32 and 320 kernels
trained by GD on MNIST are shown in Fig.10 and Fig.11, respectively, in appendix.

Taken together, our empirical analysis provides compelling evidence that when subjected to small
initialization, kernel weights within the same layer of a three-convolution-layer CNN tend to cluster
together during the training process. These consistent findings across various activation functions
and optimization methods confirm the existence of the condensation phenomenon in simple CNNs.

6 CONCLUSION

In this work, our theoretical analysis demonstrate that under GD and small initialization, kernels of a
two-layer CNN condense towards a specific direction determined by the training samples within a
given time period. These theoretical findings have been substantiated through extensive empirical
validations.

Furthermore, our experimental results exceed the theoretical findings as they confirm the condensation
phenomenon in simple CNNs across various activation functions and optimization methods. These
empirical findings have opened up new avenues for further exploration and analysis of condensation
in more general CNN architectures.

In summary, we contribute to a deeper understanding of the condensation phenomenon in CNNs by
presenting a preliminary theory for two-layer CNNs, and validate the possibility for future exploration
of condensation in multi-layer CNNs through systematic empirical investigations.

9



Under review as a conference paper at ICLR 2024

REFERENCES

L. Breiman, Reflections after refereeing papers for nips, The Mathematics of Generalization XX
(1995) 11–15.

C. Zhang, S. Bengio, M. Hardt, B. Recht, O. Vinyals, Understanding deep learning (still) requires
rethinking generalization, Communications of the ACM 64 (2021) 107–115.

Z.-Q. J. Xu, Y. Zhang, Y. Xiao, Training behavior of deep neural network in frequency domain,
International Conference on Neural Information Processing (2019) 264–274.

Z.-Q. J. Xu, Y. Zhang, T. Luo, Y. Xiao, Z. Ma, Frequency principle: Fourier analysis sheds light on
deep neural networks, Communications in Computational Physics 28 (2020) 1746–1767.

N. Rahaman, D. Arpit, A. Baratin, F. Draxler, M. Lin, F. A. Hamprecht, Y. Bengio, A. Courville, On
the spectral bias of deep neural networks, International Conference on Machine Learning (2019).

T. Luo, Z.-Q. J. Xu, Z. Ma, Y. Zhang, Phase diagram for two-layer relu neural networks at infinite-
width limit, Journal of Machine Learning Research 22 (2021) 1–47.

P. L. Bartlett, S. Mendelson, Rademacher and gaussian complexities: Risk bounds and structural
results, Journal of Machine Learning Research 3 (2002) 463–482.

Z. Zhang, Z.-Q. J. Xu, Implicit regularization of dropout, arXiv preprint arXiv:2207.05952 (2022).

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R. R. Salakhutdinov, Improving neural
networks by preventing co-adaptation of feature detectors, arXiv preprint arXiv:1207.0580 (2012).

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way
to prevent neural networks from overfitting, The journal of machine learning research 15 (2014)
1929–1958.

S. Mei, T. Misiakiewicz, A. Montanari, Mean-field theory of two-layers neural networks: dimension-
free bounds and kernel limit, in: Conference on Learning Theory, PMLR, 2019, pp. 2388–2464.

G. M. Rotskoff, E. Vanden-Eijnden, Parameters as interacting particles: long time convergence and
asymptotic error scaling of neural networks, in: Proceedings of the 32nd International Conference
on Neural Information Processing Systems, 2018, pp. 7146–7155.

L. Chizat, F. Bach, On the global convergence of gradient descent for over-parameterized models using
optimal transport, in: Proceedings of the 32nd International Conference on Neural Information
Processing Systems, 2018, pp. 3040–3050.

J. Sirignano, K. Spiliopoulos, Mean field analysis of neural networks: A central limit theorem,
Stochastic Processes and their Applications 130 (2020) 1820–1852.

M. S. Advani, A. M. Saxe, H. Sompolinsky, High-dimensional dynamics of generalization error in
neural networks, Neural Networks 132 (2020) 428–446.

M. Phuong, C. H. Lampert, The inductive bias of relu networks on orthogonally separable data, in:
International Conference on Learning Representations, 2020.

S. Fort, G. K. Dziugaite, M. Paul, S. Kharaghani, D. M. Roy, S. Ganguli, Deep learning versus
kernel learning: an empirical study of loss landscape geometry and the time evolution of the neural
tangent kernel, Advances in Neural Information Processing Systems 33 (2020) 5850–5861.

W. Hu, L. Xiao, B. Adlam, J. Pennington, The surprising simplicity of the early-time learn-
ing dynamics of neural networks, in: H. Larochelle, M. Ranzato, R. Hadsell, M. Bal-
can, H. Lin (Eds.), Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL: https://proceedings.neurips.cc/paper/2020/hash/
c6dfc6b7c601ac2978357b7a81e2d7ae-Abstract.html.

Y. Jiang, B. Neyshabur, H. Mobahi, D. Krishnan, S. Bengio, Fantastic generalization measures and
where to find them, arXiv preprint arXiv:1912.02178 (2019).

10

https://proceedings.neurips.cc/paper/2020/hash/c6dfc6b7c601ac2978357b7a81e2d7ae-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c6dfc6b7c601ac2978357b7a81e2d7ae-Abstract.html


Under review as a conference paper at ICLR 2024

H. Li, Z. Xu, G. Taylor, C. Studer, T. Goldstein, Visualizing the loss landscape of neural nets,
Advances in neural information processing systems 31 (2018).

H. Maennel, O. Bousquet, S. Gelly, Gradient descent quantizes relu network features, arXiv preprint
arXiv:1803.08367 (2018).

F. Pellegrini, G. Biroli, An analytic theory of shallow networks dynamics for hinge loss classification,
Advances in Neural Information Processing Systems 33 (2020).

K. Lyu, Z. Li, R. Wang, S. Arora, Gradient descent on two-layer nets: Margin maximization and
simplicity bias, Advances in Neural Information Processing Systems 34 (2021) 12978–12991.

H. Zhou, Q. Zhou, T. Luo, Y. Zhang, Z.-Q. Xu, Towards understanding the condensation of neural
networks at initial training, Advances in Neural Information Processing Systems 35 (2022)
2184–2196.

Z. Chen, Y. Li, T. Luo, Z. Zhou, Z.-Q. J. Xu, Phase diagram of initial condensation for two-layer
neural networks, arXiv preprint arXiv:2303.06561 (2023).

M. Wang, C. Ma, Understanding multi-phase optimization dynamics and rich nonlinear behaviors of
relu networks, arXiv preprint arXiv:2305.12467 (2023).

A. Jacot, F. Gabriel, C. Hongler, Neural tangent kernel: convergence and generalization in neural
networks, in: Proceedings of the 32nd International Conference on Neural Information Processing
Systems, 2018, pp. 8580–8589.

S. Arora, S. S. Du, W. Hu, Z. Li, R. R. Salakhutdinov, R. Wang, On exact computation with
an infinitely wide neural net, Advances in Neural Information Processing Systems 32 (2019)
8141–8150.

Y. Zhang, Z.-Q. J. Xu, T. Luo, Z. Ma, A type of generalization error induced by initialization in deep
neural networks, in: Mathematical and Scientific Machine Learning, PMLR, 2020, pp. 144–164.

W. E, C. Ma, L. Wu, A comparative analysis of optimization and generalization properties of
two-layer neural network and random feature models under gradient descent dynamics, Science
China Mathematics (2020) 1–24.

L. Chizat, F. Bach, A note on lazy training in supervised differentiable programming, in: 32nd Conf.
Neural Information Processing Systems (NeurIPS 2018), 2019.

H. Zhou, Q. Zhou, Z. Jin, T. Luo, Y. Zhang, Z.-Q. J. Xu, Empirical phase diagram for three-layer
neural networks with infinite width, arXiv preprint arXiv:2205.12101 (2022).

Y. Zhang, Z. Zhang, T. Luo, Z.-Q. J. Xu, Embedding principle of loss landscape of deep neural
networks, arXiv preprint arXiv:2105.14573 (2021a).

Y. Zhang, Y. Li, Z. Zhang, T. Luo, Z.-Q. J. Xu, Embedding principle: a hierarchical structure of loss
landscape of deep neural networks, arXiv preprint arXiv:2111.15527 (2021b).

K. Fukumizu, S.-i. Amari, Local minima and plateaus in hierarchical structures of multilayer
perceptrons, Neural networks 13 (2000) 317–327.

K. Fukumizu, S. Yamaguchi, Y.-i. Mototake, M. Tanaka, Semi-flat minima and saddle points by
embedding neural networks to overparameterization, Advances in neural information processing
systems 32 (2019).

B. Simsek, F. Ged, A. Jacot, F. Spadaro, C. Hongler, W. Gerstner, J. Brea, Geometry of the loss
landscape in overparameterized neural networks: Symmetries and invariances, in: International
Conference on Machine Learning, PMLR, 2021, pp. 9722–9732.

Y. Zhang, Z. Zhang, L. Zhang, Z. Bai, T. Luo, Z.-Q. J. Xu, Linear stability hypothesis and rank
stratification for nonlinear models, arXiv preprint arXiv:2211.11623 (2022).

J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang, J. Cai, et al.,
Recent advances in convolutional neural networks, Pattern recognition 77 (2018) 354–377.

11



Under review as a conference paper at ICLR 2024

K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of
the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.

D.-X. Zhou, Universality of deep convolutional neural networks, Applied and computational
harmonic analysis 48 (2020) 787–794.

Y. Cao, Z. Chen, M. Belkin, Q. Gu, Benign overfitting in two-layer convolutional neural networks,
Advances in neural information processing systems 35 (2022) 25237–25250.

L. Deng, The mnist database of handwritten digit images for machine learning research, IEEE Signal
Processing Magazine 29 (2012) 141–142.

R. Vershynin, Introduction to the Non-asymptotic Analysis of Random Matrices, arXiv preprint
arXiv:1011.3027 (2010).

B. Laurent, P. Massart, Adaptive Estimation of a Quadratic Functional by Model Selection, Annals
of Statistics (2000) 1302–1338.

12


	Introduction
	Related works
	Preliminaries
	Some Notations
	Problem Setup

	Theory: condensation of the convolutional kernel
	Experiments: condensation of the convolutional kernels
	Experimental setup
	CIFAR10 examples

	Conclusion



