
Discrete Tree Flows via Tree-Structured Permutations

Mai Elkady * 1 Jim Lim * 2 David I. Inouye 2

Abstract
While normalizing flows for continuous data
have been extensively researched, flows for dis-
crete data have only recently been explored.
These prior models, however, suffer from lim-
itations that are distinct from those of contin-
uous flows. Most notably, discrete flow-based
models cannot be straightforwardly optimized
with conventional deep learning methods be-
cause gradients of discrete functions are unde-
fined or zero, and backpropagation can be com-
putationally burdensome compared to alternative
discrete algorithms such as decision tree algo-
rithms. Previous works approximate pseudo-
gradients of the discrete functions but do not
solve the problem on a fundamental level. Our
approach seeks to reduce computational burden
and remove the need for pseudo-gradients by
developing a discrete flow based on decision
trees—building upon the success of efficient tree-
based methods for classification and regression
for discrete data. We first define a tree-structured
permutation (TSP) that compactly encodes a per-
mutation of discrete data where the inverse is
easy to compute; thus, we can efficiently com-
pute the density value and sample new data. We
then propose a decision tree algorithm to learn
TSPs that estimates the tree structure and sim-
ple permutations at each node via a novel crite-
ria. We empirically demonstrate the feasibility of
our method on multiple datasets.

1. Introduction
Discrete data is abundant in numerous applications and do-
mains, from DNA sequences and medical records to text

*Equal contribution 1Department of Computer Science,
Purdue University, Indiana, USA 2School of Electrical and
Computer Engineering, Purdue, Indiana, USA. Correspon-
dence to: Mai Elkady <melkady@purdue.edu>, Jim Lim
<lim316@purdue.edu>.

Third workshop on Invertible Neural Networks, Normalizing
Flows, and Explicit Likelihood Models (ICML 2021). Copyright
2021 by the author(s).

data and many forms of tabular data. Learning a den-
sity model for discrete data is a fundamental task useful
for understanding or leveraging such data. However, dis-
crete data can be hard to model especially when the num-
ber of categories and the dimension of the data is large.
Prior methods include probabilistic graphical models (In-
ouye et al., 2014; 2017; Wainwright & Jordan, 2008), VAEs
(Kingma & Welling, 2019), or autoregressive models (Ger-
main et al., 2015). However, these works either lack exact
likelihood computation or require expensive sampling pro-
cedures.

As an alternative, discrete flows provide exact likelihood
computation and efficient sampling. The two key compo-
nents of discrete flows are a base distribution (similar to
continuous flows) and a permutation of the discrete con-
figuration values (a discrete version of invertible functions)
(Tran et al., 2019). In its full generality, this requires opti-
mizing over the set of all permutations, whose size is dou-
bly exponential in terms of the feature dimension. Thus,
parameterizing and optimizing over a set of possible per-
mutations is critical for practical algorithms and generaliz-
ability. Tran et al. (2019) propose to parameterize these
permutations by neural networks and optimize them us-
ing standard backpropagation. Tran et al. (2019) estimate
pseudo-gradients of discrete functions using the straight-
through gradient estimator (Bengio et al., 2013) along with
a Gumbel-softmax distribution for backpropagation, which
is an approximation of the forward pass equation (i.e., one-
hot of argmax function). van den Berg et al. (2020) later
show that the architecture of the coupling layers is signif-
icantly more important than the gradient bias issue. How-
ever, none of these discrete flow methods address the dis-
crete nature of the problem on a fundamental level and
may be computationally expensive compared to alternative
discrete-oriented algorithms such as those based on deci-
sion trees—which have seen wide success in classification
and regression for discrete data (e.g., XGBoost (Chen &
Guestrin, 2016)). Thus, we seek to answer the following
research question: Can we design a more computation-
ally efficient discrete flow algorithm using decision trees
that handles discrete data on a fundamental level?

To answer this, we propose a novel tree-structured permu-
tation (TSP) model that can compactly represent permu-
tations and a novel decision tree algorithm that optimizes

Discrete Tree Flows via Tree-Structured Permutations

over the space of these permutations. Moreover, for more
powerful permutations, we can iteratively build up a se-
quence of TSPs to form a deep permutation. We also pro-
pose a novel decision tree algorithm for learning TSPs that
includes a novel splitting criteria and an efficient algorithm
for determining the best permutation at each tree node.

Background: Discrete Flows The Discrete flow change
of variables formula is given by: Px(x) = Qz(f(x)),
where Qz is some known base distribution that is usually a
simple distribution (e.g. an independent categorical distri-
bution), and f is an invertible function. Importantly, in the
discrete case, the invertible function can only be a permu-
tation of the possible discrete configurations of x so there
is no change in volume, hence no need to incorporate the
Jacobian determinant term as done in continuous flow. In
its full generality, discrete flows would require optimizing
over the set of all possible permutations, whose size is dou-
bly exponential in terms of the dimension—which empha-
sizes the computational intractability of the general prob-
lem. Thus, two key ingredients for practical discrete flows
are a simple and compact parameterization of permuta-
tions and an algorithm to optimize over these permutations.
Tran et al. (2019) propose two different architectures (au-
toregressive flows and bipartite flows) to parameterize the
discrete flow permutations. Hoogeboom et al. (2019) and
van den Berg et al. (2020) propose integer discrete flows
for compression of image-based data (rather than categori-
cal tabular data as in this paper).

2. Tree-Structured Permutations
Our goal is to define a set of permutations that is both com-
putationally tractable (in terms of evaluating the permuta-
tion and its inverse and optimizing over the set) and gen-
eralizable (i.e., the class of permutations is more likely to
generalize well to new test data). To achieve this goal, we
introduce tree-structured permutations (TSP) as new model
for discrete flows that utilizes trees for compactly parame-
terizing a set a of permutations.

Notation We will denote a discrete dataset asX ∈ Zn×d
where n is the number of samples, d is the number of di-
mensions, and Z is a set of discrete values, and where k is
the maximum number of possible discrete values per fea-
ture (i.e., the number of categories). We will denote tree
nodes by N . The split information at each node N will
be encoded by a feature index s ∈ {0, 1...., d − 1} and a
split value v such that data with the s-th feature equal to
v will go to the left node and all other data will go to the
right node. We define the node domain, denoted by D(N),
to be the set of all discrete configurations that could reach
this node when traversing the decision tree. We will denote
permutations by π(·) ∈ Π, where Π will denote a set of

permutations. Given that the number of discrete configu-
rations of d features with k possible discrete values is kd,
the number of all possible permutations is (kd)!, which is
O(exp(kd)), i.e., doubly exponential in d. We will denote
the parameters of the permutation by θπ , where the exact
parametrization may depend on context.

2.1. Definition of TSP

A tree-structured permutation is a binary decision tree
where each node N contains both a permutation π and the
usual split information (i.e., a split feature s and split value
v). To evaluate a TSP, an input vector traverses the tree
from the root to a leaf node based on the split informa-
tion and applies node permutations as soon as it reaches
the node (i.e., the node permutation will be applied before
determining the split). More formally, we can define the
evaluation of a TSP recursively as the evaluation of a node
fN where the initial N is the root node:

fN (x) =

x if N is a leaf node
fleft(N)(πN (x)) if [πN (x)]j = v

fright(N)(πN (x)) otherwise
(1)

where fN is the evaluation of a node, fleft(N) denotes the
evaluation of the left child node (and similarly for the right
node), πN is the permutation associated with the node, and
[πN (x)]j = v denotes the condition that the j-th feature
after the permutation has value v. We illustrate the idea of
the forward traversal with an example in Figure 1. Note
that even though each node’s permutation is invertible, it is
unclear whether the entire forward evaluation of a TSP is
invertible (i.e., if the path and sequence of permutations im-
plied by the tree structure can be inverted)—which is crit-
ical for their use in discrete flows. Thus, we explore the
conditions for the invertibility of TSPs.

Figure 1. This example of evaluating a TSP on input data (left) to
compute the output (right) illustrates that our tree can compactly
represent a permutation. At each node, the input data will be per-
muted by the node’s associated permutation and then pass onto
the left or right nodes depending on the split information.

2.2. Invertibility Constraint and Calculation for TSPs

To ensure our TSPs are invertible (and thus applicable to
discrete flows), we prove that a simple and intuitive con-

Discrete Tree Flows via Tree-Structured Permutations

straint on the node permutations is sufficient for invertibil-
ity (in the appendix, we derive a necessary and sufficient
condition for invertibility but it is challenging to check or
enforce).

Theorem 1 (TSP Invertibility Constraint). A TSP is invert-
ible if all node permutations πN do not permute configura-
tions that are outside of the node’s domain, i.e., πN (x) =
x, ∀x 6∈ D(N).

We will denote the set of permutations that satisfy this con-
straint for a nodeN as Π(N). The proof of the if direction
is constructive and relies on the following lemma.

Lemma 2. If this invertibility constraint is satisfied, the
TSP tree traversal path for any input can be recovered from
the output.

Leveraging Lemma 2, the inverse can be computed by
traversing the tree in the forward direction (i.e., from root to
leaves) without applying the node permutations but keep-
ing track of the node path. Once we reach a leaf, we apply
the permutations along the path in reverse order to compute
the inverse. We illustrate this inverse computation using the
example output point z = [2, 0] from Figure 1. Starting at
the root, we see that because z0 6= 0, z will move right to
node 2. Then, at node 2, the node permutation will be ig-
nored (for the inverse) and the split condition again will be
checked on z such that z will then move to node 4 because
z1 6= 1, etc. Finally, the inverses of permutations along the
path will be applied in reverse order.

2.3. Naı̈ve TSP: Restricting to the class of independent
permutations

For computational tractability and generalizability, we will
further restrict the possible permutations at each node to
be feature-wise independent (i.e., the permutation for one
feature does not depend on values of other features) and,
for k > 2, value-pair swaps (i.e., permute by swapping
one pair of categorical values). We will denote these re-
strictions as π ∈ ΠIndValPair, where the size of the permu-
tation space is O(k2d). Because of independence of the
permutation and the base distribution, however, the com-
putational cost can be reduced to O(dk2) (more details in
the appendix). Additionally, while we could permute all
d features independently at each tree node, we choose to
only permute the single best feature at each node to avoid
overfitting the dataset, denoted by ΠTSP(N , s), where s is
the feature index of the single best feature to permute. An
example of this naı̈ve TSP is shown in Figure 1. To in-
crease model expressiveness despite these restrictions, we
propose to compose a sequence of naı̈ve TSPs into a deep
TSP permutation that we call Discrete Tree Flows (DTF).

3. Learning TSP Discrete Flows
We will present a greedy approach for building up the tree
similar to other decision tree methods where the goal is to
minimize the negative log likelihood (NLL) over naı̈ve TSP
permutations and independent base distributions Qz given
our dataset X :

min
Qz∈QInd,π∈ΠTSP

L(π,Qz) = min
Qz∈QInd,π∈ΠTSP

n∑
i=1

− logQz(π(xi)) ,

where L(π,Qz) denotes the negative log-likelihood, QInd
is the set of independent distributions over categorical data,
and ΠTSP is the set of naı̈ve TSP permutations. Assum-
ing that the base distribution is independent enables effi-
cient methods for determining the best permutations and
the best features using only feature-wise category counts at
each node. Additionally, an independent base distribution
enables fast sampling, unlike autoregressive base distribu-
tions or other complex base distributions. Our proposed
learning algorithm can be decomposed into node-wise sub-
problems where two main steps are required. First, we need
to determine the best permutation for each node. Second,
as with all decision tree algorithms, we need to determine
the best node to split among all current leaf nodes (i.e., a
splitting criteria). We describe our objectives for both of
these steps in the next section.

3.1. Permutation Criteria for Naı̈ve TSP construction

Our method of naı̈ve TSP construction revolves around
building a tree that minimizes the negative log-likelihood
(NLL) of our training data. We select the best single-
feature node permutation π that minimizes the change in
the NLL:

min
s,π∈ΠTSP(N ,s)

∆L(N , s, π) (2)

= min
s,π∈ΠTSP(N ,s)

L(π,Q′z)− L(id, Qz) (3)

where Q′z is a refitted base distribution after applying per-
mutation π, id denotes that no permutation is applied, and
ΠTSP(N , s) denotes the class of independent permutations
that act only on the domain of the node (so that the TSP
will be invertible) and restricted to the s-th feature. Note
that because Q′z is an independent base distribution, the
optimal Q′z can be computed efficiently only using the em-
pirical (and smoothed) frequencies of each feature for the
training data at the current node. Given that each feature
is independent (both in the permutation and the base dis-
tributions), we can greatly simplify the computation of ∆L
(details in appendix).

3.2. Splitting Criteria for Naı̈ve TSP construction

To determine the best node split, we consider using a split-
ting criteria that maximizes the difference between the fac-

Discrete Tree Flows via Tree-Structured Permutations

torized distribution on the left and the factorized distribu-
tion on the right of the proposed split. Intuitively, if the
distributions on the right and left are different, then a per-
mutation will be able to align them better (and thus help
reduce NLL). Let us denote Qleft(s, v) and Qright(s, v) to
be the best independent distributions on the left and right
of a proposed split parametrized by s and v. We want to
maximize the divergence between these two distributions,
where we will use generalized Jensen-Shannon Divergence
(JSD). The full derivation is given in the appendix, and the
splitting criteria is:

s∗, v∗ = arg min
s,v

w1H(Q
(s,v)
left) + w2H(Q

(s,v)
right) , (4)

where w1 and w2 are the relative empirical probability of
data going left versus right. As is standard in decision tree
algorithms, we also take the minimum over all current leaf
nodes N to select the next best leaf node to split.

3.3. TSP construction: Training the model

Training our model entails greedily constructing the TSP
based on our training data by determining the node per-
mutation, split feature s and split value v at each node N .
The tree construction takes in a maximum height of the tree
given by the user (M), and constructs the TSP nodes node
by node, until the maximum height is reached or until no
further splits can be made (which can be due to reaching a
very small number of samples at each node, or running out
of viable split features or values). At a low-level, the algo-
rithm mainly requires keeping track of feature-wise counts
at each node and a global count vector to optimize each
criteria. The computational complexity for the algorithm is
O(22Mnd2k2), where M is the max depth of the tree, but
the quadratic d2 term can be reduced to d using a Monte
Carlo approximation (details can be found in the appendix).

4. Experiments
We compared our model against the two models introduced
in (Tran et al., 2019) and implemented in (Bricken, 2021).
All the models including ours use an independent base dis-
tribution. We use the following abbreviations in our com-
parisons, AF for autoregressive flow, BF for bipartite flow.
The BF model implemented in (Bricken, 2021), however,
had some issues and so we implemented some modifica-
tions to it (that we mention in more details in the appendix).

For the first set of experiments (labelled exp=1 through 5),
we generated synthetic data X ∈ Zn×d with k categories
and split the data into training and validation datasets us-
ing cross validation with 5 folds. For d = 2 and k = 2,
we chose to generate data that follows a known probabil-
ity distribution. Specifically, for exp = 1, d = 2, k = 2,
we use the probabilities Pr([0, 0]) = 1/3,Pr([0, 1]) =

1/6,Pr([1, 0]) = 1/6,Pr([1, 1]) = 1/3, and for exp =
2, d = 2, k = 2, we use the probabilities Pr([0, 0]) =
1/8,Pr([0, 1]) = 3/8,Pr([1, 0]) = 3/8,Pr([1, 1]) = 1/8.
For the other combinations of d and k, we simulated the
probability distribution over all possible configurations as
a Dirichlet distribution (with α = 1) and we simulate
n = 10000 data points. We also ran an experiment for a
real discrete dataset1, that has n = 8124 datapoints which
is denoted “exp=6”. For all exps we report the mean and
standard deviation of NLL across the 5 test folds. For the
DTF, the results are for a flow of 1 TSP where the maxi-
mum depth M of the TSP is 2 for experiments 1 and 2, and
M = 4 for the rest. For the AF flows, we used a single flow,
that utilizes 64 hidden units (in the MADE layers). We ran
this model for a total of 1500 epochs, sampling 1024 data
points in each epoch. Corresponding to the configuration
in (Tran et al., 2019), 4 flow layers were used for the BF
model. As can be observed from Table 1, our method gives
comparable results to that of AF and BF models.

Table 1. NLL averaged across the 5 test folds.
Experiments DTF AF BF

details NLL Std NLL Std NLL Std
exp = 1, d = 2, k = 2 1.3333 0.0036 1.3338 0.0035 1.3664 0.0249
exp = 2, d = 2, k = 2 1.2521 0.0117 1.2527 0.0119 1.3291 0.0719
exp = 3, d = 5, k = 5 8.0358 0.0033 8.0301 0.0067 8.003 0.0058
exp = 4, d = 10, k = 5 16.0832 0.0021 16.2613 0.0219 16.1122 0.0061
exp = 5, d = 5, k = 10 11.5008 0.0024 11.5739 0.0145 11.5412 0.0068
exp = 6, d = 22, k = 12 16.6367 1.6347 24.9785 2.9568 27.1999 2.5411

For exp = 6, our model took 5.4372 sec for training (with
an Std of 2.463 sec), the AF model took 39.5838 sec (with
an Std of 0.2519 sec), and the BF model took 143.8929 sec
(with an Std of 2.2670 sec). For exp 1-5, timing results are
available in the appendix. Thus, our approach seems to be
computationally less expensive than prior methods as we
had hoped though further experimentation is likely needed.

5. Discussion
We presented a novel framework for discrete normalizing
flows that relies on tree-structured permutations (TSPs),
which we define and develop. Our model isn’t without lim-
itations though, as our implementation relies on a greedy
algorithm and thus may end up not achieving a global op-
timum when learning deep naiv̈e TSPs. This is a problem
that is similar in nature to problems faced by most decision
tree algorithms. Moreover, handling very high dimensional
data may be computationally challenging. However, previ-
ous decision tree algorithms were able to overcome these
obstacles, and we expect that similar techniques could be
used in our method. Ultimately, we hope that our paper
lays the groundwork for developing practical and effective
discrete flows using decision tree algorithms.

1https://archive.ics.uci.edu/ml/datasets/
Mushroom

https://archive.ics.uci.edu/ml/datasets/Mushroom
https://archive.ics.uci.edu/ml/datasets/Mushroom

Discrete Tree Flows via Tree-Structured Permutations

6. Acknowledgement
The authors acknowledge support from the Army Research
Lab through Contract number W911NF-2020-221.

References
Bengio, Y., Léonard, N., and Courville, A. Estimating

or propagating gradients through stochastic neurons for
conditional computation, 2013.

Bricken, T. TrentBrick/PyTorchDiscreteFlows, 2021.
URL https://github.com/TrentBrick/
PyTorchDiscreteFlows. original-date: 2020-01-
31T03:54:04Z.

Chen, T. and Guestrin, C. Xgboost: A scalable tree boost-
ing system. In Proceedings of the 22nd acm sigkdd in-
ternational conference on knowledge discovery and data
mining, pp. 785–794, 2016.

Germain, M., Gregor, K., Murray, I., and Larochelle, H.
Made: Masked autoencoder for distribution estimation,
2015.

Hoogeboom, E., Peters, J. W. T., van den Berg, R., and
Welling, M. Integer discrete flows and lossless compres-
sion, 2019.

Inouye, D. I., Ravikumar, P., and Dhillon, I. S. Admixture
of poisson mrfs: A topic model with word dependen-
cies. In International Conference on Machine Learning
(ICML), jun 2014.

Inouye, D. I., Yang, E., Allen, G. I., and Ravikumar, P.
A review of multivariate distributions for count data de-
rived from the poisson distribution. Wiley Interdisci-
plinary Reviews: Computational Statistics, 9(3):e1398,
2017.

Kingma, D. P. and Welling, M. An introduction to varia-
tional autoencoders. arXiv preprint arXiv:1906.02691,
2019.

Tran, D., Vafa, K., Agrawal, K. K., Dinh, L., and Poole, B.
Discrete flows: Invertible generative models of discrete
data, 2019.

van den Berg, R., Gritsenko, A. A., Dehghani, M.,
Sønderby, C. K., and Salimans, T. Idf++: Analyzing
and improving integer discrete flows for lossless com-
pression, 2020.

Wainwright, M. J. and Jordan, M. I. Graphical models,
exponential families, and variational inference. Founda-
tions and Trends® in Machine Learning, 1(1-2):1–305,
2008.

https://github.com/TrentBrick/PyTorchDiscreteFlows
https://github.com/TrentBrick/PyTorchDiscreteFlows

Discrete Tree Flows via Tree-Structured Permutations

A. Invertibility Proofs
A.1. Proof of Lemma 2 in Section 2.2

Lemma 2. If the invertibility constraint is satisfied, the
TSP tree traversal path for any input can be recovered from
the output.

Proof. First, note that because π is a permutation (i.e., one-
to-one mapping) and πN (x) = x, ∀x 6∈ D(N), then ∀x ∈
D(N), πN (x) ∈ D(N), i.e., all node permutations πN do
not permute configurations from in the domain to outside
the domain.

Without loss of generality, we consider trees where all leaf
nodes are at the max depth of M .

We will denote the tree traversal path of an input x up to
tree level i to be Pi(x) , (NL0(x),NL1(x), · · · ,NLi(x)),
where NLj(x) is the tree node that x reaches at j-th level
of the tree (i.e., Lj(x) gives the index of the node for the
particular input x at the j-th level), NL(0) is the root node.
Let y , πTSP(x) denote the output of our TSP forward
evaluation.

For all x ∈ Zd, let y , πTSP(x) ≡ πNLM (x)
◦· · ·◦πNL1(x)

◦
πNL0(x)

(x) denote the output of our TSP forward evalua-
tion. We want to prove that PM (x) can be recovered from
y and πTSP. Let P ′i(y) , (NL′0(y),NL′1(y), · · · ,NL′i(y))
where we traverse the decision tree of πTSP without apply-
ing node permutations and where L′j(y) is the index of that
y reaches at the j-th layer. If we can prove P ′M (y) =
PM (x) or equivalently ∀j, L′j(y) = Lj(x), then we are
done.

Inductive hypothesis For all i ∈ {0, 1, · · · ,M},
P ′i(y) = Pi(x).

Base case (i = 0) Since both y and x start at the root
node, then the path up to i = 0 is the same.

Induction step We need to prove that if P ′i(y) = Pi(x),
then P ′i+1(y) = Pi+1(x). From assumption of inductive
hypothesis, we know thatNL′i(y) = NLi(x) (i.e., x and the
corresponding y are the same node for level i). Let x(i) =
πNLi(x)

◦· · ·◦πNL1(x)
◦πNL0(x)

(x) where x(M) ≡ y. Note
that only the value v of the split feature s for both x(i) and
y is relevant for determining whether to go left or right.

We prove that the chosen nodes are the same using contra-
diction. Suppose x(i)

s = v such that x goes left and suppose
ys 6= v such that y would go right.

We know that the s-th part of the domain of the left child
has only v in it, i.e., Ds(Nleft) = {v}. Also, we know that
domains of children are always smaller disjoint subsets of

the parent, i.e., Ds(NLN (x)) ⊆ Ds(Nleft) for all N > i.

Thus, x(N)
s = v for all N > i because the invertibility

constraint ensures that we cannot permute a value inside
the domain to a value outside the domain. However, this
is a contradiction to our assumption that x(M)

s ≡ ys 6= v .
Therefore, if x goes left, then y will also go left.

In a similar way, now suppose x(i)
s 6= v such that x goes

right and suppose ys = v such that y would go left. The s-
th part of the domain of the right child has Ds(Nright) =
{a : a 6= v, a ∈ Ds(N)}. Again, Ds(NLN (x)) ⊆
Ds(Nright) for all N > i because every child is a subset
of the parent domain.

Therefore, x(N)
s ∈ Ds(Nright) for all N > i, and thus in

particular x(M)
s ∈ Ds(Nright), where x(M)

s ≡ ys by defini-
tion. However, this contradicts our assumption that ys = v
(i.e., goes left) because v 6∈ Ds(Nright).

Hence, if x goes right, y will also go right.

Combining these two we get that L′i+1(y) = Li+1(x) (i.e.,
they will both go left or both go right), and thus we can re-
cover the path for i+1 by adding the child node to the path
for i, i.e., P ′i+1(y) = Pi+1(x). This proves our inductive
step and concludes the proof of the lemma.

A.2. Proof of Theorem 1 in Section 2.2

Theorem 1 (TSP Invertibility Constraint (sufficient only)).
A TSP is invertible if all node permutations πN do not per-
mute configurations that are outside of the node’s domain,
i.e., πN (x) = x, ∀x 6∈ D(N).

Proof. Lemma 2 (proven above) states that the TSP traver-
sal path for any input can be recovered from the out-
put. Thus, the output path is identical to the input path
P ′i(y) = Pi(x). Therefore, x = π−1

TSP(y) ≡ π−1
NL′0(y)

◦ · · · ◦

π−1
NL′

M−1
(y)
◦ π−1
NL′

M
(y)

(y) because each node permutation

is itself invertible by the definition of a permutation. This
can be seen as traversing the tree from the corresponding
leaf node to the root node and applying the inverse node
permutations along the path.

A.3. Necessary and Sufficient Condition for
Invertibility with Proof

We now present a corrected condition (i.e., disjoint ranges
of leaf nodes) that is both necessary and sufficient for in-
vertibility. Note that this new theorem can be easily used to
prove Theorem 1 as a corollary because the original invert-
ibility constraint set is a subset of the disjoint range of leaf
nodes constraint. However, the proof here does not pro-
vide an efficient algorithm for determining the leaf node

Discrete Tree Flows via Tree-Structured Permutations

while the proof of Lemma 2 does provide an efficient al-
gorithm (i.e., merely traverse the tree as described in the
lemma proof to determine the path).

First, we define the range of a node to simplify the defini-
tion of the theorem and proof.

Definition 1 (Range of a Node). We define the range of a
node, denoted R(N), as the image of D(N) under πN ,
i.e.,R(N) , {πN (x) : x ∈ D(N)}.

Now we present our theorem with a corrected condition
that is both necessary and sufficient.

Theorem 3 (TSP Necessary and Sufficient Invertibility
Constraint). A TSP is invertible if and only if the range
of each leaf node is disjoint from all other leaf nodes, i.e.,
R(N) ∩ R(N ′) = ∅,∀N ,N ′ ∈ Tleaf such that N 6= N ′,
where Tleaf are the set of leaves in the TSP tree.

Proof. We use a constructive proof for the if direction (suf-
ficiency). Because each of the permutations themselves are
invertible, the primary challenge is showing that we can
find the right path through the tree (as there could be mul-
tiple paths without constraints). If the disjoint range condi-
tion is satisfied, then each possible output can be mapped
to one of the leaves, i.e., NLM (y) is the leaf node such that
y ∈ R(N). Given the leaf node, there is only one possible
path through the decision tree back to the root. Thus, the
inverse can be computed by traversing from the leaf node
to the root node and applying the inverse of each node’s
permutation.

To prove the only-if direction (necessity), we will use a
proof by contradiction. Suppose a TSP is invertible but
the disjoint range condition is not satisfied, then R(N) ∩
R(N ′) 6= ∅. Therefore, there exists an output y that is in
the range of two leaf nodes, i.e., ∃y such that y ∈ R(N)
and y ∈ R(N ′) where N 6= N ′. Yet, each input traverses
the TSP tree in a deterministic way and thus each unique
input will always arrive at the same leaf node. There-
fore, there must exist two distinct inputs x 6= x′ such that
πTSP(x) = πTSP(x′) = y. This means that two distinct
inputs map to the same output (i.e., not one-to-one map-
ping) and violates invertibility. However, this contradicts
our assumption that the TSP is invertible.

B. A discussion of classes of permutations
Since the number of discrete configurations of d features
with k possible discrete values is kd, the number of all pos-
sible permutations is (kd)!, which is O(exp(kd)), i.e., dou-
bly exponential in d. We chose to make some restrictions
to our general permutations class as described below.

Independent feature-wise permutations We choose to
restrict to the natural and computationally tractable class

of independent feature-wise permutations, denoted ΠInd,
which allows each feature to be permuted independently
of the other features (i.e., the permutation of one fea-
ture cannot depend on the permutations of other features).
This class significantly reduces the number of permuta-
tions compared to all possible permutations, i.e., |ΠInd| =
(k!)d ≈ exp(kd) � exp(kd) ≈ (kd)! = |Π|. For exam-
ple, for binary data (k = 3) and three features (d = 5), we
can have 3! permutations for each of the five features, lead-
ing to a total of (3!)5 = 7776 joint permutations—which is
considerably smaller than the total number of permutations
(35)! = 243! ≈ 10474.

This makes the independent class of permutations signif-
icantly more computationally tractable and more likely to
generalize to new data points. Additionally, if we assume
that the base distribution Qz is independent, it is possible
to separate the optimization problem into subproblems for
each feature that can be solved independently. Thus, each
feature subproblem only needs to evaluate k! permutations,
and thus the computational complexity for our problem can
be reduced to O(d · k!).

Permutations that swap a single pair of values for k >
2 While restricting to independent permutations ΠInd(N)
can significantly reduce our computational complexity to
O(dk!), the computationally complexity would still grow
exponentially in terms of k, the number of features. Thus,
we further restrict the class of node permutations to be the
class of permutations that swaps a single pair of the k pos-
sible values (or categories) while holding all other feature
values constant. We will denote this class by ΠIndValPair and
this reduces number of possible permutations per feature
from k! to

(
k
2

)
+ 1 which is O(k2) (where the +1 is to in-

clude the identity permutation). Thus, with this restriction
and our assumption about Qz being independent, we can
reduce the computational complexity to O(dk2), which is
computationally in all parameters including k.

As an example, if k = 3, then the possible permutations in
this class are (012, 102, 210, 021) which correspond to the
original permutation, swapping 0 and 1, swapping 0 and 2,
and swapping 1 and 2.

As mentioned in the main section, in our Naı̈ve TSP im-
plementation, we restrict the node permutations to π ∈
ΠIndValPair. Additionally, while we could permute all d fea-
tures independently at each tree node, we choose to only
permute the single best feature at each node to avoid over-
fitting the dataset; we leave exploration of permuting mul-
tiple features to future work.

We denote this single-best permutation class as ΠTSP,
where s is the feature index of the single best feature to
permute. An example of this naı̈ve TSP is shown in Fig-
ure 1.

Discrete Tree Flows via Tree-Structured Permutations

C. Derivation for Calculating the difference
in NLL

We can greatly simplify the computation of ∆L as follows:

∆L(N , s, πN) , L(πN , Q
′
z)− L(id, Qz) (5)

=
1

n

n∑
i=1

d∑
j=1

− logQ′zj ([πN (xi)]j)−

1

n

n∑
i=1

d∑
j=1

− logQzj (xij)

(6)

=
1

n

n∑
i=1

∑
j 6=s

− logQ′zj (xij)− logQ′zs([πN (xis)]s)

− 1

n

n∑
i=1

∑
j 6=s

− logQzj (xij)− logQzs(xis)

(7)

=
1

n

n∑
i=1

∑
j 6=s

− logQzj (xij)− logQ′zs([πN (xis)]s)

− 1

n

n∑
i=1

∑
j 6=s

− logQzj (xij)− logQzs(xis)

(8)

=
1

n

n∑
i=1

− logQ′zs([πN (xis)]s) + logQzs(xis) (9)

Where id denotes that no permutations applied are applied
(the identity), and Q′z is the independent base distribuition
estimate after θπ is applied.

Thus, while constructing the tree, for every node N we
seek to minimize the following term.

s∗, π∗ = arg min
s∈d,π∈ΠTSP

∆L(N , s, πN), (10)

Where s∗ is the best permutation feature and π∗ is the best
permutation to apply.

To simplify Eqn9, we notice that it can be rewritten if we
applied the following properties, for a particular feature (s):

n∑
i=1

logQzs(xis)

=

k−1∑
c=0

logPr(xis = c)nc

=

k−1∑
c=0

nc logPr(xis = c)

(11)

Where nc is the number of samples that has the category c
in the s dimension index.

This property can be used in Eqn.9 to re-write it as:

1

n

n∑
i=1

− logQ′zs([π(xis)]s) + logQzs(xis) (12)

=
1

n

k−1∑
c=0

−n′c logPr′(xis = c) + nc logPr(xis = c)

(13)

= − 1

n

k−1∑
c=0

n′c log(
n′c + 1

n+ k
)− nc log(

nc + 1

n+ k
) (14)

= − 1

n

k−1∑
c=0

n′c log(n′c + 1)− nc log(nc + 1)

− (n′c − nc) log(n+ k)

(15)

Where n′c is the number of samples with category c in the
s dimension after applying the permutation πs

Furthermore, since for naiv̈e TSPs, we have restricted our
permutations to ΠTSP which not only allow us to be com-
putationally more efficient but also allow us to further sim-
plify the calculation of ∆. Let’s say that the permutation
πs flips values k = v1 (that appears on the left child) with
k = v2 (that appears on the right child) then the number
of counts only in the categories that are equal to v1 and
v2 will change before and after applying the permutation,
while the counts of the remaining categories will remain
constant. This means that Eqn(15) can be re-written as

− 1

n
[n′v1 log(n′v1 + 1)− nv1 log(nv1 + 1)−

(n′v1 − nv1) log(n+ k) + n′v2 log(n′v2 + 1)

−nv2 log(nv2 + 1)− (n′v2 − nv2) log(n+ k)]

(16)

where n′v1 and n′v2 are number of counts of categories v1

and v2 respectively after applying the permutation πs and
nv1 and nv2 are number of counts of categories v1 and v2

respectively before applying the permutation πs. For all the
other categories where k 6= v1 and k 6= v2, n′c will be equal
to nc, resulting in the summation in Eqn(15) being zero for
those categories.

D. Derivation for calculating the splitting
criteria

As mentioned in the main section, to determine the best
node split, we consider using a splitting criteria that max-
imizes the difference between the factorized distribution
on the left and the factorized distribution on the right of
the proposed split. Intuitively, if the distributions on the

Discrete Tree Flows via Tree-Structured Permutations

right and left are different, then a permutation will be able
to align them better (and thus help reduce NLL). Let us
denote Qleft(s, v) and Qright(s, v) to be the best indepen-
dent distributions on the left and right of a proposed split
parametrized by s and v. We want to maximize the diver-
gence between these two distributions, where we will use
generalized Jensen-Shannon Divergence (JSD). The gener-
alized JSD can be written either as a weighted sum of KL
divergences or a difference in entropy terms:

JSD(P,Q;w) , w1KL(P,w1P + w2Q)

+ w2KL(Q,w1P + w2Q)
(17)

≡ H(w1P + w2Q)− w1H(P)− w2H(Q) . (18)

This second version can be seen as the entropy of the mix-
ture minus the mixture of the entropies. Given this defini-
tion, we can now define our splitting problem as:

max
s,v

JSD(Q
(s,v)
left , Q

(s,v)
right ;w(s,v))

= H(Qparent) + max
s,v
−w1H(Q

(s,v)
left)− w2H(Q

(s,v)
right)

(19)

where Qparent = w1Q
(s,v)
left + w2Q

(s,v)
right , Q(s,v)

left (x) =∏d
j=1Q

(s,v)
left (xj), Qleft(xs = v)(s,v) =

nleft
s,v+1∑

v n
left
s,v+k

(i.e.,

smoothed frequencies), and nleft
s,v are the number of samples

where the s-th feature equals the value v on the left side—
and similarly for the right side—, and where w(s,v) =
[Pr(xs = v),Pr(xs! = v)] is the probability vector encod-
ing the probability that samples go to the left or the right
side of the split. Notice that the entropy of the parent node
is not required to optimize the JSD.

E. Discussion of Algorithmic complexity
The algorithmic complexity for our algorithm will depend
on the number of leaves at any point during the tree con-
struction which at its worse would be 2M where M is the
maximum depth of the tree. The computational complexity
of determining the best permutation for a node is O(dk2),
which is due to being able to solve each feature indepen-
dently and considering only a single swap of feature values.
Thus the computational complexity of finding the node per-
mutations for the whole tree isO(2Mdk2). The complexity
of finding the best split at a node is O(nd2k) which is due
to the entropy calculation that must be computed over all
features for every possible split value. However, we can
choose to make a Monte Carlo approximation to the en-
tropy calculation by only sampling a relatively small con-
stant number of dimensions (e.g., ten or twenty) and take
the average entropy over these sampled dimensions rather

than over all dimensions. Thus, we would get an unbiased
approximation to the entropy—similar in spirit to SGD.
This approximation allows for the complexity of finding
the best split to be O(ndk2M) and since this must be done
for all current leafs a the complexity is O(ndk22M), which
makes the overall complexity of constructing a naı̈ve TSP
construction O(2Mdk2 + 22Mndk2). Once a Naı̈ve TSP is
constructed, passing a data in the forward direction is just
a matter of the traversing the tree from root to leaf while
applying the permutations stored in the tree node, which is
dependant in complexity on the depth of the tree, and cal-
culating the inverse of the data utilizes the same idea with
the exception of needing additional memory to keep track
of the permutations that we encounter, so both operations
are O(M) in time complexity.

F. Modification of the Bipartite flow code
The BF model implemented in (Bricken, 2021), had some
bugs in the code (e.g., running the bipartite model for data
dimensions d > 2 would yield a runtime error).Thus, mod-
ifications were made to fix the bipartite model code. The
model’s initial embedding flow layers (commonly used for
NLP sequence data) were replaced by a single hidden layer
network with an activation function. A ReLU activation
function was incorporated into the hidden layer to add non-
linearity. The size of the hidden layer was proportional to
the feature size times half the dimension (1

2 ∗ k ∗ d), since
only half of the dimension would be mapped after the split.
Each flow layer does a transformation on one of the splits,
therefore, at least a paired flow layers (even number of flow
layers) is required for a balanced dimensional transforma-
tion.

G. Timing Results for exp = 1 through 5

Table 2. Training time in seconds averaged across the 5 test folds.
DTF AF BF

Time Std Time Std Time Std
0.0655 0.0318 6.161 0.0315 13.8026 0.1057
0.0715 0.0335 6.1373 0.0304 13.9232 0.0543
0.7733 0.3645 11.3008 0.3558 23.4296 0.1263
2.5133 1.1839 19.2331 0.0591 35.1818 0.3065
1.6346 0.7683 16.048 0.3881 29.3238 0.1261

