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Abstract. Deep learning motivated by convolutional neural networks
has been highly successful in a range of medical imaging problems like
image classification, image segmentation, image synthesis etc. However
for validation and interpretability, not only do we need the predictions
made by the model but also how confident it is while making those
predictions. This is important in safety critical applications for the people
to accept it. In this work, we used an encoder decoder architecture based
on variational inference techniques for segmenting brain tumour images.
We compare different backbones architectures like U-Net, V-Net and
FCN as sampling data from the conditional distribution for the encoder.
We evaluate our work on the publicly available BRATS dataset using
Dice Similarity Coefficient (DSC) and Intersection Over Union (IOU)
as the evaluation metrics. Our model outperforms previous state of the
art results while making use of uncertainty quantification in a principled
bayesian manner.

1 Introduction

Medical image segmentation is a challenging task for medical practitioners. It
is costly, takes time and is prone to error. Hence there is a need to automate
the manually done segmentation. Lately Neural Networks have shown great
potential on a variety of medical image segmentation problems. The challenge
with the approaches used in literature is that the model doesn’t predict the
uncertainty associated. This is where Bayesian methods come into play as it gives
a principled way of measuring uncertainty from the model predictions. Measuring
uncertainty in the output predictions made by neural networks is important for
interpretation and validation. Rather than learning the point estimates, Bayesian
Neural Networks (BNN) learns the distribution over the weights. The training
process of BNN involves first initializing the parameters of the neural network.
Next the weights are sampled from some distribution (like gaussian with zero
mean and unit variance) and both the forward pass and backward pass is done
to update the weights using the conventional backpropagation algorithm.

Monte Carlo dropout networks (Kingma et al., 2015) use dropout layers to
approximate deep Gaussian processes which still lack theoretical understanding.
Bayesian Convolutional Neural Network (Gal and Ghahramani, 2015) use vari-
ational inference to learn the posterior distribution over the weights given the
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dataset. The problem with this approach is that it requires a lot of computation
involving a lot of parameters, making this technique not scalable in practice.

Variational Autoencoder (Kingma et al., 2015) which is based on generative
models solves the above problems and has been successful in a number of tasks
like generating images, texts, recommender systems etc. This approach comes
with several challenges in its own right which have been successfully tackled in
the literature. A random variable sampled from posterior distribution has no
gradient so the conventional backpropagation techniques can’t be applied to it.
Local Reparameterization Trick (Kingma et al., 2015) was proposed to tackle
this by converting the random variable to a deterministic one for computation.
The second challenge was the huge computational requirement since it required
weight updates in every iteration. Bayes by Backprop algorithm (Blundell et al.,
2015) tackled this by calculating gradients in back-propagation using a scale and
shift approach by updating the posterior distribution in the backward pass.

2 Related Work

2.1 Medical Image Segmentation

The problem of segmenting medical images have been successfully tackled in
literature using mainly two techniques, first using a Fully Convolutional Network
(FCN) (Long et al., 2015) and second those which are based on U-Net (Ron-
neberger et al., 2015). The main characteristic of FCN architectures is that it
doesn’t use fully connected layers at the end which have been used successfully
for image classification problems. U-Net methods on the other hand uses an
encoder-decoder architecture with pooling layers in the encoder and upsampling
layers in the decoder. Skip connections connect the encoder layers to the decoder
layer to create an additional path for the flow of gradients back in the backprop-
agation step. This helps in reducing overfitting due to many parameters involved
while training the network.

2.2 Bayesian Neural Network

Lately, there has been a revival of interest in bayesian methods as some of the
inherent problems with deep learning could be solved using it. It is a scalable
approach of avoiding overfitting in neural networks and at the same time gives us
a measure of uncertainty. This is very important in critical applications where not
only do we require the predictions made from the model, but also how confident
it is while making its predictions. BNN can be considered as an ensemble of
neural networks (Gal, 2016). It has two advantages over the standard neural
networks, first it avoids overfitting and second it gives a measure of uncertainty
involved.

Instead of point estimates, the neural network learns posterior distribution
over the weights given the dataset as defined in Equation 1.

p(ω|D) = p(D|ω)p(ω)
p(D)

=

∏N
i=1 p (yi|xi, ω) p(ω)

p(D)
(1)
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The predictive distribution can be calculated by approximating the integral
as defined in Equation 2.

p (y∗|x∗,D) =
∫
Ω

p (y∗|x∗, ω) p(ω|D)dω (2)

The challenge is that the posterior is often intractable in nature. To combat
this, (Neal, 1993) used Markov Chain Monte Carlo (MCMC) for learning the
weights over the bayesian neural networks. Also (Graves, 2011), (Blundell et al.,
2015) and (Louizos and Welling, 2016) proposed independently a technique using
variational inference techniques for approximating the posterior distribution. KL
Divergence between the posterior and the true distribution can be calculated
using Equation 3.

KL {qθ(ω)‖p(ω|D)} :=
∫
Ω

qθ(ω) log
qθ(ω)

p(ω|D)
dω (3)

Alternatively minimizing the KL divergence can be written in another form
by maximizing the Evidence Lower Bound (ELBO) which is tractable. This is
shown in Equation 4.

−
∫
Ω

qθ(ω) log p(y|x, ω)dω +KL {qθ(ω)‖p(ω)} (4)

2.3 Variational Inference

Variational inference finds the parameters of the distribution by maximizing the
Evidence Lower Bound. ELBO consists of sum of two terms Kullback-Leibler
(KL) divergence between two distributions and the negative log-likelihood (NLL)
as defined in Equation 5.

minKL (qθ(w)) ‖p(w|D)) (5)

The KL divergence is defined in equation 6.

KL(q(x))‖p(x)) = −
∫
q(x) log

(
p(x)

q(x)

)
(6)

The posterior in the above equation contains an integral which is intractable
in nature. The equation can be re written in Equation 7.

KL (qθ(w)) ‖p(w|D)) = Eqθ(w) log
qθ(w)p(D)
p(D|w)p(w)

=

= log p(D) + Eqθ(w) log
qθ(w)

p(w)
− Eqθ(w) log p(D|w)

= log p(D)− L(θ)

(7)

The above equation can be decomposed into two parts one of which is the
KL divergence between the exact posterior and its variational approximation
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which needs to be minimized and the second is ELBO term which needs to be
maximized. This is shown in Equation 8.

max
θ

log p(D) = max
θ

[KL (qθ(w)) ‖p(w|D)) + L(θ)
]

(8)

KL divergence is zero if exact posterior is equal to variational approximation.
Since the KL divergence is always greater than zero hence the equation can be
approximated by maximizing only the ELBO (Kingma et al., 2015) as defined in
equation 9.

L(θ) = Eqθ(w) log p(D|w)− Eqθ(w) log
qθ(w)

p(w)
= LD −KL (qθ(w)‖p(w)) (9)

2.4 Aleatoric uncertainty and epistemic uncertainty

There are two types of uncertainty - aleatory and epistemic uncertainty where
variance is the sum of both these. Bayesian Neural Networks can be considered an
ensemble of neural networks initialized randomly which averages the test results
in parallel (Gal, 2016). For final predictions, single mean and variance can be
estimated as shown in Equation 10 and Equation 11 respectively.

µc(x) =
1

M

M∑
i=1

µ̂i(x) (10)

σ̂2
c (x) =

1

M

M∑
i=1

σ̃2
i (x) +

[
1

M

M∑
i=1

µ̂2
i (x)− µ̂2(x)

]
(11)

The first term in variance denotes aleatoric uncertainty while the second
denotes epistemic uncertainty. Bayesian Neural Network model for uncertainty
estimation was done by (Kendall and Gal, 2017) with the last layer representing
the mean and variance of logits. The predictive distribution approximating the
posterior distribution which gives a measure of uncertainty is defined in Equation
12.

qθ̂ (y
∗|x∗) =

∫
Ω

p (y∗|x∗, ω) qθ̂(ω)dω (12)

Aleatoric uncertainty is a measure of the variability of the predictions from
the dataset hence it is inherent in the data present. Epistemic uncertainty on the
other hand is a measure of the variability of predictions from the model which is
tied to various metrics used for evaluation like accuracy, loss etc.
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3 Proposed method

The prior distribution helps to incorporate learning of the weights over the network.
Variational Autoencoder has been used successively as a kind of generative model
by sampling from the prior distribution in the encoder. The decoder uses the
mean vector and standard deviation vector from the latent space to reconstruct
the input.

Our model uses a similar encoder decoder architecture as that used in VAEs
with the input to the encoder coming from a pre trained image segmentation
architecture. We tried different backbones which have previously enjoyed success
and found original U-Net gave the best results. The input to the encoder only needs
the mean vector, the standard deviation vector of the conditional distribution
expressing the confidence with which the pixels are correctly predicted.

After passing through the encoder, the parameters get converted to a latent
representation which is again sampled in a mean and standard deviation vector.
The decoder later recovers this back to the original distribution. The conventional
backpropagation algorithm is used for training the model with gradient descent.
The network architecture is shown in Fig 1.

Fig. 1. Our network architecture

Let dataset be denoted by D : {(xi, yi)}Ni=1, variational approximation of the
posterior distribution by qθ(w), encoder as rψ(z|w) and decoder as pφ(w).

The objective function used in this work is defined in Equation 13:

Lapprox =
∑
i

[
− log qθi

(
ŵ(i)

))
− log rψ(i)

(
ẑ|ŵ(i)

)
+ log pφ(i)

(
ŵ(i)|ẑ

)]
(13)

The network is trained using Gradient Descent as defined in Equation 14 and
Equation 15:

θ = θ + α∇θL and ψ = ψ + β∇ψL (14)
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gφ ←
1

m

m∑
k=1

∇φ log pφ
(
x(k)|zθ

(
x(k), ε(k)

))
(15)

We need as predictions the posterior distribution of the model parameters
which is denoted as qθ(w).

The complete algorithm used in our work is shown below:

Algorithm 1: Uncertainty Quantification using Variational Inference
for Biomedical Image Segmentation

Input: Dataset D : {(xi, yi)}Ni=1

Input: Variational approximation of the posterior distribution qθ(w)
Input: encoder rψ(z|w) and decoder pφ(w)
while not converged do

Sample minibatch: D∗ : {(xi, yi)}Mi=1

Sample weights with reparametrization: ŵ(i) ∼ qθi
(
w(i)

)
Sample latent variables with reparametrization: ẑ(i) ∼ rψ(i)

(
z|ŵ(i)

)
Compute stochastic gradients of the objective:
Lapprox =

∑
i

[
− log qθi

(
ŵ(i)

))
− log rψ(i)

(
ẑ|ŵ(i)

)
+ log pφ(i)

(
ŵ(i)|ẑ

)]
Update parameters θ = θ + α∇θL and ψ = ψ + β∇ψL
gφ ← 1

m

∑m
k=1∇φ log pφ

(
x(k)|zθ

(
x(k), ε(k)

))
end
Output: qθ(w)− posterior distribution of the model parameters

3.1 Datasets

To validate the performance of our proposed approach to generalization, publicly
available datasets were used for brain tumour segmentation BRATS18 (Menze
et al., 2015) and (Bakas et al., 2018). It contains MRI scans of 175 patients
with glioblastoma and lower grade glioblastoma. The images were of resolution
240×240×155 pixels. The ground truth labels were created by expert neuroradi-
ologists. The sample from the dataset is shown in Fig 2.

3.2 Hyperparameters

The hyperparameters used in our model are specified in Table 1.
In addition to the above hyperparamaters, cyclical learning rate schedulers

and ReduceLROnPlateau was used. In gradient descent, the value of momentum
was taken as 0.9, γ value of 0.1 and weight decay of 0.0005.

3.3 Evaluation

Evaluation metrics for semantic segmentation problems which have often been
used in literature are Dice Similarity Coefficient (DSC) also known as F1-score



Title Suppressed Due to Excessive Length 7

Fig. 2. Example of MRI slices and ground truth segmentation

Table 1. Hyperparameters details

Parameter Value

Batch Size 16
Optimizer Adam
Learning Rate 0.001
LR scheduler patience 10
LR scheduler factor 0.1
Latent Variable Size 10
Max epochs 500

and Intersection over union (IoU). The corresponding equations are shown in
Equation 16 and Equation 17 respectively.

DSC =
2TP

2TP + FN + FP
(16)

IoU =
TP

TP + FN + FP
(17)

True positive (TR), false negative (FN) and false positive (FP) number of
pixels is calculated separately for each image and averaged over the test set. The
ground truth is labelled manually by experts which are compared against.

3.4 Loss Functions

A combination of binary cross entropy and dice losses have been used to train
the network. The first part binary cross entropy is a commonly used loss function
for classification problems as shown by (Goodfellow et al., 2016). Every pixel in
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the image needs to be classified and hence loss function can be written as shown
in Equation 18.

LCE = −
∑
i,j

yi,j log ŷi,j + (1− yi,j) log (1− ŷi,j) (18)

The problem with binary cross entropy loss is that it doesn’t take into account
the class imbalance as the background is the dominant class. This is one of
fundamental challenges in semantic segmentation problems. Dice Loss is robust
to the aforementioned problem which is based on Dice Similarity Coefficient as
defined in Equation 19.

LDICE =
N∑
i=1

FNi + FPi
2TPi + FNi + FPi

=

N∑
i=1

(
1−DSC(i)

)
(19)

Both the loss terms were combined in a single term with more weight given
to the Dice Loss term since it handles the class imbalance problem better. This
is shown in Equation 20.

L = 0.9 · LDICE + 0.1 · LCE (20)

4 Results

The Mean Dice Similarity value for various backbone architectures compared
against different train size values are shown in Table 2.

Table 2. Mean Dice Similarity metrics for the experiments

Train Size UNet VNet FCN

5 53.1 50.6 50.2
10 56.6 51.3 52.1
15 60.8 53.8 54.4
20 64.3 56.5 58.9

The IOU value for various backbone architectures compared against different
train size values are shown in Table 3.

The predicted segmentation along with uncertainty involved in segmentation
is shown in Fig 3:

The darker color denotes more confidence while the lighter means the model
is less confident in those areas.
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Table 3. Intersection over Union metrics for the experiments

Train Size UNet VNet FCN

5 48.4 46.7 47.2
10 50.6 48.8 50.4
15 53.1 50.8 52.6
20 55.8 52.8 54.3

Fig. 3. Examples of models predictions on test samples, compared to ground truth
segmentation. First column: input image, second column: ground truth segmentation,
third column: predicted segmentation, fourth column: aleatoric uncertainty and fifth
column: epistemic uncertainty.

5 Conclusions

In this work, we proposed a way to quantify uncertainty in the context of medical
image segmentation. Our network is based on an encoder decoder framework
similar to that used by VAEs. The weights of the network represent distributions
instead of point estimates and thus give a principled way of measuring uncertainty
at the same time while making the predictions. Our model uses bayesian neural
networks for both the encoder and decoder. The inputs to encoder come from
pre trained backbones like U-Net, V-Net and FCN sampled from conditional
distribution representing the confidence with which pixels are labelled correctly.
We evaluated our network on publicly available BRATS dataset with our model
outperforming previous state of the art using DSC and IOU evaluation metrics.
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