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ABSTRACT

In a data-driven world teeming with vast volumes of time series data, forecasting
models play a pivotal role. The real-world time series data often exhibits intri-
cate periodic patterns and trends, posing challenges for accurate modeling. Ex-
isting methods, reliant on fixed parameters and sampling techniques, may strug-
gle to capture these complexities effectively. This paper designs a Vibrant Pe-
riod Representation Enrichment (VIPER) framework, which effectively and dy-
namically harnesses the inherent multi-periodic nature of time series data. The
VIPER framework adeptly separates the input sequence into trend and seasonal
components. A Temporal Aggregation Block is specifically deployed for pro-
cessing the seasonal component, applying innovative multi-period transformations
compounded with a global self-attention mechanism. This configuration enables
a comprehensive capture of both short-term and long-term period information,
culminating in a vibrant period representation true to the essence of the tempo-
ral dynamics. Remarkably, experimental results from eight different time series
forecasting datasets substantiate the superior performance, simplicity, and com-
putational efficiency of VIPER compared with the state-of-the-art. Furthermore,
VIPER has highlighted the advantages of employing longer input sequences, ad-
dressing the well-known Input Length Bottleneck Problem.

1 INTRODUCTION

Time series data pervades our data-driven world, with applications ranging from traffic flow esti-
mation (Lv et al., 2014), energy management (Zhou et al., 2022a), disease control (Li et al., 2023),
to financial investment (Lai et al., 2018). Time series forecasting (TSF), which relies on historical
data, is a long-established task that has witnessed a substantial evolution in solution methodologies
over the past few decades (Torres et al., 2021; Lim & Zohren, 2021). Real-world time series data
often exhibits periodic patterns, such as supermarkets’ weekly, monthly, and yearly sales fluctua-
tions. These overlapping and interacting periods introduce complexity into modelling variations.
Each time point is not only influenced by its immediate temporal pattern but also strongly con-
nected to variations in adjacent periods, categorized as intraperiod-variation (short-term patterns
within a period) and interperiod-variation (long-term trends across different periods). The evolution
to deal with the TSF task has seen the transition from traditional statistical techniques (Geurts et al.,
1977) to machine learning methods (Hochreiter & Schmidhuber, 1997; Cho et al., 2014) and deep
learning-based approaches (Zhou et al., 2022a; Li et al., 2019; Zhang & Yan, 2023).

Recent research endeavours have focused on enhancing time series forecasting by obtaining resilient
representations capable of effectively capturing essential patterns such as trends and seasonality
while remaining robust to noise. These efforts employing fixed parameters have included tech-
niques such as using a moving average kernel to decompose the sequence into its seasonal and trend
components (Wu et al., 2021; Zhou et al., 2022b; Zeng et al., 2023), or segmenting the sequence
into a series of overlapping or non-overlapping patches based on patch length (Nie et al., 2023). Al-
ternatively, some methods exploit the inherent characteristic that the original sequence retains much
of its vital information after sampling (LIU et al., 2022). For example, LightTS (Zhang et al., 2022)
utilizes interval and continuous sampling techniques to divide the input sequence into more semanti-
cally informative tokens, while SCINet (LIU et al., 2022) adopts a “downsample-convolve-interact”
architecture, sampling the input sequence following a binary tree structure to generate odd and
even sub-sequences. Nevertheless, the utilization of fixed-parameter methods as described above
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(a) Model Comparisons (b) Visualization of Decomposed Data

Figure 1: (a) Comparison among different methods with respect to performance, parameters, and
efficiency on Traffic dataset (Wu et al., 2021). VIPER showcases top-tier performance, minimal
parameters, and the swiftest processing speed. (b) Data visualization example before and after data
decomposition. After decomposition, the interference from the trend component is eliminated, and
the seasonal part exhibits a more pronounced periodicity compared to the original input sequence.

brings complexities to simultaneously representing these distinct variations. Such fixed parameters
or sampling strategies are often ill-suited for the varying and overlapping periodic patterns com-
monly encountered in real-world time series data. Consequently, they may not effectively capture
the complexities of intraperiod-variation and interperiod-variation, as they impose rigid structures
on the data that may not align with the dynamic nature of time series. Furthermore, most mainstream
transformer-based models often suffer from a redundancy of parameters, leading to expensive train-
ing costs and long inference time, making them challenging to align with real-world applications, as
illustrated in Figure 1 (a).

The above discrepancy motivated us to explore a novel approach, leveraging the multi-periodic
characteristics inherent in real-world time series data to improve the feature representation. This
concept was initially introduced by TimesNet (Wu et al., 2023), which transforms 1D time series into
2D representations using multiple period information and applies 2D convolutional kernels to handle
these representations. However, directly applying such processing to the raw input sequence may
fail to reveal the nuances of intraperiod-variation and interperiod-variation. A time series consists
of both seasonal and trend components, with the former exhibiting repetitive patterns or periodicity
and the latter capturing short and long-term variations, which is demonstrated in Figure 1 (b). The
trend component blurs the periodic changes in the short term by reducing fluctuations within a
period, making intraperiod-variation challenging to identify. Simultaneously, it also increases the
consistency in fluctuations between different periods, making interperiod-variation hard to detect, as
it typically obscures the differences between periods. Consequently, the trend component helps to
complicate the disentanglement of intraperiod-variation and interperiod-variation from the raw input
sequence. Moreover, due to the local self-attention mechanism of convolutional kernels, long-term
period information is simply overlooked (Wu et al., 2023). Moreover, TimesNet fails to address the
issue of parameter redundancy, the blue circle as shown in Figure 1 (a).

To more effectively disentangle and harness intraperiod-variation and interperiod-variation within
time series data, we introduce the Vibrant Period Representation Enrichment (VIPER) framework.
Our framework initiates by eliminating the influence of the trend component through decomposition
and subsequently employs multi-period transformations on the seasonal component. Furthermore,
it employs a global self-attention mechanism, in contrast to 2D convolutional kernels, to model the
resulting 2D tensor. This strategy enables us to effectively capture both short-term and long-term
period information concurrently.

We conducted experiments on eight widely used real-world datasets, and the experimental results
demonstrate that our method consistently achieves state-of-the-art results across almost all of these
datasets. Moreover, as indicated in Figure 1 (a), our method exhibits exceptional performance in
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terms of model parameter count, inference time, and prediction accuracy, with a linear layer as the
backbone. Our contributions are summarized as follows.

• We introduce VIPER, a versatile time series forecasting framework designed to harness
both inter-period and intra-period relationships within input sequences.

• Through experiments conducted on eight public datasets, we illustrate that VIPER achieves
superior performance compared to current state-of-the-art models. Remarkably, this is
accomplished using only two basic linear layers, emphasizing simplicity and efficiency.

• As a versatile framework, our VIPER can seamlessly integrate with all major Time Series
Forecasting (TSF) models and significantly enhance their predictive performance. More-
over, VIPER highlights the advantages of employing longer input sequences, addressing
the Input Length Bottleneck Problem.

2 RELATED WORK

Owing to the real-world demand for time series prediction, several endeavours have been undertaken
in this area. The first to tackle this challenge were statistical models, such as ARIMA (Geurts et al.,
1977). However, as a recursive model, the predictive performance of ARIMA may deteriorate with
an increase in the forecasting horizon, known as the “error accumulation effect” making long-term
forecasts unstable. Additionally, ARIMA models assume that time series data is linear, implying
that they struggle to effectively capture complex nonlinear relationships and features.

Under the machine learning and deep learning scenarios, there have been many remarkable achieve-
ments, primarily falling into the following four domains. In the domain of Recurrent Neural Net-
works (RNNs), classic designs (Hochreiter & Schmidhuber, 1997; Cho et al., 2014) remain widely
employed and continue to hold relevance today. However, RNNs tend to process information in
the same way across all time scales, which means they may perform poorly when dealing with pat-
terns at different time scales. Within Convolutional Neural Networks (CNNs), introducing a unique
“downsample-convolve-interact” architecture also achieves promising results (LIU et al., 2022). But
CNNs are primarily designed to capture local patterns, which means they are better suited for ad-
dressing issues related to certain local features within time series data. For problems involving
long-range dependencies, CNNs may be less effective.

Transformers (Vaswani et al., 2017) renowned for their proficiency in capturing semantic relation-
ships within extensive sequences have catalyzed a surge in related research (Wen et al., 2023).
They excel through strategies such as efficient attention mechanisms that optimize computational
and memory requirements with sparse self-attention (Zhou et al., 2022a; Li et al., 2019), innova-
tive model architectures featuring pyramidal attention modules for linear complexity (Liu et al.,
2022), tailored attention mechanisms refining self-attention for specific time series patterns like
Auto-Correlation (Wu et al., 2021), and the utilization of inherent time series data characteristics,
incorporating techniques like patching and segment-based modelling to prioritize subsequence rela-
tionships over individual time points (Nie et al., 2023). Some work has also attempted to combine
the Transformer with other network architectures, such as integrating it with Graph Neural Networks
(GNNs) (Ng et al., 2022) or designing the Transformer in a U-Net structure (Madhusudhanan et al.,
2022). However, transformer-based models often demonstrate limited temporal relation extraction
capabilities and their redundancy in parameters can lead to increased susceptibility to overfitting,
resulting in unstable prediction performance (Zeng et al., 2023).

In the realm of Multi-layer Perceptrons (MLPs), advancements in time series forecasting include
utilizing interval and continuous sampling to partition input sequences and employing the Informa-
tion Extraction Block (IEB) to extract patterns from tokens (Zhang et al., 2022). Unfortunately, such
sampling may inevitably lead to information loss (Kreindler & Lumsden, 2016).

Compared to the previous literature, our VIPER can achieve more stable predictive performance
with few parameters. This is achieved through the extraction and efficient utilization of intraperiod-
variation and interperiod-variation patterns in the input sequence. Furthermore, VIPER can utilize
longer input lengths, indicating that our VIPER is better at capturing temporal variation (Zeng et al.,
2023).
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3 METHODOLOGY
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Figure 2: Framework of VIPER. After decomposing the original input time series into trend and
seasonal parts, we employ a linear layer to directly project the trend part. Meanwhile, we model
intraperiod- and interperiod-variation in the seasonal part using a temporal aggregation block, fol-
lowed by projection using a backbone network. The two projected parts are then added together for
forecasting. Additionally, RevIN is employed to ensure stability during the model training process.

The outline of the VIPER framework is depicted in Figure 2. Our strategy initiates by deconstruct-
ing the input sequence into its trend and seasonal components, referring to Figure 1 (b) for better
understanding. Here, the seasonal parts demonstrate repetitive patterns, signifying periodicity. Con-
currently, the trend component embodies the overall variances throughout the data sequence. Then,
we employ distinct strategies for each component to forecast their future behaviour, the outcome of
which is subsequently reincorporated after processing. Specifically, to process the seasonal compo-
nent, we design a Temporal Aggregation Block to more dynamically and comprehensively capture
patterns of both intraperiod- and interperiod-variation. This strategic approach enables us to obtain
vibrant period representations for further robust and efficient forecasting.

3.1 TREND AND SEASONAL DECOMPOSITION

In the context of time series data, distribution shifts can occur when there are changes in the patterns,
trends, or statistical properties of the data over different time periods, which leads to poor forecasting
performance. To this end, we employed RevIN (Kim et al., 2022) to normalize and denormalize the
input and output, respectively, to reduce the risk of model overfitting, enhance its generalization
capability and stabilise the predictions. Specifically, we calculate the mean and variance of the input
sequence, then normalize the input to zero mean and unit variance. Afterwards, we use this mean
and variance to denormalize the obtained forecasting results.

Trends typically manifest as a sustained upward or downward movement in a time series over a
certain period of time. They can obscure or confound the periodic components within a time series,
thus affecting the observation and analysis of periodic patterns. To eliminate the interference of the
trend part, we decompose the input X to XSeasonal and XTrend, as shown in Figure 1 (b). For XTrend,
we employ a moving average kernel with a stride of 25 to obtain the sliding average of the original
sequence following Autoformer (Wu et al., 2021). Subsequently, XSeasonal with repetitive patterns is
obtained by subtracting the trend component from the original sequence X.

Trend Component We employ a linear layer to project the trend component for trend forecasting
according to Xo

Trend = WTrendXTrend + b. This approach, while simple, proves to be effective while
consuming less memory and requiring fewer parameters. Thus, the result has a faster inference
speed when compared to existing Transformer models.
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Seasonal Component We introduce a novel Temporal Aggregation block (in Section 3.2), which
enables dynamic fine-graining of feature representation from both intra-period and inter-period as-
pects. The extracted vibrant period representations are then fed into the subsequent backbone mod-
ule (such as MLPs, CNNs, RNNs, and Transformers) for forecasting the seasonal component.

3.2 TEMPORAL AGGREGATION BLOCK

In the Temporal Aggregation Block, we first employ a multi-period transformation to convert the in-
put time series into a series of 2D representations. Next, we utilize the Global Self-Attention block to
model intraperiod-variations. Finally, we apply Adaptive Aggregation to learn dependencies among
interperiod-variations.

Multi-Period Transformation To effectively represent the intraperiod-variation and interperiod-
variation, the identification of underlying periods is crucial, especially when the input time series
exhibits multi-periodic characteristics. Given seasonal component XSeasonal ∈ RN×C , we first utilize
the Fast Fourier Transform (FFT) to extract the top-k dominant frequencies, as illustrated in Figure 2.

XF = FFT(XSeasonal), A = Topk (Avg (Amp (XF)) , k) , P =

⌈
seq len

A

⌉
, (1)

where XF is the sequence processed through FFT. A is the largest k amplitudes. P stands for
the period of the split sequence, Avg denotes the average, Amp represents the operation to get the
amplification of the signal, and seq len demonstrates the input sequence length. Subsequently, these
extracted frequencies enable us to determine the corresponding periods.

We further transform XSeasonal into a sequence of 2D representations to exploiting multi-period in-
formation, where one dimension corresponds to the length of a period and the other dimension
represents the number of periods. This approach enables us to explicitly capture variations within
and between periods in a 2D space, which reads:

X2D = Reshape

(
XSeasonal,

[
C,

L

P
,P
])

, (2)

Global Self-Attention Block We use a global self-attention block to perform information aggrega-
tion on the obtained 2D representation. This design, utilizing a global self-attention mechanism, out-
performs the 2D convolutional kernels employed by TimesNet in modelling comprehensive global
relationships within the 2D representation from the same period division. Consequently, it excels in
capturing intraperiod-variation more effectively. However, since the original self-attention requires
the projection of inputs using three matrices Q,K, V , and due to the multi-period nature of the input
sequence, this operation may introduce parameter redundancy, meaning that each period requires
a specific set of Q,K, V . Therefore, we have removed this projection operation and refer to the
remaining part as the Global Self-Attention Block, according to:

X̂ = Softmax

(
XT

2DX2D√
(L/P)

)
X2D. (3)

Adaptive Aggregation For the top-k selected periods, the amplitudes associated with each pe-
riod to some extent reflect the weights of each period, the relationship among the amplitudes, and
interperiod-variation. Therefore, we apply softmax to these top-k amplitudes and then perform
weighted summation with the top-k 1D representations output by the Global Self-Attention Block.
This process is called Adaptive Aggregation, which is used for modelling interperiod-variation. The
result is then added together with XSeasonal as the output of the Temporal Aggregation Block

Xadaptive =

k∑
n=1

Softmax(An)X̂, n ∈ {1, · · · , k}, Xout = XSeasonal +Xadaptive. (4)
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Table 1: The Statistics of the eight datasets used in our experiments.
Datasets ETTh1&2 ETTm1&2 Traffic Electricity Exchange-Rate Weather
Variates 7 7 862 321 8 21

Timesteps 17,420 69,680 17,544 26,304 7,588 52,696
Granularity 1 hour 5 min 1 hour 1 hour 1 day 10 min

4 EXPERIMENTAL RESULTS

4.1 DATASETS AND EVALUATION PROTOCOL

We selected eight widely-used real-world datasets that are multivariate time series, including
Electricity Transformer Temperature (ETTh1, ETTh2, ETTm1, and ETTm2), Electricity, Traffic,
Weather, and ExchangeRate (Wu et al., 2021). The characteristics of these datasets are shown in
Table 1 (More can be found in Appendix). Following the previous works (Wu et al., 2023), we use
Mean Squared Error (MSE) and Mean Absolute Error (MAE) as the core metrics for the evaluation.

4.2 BASELINES AND EXPERIMENTAL SETTING

We chose TimesNet (Wu et al., 2023), MICN (Wang et al., 2023), FEDformer (Zhou et al., 2022b),
Autoformer (Wu et al., 2021), Informer (Zhou et al., 2022a), Pyraformer(Liu et al., 2022), Log-
Trans (Li et al., 2019), as well as DLinear (Zeng et al., 2023), which achieved astonishing results
with only two simple linear layers, as our baselines. All the models follow the same experimental
setup with 4 different prediction lengths T ∈ {96, 192, 336, 720}. Our VIPER model uses an input
length of L = 720 on all datasets except for the ExchangeRate. The authors of DLinear claimed
that their best input length is L = 336, so we directly collected their performance results from their
paper. MICN, on the other hand, had an optimal input length of 96; therefore, we also gathered their
results directly from their paper. We directly collected performance metrics of other models from
TimesNet (Wu et al., 2023), but we observed that all models in TimesNet have their input length
set to L = 96. To avoid underestimating the performance of other methods, we rerun TimesNet,
FEDformer, Autoformer and Informer for three different look-back windows L ∈ {96, 336, 720},
and always chose the best results to create strong and robust baselines following (Nie et al., 2023).
In the experiments, we found that the remaining methods had the best input length of L = 96 on
the ExchangeRate dataset. So we directly collected the results of the exchange rate dataset from
TimesNet (Wu et al., 2023) as the performance of the remaining models. For a fair comparison, we
also set the input sequence length of our VIPER model to L = 96 on the ExchangeRate dataset.

4.3 COMPARISION WITH THE STATE-OF-THE-ART METHODS

As evident from Table 2, the VIPER model significantly outperforms other state-of-the-art mod-
els across all the datasets, demonstrating its superior efficacy. Interestingly, VIPER and DLinear
emerge as top performers across most datasets. This surprising result demonstrates their superiority
over intricate, parameter-laden transformer-based models, MICN, and TimesNet. Despite the nu-
merous TimesBlocks stacked in TimesNet leading to significant parameter redundancies, it fails to
outperform our method. Moreover, the redundancy results of TimesNet in excessively high training
costs compared to our approach. Similar to DLinear, VIPER also utilizes merely two fundamen-
tal linear layers, which leads to considerable reductions in both memory usage and training time.
This implies that the strength of long-term time series forecasting doesn’t necessarily rely on the
sophistication of the model or extensive parameter tuning, but rather hinges upon a representation
that accurately encapsulates the inherent semantic information, such as trend and seasonal DLinear
and intraperiod-variation and interperiod-variation patterns in VIPER, of the time series.

4.4 INPUT LENGTH BOTTLENECK ANALYSIS

The power of a better representation—namely, one that effectively retains critical historical in-
formation while proficiently filtering out noise from the original sequence—is further assessed
through extensive experimentation. We carefully chose illustrative works from various facets of
time-series forecasting, including LSTM (Hochreiter & Schmidhuber, 1997) (representing RNNs),
Informer (Zhou et al., 2022a) and Pyraformer (Liu et al., 2022) (two noteworthy transformer-based
models), SCINet (LIU et al., 2022) (an avant-garde model utilizing Temporal Convolutional Net-
work), and LightTS (Zhang et al., 2022) and DLinear (Zeng et al., 2023) (two MLP-based models
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Table 2: Multivariate long-term forecasting result comparison. We use prediction lengths T ∈
{96, 192, 336, 720}. The best results are in bold and the second bests are underlined.

Model VIPER MICN TimesNet DLinear FEDformer Autoformer Informer Pyraformer LogTrans
Names (Ours) (2023) (2023) (2023) (2022b) (2021) (2022a) (2022) (2019)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1 96 0.307 0.349 0.316 0.362 0.338 0.375 0.299 0.343 0.326 0.390 0.510 0.492 0.626 0.560 0.543 0.510 0.600 0.546
192 0.337 0.367 0.363 0.390 0.374 0.387 0.335 0.365 0.365 0.415 0.514 0.495 0.725 0.619 0.557 0.537 0.837 0.700
336 0.366 0.384 0.408 0.426 0.410 0.411 0.369 0.386 0.392 0.425 0.510 0.492 1.005 0.741 0.754 0.655 1.124 0.832
720 0.416 0.412 0.481 0.476 0.478 0.450 0.425 0.421 0.446 0.458 0.527 0.493 1.133 0.845 0.908 0.724 1.153 0.820

E
T

T
m

2 96 0.161 0.251 0.179 0.275 0.187 0.267 0.167 0.260 0.180 0.271 0.205 0.293 0.355 0.462 0.435 0.507 0.768 0.642
192 0.215 0.289 0.307 0.376 0.249 0.309 0.224 0.303 0.252 0.318 0.278 0.336 0.595 0.586 0.730 0.673 0.989 0.757
336 0.267 0.325 0.325 0.388 0.321 0.351 0.281 0.342 0.324 0.364 0.343 0.379 1.270 0.871 1.201 0.845 1.334 0.872
720 0.350 0.377 0.502 0.490 0.408 0.403 0.397 0.421 0.410 0.420 0.414 0.419 3.001 1.267 3.625 1.451 3.048 1.328

E
T

T
h1

96 0.368 0.398 0.421 0.431 0.384 0.402 0.375 0.399 0.376 0.415 0.435 0.446 0.941 0.769 0.664 0.612 0.878 0.740
192 0.403 0.419 0.474 0.487 0.436 0.429 0.405 0.416 0.423 0.446 0.456 0.457 1.007 0.786 0.790 0.681 1.037 0.824
336 0.423 0.436 0.569 0.551 0.491 0.469 0.439 0.443 0.444 0.462 0.486 0.487 1.038 0.784 0.891 0.738 1.238 0.932
720 0.426 0.455 0.770 0.672 0.521 0.500 0.472 0.490 0.469 0.492 0.515 0.517 1.144 0.857 0.963 0.782 1.135 0.852

E
T

T
h2

96 0.268 0.332 0.299 0.364 0.340 0.374 0.289 0.353 0.332 0.374 0.332 0.368 1.549 0.952 0.645 0.597 2.116 1.197
192 0.329 0.372 0.441 0.454 0.402 0.414 0.383 0.418 0.407 0.446 0.426 0.434 3.792 1.542 0.788 0.683 4.315 1.635
336 0.345 0.391 0.654 0.567 0.407 0.446 0.448 0.465 0.400 0.447 0.477 0.479 4.215 1.642 0.907 0.747 1.124 1.604
720 0.376 0.422 0.956 0.716 0.404 0.443 0.605 0.551 0.412 0.469 0.453 0.490 3.656 1.619 0.963 0.783 3.188 1.540

E
le

ct
ri

ci
ty 96 0.134 0.230 0.310 0.398 0.168 0.272 0.140 0.237 0.186 0.302 0.196 0.313 0.304 0.393 0.386 0.449 0.258 0.357

192 0.148 0.243 0.300 0.394 0.184 0.289 0.153 0.249 0.197 0.311 0.211 0.324 0.327 0.417 0.386 0.443 0.266 0.368
336 0.164 0.259 0.323 0.413 0.198 0.300 0.169 0.267 0.213 0.328 0.214 0.327 0.333 0.422 0.378 0.443 0.280 0.380
720 0.204 0.292 0.364 0.449 0.220 0.320 0.203 0.301 0.233 0.344 0.236 0.342 0.351 0.427 0.376 0.445 0.283 0.376

W
ea

th
er 96 0.168 0.222 0.161 0.229 0.172 0.220 0.176 0.237 0.238 0.314 0.249 0.329 0.354 0.405 0.896 0.556 0.458 0.490

192 0.212 0.259 0.220 0.281 0.219 0.261 0.220 0.282 0.275 0.329 0.325 0.370 0.419 0.434 0.622 0.624 0.658 0.589
336 0.259 0.296 0.278 0.331 0.280 0.306 0.265 0.319 0.339 0.377 0.351 0.391 0.583 0.543 0.739 0.753 0.797 0.652
720 0.319 0.338 0.311 0.356 0.365 0.359 0.323 0.362 0.389 0.409 0.415 0.426 0.916 0.705 1.004 0.934 0.869 0.675

Tr
af

fic

96 0.388 0.272 0.519 0.309 0.593 0.321 0.410 0.282 0.576 0.359 0.597 0.371 0.733 0.410 2.085 0.468 0.684 0.384
192 0.397 0.273 0.537 0.315 0.585 0.321 0.423 0.287 0.610 0.380 0.607 0.382 0.777 0.435 0.867 0.467 0.685 0.390
336 0.411 0.279 0.534 0.313 0.621 0.336 0.436 0.296 0.608 0.375 0.623 0.387 0.776 0.434 0.869 0.469 0.734 0.408
720 0.450 0.301 0.577 0.325 0.637 0.345 0.466 0.315 0.621 0.375 0.639 0.395 0.827 0.466 0.881 0.473 0.717 0.396

E
xc

ha
ng

e 96 0.081 0.197 0.102 0.235 0.107 0.234 0.088 0.218 0.148 0.278 0.197 0.323 0.847 0.752 1.748 1.105 0.968 0.812
192 0.172 0.293 0.172 0.316 0.226 0.344 0.176 0.315 0.271 0.380 0.300 0.369 1.204 0.895 1.874 1.151 1.040 0.851
336 0.319 0.406 0.272 0.407 0.367 0.448 0.313 0.427 0.460 0.500 0.509 0.524 1.672 1.036 1.943 1.172 1.659 1.081
720 0.854 0.689 0.714 0.658 0.964 0.746 0.839 0.695 1.195 0.841 1.447 0.941 2.478 1.310 2.085 1.206 1.941 1.127

comparative to state-of-the-art transformer models), and TimesNet (Wu et al., 2023). For the experi-
ments, medium-sized and longer time-step datasets—ETTh2, ETTm2, and Weather—were selected
to mitigate overfitting. The prediction length was deliberately set to T = 720, with input lengths
varied between L ∈ {96, 192, 336, 720, 960}, aiming to gain a more comprehensive view of the
experimental outcomes. MAE was chosen as the evaluation metric.

Figure 3 reveals a phenomenon we refer to as the ‘Input Length Bottleneck Problem’. There is an
implicit expectation that increasing the input length with more information involved would propor-
tionally enhance the performance. However, contrasting results are observed in the other methods.
As the input sequence length elongated, the performance of most other models either descended or
demonstrated an initial surge, subsequently followed by deterioration in performance. Such a pat-
tern implies that these models struggle significantly with effectively capitalizing on the surplus input
information, a similar finding echoed in Zeng et al. (2023).

Surprisingly, both VIPER and DLinear perform admirably when dealing with extended input se-
quences, particularly noticeable on datasets such as Weather and ETTh2. However, DLinear en-
countered difficulties when it came to the ETTm2 dataset, unlike VIPER, which exhibited robust
performance across all three datasets consistently.

Furthermore, it’s worth highlighting that TimesNet experienced a degradation in performance as the
input length increased. This accentuates the superiority of our proposed global self-attention method
compared to the utilization of 2D convolution kernels along with local self-attention windows for
feature extraction. Moreover, this reveals that employing the multi-period transformations on the
seasonal component potentially performs better than on the raw sequence.
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Figure 3: Different MAE performances (Y-Axis) vary on models and input lengths (X-Axis). Our
model reached the best with steadily increasing performance with the input length increases.
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Figure 4: The MSE results (X-Axis) of various models with and without VIPER of long-term fore-
casting (T=720) on the ETTm2 (a) and ETTh2 (b) datasets. The shorter, the better.

4.5 BOOSTING PERFORMANCE OF OTHER MODELS

To further validate our perspective that improved representations are crucial for addressing time
series prediction challenges, and showcase the versatility of our VIPER framework, we conducted
comprehensive experiments. These involved sequentially substituting the backbone in VIPER with
an array of architectures, including LSTM (RNNs), Informer and Pyraformer (both transformers),
SCINet (CNNs), and LightTS (MLPs). We selected ETTh2 and ETTm2 datasets for our exper-
iments. In these tests, we set the prediction length at T = 720. To examine how our method
assists models in overcoming the input length bottleneck problem, we preset the input length to
L ∈ {96, 336, 720}. The evaluation metric was MSE.

As illustrated in Figure 4, our approach significantly enhanced the performance of all models in
MSE metric on both datasets. SCINet, Informer, Pyraformer, and LSTM experienced remarkable
improvement using our method, while LightTS also saw substantial enhancement. These results
suggest that superior input feature representation, rather than the specific model type, is the key to
successful long-term time series forecasting.

4.6 ABLATION STUDIES

Model Structure To explore the individual contribution of each component (Temporal Aggregation
Block and RevIN) of VIPER, we conducted ablation studies on five datasets. According to the
results shown in Table 3, it is evident that our Temporal Aggregation Block further enhanced the
performance of DLinear. The addition of RevIN also successfully stabilized the training process of
the model, resulting in an obvious performance improvement.

Comparative Experiment about Temporal Aggregation Block and TimesBlock We conducted
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Table 3: Ablations on model architecture. We defined ‘DL’ as the original model i.e., DLinear,
without introducing anything, and defined ‘TB’ as introducing Temporal Aggregation Block on the
basis of DLinear, and ‘TB+RevIN’ as adding RevIN on the basis of ‘TB’ to stabilize the training
process. Input sequence length of all datasets are set to L=96, and prediction length are set to T=720.

Datasets ETTm1 ETTm2 ETTh2 ETTh1 Traffic Avg

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

DL 0.472 0.451 0.559 0.529 0.831 0.657 0.517 0.513 0.674 0.420 0.562 0.500
+TB 0.471 0.450 0.539 0.514 0.803 0.645 0.506 0.504 0.646 0.397 0.541 0.487

+TB+RevIN 0.478 0.446 0.406 0.395 0.415 0.435 0.476 0.467 0.643 0.383 0.486 0.437

Table 4: Extensive Experiment of Temporal Aggregation Block and TimesBlock (Wu et al., 2023),
the basic component of TimesNet, on ETTh2, ETTm2. TB means directly apply a TimesBlock to
raw data and then using a linear layer to get the forecasting result. TB+De means we first decom-
pose the raw data to seasonal and trend, then apply TimesBlock on seasonal part, which equals to
supplement the Temporal Aggregation Block in VIPER to TimesBlock.

Datasets L VIPER TB + De TB
MSE MAE MSE MAE MSE MAE

ETTh2

96 0.415 0.435 0.497 0.480 0.545 0.514
192 0.399 0.428 0.493 0.485 0.508 0.497
336 0.384 0.423 0.494 0.508 0.510 0.510
720 0.376 0.422 0.566 0.563 0.568 0.572

ETTm2

96 0.406 0.395 0.424 0.413 0.443 0.419
192 0.381 0.386 0.435 0.420 0.460 0.432
336 0.366 0.382 0.445 0.432 0.455 0.443
720 0.350 0.377 0.448 0.441 0.485 0.463

experiments to show the advantages of decomposing the original time series and using global at-
tention for intraperiod-variation and interperiod-variation learning. We compared TimesBlock, a
key component of TimesNet that employs 2D convolutional kernels for feature extraction, with our
VIPER, which utilizes global attention in the Temporal Aggregation Block.

Results in Table 4 on the ETTh2 and ETTm2 datasets reveal significant performance improvement
for TimesBlock with the decomposition strategy. This highlights the effectiveness of decomposing
data before applying 2D feature transformations to the seasonal part. Notably, both TimesBlock
methods show performance degradation with longer input sequences, while our VIPER, thanks to
global attention in the Temporal Aggregation Block, achieves positive enhancements.

In general, a strong TSF model, with robust temporal relation extraction capabilities, benefits from
larger look-back window sizes. This underscores the limitations of local attention in 2D convolu-
tional kernels for extracting and utilizing temporal patterns, particularly in longer sequences. In
contrast, our design with global attention excels in extracting temporal information, enabling longer
output windows. More visualization and analysis can be found in Appendix A.2.

5 CONCLUSION AND FUTURE WORK

We introduce the VIPER framework, leveraging the multi-period characteristics of real-world data.
It efficiently disentangles and eliminates interference from trend components, allowing for focused
modelling of dependencies within the seasonal component. VIPER enables the extraction of both
intraperiod-variation and interperiod-variation, resulting in more robust and efficient forecasting out-
comes. Furthermore, VIPER has highlighted the advantages of employing longer input sequences,
addressing the well-known Input Length Bottleneck Problem. Notably, VIPER has demonstrated
exceptional predictive performance while requiring a remarkably low number of parameters, show-
casing its potential for wider application. In the future, we aim to extend VIPER’s applications to
domains such as classification, imputation, anomaly detection, and beyond.
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6 REPRODUCIBILITY STATEMENT

To foster reproducibility, we make our code available in supplementary materials and will public it
online after acceptance. We give details on our experimental protocol in Appendix A.1.
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R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/6775a0635c302542da2c32aa19d86be0-Paper.pdf.

Zhe Li, Zhongwen Rao, Lujia Pan, and Zenglin Xu. MTS-Mixers: Multivariate time series
forecasting via factorized temporal and channel mixing. ArXiv, abs/2302.04501, 2023. URL
https://arxiv.org/abs/2302.04501.

Bryan Lim and Stefan Zohren. Time series forecasting with deep learning: A survey. Philosophi-
cal Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, pp.
20200209, Apr 2021. doi: 10.1098/rsta.2020.0209. URL http://dx.doi.org/10.1098/
rsta.2020.0209.

Minhao LIU, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia LAI, Lingna Ma, and Qiang Xu.
SCINet: Time series modeling and forecasting with sample convolution and interaction. In Al-
ice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neu-
ral Information Processing Systems, 2022. URL https://openreview.net/forum?id=
AyajSjTAzmg.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X. Liu, and Schahram Dust-
dar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and
forecasting. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=0EXmFzUn5I.

10

http://dx.doi.org/10.3115/v1/d14-1179
http://dx.doi.org/10.2307/3150485
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://openreview.net/forum?id=cGDAkQo1C0p
https://openreview.net/forum?id=cGDAkQo1C0p
https://pubmed.ncbi.nlm.nih.gov/16519865/
https://pubmed.ncbi.nlm.nih.gov/16519865/
http://dx.doi.org/10.1145/3209978.3210006
https://proceedings.neurips.cc/paper_files/paper/2019/file/6775a0635c302542da2c32aa19d86be0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/6775a0635c302542da2c32aa19d86be0-Paper.pdf
https://arxiv.org/abs/2302.04501
http://dx.doi.org/10.1098/rsta.2020.0209
http://dx.doi.org/10.1098/rsta.2020.0209
https://openreview.net/forum?id=AyajSjTAzmg
https://openreview.net/forum?id=AyajSjTAzmg
https://openreview.net/forum?id=0EXmFzUn5I
https://openreview.net/forum?id=0EXmFzUn5I


Under review as a conference paper at ICLR 2024

Yisheng Lv, Yanjie Duan, Wenwen Kang, Zhengxi Li, and Fei-Yue Wang. Traffic flow prediction
with big data: A deep learning approach. IEEE Transactions on Intelligent Transportation Sys-
tems, pp. 1–9, Jan 2014. doi: 10.1109/tits.2014.2345663. URL http://dx.doi.org/10.
1109/tits.2014.2345663.

Kiran Madhusudhanan, Johannes Burchert, Nghia Duong-Trung, Stefan Born, and Lars Schmidt-
Thieme. Yformer: U-Net inspired transformer architecture for far horizon time series forecasting,
2022. URL https://openreview.net/forum?id=dYUdt59fJ0e.

William T Ng, K Siu, Albert C Cheung, and Michael K Ng. Expressing multivariate time series
as graphs with time series attention transformer. arXiv preprint arXiv:2208.09300, 2022. URL
https://arxiv.org/abs/2208.09300.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
Jbdc0vTOcol.
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A APPENDIX

A.1 EXPERIMENTAL DETAILS

A.1.1 DATASET DETAILS

We elaborate on the datasets employed in this study with the following details.

• ETT Dataset (Zhou et al., 2022a) comprises two sub-datasets: ETTh and ETTm, which
were collected from electricity transformers. Data were recorded at 15-minute and 1-hour
intervals for ETTm and ETTh, respectively, spanning from July 2016 to July 2018.

• ExchangeRate Dataset (Lai et al., 2018) provides daily exchange rates for eight different
countries, spanning from 1990 to 2016.

• Electricity1 Dataset1 encompasses the electricity consumption data of 321 customers,
recorded on an hourly basis, covering the period from 2012 to 2014.

• Traffic Dataset2 consists of hourly data from the California Department of Transportation.
It describes road occupancy rates measured by various sensors on San Francisco Bay area
freeways.

• Weather Dataset3 contains records of 21 meteorological indicators, updated every 10 min-
utes throughout the entire year of 2020.

A.1.2 IMPLEMENTATION DETAILS AND MODEL PARAMETERS

We trained our VIPER model using the L2 loss function and employed the ADAM optimizer with
an initial learning rate of 2.5e−5. The batch size was set to 32, and we initialized the random seed
as 2021. We also configured the hyperparameter top-k to 5. Additionally, we set the optimal input
length to L = 720. During the training process, we incorporated an early stopping mechanism,
which would halt training after three epochs if no significant reduction in loss was observed on the
validation set. For evaluation purposes, we used two key performance metrics: the mean square
error (MSE) and the mean absolute error (MAE). Our implementation was carried out in PyTorch
and executed on an NVIDIA V100 32GB GPU. All the code and experimental details will be public
in the future. We also attach the code in a supplementary file for your reference and run the demo.

A.2 RESULT VISUALIZATION

A.2.1 VARYING LOOK-BACK WINDOW

In principle, extending the look-back window increases the receptive field, leading to a potential
improvement in forecasting performance. A robust Time Series Forecasting (TSF) model equipped
with a strong temporal relation extraction capability should yield improved results with larger look-
back window sizes. As demonstrated in Figure 5, Our VIPER model consistently and effectively
diminishes both MSE and MAE scores as the receptive field expands, affirming its capacity to lever-
age longer look-back windows and superior temporal relation extraction capabilities.

A.2.2 DECOMPOSITION RESULTS AND VISUALIZATION OF ALL DATASETS

The presence of a trend may potentially mask or confuse the periodic patterns in a time series, mak-
ing it difficult to identify the underlying cyclic variations in the raw sequence, thereby hindering
our ability to perform multi-period transformations. We can see in Figure 6 that, after decomposi-
tion, the seasonal component exhibits a more pronounced periodicity compared to the original input
sequence. Therefore, it is more suitable for performing multi-period feature transformations.

1https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
2https://pems.dot.ca.gov/
3https://www.bgc-jena.mpg.de/wetter/
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Figure 5: Forecasting performance (MSE and MAE) of VIPER with varying look-back windows on
3 datasets: Electricity, Traffic, and Weather. The look-back windows are selected to be L = 96, 192,
336, 504, 720, 960, and the prediction horizons are T = 96, 720.

(a) ETTm1 (b) Electricity (c) ETTh1 (d) ETTh2

(e) Weather (f) ETTm2 (g) Exchange Rate (h) Traffic

Figure 6: The decomposition and visualization results of the eight datasets used in the experiment.
We take the time series of the last dimension of each dataset with a length L=336 for analysis. Using
the same decomposition strategy as Autoformer (Wu et al., 2021), we decompose each time series
into trend and seasonal parts.
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A.3 ATTENTION VISUALIZATION

(I) Electricity

(II) ETTh1

(III) ETTh2
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(IV) ETTm1

(V) ETTm2

(VI) Exchange Rate
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(VII) Traffic

(VIII) Weather

Figure 7: Visualization of the attention map in the Raw-Attention Block within the Temporal Ag-
gregation Block for different datasets. To achieve more conspicuous visualization results, we chose
the time series of the last dimension for each dataset. The input length for all dataset time se-
ries was set to L = 336. We selected the most suitable period from the top-k period extracted
from the raw input series and partitioned the input (raw input sequence or its seasonal part) ac-
cordingly. Specifically, for an input sequence denoted as input : [seq len], we partitioned it into
feature : [seq len/period, period], and then computed its self-attention score. Finally, the atten-
tion scores were visualized.

It is readily apparent that when a time series exhibits conspicuous periodicity, the raw sequence
and its seasonal component share a strikingly high degree of similarity in their attention maps. For
instance, in the context of time series data, such as Traffic and Electricity, these datasets’ time se-
quences, when examined in the decomposition diagrams in Figure 6 (b)(d), unmistakably reveal that
both the seasonal part and the original input sequence possess distinctly marked and closely aligned
periodic characteristics. Consequently, their attention visualization maps in Figure 7 (I)(VII) for the
original sequence and its seasonal component exhibit conspicuously analogous patterns. However,
in contrast to the original sequence, the seasonal component demonstrates an even more robust level
of correlation. Consequently, within the attention visualization map of the seasonal component,
attention tends to converge more profoundly. This convergence is discernible through higher val-
ues in the heatmap, signifying an augmented similarity between two highly corresponding periods
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within the original sequence. Conversely, periods within the original sequence that lack resemblance
display diminished similarity within the attention visualization graph of the seasonal part.

In scenarios where the original time series lacks evident periodicity, as observed in datasets
such as ETTh1&2, ETTm1&2, and ExchangeRate, it becomes apparent, as depicted in Figure 6
(a)(c)(d)(f)(g), that the original input sequence does not manifest clear periodicity. Consequently,
their attention map for the original sequence in Figure 7 (II)(III)(IV)(V)(VI) tend to exhibit a greater
degree of divergence and fail to reveal discernible patterns. This observation suggests that subjecting
such original sequences to multi-period transformations yields features with diminished semantic in-
formation. Nonetheless, following decomposition, the seasonal component consistently manifests
more pronounced periodicity. Consequently, the attention heatmap for the seasonal component re-
veals a heightened convergence. Each period not only captures neighboring periods but also extends
its attention to remote, albeit similarly patterned, periods.
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