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Abstract
This article delves into the issue of detecting
out-of-distribution (OOD) examples in ma-
chine learning models, with a focus on natu-
ral language processing (NLP) applications. It
is crucial to identify OOD data to build reli-
able AI, as our models are not trained to han-
dle such examples and may perform poorly on
them. To tackle this problem, we implement
and compare various OOD detection methods
from literature, and evaluate their effectiveness
across different datasets, similarity scores be-
tween data points, expected distribution, and
computational constraints. Furthermore, this
article offers open-source code for the imple-
mentation of these methods. 1

1 Introduction

Machine learning models have demonstrated their
effectiveness when trained and tested on datasets
that are closely related, resulting in high perfor-
mance in specific tasks [11; 27; 15; 22; 29; 18; 13;
35; 17; 32; 21; 28]. However, these models pose
a significant risk of making erroneous predictions
when faced with inputs that differ from the train-
ing data, such as out-of-distribution (OOD) exam-
ples [33; 31; 19; 44; 36; 45; 42; 46; 40; 30]. In
some cases, these models may even assign high
confidence scores to incorrect predictions, which
can have catastrophic outcomes. This has raised
concerns about the societal impact of machine
learning across various domains [41; 39; 25; 34],
including safety-critical applications [16] and pri-
vacy and data protection [37].

To address this issue, it is crucial to detect and
flag OOD examples, so the human user can recog-
nize when further expertise is needed. The detec-
tion of OOD examples is especially important in
real-world applications [24], where the data distri-
bution can change over time, leading to drift in the
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test distribution. Traditionally, evaluation meth-
ods have assumed that the train and test datasets
are independent and identically distributed, which
may not be effective in detecting OOD examples
[43; 9; 26; 1; 38; 12; 47; 6] . The limited char-
acterization of evaluation datasets and the drift of
the test distribution over time can lead to train-test
mismatches, making the detection of OOD exam-
ples even more challenging.

Recent research has shown that new evalua-
tion techniques, such as the softmax confidence
score[3], can help create OOD detection methods.
These methods rely on different evaluation tech-
niques and aim to create reliable AI by detecting
OOD examples more accurately. Therefore, it is
essential to investigate this issue further, partic-
ularly for large black-box models such as BERT
[14; 23] or DistilBERT [20], and to develop new
tools for Natural Language Processing (NLP) ap-
plications that can handle OOD examples reliably.

This study aims to investigate the impact of
various parameters on the detection of out-of-
distribution instances, specifically in relation to
different datasets, similarity scores between data
points and the expected distribution, as well as
computational constraints. Multiple methods are
evaluated and compiled into a benchmark, with the
code made publicly available.

1.1 Goals

Different out-of-distribution methods have been
developed in the last few years, and in this arti-
cle some of these methods are compared. As so,
this work has the following goals:

1. Create a benchmark using the trending
methods in out-of-distribution detection

2. Release open-source code and data to ease
new experiments



2 Related Works

In recent years, several approaches have been pro-
posed to detect Out-of-Distribution (OOD) sam-
ples in neural network classifiers. In particular, the
work in [8] proposed a method for OOD detec-
tion based on Mahalanobis distance, which uses
the covariance matrix of in-domain data to de-
termine the likelihood of an input belonging to
the in-domain or out-of-domain category. Their
method achieved state-of-the-art results on sev-
eral benchmark datasets, demonstrating the effec-
tiveness of Mahalanobis distance in OOD detec-
tion for NLP tasks. However, these methods of-
ten require additional labeled data for calibration
and may not perform well in high-dimensional in-
put spaces. In this context, the work proposed by
[4], offers a promising alternative to Mahalanobis-
based scores. It is an unsupervised OOD detector
that leverages information from all hidden layers
of a transformer-based neural network to compute
a similarity score based on data depth concepts.
Unlike Mahalanobis-based scores, their method
does not require any additional labeled data and
can operate efficiently in high-dimensional input
spaces. The experimental results reported by [4]
show that this kind of approach consistently out-
performs existing OOD detectors, including those
based on Mahalanobis-based scores.

Another used metric was proposed in [3].
This work presents a straightforward and effec-
tive method based on softmax probabilities. The
proposed baseline is tested on various computer
vision, natural language processing, and auto-
matic speech recognition tasks and demonstrates
its robustness across different architectures and
datasets. Furthermore, the authors show that their
method can be improved by incorporating an ab-
normality module to detect more subtle errors and
out-of-distribution examples.

3 Background

3.1 Energy-based methods

As presented by [5],a class of energy-based mod-
els can be used asa scoring function to detect out-
of-distribution data points. The core idea is to find
a map E(x) : Rd → R of each point x to a scalar
(non-probabilistic). This scalar is called energy,
and the mapping is the energy function.It is possi-
ble to transform the energy function to a probabil-
ity density p(x), using:

p(y|x) = e−E(x,y)/T

Z
(1)

where Z =
∫
y′ e

−E(x,y′)/T is called the parti-
tion function and T is a temperature factor. As so,
in a classification problem, with our discriminative
model f(x) : RD → RK produces K logits, then
the categorical distribution would be given by the
softmax function. In this case, the energy func-
tion, that would be further considered as an OOD
score, is written as:

E(x; f) = −T log
K∑
i

efi(x)/T (2)

3.2 Affine invariante integrated
rank-weighted

In order to address the problem of defining a data
depth measure for multivariate data, some meth-
ods have been proposed, as the seminal work
of [10], based on concepts of half-spaces. In
this context, the Affine-Invariant Integrated Rank-
Weighted (AI-IRW) statistical depth was proposed
as an extension of the original integrated rank-
weighted statistic, introduced in [2]. The AI-IRW
depth is modified to satisfy the property of affine-
invariance.

In discrete setups, the IRW depth can be seen as
a weighted average over a finite set of univariate
ranks. More formally, for a point x ∈ Rd follow-
ing PX on Rd, the IRW depth is given by:

dirw(x, PX) =

∫
Sd−1

dt(u, Fu)du (3)

where, dt(u, Fu) = min{Fu(⟨u, x⟩, 1 −
Fu(⟨u, x⟩)}. The efficiency of this approach is
that it can be calculated through the expectation
by means of Monte-Carlo.

3.3 Mahalanobis distance
The Mahalanobis distance is a metric used to mea-
sure the distance between two points in a mul-
tivariate space. It takes into account the covari-
ance between the variables, which makes it a use-
ful measure for datasets with correlated variables.

Given two vectors x and y, the Mahalanobis
distance dM (x,y) is defined as:

dM (x,y) =
√
(x− y)TS−1(x− y), (4)

where S is the covariance matrix of the dataset.
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Dataset Train Test Task

imdb 22500 25000 sentiment analysis
sst2 67 349 1821 sentiment analysis
trec 4907 500 multi-class classification

news-summary 1000 20400 summarization
race 87900 49390 multiple choice

yelp review full 650000 50000 sentiment analysis
paws 49400 8000 similarity classification

Table 1: Datasets considered in the benchmark

3.4 Autoencoders

Autoencoders (AE) are composed of an encoder
and a decoder. Their architecture is designed to
reconstruct the input data x from a hidden repre-
sentation z that will be learned by the network.
The encoder is a function that converts the input
into the latent representation z = E(x) while the
decoder will be responsible for converting the la-
tent representation into the decoded output of the
network x̃ = D(z). It is the latent space, e.i. the
embedded representation of the time series, that
will be the focus of this project. The vast major-
ity of work uses the reconstruction error of each
subsequence to calculate anomaly scores, on the
premise that AE can perform well at reconstruct-
ing normal data while failing to reconstruct data
with unseen anomalies.

4 Experimental settings

4.1 Data processing

Multiple datasets were evaluated for OOD detec-
tion across various NLP tasks (see Table 1). Cor-
pus distribution varies with different NLP tasks,
hence the need for multiple tasks. However, lim-
ited computational resources resulted in partial use
of the datasets.

4.2 Metrics

The two main metric used were the AUC-ROC
and the false positive rate. The FPR is defined
as FPR = FP

FP+TN , where FP is the number
of false positives and TN is the number of true
negatives. In other words, the FPR measures the
fraction of negative instances that are incorrectly
classified as positive.

The ROC curve is a plot of the TPR versus the
FPR for different classification thresholds. The
AUC ROC is the area under the ROC curve, which
provides a measure of how well the model is able
to distinguish between positive and negative in-

stances. A model with an AUC ROC of 1.0 is per-
fect, while a model with an AUC ROC of 0.5 is no
better than random guessing.

4.3 Models

As presented in [7], pre-trained architecture per-
form better when fine-tuned to the specific tasks.
Given the constraints in calculation, a reduced
amount of models were considered. Two main
models were used along with the benchmark: the
first one was the BERT-tiny model that was fine-
tuned, and the second one was a distilbert-uncased
loaded with the weigths of a fine-tuning in the
imdb dataset.

4.4 First experience - Training a tiny BERT

To test our OOD detection methods, we used a
BERT-tiny model that we finetuned on a classi-
fication task. We trained the model on a sub-
part of the yelp review full dataset, which con-
sists of shop reviews associated with an appreci-
ation level. However, as our in-distribution data,
we wanted to compare it to a more general text
dataset, which is why we used the PAWS dataset
as our out-of-distribution data. This decision was
made due to limited access to computational re-
sources.

In this method, the model we want to evaluate
is used as the encoder part of an encoder-decoder
model, and we want to reconstruct the input sen-
tence by using the encoded representation created
by our model.

To do so, we use a encoder-decoder model using
our classifier model as encoder and bert-tiny as de-
coder. Then we train only the decoder part of the
network on an other part of the yelp review full
dataset (we want to keep the encoder part un-
changed since we want to evaluate it).

4.5 Using an autoencoder for dimensionality
reduction

In a second experiment, an approach was taken
to reduce the dimensionality of the input data and
simplify computations. This was done by training
an autoencoder on the previously collected em-
bedding data and using it to perform dimension-
ality reduction. Figure 3 presents the pipeline of
the hidden space extraction, mean aggregation and
then reduction.

An autoencoder is a type of neural network that
is trained to encode and decode input data, such
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Figure 1: Benchmark: histogram comparing the AI-
IRW and the MSP methods. The IN DS in training was
the sst2 and the OUT DS was the paws dataset

that the reconstructed output is as close as possi-
ble to the original input. By training an autoen-
coder on the embedding data, it learned to repre-
sent the data in a more compact form while retain-
ing important features. Using the trained autoen-
coder, the input data was then reduced to a lower-
dimensional space, making it easier and faster to
process.

5 Results

5.1 Benchmarks results

Table 2 shows the results of a benchmark study
using a distilbert model pre-trained on the imdb
dataset. The model was applied to four different
datasets, marked as out-distribution: trec, race,
yelp, and paws. The performance is presented in
terms of ROC AUC. One example of the computed
histogram is presented in Figure 1. The table also
shows the results obtained when an autoencoder
trained on the same imdb dataset was used to re-
duce the dimensionality of the data.

It should be noted that the performance of the
methods varies depending on the task to which
they are applied. For example, the yelp dataset,
which are designed for semantic analysis along
with the imdb dataset, yielded the worst results.
Additionally, only in the trec dataset did the IRW
fail to outperform the mahalanobis distance as the
best metric.

Finally, it was observed that the use of the au-
toencoder did not result in a significant loss of per-
formance. This suggests that it may be possible
to improve the representation of the layer embed-
dings before applying the anomaly analysis, po-
tentially increasing the efficiency of these meth-
ods.

Figure 2: Fine-tuned Tiny-BERT: computed anomaly
scores

5.2 Tiny-Bert results
As we can see in Figure 2, when we use the
opposite of softmax probability as an anomaly
score, the scores are clearly different between in-
distribution and out-of distribution data.

And Figure 4 shows the ROC curve of detectors
based on this score. The area under the ROC curve
is 0.756.

When we tryed to applied this method, we real-
ized that training the decoder is in fact very very
long. So we decided to train it on a limited part of
the training dataset, to see if it was enough to see
the eficiency of the method.

And when we tested our encoder-decoder’s
ability to reconstruct the input data, for in-
distribution data we got a rouge precision of
0.00279, which is not a lot but is clearly more than
the 0.000625 rouge precision that we got for the
out-of-distribution data.

6 Conclusion

In conclusion, this study aimed to investigate the
detection of out-of-distribution (OOD) examples
and their impact on machine learning models.
Recent research has shown that new evaluation
techniques, such as the softmax confidence score,
can help create OOD detection methods. There-
fore, this study aimed to create a benchmark us-
ing trending methods in OOD detection and re-
lease open-source code and data to ease new ex-
periments. The benchmark results showed that the
IRW method performed better than the others. Ad-
ditionally, the model’s performance dependes on
the datasets, suggesting that different parameters,
need to be considered according to the task.
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Piantanida. 2022. Infolm: A new metric to evalu-
ate summarization amp; data2text generation. Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, 36(10):10554–10562.

[41] Pierre Colombo, Guillaume Staerman, Nathan
Noiry, and Pablo Piantanida. 2022. Learning dis-
entangled textual representations via statistical mea-
sures of similarity. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2614–
2630, Dublin, Ireland. Association for Computa-
tional Linguistics.

[42] Cyril Chhun, Pierre Colombo, Fabian M.
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Figure 5: Benchmark: histograms of the experiments.
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Figure 6: Benchmark: roc curves of the experiments.
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