
ML for Computer Architecture and Systems (MLArchSys), ISCA, 2023

Towards Efficient Multi-Agent Learning Systems
Kailash Gogineni, Peng Wei, Tian Lan and Guru Venkataramani

The George Washington University, Washington, DC, USA
E-mail: {kailashg26, pwei, tlan, guruv}@gwu.edu

Abstract—Multi-Agent Reinforcement Learning (MARL) is an
increasingly popular domain for modeling and controlling multi-
ple large-scale autonomous systems. Existing multi-agent learning
implementations typically involve intensive computations in terms
of training time and power requirements arising from large
observation-action space and a huge number of training steps.
Therefore, a key challenge is understanding and characterizing
the computationally intensive functions in several popular classes
of MARL algorithms during their training phases. Our prelim-
inary experiments reveal new insights into the key modules of
MARL algorithms that limit their adoption in real-world systems.
We explore neighbor sampling strategy to improve the cache
locality and observe performance improvement ranging from
26.66% (3 agents) to 27.39% (12 agents) for the computationally
intensive mini-batch sampling phase. Additionally, we demon-
strate that improving the cache locality leads to an end-to-end
training time reduction of 10.2% (for 12 agents) compared to
existing multi-agent algorithms without significant degradation
in the mean reward.

Index Terms—Multi-Agent Systems, Performance Analysis,
Reinforcement Learning, Performance Optimization

I. INTRODUCTION

Reinforcement Learning (RL) has recently made great
progress in many applications, including Atari games [1],
aviation systems [2], and robotics [3]. Specifically, RL frame-
works fit in the context of addressing problems that involve
sequential-decision making where the agent needs to take
actions in an environment to maximize the cumulative rewards.
In RL, the quality of state-action pairs is evaluated using a
reward function, and the transition to a new state depends on
the current state and action [4]. The function that determines
the action from the state is known as a policy. The function
representing the reward estimates is known as the value
function.

Multi-agent systems [4] have shown excellent performance
among various multi-player games [5] where there is sig-
nificant sharing of observations between the agents during
training, and the joint actions among these agents could
affect the environment dynamically. In MARL, several agents
simultaneously explore a common environment and perform
competitive (e.g., Predator-prey) and cooperative (e.g., Coop-
erative navigation) tasks [6]. All the observations are shared in
the cooperative setting, and the training is performed centrally.
In contrast, each agent aims to outperform its enemies in a
competitive setting. As a result, MARL training involves sev-
eral computationally-challenging and memory-intensive tasks
that deal with dynamically changing environments.

In this paper, we performed a workload characterization
study to understand the performance-limiting functions on

Policy Network

Agent NAgent 1

Action selection

Agent 2
Actioni

Experience Replay Buffer
Store experiences

Mini-batch sampling Mini-batch sampling

Update Critic
Update Actor

Update()

Target Q Concatenate
Obs + Act

Update Critic
Update Actor

Update()

Target Q Concatenate
Obs + Act

Reward

(1)

(2)

(3)

Sampling

Update All trainers

Environment
interactions

Agent 1 Agent N

Prey

Landmark 2

Landmark 1

Predator 1

Predator 2

Fig. 1: Overview of our multi-agent decentralized actor, cen-
tralized critic approach (Competitive environment).

well-known model-free MARL frameworks [6], [7] imple-
mented using actor-critic methods with state spaces that are
usually very large. We analyze different MARL training phases
where the actor and critic networks are responsible for policy
and value functions. The critic tries to learn a value function
given the policy from the actor, while the actor can estimate
the policy gradient based on the approximate value function
that the critic provides.

As shown in Figure 1, each agent in the environment has
its own actor network, which outputs the action of an agent
given its observation (Action selection). During the mini-batch
sampling phase, each agent i collects the historical transition
data of all other agents stored within the Experience Replay
Buffer. The sampling approach enables the algorithm to reuse
the transition data for updating the current policy. Each agent
has a centralized critic, which outputs the Q-value using
the joint observation-action space of all other agents. During
Update all trainers phase, both the actor and critic networks
are updated after the target Q calculation and sampling phase.

The main contributions of our paper are the following:
• We systematically perform a hardware-software perfor-

mance analysis within the training phases of Multi-agent
systems. We present key insights into the performance
bottlenecks confronting several key MARL algorithms
from a systems perspective.

• We explore a neighbor sampling strategy to improve the
locality of data access within the mini-batch sampling
phase. Our preliminary experiments provide performance
improvement ranging from 26.66% (3 agents) to 27.39%
(12 agents) in the sampling phase training run-time.
Additionally, we achieve 10.2% (12 agents) end-to-end

1

3 6 12 24 48
0%

20%

40%

60%

80%

100% 4% 4% 3% 2% 1%

34%
46%

61%
76%

87%

62%
50%

36%

22%
12%

Number of agents

P
ro
p
or
ti
on

of
tr
ai
n
in
g
ti
m
e
(%

)

(a) MADDPG

Action Selection Update all trainers Other segments

3 6 12 24 48
0%

20%

40%

60%

80%

100%
3% 3% 2% 1% 1%

34%
42%

53%
68%

82%

63%
55%

45%

31%

17%

Number of agents

(b) MASAC

Fig. 2: Training time breakdown on Ampere Architecture RTX 3090 for the MARL workloads (MADDPG [6] & MASAC [7])
in multi-agent settings. The simulated multi-agent particle environment is Predator-Prey.

Action Selection Update all trainers Total time
0

2

4

6

8

2.0

3.3
2.8

2.0

3.7
3.2

2.0

4.0
3.4

2.1

4.3
3.9

C
om

pu
ta

tio
n

tim
e

gr
ow

th
ra

te
(N

×
)

3 to 6 agents 6 to 12 agents 12 to 24 agents 24 to 48 agents

Fig. 3: Computation time growth in MARL modules aver-
aged across the two MARL frameworks (MADDPG [6] &
MASAC [7]).

training time reduction compared to the state-of-the-art
multi-agent algorithms.

II. MOTIVATION

In multi-agent systems, the training phase is performance
and memory-intensive as the agents must collaborate and
coordinate to maximize a shared return [8]. Many real-world
applications, such as robot fleet coordination [9] and traffic
light control [10], are modeled as multi-agent problems, but
they become intractable with the growing number of agents
due to the intensive computations required to estimate other
agents’ policies at each state and a huge amount of neural
network parameters. This limits their adoption in real-world
systems and limits applications only to scenarios with a few
agents [11], [12]. Figure 2 shows the run-time breakdown of
the training phase1. Update all trainers contributes to ≈35%
to ≈85% of the training time as the number of MARL agents
grows from 3 to 48. This is mainly due to two reasons: 1 In
MARL, each agent has its own actor and critic networks.

1We omit the agents interactions phase since it primarily depends on
environment complexity.

Each agent must randomly collect a batch of transitions from
all other agents to update the critic and actor networks. 2
The dynamic memory requirements of observation and action
spaces also grow quadratically due to each agent having to
coordinate with other agents towards sharing their observations
and actions. Action selection phase scales linearly with the
number of agents (Figure 3). This is because, in Action
selection, agents consider individual policies to obtain local
actions. Other segments include experience collection, reward
collection, and policy initialization, and they add a negligible
overhead.

III. BACKGROUND

Typically, MARL settings with N agents is defined by a set
of states, S = S1×...×SN , a set of actions A = A1×...×AN .
Each agent selects its action by using a policy πθi : Oi×Ai →
[0, 1]. The state transition (T : S × A1 × A2 × ... × AN)
function produces the next state S

′
, given the current state

and actions for each agent. The reward, Ri : S ×Ai → R for
each agent is a function of global state and action of all other
agents, with the aim of maximizing its own expected return
Ri =

∑T
t=0 γ

trti , where γ denotes the discount factor and T
is the time horizon. For this, we use the actor-critic methods
such as MADDPG [6], MASAC [7].

MADDPG [6] is centralized training and decentralized
execution (CTDE) algorithm mainly designed for mixed en-
vironments. Each agent learns an individual policy that maps
the observation to its action to maximize the expected return,
which is approximated by the critic. MADDPG lets the critic
of agent i to be trained by minimizing the loss with the target
Q-value and yi using L(θi) = IED[(Qi(S,A1, ...An)−y2i], and
yi = ri + γQi(S

′
, A

′

1, ...A
′

n)a′
j=π(o

′
j)

, where S and A1, ...An

represent the joint observations and actions respectively. D
is the experience replay buffer that stores the observations,
actions, rewards, and new observations samples of all agents

2

obtained after the training episodes. The critic networks are
augmented with states and actions of all agents to reduce the
variance of policy gradients and improve performance. The
MARL framework has four networks- actor, critic, target actor,
and target critic. Qi and π(o

′

j) are the target networks for the
stable learning of critic (Qi) and actor networks. The target
actor estimates the next action from the policy using the state
output by the actor network. The target critic aggregates the
output from the target actor to compute the target Q-values,
which helps to update the critic network and assess the quality
of actions taken by agents. The target networks are created to
achieve training stability. Note that the updating sequence of
networks in the back-propagation phase is critics, actors, then
the target networks.

Similar to MADDPG, the centralized critic is introduced
in Soft Actor-Critic (SAC [7]) algorithm. MASAC uses the
maximum entropy RL, in which the agents are encouraged to
maximize the exploration within the policy. MASAC assigns
equal probability to nearly-optimal actions which have similar
state-action values and avoids repeatedly selecting the same
action. This learning trick will increase the stability, policy
exploration, and sample efficiency [7], [13].

IV. EVALUATION SETUP

Benchmark. Table I provides the behavior of selected
Multi-agent Particle Environments (MPE [6]). We profile and
characterize two state-of-the-art MARL algorithms, MADDPG
and MASAC. A two-layer ReLU MLP parameterizes the actor
and critic networks with 64 units per layer, and the mini-batch
size is 1024 for sampling the transitions. In our experiments,
we use Adam optimizer [14] with a learning rate of 0.01,
maximum episode length as 25 (max episodes to reach the
terminal state), and τ = 0.01 for updating the target networks.
γ is the discount factor which is set to 0.95. The size of
the replay buffer is 1 million, and the entropy coefficient for
MASAC is 0.05. The network parameters are updated after
every 100 samples are added to the replay buffer.

TABLE I: Multi-agent particle environment.

Environment Details
Cooperative
navigation

N agents move in a cooperated manner to reach L
landmarks and the rewards encourages the agents get
closer to the landmarks.

Predator-Prey N predators work cooperatively to block the way of
M fast paced prey agents. The prey agents are envi-
ronment controlled and they try to avoid the collision
with predators.

Profiling Platform. MARL algorithms are implemented
with state-of-the-art CPU-GPU compatible TensorFlow-
GPU (v2.11.0). The server runs on Ubuntu Linux 20.04.5 LTS
operating system with CUDA 9.0, cuDNN 7.6.5, PCIe Ex-
press® v4.0 with NCCL v2.8.4 communication library. The
machine supports Python 3.7.15, TensorFlow-Slim (v1.1.0)
and OpenAI GYM (v0.10.5). All the workloads are profiled
on single Nvidia GeForce RTX 3090 Ampere Architecture
with Perf [15] and NVProf to profile hardware performance
counters for performance analysis. Finally, we trained for 60K

episodes using default hyper-parameters recommended by the
algorithms.

V. EVALUATION

In this section, we first present an overview of our MARL
profiling results. Then, we study the computationally dominant
functions within Update all trainers: Mini-batch sampling,
Target Q calculation, and Q loss & P loss and present our
results in the competitive setting (predator-prey) to understand
the key factors limiting MARL in large-scale systems.

Figure 4 shows the breakdown between the modules, Mini-
batch sampling, Target Q calculation, Q loss, and P loss that
contribute 63%, 24%, 6.5%, and 6% to the overall computation
time averaging across different workloads for 48 agents.

A. Mini-batch sampling

Our experimental results in Figure 4 show that mini-batch
sampling is the largest time-consuming phase within the
Update All Trainers module. The behavior is also consistent
with scaling in other critical hardware performance metrics:
dTLB load misses-3.9× (growth rate from 3 − 6 agents) and
cache misses-3.9× (growth rate from 3− 6 agents).

Mini-batch sampling phase is dominated by the collection
of random samples from all other agents’ replay buffers and
updates the parameters of its actor and critic networks. Note
that the agent replay buffers are kept separate from each other
to capture their past transitions. For each time-step, agent i
draws a random index set {L1, L2,, LK} (K is the mini-
batch size), and first selects L1 to perform a memory lookup
in the experience replay buffer to retrieve the corresponding
transition and store it in the individual agent buffer. This
operation grows as a function of the number of agents, N ,
since it is repeated on all N agents. The sampling stage
exhibits random memory access patterns and cannot exploit
the cache reuse due to randomness in the indices for each
agent between the iterations. In cooperative navigation (simple
spread [6]), we observe similar bottlenecks since all the agents
are trained together to reach the landmarks while avoiding
collisions with each other.

B. Target Q calculation

The Target Q calculation phase is the second largest time-
consuming phase within Update All Trainers (Figure 4). In
this function, each agent performs the next action calculation,
target Q next, and target Q values as a function of all
other agents’ joint observation-action space. To calculate the
next action, the agent i uses its policy network to determine
next action-a’ from the next state-S’. In this phase, each
agent’s policy network involves multiplications with input-
weight matrix and additions resulting in performance impact.
The obtained a’ and S’ data are aggregated and concatenated
into a single vector in order to compute the target Q next
amongst the cooperating agents. The input space (dimension)
for the Q-function increases quadratically with the number
of agents [16]. The target critic values for each agent i are
computed using target Q next values from the target actor

3

3 6 12 24 48
0%

20%

40%

60%

80%

100%
12% 8% 6% 6% 6%

11%
9% 8% 6% 6%

18%
19% 21% 23% 23%

59% 64% 65% 65% 64%

Number of agents

P
ro
p
or
ti
on

of
tr
ai
n
in
g
ti
m
e
(%

)

(a) MADDPG

Mini-batch sampling Target Q calculation Q loss P loss

3 6 12 24 48
0%

20%

40%

60%

80%

100%
11% 7% 6% 6% 6%

12%
10% 8% 7% 7%

19%
21% 23% 24% 25%

58% 62% 63% 63% 62%

Number of agents

(b) MASAC

Fig. 4: Training time breakdown on Nvidia Ampere Architecture RTX 3090 within Update all trainers on two different MARL
workloads (MADDPG & MASAC) in multi-agent settings under the Predator-Prey environment.

network. We note that each agent has to read other agents’
policy values; as such, for N agents, there is N × (N − 1)
memory lookup operations corresponding to the next action-
a’.

C. Back-propagation - Q loss & P loss

Back propagation stage is dominated by the execution
of two networks: 1 critic network computes the mean-
squared error loss between the target critic and critic networks,
and 2 the actor network is updated by minimizing the Q
values (computed by the critic network). This is because
as the number of agents increases, the trainable parameters
increase, and N policy and N critic networks are built for all N
agents, which incurs extra time to update the weights for each
agent. For each update, we sample the random mini-batch of
transitions (1024 in our studies) from the replay buffer of each
agent i across all agents and then perform gradient descent on
the critic and actor networks.

VI. NEIGHBOR SAMPLING STRATEGY

From our analysis so far, it can be concluded that the mini-
batch sampling phase dominates Update all trainers when
the number of agents scales linearly. Moreover, fetching the
transition data from the far away memory locations signifi-
cantly affects the overall training time. Among all the hardware
metrics, cache misses suffer from the worst scaling factor (at
least 3.9× for 3-6 agents). Therefore, with the support of loop-
level optimization, we explore optimizations that can improve
the locality and overall MARL performance. To address this
issue, we propose a loop-level optimization approach while
accessing the transition data in the mini-batch sampling phase.

The idea of this approach is to eliminate the computation
issues arising due to fetching the data from far away memory
locations based on random indices. We investigate the

Algorithm 1 Neighbor Sampling Strategy
Input: Mini-batch indices MB idx; replay buffer D with

size d; micro-batch size n
Output: Mini-batch transitions

1: Initialize obs t, actions t, rewards t, obs next t,
terminal state t, at time t ← {∅}

2: for i in MB idx do
3: α← [j|max(0, i− n) ≤ j < min(d, i+ n+ 1), j ̸= i]

▷ α includes all indices in the range (i - n) to (i + n),
excluding the current index, and also ensuring not to go
below 0 or exceed the length of Replay buffer D

4: for k in α do
5: if k ∈ D then
6: obs, act, next obs, rew, done ← unpack(D[k])

▷ Append these unpacked transition data to the corre-
sponding lists obs t, actions t, rewards t, obs next t,
terminal state t

7: end if
8: end for
9: if len(obs t) ≥ size of (MB idx) then

10: break
11: return obs t, actions t, rewards t, obs next t,

terminal state t
▷ Return the corresponding lists converted into NumPy
arrays

12: end if
13: end for

neighbor sampling optimization in MADDPG, where we
collectively capture the neighbor transitions of an index i to
enable faster data access on a given hardware. Intuitively, at
each index i, we group the neighbor indices into a single
micro-batch and extract the data in a locality-aware memory
access order to efficiently sample the transitions.

4

Neighbor Sampling Strategy. Algorithm 1 shows how the
mini-batch sampling phase selects the neighboring transitions
for a random index i. We initialize replay buffer D, micro-
batch size n. The algorithm iterates over the mini-batch indices
to collect transition data for every index. We modify the loop
to accumulate a micro-batch of transitions spanning a range
of n neighbors surrounding the current index i, i.e., for every
index i, we check if i is within the limits of replay buffer
D. If so, we capture the buffer indices from i − n to i + n
based on the micro-batch size n and return a list of neighbors
α (line 3). We perform an array access for all the indices in α,
and the output vectors are unpacked and stored as individual
vectors in the experience replay tuple consisting of obs, act,
next obs, rew, done (line 5). These individual vectors are
appended to their corresponding parents lists obs t, actions t,
rewards t, obs next t, terminal state t (line 6). Finally,
all the parent lists which contain the transition data at time-step
t are converted as vectors. The loop terminates when the mini-
batch size is reached (equal to the size of MB idx) (line 9).

3 6 12
0

20

40

60

80

100

26.66% 26.68% 27.39%

Number of agents

Pe
rc

en
ta

ge
re

du
ct

io
n

(a) Reduction in mini-batch sampling
phase run-time

3 6 12
0

20

40

60

80

100

5.6% 7.8% 10.2%

Number of agents

(b) Overall reduction in MARL
training time

Fig. 5: (a) Percentage reduction in training time for the mini-
batch sampling phase for 3, 6 and 12 agents (MADDPG).
(b) Percentage reduction in the total training time when the
number of agents are scaled by 2× for MADDPG. The
environment test-bed is Predator-Prey and the micro-batch
size=3

Overall, our neighbor sampling optimization improves per-
formance through leveraging the spatial locality and achieves
training time reduction ranging from 26.66% (3 agents) to
27.39% (12 agents) during the computationally intensive mini-
batch sampling (Figure 5). In addition, we achieve an end-to-
end training time reduction of 10.2% for 12 agents. While
studying this optimization; we ensure no significant degrada-
tion in the mean episode reward.

VII. DISCUSSION AND RELATED WORK

Hardware-Software acceleration techniques in RL have been
studied in recent years [17]–[20]. For example, to accelerate
RL training from the software standpoint, prior works have
shown that half-precision (FP16) quantization can yield signifi-
cant performance benefits and improve the hardware efficiency
while achieving adequate convergence [21]. Other relevant
approaches include QuaRL [22], where quantization is applied

3 6 12
0

500

1,000

21.04
103.96

870.39

Number of agents

A
ve

ra
ge

re
w

ar
d

(a) MADDPG

3 6 12
0

500

1,000

20.05
105.94

872.49

Number of agents

(b) Optimized MADDPG

Fig. 6: (a) Average of mean episode rewards of all the
agents trained for 60,000 episodes for MADDPG. (b) Av-
erage of mean episode rewards all the agents trained for
60,000 episodes after the neighbor sampling optimization for
MADDPG. The environment test-bed is Predator-Prey and the
micro-batch size=3.

to speed up the RL training and inference phases. QuaRL
experimentally demonstrated that quantizing the policies to ≤
8 bits led to substantial speedups in the training time compared
to full precision training. All of the prior works differ from our
work as they apply quantization to single-agent RL algorithms
or neural networks. Further, we explore the neighbor sampling
optimization to improve the efficiency of mini-batch sampling
phase.

Prior studies, like FA3C, have focused on hardware ac-
celeration in multiple parallel worker scenarios, where each
agent is controlled independently within their environments
using single-agent RL algorithms [18]. In contrast, we seek to
systematically understand the performance-limiting functions
in multi-agent systems, where the agents collaborate in a single
shared environment. Agents in such MARL settings usually
have high visibility of one another (leading to large space and
action spaces). Apart from the methods that focus on accel-
erating multiple parallel worker scenarios, other approaches
use a transition data-reuse optimization to improve the cache
locality and training time [23]. The authors experimentally
demonstrated that applying the optimal prioritization scheme
proposed by MAC-PO [24] on multi-agent learning problems
and repeatedly reusing the transition data with higher weights
improves the training efficiency.

In MARL settings where each agent needs to interact with
its neighbor agents, especially in complex environments with
lots of observations and huge action spaces, computational
bottlenecks may be alleviated using architectural primitives
implementing selective attention [13], [25], [26]. As the
number of agents increases, the hardware techniques such
as near-memory computing could help to perform mini-batch
sampling efficiently. For the input to critic networks, multi-
level data compression [27]–[29] techniques on a targeted
group of agents may be used based on their importance in
the environment. Also, the cache misses during mini-batch
sampling phase indicate competition for the LLC cache, which
may be addressed through smart cache allocation strategies.

5

Other modules, such as next action calculation, environment
interactions, and action selection phases, may also benefit
from the custom acceleration of key modules.

VIII. CONCLUSION AND FUTURE WORK

In this work, we present an end-to-end characterization of
several popular Multi-Agent Reinforcement Learning algo-
rithms and, in particular, explore the locality-aware neighbor
indexing optimization. We find that the Update all trainers
dominates the training process of MARL algorithms and scales
super linearly with the number of agents. Our experimental
analysis presents key insights into the modules that are the
driving factors behind computational bottlenecks. We also
propose a loop-level optimization approach for accessing
transition data in the mini-batch sampling phase. The proposal
achieves performance improvement from 26.66% (3 agents)
to 27.39% (12 agents) within the mini-batch sampling phase.
In future work, we will investigate various efficient sampling
strategies and design a hardware-friendly architecture to effi-
ciently fetch the transitions in large-scale MARL.

ACKNOWLEDGMENT

This research is based on work supported by the National
Science Foundation under grant CCF-2114415. We would also
like to thank the reviewers for their valuable feedback.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[2] P. Razzaghi, A. Tabrizian, W. Guo, S. Chen, A. Taye, E. Thompson,
A. Bregeon, A. Baheri, and P. Wei, “A survey on reinforcement learning
in aviation applications,” arXiv preprint arXiv:2211.02147, 2022.

[3] D. Wang, R. Walters, X. Zhu, and R. Platt, “Equivariant q learning in
spatial action spaces,” in Conference on Robot Learning. PMLR, 2022,
pp. 1713–1723.

[4] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[5] K. Zhang, Z. Yang, and T. Başar, “Multi-agent reinforcement learning:
A selective overview of theories and algorithms,” Handbook of Rein-
forcement Learning and Control, pp. 321–384, 2021.

[6] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” Advances in neural information processing systems, vol. 30,
2017.

[7] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. PMLR, 2018,
pp. 1861–1870.

[8] K. Gogineni, P. Wei, T. Lan, and G. Venkataramani, “Scalability
Bottlenecks in Multi-Agent Reinforcement Learning Systems,” arXiv
preprint arXiv:2302.05007, 2023.

[9] G. Swamy, S. Reddy, S. Levine, and A. D. Dragan, “Scaled autonomy:
Enabling human operators to control robot fleets,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2020, pp. 5942–5948.

[10] A. L. Bazzan, “Opportunities for multiagent systems and multiagent
reinforcement learning in traffic control,” Autonomous Agents and Multi-
Agent Systems, vol. 18, pp. 342–375, 2009.

[11] M. Zhou, Y. Chen, Y. Wen, Y. Yang, Y. Su, W. Zhang, D. Zhang, and
J. Wang, “Factorized q-learning for large-scale multi-agent systems,” in
Proceedings of the first international conference on distributed artificial
intelligence, 2019, pp. 1–7.

[12] Y. Liu, W. Wang, Y. Hu, J. Hao, X. Chen, and Y. Gao, “Multi-agent
game abstraction via graph attention neural network,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 34, no. 05, 2020,
pp. 7211–7218.

[13] S. Iqbal and F. Sha, “Actor-attention-critic for multi-agent reinforcement
learning,” in International conference on machine learning. PMLR,
2019, pp. 2961–2970.

[14] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[15] V. Ramos, “Performance counters api for python,” https://pypi.org/
project/performance-features/, May 2019.

[16] H. U. Sheikh and L. Bölöni, “Multi-agent reinforcement learning for
problems with combined individual and team reward,” in 2020 Interna-
tional Joint Conference on Neural Networks (IJCNN). IEEE, 2020, pp.
1–8.

[17] M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons, and J. Kautz,
“GA3C: GPU-based A3C for deep reinforcement learning,” CoRR
abs/1611.06256, 2016.

[18] H. Cho, P. Oh, J. Park, W. Jung, and J. Lee, “Fa3c: Fpga-accelerated
deep reinforcement learning,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 499–513.

[19] Y. Li, I.-J. Liu, Y. Yuan, D. Chen, A. Schwing, and J. Huang, “Accel-
erating distributed reinforcement learning with in-switch computing,”
in Proceedings of the 46th International Symposium on Computer
Architecture, 2019, pp. 279–291.

[20] A. Stooke and P. Abbeel, “Accelerated methods for deep reinforcement
learning,” arXiv preprint arXiv:1803.02811, 2018.

[21] J. Björck, X. Chen, C. De Sa, C. P. Gomes, and K. Weinberger,
“Low-precision reinforcement learning: running soft actor-critic in half
precision,” in International Conference on Machine Learning. PMLR,
2021, pp. 980–991.

[22] S. Krishnan, M. Lam, S. Chitlangia, Z. Wan, G. Barth-Maron, A. Faust,
and V. J. Reddi, “QuaRL: Quantization for fast and environmentally
sustainable reinforcement learning,” 2022.

[23] K. Gogineni, Y. Mei, P. Wei, T. Lan, and G. Venkataramani, “AccMER:
Accelerating Multi-Agent Experience Replay with Cache Locality-aware
Prioritization,” 2023.

[24] Y. Mei, H. Zhou, T. Lan, G. Venkataramani, and P. Wei, “MAC-PO:
Multi-agent experience replay via collective priority optimization,” arXiv
preprint arXiv:2302.10418, 2023.

[25] A. Mahajan, M. Samvelyan, L. Mao, V. Makoviychuk, A. Garg, J. Kos-
saifi, S. Whiteson, Y. Zhu, and A. Anandkumar, “Tesseract: Tensorised
actors for multi-agent reinforcement learning,” in International Confer-
ence on Machine Learning. PMLR, 2021, pp. 7301–7312.

[26] T. J. Ham, S. J. Jung, S. Kim, Y. H. Oh, Y. Park, Y. Song, J.-H.
Park, S. Lee, K. Park, J. W. Lee et al., “Aˆ 3: Accelerating attention
mechanisms in neural networks with approximation,” in 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2020, pp. 328–341.

[27] A. Jain, A. Phanishayee, J. Mars, L. Tang, and G. Pekhimenko,
“Gist: Efficient data encoding for deep neural network training,” in
2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2018, pp. 776–789.

[28] S. Q. Zhang, B. McDanel, and H. Kung, “Fast: Dnn training under
variable precision block floating point with stochastic rounding,” in
2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 2022, pp. 846–860.

[29] S. Venkataramani, V. Srinivasan, W. Wang, S. Sen, J. Zhang, A. Agrawal,
M. Kar, S. Jain, A. Mannari, H. Tran et al., “Rapid: Ai accelerator
for ultra-low precision training and inference,” in 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2021, pp. 153–166.

6

https://pypi.org/project/performance-features/
https://pypi.org/project/performance-features/

	Introduction
	Motivation
	Background
	Evaluation Setup
	Evaluation
	Mini-batch sampling
	Target Q calculation
	Back-propagation - Q loss & P loss

	Neighbor Sampling Strategy
	Discussion and Related Work
	Conclusion and Future Work
	References

