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ABSTRACT

Classifier-free guidance (CFG) is a pivotal technique for balancing the diversity
and fidelity of samples in conditional diffusion models. This approach involves
utilizing a single model to jointly optimize the conditional score predictor and
unconditional score predictor, eliminating the need for additional classifiers. It
delivers impressive results and can be employed for continuous and discrete con-
dition representations. However, when the condition is continuous, it prompts the
question of whether the trade-off can be further enhanced. Our proposed inner
classifier-free guidance (ICFG) provides an alternative perspective on the CFG
method when the condition has a specific structure, demonstrating that CFG rep-
resents a first-order case of ICFG. Additionally, we offer a second-order imple-
mentation, highlighting that even without altering the training policy, our second-
order approach can introduce new valuable information and achieve an improved
balance between fidelity and diversity for Stable Diffusion.

1 INTRODUCTION

Diffusion models have garnered significant achievements in tasks involving image and audio gener-
ation (Sohl-Dickstein et al., 2015; Ho et al., 2020; Rombach et al., 2022; Podell et al., 2023; Huang
et al., 2023; Wang et al., 2024). These models exhibit comparable, and in some cases, superior
performance to GAN-based models (Brock et al., 2019) and autoregressive models (Razavi et al.,
2019) regarding diversity and fidelity. Notably, text-based image generation models have emerged as
particularly successful examples, including Stable Diffusion (Rombach et al., 2022), SDXL (Podell
et al., 2023), DALL·E 2 (Ramesh et al., 2022).

There are primarily two approaches to introducing or enhancing guidance in diffusion models: using
classifiers (Dhariwal & Nichol, 2021) and employing classifier-free guidance (Ho & Salimans, 2022)
(CFG). In the case of classifiers, an external trained classifier is employed to guide the diffusion
model at each timestep towards achieving a higher probability according to the classifier’s judgment,
which is also be extended to energy-based guidance (Zhao et al., 2022; Lu et al., 2023; Sun et al.,
2023). On the other hand, classifier-free guidance involves utilizing a single model to optimize the
conditional score predictor and unconditional score predictor jointly. The discrepancy between these
predictors is then employed as guidance, which is subsequently added to the score function. This
approach eliminates the need for additional classifiers and has delivered impressive results (Ho &
Salimans, 2022).

Nevertheless, none of these methods impose specific constraints on the condition space, resulting in
the underutilization of the benefits of continuity when the condition space is continuous. Our focus
lies in exploring whether the nature of continuity can be effectively applied to CFG. Moreover, in the
case of widely used text-based image diffusion models like Stable Diffusion (Rombach et al., 2022),
the complexity of the text encoder (Radford et al., 2021) raises the question of whether a structured
continuous space exists. This space could potentially enhance the balance between fidelity and
diversity in generated samples.
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To address these concerns, we propose a novel interpretation of CFG. Our approach assumes that
the condition space possesses a (local) cone structure. Under this assumption, CFG can be seen as a
first-order Taylor expansion of our proposed inner classifier-free guidance (ICFG) method. Building
on this interpretation, we further introduce a second-order Taylor expansion of ICFG and reveal
an alternative energy-based formulation. Surprisingly, we discover that the second-order Taylor
expansion of ICFG yields enhancements for Stable Diffusion, even without modifying the training
policy. This finding suggests the existence of a structured continuous condition space that has the
potential to enhance the sample performance of Stable Diffusion further.

To summarize, our main contributions are three-fold as follows:

• We introduce ICFG and analyze the convergence of its Taylor expansion under specific
conditions.

• We demonstrate that CFG can be regarded as a first-order ICFG and propose a second-order
Taylor expansion for our ICFG.

• We apply the second-order ICFG to the Stable Diffusion model and observe that, remark-
ably, our new formulation yields valuable information and enhances the trade-off between
fidelity and diversity, even without modifying the training policy.

2 BACKGROUND

2.1 DIFFUSION MODELS

Diffusion models encompass various formulations, and we will provide a brief overview of score-
based diffusion models (Song & Ermon, 2019; Song et al., 2021b;a; Sun et al., 2023; Ni et al.,
2023) (SBDMs) as they offer a solid foundation for guidance methods. SBDMs employ a stochastic
differential equation (SDE) to diffuse the data distributions towards known distributions, typically
Gaussian distributions. By learning the necessary information to reverse the diffusion process while
preserving the marginal distribution, we can sample from the known distribution and subsequently
reverse the SDE. This process is equivalent to sampling directly from the data distribution.

Denote the unknown dataset distribution as q(x0), where x0 ∈ Rd. We aim to sample from q(x0).
We also have the terminal distribution q(xT ), where xT ∈ Rd. To connect these two distributions,
we introduce a forward diffusion process {xt}t∈[0,T ], where q(xt) or qt(x) represents the distribu-
tion of xt. We assume that this diffusion process follows a SDE:

dx = f(x, t)dt+ g(t)dw, (1)

where f(x, t) is the drift term, g(t) is the diffusion coefficient, and w is the standard Wiener process.
In the work by Song et al. (2021b), it has been shown that to reverse the SDE while maintaining the
marginal distribution, the score function s(x, t) is the only required information. The score function
is defined as follows:

s(x, t) = ∇xt
log q(xt). (2)

Then, the reverse-time SDE is:

dx = [f(x, t)− g(t)2s(x, t)]dt+ g(t)dw, (3)

where the symbol w represents another standard Wiener process that is independent of the Wiener
process w in the forward diffusion process. The reverse-time SDE is equivalent to the reverse-time
diffusion process {xt}t∈[T,0]. Then we can sample from the known distribution q(xT ), and reverse
the SDE to get the sample from the data distribution q(x0).

The works of Vincent (2011); Song et al. (2021b) present a feasible method to estimate the score
functions of complex datasets using a neural network sθ(x, t). The optimization objective is defined
as follows:

θ∗ = argmin
θ

∫ T

0

Eq(x0)q0t(xt|x0)

[
λ(t)

∥∥sθ(xt, t)−∇xt
log q0t(xt|x0)

∥∥2] dt, (4)

where λ(t) is a weighting function, and q0t(xt|x0) is the transition probability from x0 to xt.
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Furthermore, consider Eq. (1) where we have xt = αtx0 + βtz, with z being a standard Gaussian
distribution, and αt and βt representing the corresponding coefficients. In many scenarios, the diffu-
sion score is parameterized as ϵθ(x, t) = −βts

θ(x, t). Moreover, in the case of conditional diffusion
models, where the data x is accompanied by a conditioning variable c, the only modification is to
include c as an input to ϵθ, resulting in ϵθ(x, c, t).

2.2 CLASSIFIER GUIDANCE FOR DIFFUSION MODELS

Dhariwal & Nichol (2021) introduce classifier guidance for diffusion models to enhance control
over conditions. Assume that the learned conditional diffusion score is denoted as ϵθ(x, c, t), and
we have a set of classifiers pθt (c|xt) that predict the condition c based on the diffused data xt at
various time steps t. In this case, we can modify the diffusion score as follows:

ϵ̃θ(xt, c, t) = ϵθ(xt, c, t)−wβt∇xt
log pθt (c|xt) = −βt∇xt

[
log qθ(xt|c) + w log pθt (c|xt)

]
, (5)

where w represents a weighting factor that controls the strength of the guidance. The modified
diffusion score, denoted as ϵ̃θ(xt, c, t), replaces the original diffusion score ϵθ(xt, c, t) in the sam-
pling process. At each time step t, ϵ̃θ(xt, c, t) serves as the diffusion score for a new conditional
distribution.

q̃θ(xt|c) ∝ qθ(xt|c)pθt (c|xt)
w. (6)

It can be observed that q̃θ(xt|c) can be seen as the conditional distribution qθ(xt|c) multiplied by
pθt (c|xt)

w. This indicates that the modified diffusion score assigns a higher probability to the data
xt that is more likely to be associated with the condition c. Consequently, the modified diffusion
score allows for a trade-off between sample diversity and sample fidelity.

The classifier guidance can also be applied to an unconditional diffusion score. For the unconditional
diffusion score ϵθ(x, t), using the same set of classifiers, the modified diffusion score is given by:

ϵ̃θ(xt, c, t) = ϵθ(xt, t)−(w+1)βt∇xt
log pθt (c|xt) = −βt∇xt

[
log qθ(xt) + (w + 1) log pθt (c|xt)

]
.

(7)

The corresponding guided intermediate distribution is:

q̃θ(xt|c) ∝ qθ(xt)p
θ
t (c|xt)

w+1. (8)

While the experiments on guiding the unconditional diffusion score may not have yielded as re-
markable results as the conditional case initially (Dhariwal & Nichol, 2021), this formula can still
be further connected to the concept of classifier-free guidance.

2.3 CLASSIFIER-FREE GUIDANCE FOR DIFFUSION MODELS

To avoid training classifiers, Ho & Salimans (2022) propose an alternative approach called classifier-
free guidance (CFG) for diffusion models. The main idea behind CFG is to use a single model to
simultaneously fit both the conditional score predictor and the unconditional score predictor. This
is achieved by randomly replacing the condition c with ∅ (an empty value). By doing so, one
can obtain the conditional score predictor ϵθ(x, c, t) and the unconditional score predictor ϵθ(x, t),
which is equivalent to ϵθ(x,∅, t). Then, because

∇xt [log pt(c|xt)] = ∇xt [log q(xt|c)− log q(xt) + log p(c)]

= ∇xt
[log q(xt|c)− log q(xt)] ,

(9)

which indicates that after applying the operator ∇xt
, we can replace the last term of Equation (7)

with log qθ(xt|c)− log qθ(xt) to achieve a similar effect. Then we get the enhanced diffusion score:

ϵ̂θ(xt, c, t) = (w + 1)ϵθ(xt, c, t)− wϵθ(xt, t)

= −βt∇xt

[
log qθ(xt|c) + w(log qθ(xt|c)− log qθ(xt))

]
= −βt∇xt

[
log qθ(xt) + (w + 1)(log qθ(xt|c)− log qθ(xt))

]
,

(10)

whose enhanced intermediate distribution is:

q̂θ(xt|c) ∝ qθ(xt)

[
qθ(xt|c)
qθ(xt)

]w+1

. (11)
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It is worth noting that both of these guidance methods can be regarded as a more general form of
energy-based guidance (Zhao et al., 2022; Lu et al., 2023). In this case, the formulation of the
intermediate time distribution is:

qθ(xt|c) ∝ qθ(xt)e
−(w+1)β(xt), (12)

where β(xt) is an arbitrary energy function.

3 INNER CLASSIFIER-FREE GUIDANCE

Firstly, consider the enhanced intermediate distribution qθ(xt|c) obtained by Eq. (8) or Eq. (11),
given the condition c. The question is whether these enhanced distributions follow the same diffu-
sion forward process as the original intermediate distribution qθ(xt). We have:

Theorem 3.1. Given condition c, the enhanced transition kernel qθ0t(xt|x0, c) by Eq. (8) or Eq.
(11) equals to the original transition kernel qθ0t(xt|x0, c) = qθ0t(xt|x0) does not hold trivially.
Specifically, when w = 0 , the equation holds.

The proof and discussions of Theorem 3.1 is in the Appendix A. Theorem 3.1 suggests that in the
majority of cases, the enhanced intermediate distribution qθ(xt|c) at different timesteps t does not
adhere to the same SDE as the original intermediate distribution qθ(xt) or the original conditional
intermediate distribution qθ(xt|c), which is also mentioned in the work of Lu et al. (2023); Du et al.
(2023).

There are two important clarifications to make regarding Theorem 3.1:

• qθ(x0|xt) appears to never be a δ distribution. However, under certain conditions, such as
a low noise level or when x0 is sparse, it can be approximately close to a δ distribution.

• Even if qθ0t(xt|x0, c) deviates from the original diffusion process, The sampling process
may still be effective based on the underlying principles of Langevin dynamics.

To address this issue, we incorporate the guidance strength w and represent the enhanced interme-
diate distribution in a more clear form as qθ(xt|c, w + 1). For instance, in the context of CFG, we

can express qθ(xt|c, w + 1) ∝ qθ(xt)
[
qθ(xt|c)
qθ(xt)

]w+1

.

Let β = w + 1. It is worth noting that in Theorem 3.1, when β = 1, we have qθ0t(xt|x0, c, β) =
qθ0t(xt|x0). The question arises: Can we always ensure that β = 1? In other words, can we treat β
and c as the same variable, such that qθ0t(xt|x0, c, β) = qθ0t(xt|x0) holds consistently? By doing so,
we incorporate the condition strength into the condition variable itself, and we refer to this approach
as inner classifier-free guidance (ICFG).

To establish a well-defined ICFG, it is necessary to impose certain structural assumptions on the
space C of the condition c. The following assumptions are made:
Assumption 3.1.

• C is a cone, which means ∀β ∈ R+,∀c ∈ C, βc ∈ C.

• For each c ∈ C, ∥c∥ represents the guidance strength and c
∥c∥ represents the guidance

direction.

For implementation purposes, as the origin C does not inherently form a cone, it is common practice
to extend the existing meaningful space C to conform to a cone structure. This extended space is
denoted as C = {c0 +β(c− c0)|β ∈ R+, c ∈ C}, where the vertex of the cone c0 is not necessarily
0. Further details can be found in Appendix D.

Under Assumption 3.1, we define q̄θ(xt|c) = qθ(xt|c, β) ≜ qθ(xt|βc). Based on this definition,
we can state the following Corollary 3.1.1:
Corollary 3.1.1. Given condition c and the guidance strength β = w + 1, we have:

qθ0t(xt|x0, c, β) = qθ0t(xt|x0).
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Corollary 3.1.1 indicates that for ICFG, the forward diffusion process consistently remains the same
as the original forward diffusion process, given condition c and guidance strength β.

We propose a training policy that allows the model to assess the guidance strength based on a cor-
relation metric r(x, c), which measures the relationship between the condition and the data. The
training policy is outlined in Algorithm 1.

Algorithm 1 Training policy for ICFG
Require: r(x, c): similarity metric
Require: puncond: probability of unconditional training

1: r = Ex,cr(x, c)
2: repeat
3: (x, c) ∼ p(x, c)
4: c = c/r(x, c) ∗ r
5: c← ∅ with probability puncond
6: t ∼ U [0, T ]
7: ϵ ∼ N (0, I)
8: xt = αtx0 + βtϵ
9: Take gradient step on ∇θ∥ϵθ(xt, c)− ϵ∥2

10: until converged

4 TAYLOR EXPANSION OF ICFG AND ITS CONVERGENCE

In most cases, we use the extended cone C = {βc|β ∈ R+, c ∈ C}. Consequently, we need to
consider the Taylor expansion of ICFG at β = 1 to estimate the score under conditions within C/C.
The n-th order Taylor expansion of ϵθ(xt|βc) at β = 1 is given by:

ϵθ(xt|βc) = ϵθ(xt|c) +
n∑

k=1

1

k!

∂kϵθ(xt|βc)
∂βk

∣∣∣∣
β=1

(β − 1)k +Rn(β), (13)

where Rn(β) represents the remainder term. It is evident that CFG is a first-order Taylor expansion
of ICFG at β = 1 without R1(β) and with the following estimation:

∂ϵθ(xt|βc)
∂β

∣∣∣∣
β=1

≈ ϵθ(xt|c)− ϵθ(xt|0) = ϵθ(xt|c)− ϵθ(xt) (14)

Then we will discuss the convergence of the Taylor expansion of ICFG in Eq. (13).

Firstly, considering this problem from the model space S = {ϵθ(xt|βc)|∀θ,∀x,∀c}, if we judi-
ciously choose the components of the neural network such that the function ϵθ(xt|βc) becomes
analytic with respect to β, then the convergence of the Taylor expansion near β = 1 is guaranteed
trivially.

Secondly, if we desire a bound for Rn(β) for any β ∈ [0, B], certain assumptions must be intro-
duced. Before that, consider the specific quantitative relationships of Stable Diffusion, as depicted
in Figure 1. It becomes apparent that the estimation of ∂ϵθ(xt|βc)

∂β

∣∣
β=1

is relatively small. Conse-
quently, we propose the following Assumption:

Assumption 4.1. For all k ∈ N+, the k-th order partial derivative ∂kϵθ(xt|βc)
∂βk at β ∈ [0, B] is

bounded by Mk.

Then, we have:
Theorem 4.1. Under Assumption 4.1, the remainder term Rn(β) of the n-th order taylor expansion
of ϵθ(xt|βc) at β = 1 is bounded by Mn+1

(n+1)!B
n+1. This bound converges to 0 when the sequence

Mn+1 ∼ o
(√

n+ 1
[
n+1
eB

]n+1
)

.

By Stirling’s formula, the proof will be discussed in the Appendix B.
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Figure 1: The quantitative relationships of Stable Diffusion during sampling. These figures show the
relationship between the norm of the predicted score ϵθ(xt|c), ϵθ(xt) and the distance norm between
them during the 50 sampling timesteps of CFG. The guidance strength for the first two figures is set
to 3, while the last two figures have a guidance strength of 80. The caption for all figures states, ”A
photograph of an astronaut riding a horse.”

5 IMPLEMENTATION OF SECOND-ORDER ICFG FOR STABLE DIFFUSION

For the pretrained popular Stable Diffusion, we present two approaches to implement the second-
order ICFG. The first method follows a straightforward Taylor expansion, as outlined in Algorithm 2.
Notably, when we use y2−y1

x2−x1
of two points (x1, y1), (x2, y2) to estimate the gradient at x1+x2

2 , the
second-order term is unique. Further details will be discussed in the Appendix C.

Algorithm 2 Strict sample algorithm for second-order ICFG
Require: m: middle point for estimate second-order term
Require: w: guidance strength on conditional score predictor
Require: c: condition for sampling
Require: Require {t1, t2, ..., tN} increasing timestep sequence of sampling
Require: Sample(zt, ϵt): sample algorithm for diffusion models given zt and ϵt

1: zN ∼ N (0, I)
2: for i = N, ..., 1 do
3: ϵt = ϵθ(zi, c) + w(ϵθ(zi, c)− ϵθ(zi))

+w2 1
m(1−m)

(
(1−m)ϵθ(zi) +mϵθ(zi, c)− ϵθ(zi,mc)

)
4: zi−1 = Sample(zi, ϵt)
5: end for
6: return z0

However, in practical scenarios, the second-order term may suffer from a large bias due to the un-
changed training policy, and this bias is further amplified by the coefficient w2. To address this
issue, we propose an alternative approach called the non-strict sample algorithm, presented in Al-
gorithm 3. This algorithm offers a practical solution and can be effectively applied to mitigate the
aforementioned problem.

The only distinction between Algorithm 3 and Algorithm 2 lies in assigning a completely unre-
stricted hyperparameter v to the second-order term. This modification allows for more flexible
control over the second-order term.

6 EXPERIMENTS

The primary motivation behind our experiments is twofold. Firstly, we seek to showcase the efficacy
of our new sampling algorithm in leveraging the continuity of C and incorporating valuable informa-
tion to achieve an improved balance between diversity and fidelity, even in cases where C does not
exhibit a “cone” structure apparently. Secondly, we aim to demonstrate that our new training policy
enables the model to capture better the inherent “cone” structure of C. To accomplish the first ob-
jective, we utilize the pretrained Stable Diffusion v1.5 model and apply our Algorithm 3 to generate
sampled images. More implementation details are in Appendix D. Nevertheless, our second-order
ICFG continues to demonstrate its advantages in these experiments. For the second target, we ex-
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Algorithm 3 Non-strict sample algorithm for second-order ICFG
Require: m: middle point for estimate second-order term
Require: w: first-order guidance strength on conditional score predictor
Require: v: second-order guidance strength on conditional score predictor
Require: c: condition for sampling
Require: Require {t1, t2, ..., tN} increasing timestep sequence of sampling
Require: Sample(zt, ϵt): sample algorithm for diffusion models given zt and ϵt

1: zN ∼ N (0, I)
2: for i = N, ..., 1 do
3: ϵt = ϵθ(zi, c) + w(ϵθ(zi, c)− ϵθ(zi))

+v 1
m(1−m)

(
(1−m)ϵθ(zi) +mϵθ(zi, c)− ϵθ(zi,mc)

)
4: zi−1 = Sample(zi, ϵt)
5: end for
6: return z0

Table 1: The results of varying the guidance strength and the condition space on the MS-COCO
validation set.

Model&Settings FID ↓ CLIP Score (%)↑
CFG

w = 1.0 17.24 25.03
w = 2.0 15.42 25.80
w = 3.0 16.68 26.12
w = 4.0 18.18 26.34
w = 5.0 19.53 26.45

Ours v = 0.25/0.5/1.0
w = 1.0, C = Call 16.40/17.34/20.70 25.46/25.71/25.86
w = 2.0, C = Call 15.28/15.42/16.34 26.11/26.30/26.52
w = 3.0, C = Call 16.59/16.69/16.88 26.37/26.54/26.73
w = 4.0, C = Call 17.98/18.06/18.20 26.51/26.64/26.81
w = 5.0, C = Call 19.35/19.32/19.45 26.59/26.69/26.86

w = 1.0, C = Cnouns 16.33/17.24/21.78 25.02/24.88/24.23
w = 2.0, C = Cnouns 15.22/15.23/15.71 25.86/25.81/25.61
w = 3.0, C = Cnouns 16.59/16.60/16.61 26.19/26.18/26.09
w = 4.0, C = Cnouns 18.08/18.07/18.02 26.36/26.37/26.30
w = 5.0, C = Cnouns 19.33/19.31/19.47 26.48/26.49/26.44

clusively fine-tune the U-Net (Ronneberger et al., 2015) of Stable Diffusion v1.5 (Rombach et al.,
2022) with Low-Rank Adaptation (Hu et al., 2022; Ruiz et al., 2023).

6.1 SAMPLING WITH SECOND-ORDER ICFG

We employ the pretrained Stable Diffusion v1.5 model directly and utilize our Algorithm 3 to gen-
erate sampled images. The settings we follow are consistent with those provided in the official
repository of Stable Diffusion v1.5. The sampling algorithm employed is PNDM (Liu et al., 2022),
and the default number of timesteps is 50. The evaluation of the results, presented in Table 1, Table 2
and Table 3 is based on two metrics: the Fréchet Inception Distance (FID) (Heusel et al., 2017) and
the CLIP Score (Radford et al., 2021). The FID metric is calculated by comparing 10,000 generated
images with the MS-COCO (Lin et al., 2014) validation dataset, measuring the distance between the
distribution of generated images and the distribution of the validation dataset. On the other hand,
the CLIP Score is computed between the 10,000 generated images and their corresponding captions
by the model ViT-L/14 (Radford et al., 2021), reflecting the similarity between the images and the
textual descriptions. In our tables, the default configuration is set to w = 2.0, v = 0.25,m = 1.1.
We systematically vary the guidance strength w and v, the middle point m, and the condition space
C to observe the impact of the second-order term. The designs of Call and Cnouns are in Appendix D.
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Figure 2: The FID-CLIP Score of varying w, v and C.

Table 2: The results of varying the middle points on the MS-COCO validation set. Here v =
0.5, C = Call.

Middle points FID ↓ CLIP Score (%)↑
m = 0.5 15.59 26.02
m = 0.8 15.58 26.28
m = 0.9 15.54 26.27
m = 1.05 15.47 26.31
m = 1.1 15.42 26.30
m = 1.2 15.43 26.28

6.1.1 VARYING THE GUIDANCE STRENGTH AND THE SPACE OF CONDITION

Here we experimentally validate the first primary claim in this paper: that second-order ICFG can
improve the balance between FID and CLIP Score. By varying the guidance strength and space
of condition, We determine that the optimal balance between FID and CLIP Score is achieved at
w = 2.0, v = 0.25. The best w is the same as many other diffusion models (Bao et al., 2023b)
Beyond this point, we observe a discernible trade-off between FID and CLIP Score as w increases.
In the condition space Call, we note the presence of a trade-off between FID and CLIP Score as v
increases. However, such a trade-off is not evident in the conditional space Cnouns. Additionally,
we observe that while the best FID score is obtained in Cnouns, a superior balance between FID and
CLIP Score is achieved in Call. This finding suggests that the condition space Call exhibits a more
favorable “cone” structure for processing.

6.1.2 VARYING THE MIDDLE POINTS

One of the key hyperparameters in the second-order ICFG is the selection of middle point, which
is utilized to estimate the second-order term. Two primary factors influence the outcome in this
regard. Firstly, if the chosen points are too close to each other, the estimated second-order term fails
to capture long-term changes adequately. Secondly, if the middle points are relatively distant from
either 0 or 1, the model struggles to estimate the corresponding score. The observed “U” shape of
the FID results presented in Table 2 serves to validate our analysis.

6.1.3 VARYING THE NUMBER OF SAMPLING STEPS

The number of sampling steps also influences the quality of the generated samples. We have ob-
served that the CLIP Score remains relatively stable across different numbers of sampling steps,
while the FID score improves as the number of sampling steps increases. This suggests that the
sample quality improves with an increase in the number of sampling steps. However, it is worth
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Table 3: The results of varying the sampling steps on the MS-COCO validation set.

Model&Settings FID ↓ CLIP Score (%)↑
Ours C = Call/Cnouns

T = 10 15.80/15.86 26.13/25.87
T = 20 15.39/15.40 26.15/25.86
T = 30 15.29/15.28 26.13/25.86
T = 40 15.29/15.23 26.11/25.86
T = 50 15.28/15.22 26.11/25.86

noting that even with a small number of sampling steps, the initial matching degree between the
generated text and the image is already quite good.

6.2 FEW-SHOT FINE-TUNING FOR STABLE DIFFUSION

To validate the efficacy of our training algorithm, we employ a fine-tuning process on the pretrained
Stable Diffusion v1.5 model using Algorithm 1. We then compare the outcomes with those obtained
through traditional fine-tuning. By generating cases with varying inner β values, we aim to assess
the capacity of the model to capture the inherent ”cone” structure of C. The results, presented in the
Appendix E, demonstrate that our training algorithm yields improved tolerance when coupled with
more substantial inner guidance.

7 DISCUSSION

ICFG offers a novel perspective for comprehending CFG and can be seen as an extension of CFG.
One significant advantage of our ICFG approach is its simplicity in implementation. Furthermore,
integrating second-order ICFG into complex conditions in trained diffusion models is straightfor-
ward, involving adding a few lines of code. By selecting a suitable space to exploit continuity,
we can effectively implement second-order ICFG. In cases where the condition space C exhibits a
well-defined structure, extending the second-order ICFG to higher-order ICFG becomes feasible.

We also offer an intuitive explanation of how the Taylor expansion operates. When we extend the
CFG to a higher-order Taylor expansion of ICFG, the corresponding enhanced transition kernel
qθ0t(xt|x0, c) gradually aligns with the original transition kernel more smoothly. In simpler terms,
the enhanced transition kernel qθ0t(xt|x0, c) becomes increasingly similar to the original transition
kernel qθ0t(xt|x0). This explains why the second-order ICFG can enhance the FID and CLIP Score
balance.

Despite its advantages, ICFG also has a few potential disadvantages. Firstly, the training policy of
ICFG relies on more precise data pairs to accurately capture the guidance strength during training.
However, this requirement can be alleviated by incorporating the similarity function r(x, c). Sec-
ondly, the second-order ICFG necessitates three forward passes of the diffusion model to estimate
the second-order term, which can lead to increased sampling time. Nevertheless, this issue can be
mitigated by reusing the points for the pre-order term, thereby reducing the computational overhead.

8 CONCLUSION

We introduce ICFG, a novel perspective on CFG. ICFG is an extension of CFG and can be read-
ily implemented in training and sampling processes. We further propose the Taylor expansion of
ICFG and analyze its convergence properties. By incorporating second-order ICFG, we mitigate the
mismatch issue in the diffusion process that arises from CFG. Through our experiments on Stable
Diffusion, we validate the efficacy of our second-order approach. In future work, we intend to in-
vestigate higher-order ICFG and anticipate further investigations into the application of ICFG in a
wide array of diffusion models across diverse data modalities.
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A PROOF OF THEOREM 3.1 AND COROLLARY 3.1.1

A.1 PROOF OF THEOREM 3.1

Proof. Firstly, we ignore the symbol θ. Classifier guidance and CFG with guidance strength w have
the following enhanced conditional probability:

q(xt|c) =
1

Zt
q(xt)q(c|xt)

w+1, (15)

whereZt =
∫
q(xt)q(c|xt)

w+1dxt.

Suppose the enhanced transition kernel q0t(xt|x0, c) equals the original transition kernel q0t(xt|x0),
we have:

qt(xt|c) =
∫

q0t(xt|x0, c)q0(x0|c)dx0

=

∫
q0t(xt|x0)q0(x0|c)dx0

=
1

Z0

∫
q0t(xt|x0)q0(x0)q(c|x0)

w+1dx0

=
1

Z0

∫
q(xt,x0)q(c|x0)

w+1dx0

=
1

Z0
q(xt)

∫
q(x0|xt)q(c|x0)

w+1dx0

=
1

Zt
q(xt)q(c|xt)

w+1.

(16)

Because q(c|xt) =
∫
q(x0|xt)q(c|x0)dx0. We take the last two terms and then get the following

equation:

1

Z0

∫
q(x0|xt)q(c|x0)

w+1dx0 =
1

Zt

[∫
q(x0|xt)q(c|x0)dx0

]w+1

.

⇔
∫
q(x0|xt)q(c|x0)

w+1dx0[∫
q(x0|xt)q(c|x0)dx0

]w+1 =
Z0

Zt

⇔
Ex0∼q(x0|xt)q(c|x0)

w+1[
Ex0∼q(x0|xt)q(c|x0)

]w+1 =
Z0

Zt
.

(17)

To enhance clarity, let’s consider a straightforward scenario. Suppose x0 comprises only x1
0 with

label c1 and x2
0 with label c2. Given c = c1, the left side of Eq. (17) is as follows:

L =

1

e∥−xt−αtx
1
0∥2/(β2

t )+e∥−xt−αtx
2
0∥2/(β2

t )

(
e−∥xt−αtx

1
0∥

2/(β2
t )q(c1|x1

0)
w+1 + e−∥xt−αtx

2
0∥

2/(β2
t )q(c1|x2

0)
w+1

)
[

1

e∥−xt−αtx
1
0∥2/(β2

t )+e∥−xt−αtx
2
0∥2/(β2

t )

(
e−∥xt−αtx1

0∥2/(β2
t )q(c1|x1

0) + e−∥xt−αtx2
0∥2/(β2

t )q(c1|x2
0)
)]w+1

=

1

e∥−xt−αtx
1
0∥2/(β2

t )+e∥−xt−αtx
2
0∥2/(β2

t )

(
e−∥xt−αtx

1
0∥

2/(β2
t ) × 1 + e−∥xt−αtx

2
0∥

2/(β2
t ) × 0

)
[

1

e∥−xt−αtx
1
0∥2/(β2

t )+e∥−xt−αtx
2
0∥2/(β2

t )

(
e−∥xt−αtx1

0∥2/(β2
t ) × 1 + e−∥xt−αtx2

0∥2/(β2
t ) × 0

)]w+1

=

[
e∥−xt−αtx

1
0∥

2/(β2
t ) + e∥−xt−αtx

2
0∥

2/(β2
t )

e∥−xt−αtx1
0∥2/(β2

t )

]w
,

(18)
which is a function of xt.
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For a more general situation: We have N data pairs (xi
0, c

i). Given c = c1, then the left side of Eq.
(17) is

L =

1∑N
i=1 e∥−xt−αtx

i
0∥2/(β2

t )

(∑N
i=1 e

−∥xt−αtx
i
0∥

2/(β2
t )q(c1|xi

0)
w+1

)
[

1∑N
i=1 e∥−xt−αtx

i
0∥2/(β2

t )

(∑N
i=1 e

−∥xt−αtxi
0∥2/(β2

t )q(c1|xi
0)

w+1
)]w+1

=

1∑N
i=1 e∥−xt−αtx

i
0∥2/(β2

t )

(
e−∥xt−αtx

1
0∥

2/(β2
t ) × 1

)
[

1∑N
i=1 e∥−xt−αtx

i
0∥2/(β2

t )

(
e−∥xt−αtx1

0∥2/(β2
t ) × 1

)]w+1

=

[∑N
i=1 e

∥−xt−αtx
i
0∥

2/(β2
t )

e∥−xt−αtx1
0∥2/(β2

t )

]w
.

(19)

And the radio of two enhanced intermediate distributions is

Zt

Z0

[∑N
i=1 e

∥−xt−αtx
i
0∥

2/(β2
t )

e∥−xt−αtx1
0∥2/(β2

t )

]w
. (20)

Then reconsider the context of Eq. (17), it is observed that the equation does not maintain universal
validity. A contradiction between the two sides becomes apparent, as the left side is a function of
the stochastic variable xt, while the right side remains a constant. However, it is easy to check the
equation holds when w = 0 , because when w = 0 , the left side and the right side of the last line of
Eq. (17) are 1.

We specifically discuss the case of q(x0|xt) being a δ distribution because q(x0|xt) =
e−∥xt−αtx0∥2∫
e−∥xt−αtx0∥2dx0

, which approaches an approximation of a δ distribution when t is small or when
the values of x0 are highly sparse.

A.2 PROOF OF COROLLARY 3.1.1

Proof. In this case, we have:
q(xt|c) = q(xt|β, c)

= q(xt|βc).
(21)

Treat the βc as an entire c̄, which is a special case of w = 0 in Theorem 3.1.

B PROOF OF THEOREM 4.1

Proof. Consider the Lagrange form of Rn(β):

Rk(β) =

∂k+1ϵθ(xt|βc)
∂βk+1

∣∣
β=ξ

(k + 1)!
(β − 1)k+1, (22)

where ξ ∈ [0, β]. Then we can get the upper bound of ∥Rn(β)∥:

∥Rn(β)∥ ≤
Mn+1

(n+ 1)!
(B − 1)n+1

≤ Mn+1

(n+ 1)!
Bn+1.

(23)

To establish a more relaxed condition for the convergence of the sequence {Mn |n ∈ N}, we utilize
Stirling’s formula in Eq. (23) to obtain:

Mn+1

(n+ 1)!
Bn+1 ∼ Mn+1√

n+ 1

[
eB

n+ 1

]n+1

, (24)
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which indicates when n→ +∞, the sequence {Rn(β) |n ∈ N} converges to 0 if

Mn+1 ∼ o

(
√
n+ 1

[
n+ 1

eB

]n+1
)
.

C THE UNIQUENESS OF THE SECOND-ORDER TERM

Proof. When we use y2−y1

x2−x1
of two points (x1, y1), (x2, y2) to estimate the gradient at x1+x2

2 , For
three data pairs (x0, y0), (x1, y1), (x2, y2), where (x1−x0)(x2−x1)(x0−x2) ̸= 0, no matter how
we organize them, the estimated second-order gradient is uniquely determined as:

2
x0y2 + x1y0 + x2y1 − x0y1 − x1y2 − x2y0

(x1 − x0)(x2 − x1)(x0 − x2)
.

Let us define x0 = 0, x1 = m, and x2 = 1. With these values, we can proceed to estimate the
second-order gradient, which is given by:

2

m(1−m)
((1−m)y0 +my2 − y1) .

D IMPLEMENTATION DETAILS

D.1 THE CONDITION SPACE C

In this paper, we have designed two “cone” structures for the conditions of Stable Diffusion. All
two kinds C are extended from the tensors after CLIP model, whose dimension is 77× 768.

• Call: We use the pretrained CLIP model to extract the text embedding ctextof the captions.
We also get the extract embedding c∅ of empty caption, then with the inner coefficient β,
we get the enhanced embedding c∅ + β(ctext − c∅)

• Cnouns: We utilize the pretrained CLIP model to extract the text embedding ctext from
the captions. Additionally, we obtain the embedding c∅ for an empty caption. By in-
corporating the inner coefficient β and the indicator function 1nouns, we can modify the
embedding. Specifically, we set the values corresponding to the positions of nouns to 1 in
1nouns, while the remaining values are set to 0. The resulting enhanced embedding is given
by c∅ + β1nouns(ctext − c∅).

D.2 DETAILS OF FIN-TUNING PROCESS

We set rank = 4 and apply the Low-Rank Adaptation (Hu et al., 2022; Ruiz et al., 2023) to modify
the attention layers of the U-Net (Ronneberger et al., 2015) of Stable Diffusion v1.5 (Rombach et al.,
2022). We use the Adam optimizer with a learning rate of 1e− 4 and a batch size of 8. We fine-tune
the model for 300 epochs on a small part of MS-COCO (Lin et al., 2014) dataset, which contains 30
images and their corresponding captions. We use the pretrained Stable Diffusion v1.5 model as the
initialization of the U-Net. We compare our fine-tuning policy with default fine-tuning policy.

E SAMPLES AFTER FINE-TUNING

After the fine-tuning process, we proceed to compare the samples generated using different training
policies. The corresponding results are presented in Figure 3 and Figure 4. Each sample is generated
with the caption “a brown and white giraffe in a field of grass” and arranged from left to right, with
values of inner β set to 1.0, 1.2, 1.4, and 1.6. Notably, our training policy demonstrates superior
performance compared to the default training policy when β assumes relatively larger values. This
observation suggests that our training policy effectively captures the inherent “cone” structure of C.
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Figure 3: Generated images of different inner β of our training policy.

Figure 4: Generated images of different inner β of default training policy.
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Table 4: FID results on U-ViT of CFG and ICFG.

Steps 5w 10w 15w 20w 25w 30w 35w 40w 45w 50w 55w 60w 65w 70w 75w 80w

CFG 34.23 13.64 11.26 10.38 9.78 8.98 8.98 8.76 8.58 8.52 8.37 8.37 8.27 8.32 8.39 8.10
ICFG 24.69 13.51 11.00 10.13 9.69 9.09 8.82 8.68 8.54 8.41 8.35 8.21 8.29 8.15 8.10 7.92

Table 5: Experiments about the speedup.

Method Time (seconds) Extra Time U-Net Computation FID CLIP Score

CFG 10.43 ± 0.23 0% 100% 15.42 25.80
2nd-order ICFG 15.01 ± 0.31 43.91% 150% 15.28 26.11

0.2-0.8 2nd-order ICFG 13.17 ± 0.26 26.27% 130% 15.29 26.03

F VISUAL RESULTS COMPARISON

We conducted a comparison between CFG and second-order ICFG with w = 5.0 and v = 0.25.
The visual comparisons are presented in Figure 5. It is evident from the images that second-order
ICFG outperforms CFG, producing images with better-rendered hands and closer alignment to the
provided prompts.

G EXPERIMENTS ON ANOTHER FRAMEWORK

we train another framework, U-ViT (Bao et al., 2023a), with a resolution of 256x256 on the COCO
dataset from scratch to fully explore the capabilities of our ICFG. The FID results are listed in
Table 4.

H EXPERIMENTS ABOUT THE SPEEDUP

We conducted our experiments on an NVIDIA GeForce RTX 3090, using a batch size of 4. We
performed 100 samplings to calculate the timings and utilized 10,000 images for the computation of
FID and CLIP scores, The results are shown in Table 5.

We have the following findings.

• Due to the text encoder and VAE decoder, the real-time consumption of the 2nd-order ICFG
is less than the estimated extra computation of the U-Net.

• Through a preliminary selection of key timesteps (0.2-0.8) for applying the 2nd-order
ICFG, we achieve nearly full FID benefits and a 74% improvement in CLIP scores, with
a reduced extra inference time of 26.27%. We anticipate further enhancements in extra
inference time by refining the selection of key timesteps.
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CFG 2nd order ICFGPrompt

hatsune_miku

1boy, bishounen, casual, 
indoors, sitting, coffee 
shop, bokeh

scenery, village, 
outdoors, sky, clouds

Figure 5: The generated images presented here compare the outputs of CFG and second-order
ICFG with w = 5.0 and v = 0.25, utilizing the model anything-v4.0 (https://huggingface.co/xyn-
ai/anything-v4.0). In the first two rows, it is evident that our second-order ICFG produces superior
results in hand generation. In the last row, our second-order ICFG generates images that align more
closely with the provided prompts.
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