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Abstract

Schemas are vital for ensuring data quality in001
the Semantic Web and natural language pro-002
cessing. Traditionally, their creation demands003
substantial involvement from knowledge en-004
gineers and domain experts. Leveraging the005
impressive capabilities of large language mod-006
els (LLMs) in related tasks like ontology en-007
gineering, we explore automatic schema gen-008
eration using LLMs. To bridge the resource009
gap, we introduce two datasets: YAGO Schema010
and Wikidata EntitySchema, along with evalu-011
ation metrics. The LLM-based pipelines effec-012
tively utilize local and global information from013
knowledge graphs (KGs) to generate validating014
schemas in Shape Expressions (ShEx). Experi-015
ments demonstrate LLMs’ strong potential in016
producing high-quality ShEx schemas, paving017
the way for scalable, automated schema gener-018
ation for large KGs. Furthermore, our bench-019
mark introduces a new challenge for structured020
generation, pushing the limits of LLMs on syn-021
tactically rich formalisms.022

1 Introduction023

Graphs have emerged as a vital area of research024

in artificial intelligence and its foundational dis-025

ciplines, significantly advancing progress across026

various domains, including knowledge representa-027

tion and natural language processing (Sakr et al.,028

2021; Scherp et al., 2024; Hogan et al., 2025).029

This is especially evident with the rise of large030

language models (LLMs) (Brown et al., 2020),031

where graph-based methods enhance their reason-032

ing capabilities for structured knowledge integra-033

tion, and graphs serve as rich sources of struc-034

tured and factual information (Zhang, 2023; Sun035

et al., 2023; Edge et al., 2024). Large knowledge036

graphs (KGs), such as Wikidata (Vrandečić and037

Krötzsch, 2014) and DBpedia (Auer et al., 2007),038

are compiled from heterogeneous sources, lead-039

ing to significant quality issues like redundancy,040

noise, and ambiguity (Shenoy et al., 2022). Be- 041

yond data noise, KGs frequently suffer from mod- 042

eling issues. A survey by Wikimedia Deutschland 043

on Wikidata’s ontology issues revealed conceptual 044

ambiguity and inconsistent modeling in Wikidata, 045

stemming from diverse contributor perspectives 046

and inadequate guidelines—challenges common 047

to large KGs (Ammalainen, 2023). This can man- 048

ifest, for example, as entities for a company, its 049

service and application being conflated, with predi- 050

cates incorrectly shared between them. These qual- 051

ity deficits impede effective KG querying, sharing, 052

and reuse. Critically, as KGs underpin tasks like 053

pre-training (Chen et al., 2020; Pan et al., 2022; 054

Yasunaga et al., 2022), retrieval-augmented genera- 055

tion (Xu et al., 2024; He et al., 2024a; Fang et al., 056

2024; Hu et al., 2025), and post-training (Agarwal 057

et al., 2021; Li et al., 2023; Tang et al., 2024) for 058

LLMs, ensuring KG quality is essential for main- 059

taining the factual accuracy and reliability of these 060

downstream AI systems (Pan et al., 2023). 061

Validating KGs against predefined schemas is 062

a crucial technique for quality assessment, ef- 063

fective in identifying structural and semantic in- 064

consistencies to maintain data integrity (Gayo 065

et al., 2018; Scherp et al., 2024). These val- 066

idating schemas define the expected rules and 067

patterns for the data, focusing on specific sets 068

of nodes (Ahmetaj et al., 2025). To repre- 069

sent these schemas, distinct languages including 070

W3C standards like Shapes Constraint Language 071

(SHACL) (Knublauch and Kontokostas, 2017), 072

Shape Expressions (ShEx) (Prud’hommeaux et al., 073

2014), and PG-Schema (Angles et al., 2023) 074

have emerged. Developing high-quality valida- 075

tion schemas aligned with user needs is a consid- 076

erable challenge (Rabbani et al., 2022). Current 077

automatic schema generation via pattern aggrega- 078

tion often inherits noise and errors from the source 079

KGs (Rabbani et al., 2022). As a result, the pri- 080

mary approach involves manually writing schemas 081
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or refining those produced by basic pattern min-082

ing—a process that is both time-consuming and083

expensive, particularly for KGs with potentially084

millions of classes (Rabbani et al., 2022). The085

demonstrated success of LLMs in areas like on-086

tology engineering (Lo et al., 2024; Zhang et al.,087

2025) and graph-based reasoning (Wang et al.,088

2023) highlights their proficiency with structured089

data. Specifically, LLMs show aptitude for pro-090

cessing structured information, reasoning across091

graph and text modalities, and performing struc-092

tured generation (He et al., 2024b; Jin et al., 2024).093

This aptitude strongly suggests their potential for094

automatically generating KG validation schemas.095

Building on this, this paper investigates how096

LLMs can undertake this automatic schema genera-097

tion for large KGs, especially where such schemas098

are missing or incomplete. Specifically, we address099

the research question: How can LLMs generate100

high-quality ShEx shapes for a given KG? We iden-101

tify key challenges inherent to this task. First, due102

to the sheer scale of large KGs, pinpointing the es-103

sential information required for accurate ShEx gen-104

eration by LLMs is difficult. Second, even when105

relevant information is identified, investigating how106

LLMs can effectively leverage this structured data107

for schema generation is required. Finally, the108

relative novelty and ongoing development of the109

ShEx standard mean that publicly available ShEx110

corpora are limited, potentially hindering LLM fa-111

miliarity with the required syntax and conventions.112

To address these challenges, this paper makes the113

following main contributions:114

• We formulate the novel task of using LLMs115

to generate ShEx schemas from KGs, relevant116

for both the Semantic Web and LLM research.117

• We introduce a benchmark comprising two118

datasets derived from large KGs—YAGO and119

Wikidata—along with associated metrics de-120

signed for comprehensive evaluation from di-121

verse perspectives.122

• We propose and evaluate pipelines designed123

to efficiently generate high-quality ShEx124

schemas by leveraging the structured genera-125

tion capabilities of LLMs1.126

2 Related Work127

Schema Generation KG schemas are broadly128

classified into semantic, validating, and emergent129

1We will release our code upon acceptance.

schemas (Hogan et al., 2021). We focus on vali- 130

dating schemas, typically defined using shapes. A 131

shape identifies a set of focus nodes within a data 132

graph and specifies constraints they must adhere to. 133

ShEx is a prominent language for expressing such 134

schemas, especially in Wikidata. 135

Existing automatic ShEx schema extraction ap- 136

proaches operate on KGs provided as RDF data or 137

via query endpoints, employing a two-stage pro- 138

cess: collecting essential information from KGs, 139

and then extracting and refining shapes based on 140

this information. Mihindukulasooriya et al. (2018) 141

approached shape generation by framing cardi- 142

nality and range constraint prediction as machine 143

learning (ML) classification problems on data pro- 144

filing features. The sheXer system (Fernandez- 145

Álvarez et al., 2022) extracts shapes by iteratively 146

exploring triples associated with target nodes and 147

mining KG structures. A key finding is that shapes 148

derived from representative instance examples of- 149

ten converge with those from larger sets, suggest- 150

ing sampling can be effective for accurate shape 151

extraction. Influenced by graph pattern mining, 152

QSE (Rabbani et al., 2023) extracts shapes from 153

large KGs by computing support (number of en- 154

tities satisfying a constraint) and confidence (pro- 155

portion of entities satisfying a constraint among ap- 156

plicable entities). While defined differently, these 157

metrics are conceptually similar to sheXer’s inter- 158

nal voting and trustworthiness scores. 159

Despite these advancements, studies (Rabbani 160

et al., 2022; Fernandez-Álvarez et al., 2022; Rab- 161

bani et al., 2023) indicate that current methods 162

often produce incomplete shapes, frequently miss- 163

ing essential elements like cardinality constraints, 164

and lack standardized benchmarks for schema gen- 165

eration. Current evaluation practices primarily fo- 166

cus on generation efficiency, such as running time 167

and memory usage. These limitations underscore 168

the need for novel approaches to generate more 169

comprehensive and accurate validating schemas 170

for semantic quality and completeness. 171

Structured Generation Structured generation, 172

or constrained decoding, enables LLMs to produce 173

outputs adhering to precise formats, vital for ap- 174

plications like code generation (Ugare et al., 2024) 175

and tool calling (Zhang et al., 2024). This involves 176

generating token sequences that satisfy specified 177

constraints, often defined by regular expressions 178

(regex) or context-free grammars (CFGs). A key 179

challenge is efficiently applying these constraints 180
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over the LLM’s large vocabulary without degrading181

speed or performance (Dong et al., 2024; Koo et al.,182

2024). Fine-tune-free methods primarily fall into183

two categories: token-level constrained decoding184

and prompt-level output structuring. Token-level185

methods directly influence token selection during186

decoding. They often compile regex and CFGs187

into automata (finite state machines or pushdown188

automata) that operate in the token space (Koo189

et al., 2024). This generation efficiency is further190

enhanced through techniques like states tracking191

and indexing (Willard and Louf, 2023), and to-192

ken categorization and caching (Dong et al., 2024).193

Prompt-level methods leverage LLMs’ instruction-194

following or function-calling capabilities to guide195

the overall output structure, which is subsequently196

parsed and validated. Instructor (Liu and Contribu-197

tors, 2024) exemplifies this by converting Pydantic198

models into LLM-understandable schemas (e.g.,199

JSON Schema) and incorporating a retry mecha-200

nism with feedback.201

3 Problem Formulation202

The Resource Description Framework (RDF) is a203

standard model for representing data and is widely204

used in building KGs (Cyganiak et al., 2014). We205

define a KG as follows:206

Definition 1 (Knowledge Graph) A KG in RDF207

is a directed, labeled graph G, defined as a set208

of triples. Each triple (u, p, o) ∈ G consists of a209

subject u, a predicate p, and an object o. Given210

distinct sets of IRIs I, blank nodes B, and literals211

L, the subject u ∈ (I ∪ B) must be an IRI or a212

blank node, the predicate p ∈ I must be an IRI,213

and the object o ∈ (I ∪ B ∪ L) may be an IRI, a214

literal, or a blank node.215

In particular, we distinguish non-blank subject216

nodes based on their role in the taxonomy: classes217

and instances. Classes are primarily connected218

to their superclasses using predicates such as219

subClassOf. Instances are linked to their corre-220

sponding classes using predicates like instanceOf.221

To validate instances within a class, we can define222

a validating schema in ShEx as follows:223

Definition 2 (Shape) A shape schema in ShEx con-224

sists of a set of shapes S . Each shape is associated225

with a class c in a KG. A shape s = (α,Ψ) ∈ S226

comprises a shape label α and a set of constraints227

ψ ∈ Ψ in the form ψ = (p, τ, κ), where p is a228

predicate, τ is a node constraint, and κ specifies229

cardinality.230

Dataset YAGOS WES

Classes 36 50

Constraints
Sum 678 1,874
Mean 18.83 37.48

Median 18 35

Instances
Sum 1,227,509 2,127,696
Mean 34,097.47 42,553.92

Median 1,104 1,564

Table 1: Dataset statistics, including the number of
classes, total number of constraints, average schema
length, median constraint length, total number of in-
stances across all classes, and the mean and median
number of instances per class.

Predicates used in shape constraints are drawn from 231

the KG. Node constraints τ may belong to sev- 232

eral categories, including (1) node kind constraints, 233

(2) datatype constraints, (3) values constraints, (4) 234

XML Schema string facet constraints and (5) XML 235

Schema numeric facet constraints. In this work, 236

we focus on the first three categories. Cardinality 237

κ = (n,m) specify the allowable number of occur- 238

rences of a predicate-object pair, where n ∈ N and 239

m ∈ N ∪ {∗}, with ‘∗’ indicating an unbounded 240

upper limit. ShEx examples are provided in Ap- 241

pendix B. The task of schema generation can now 242

be defined as: 243

Definition 3 (Schema Generation) Given a KG 244

G, and a class c ∈ G representing a set of nodes, 245

the objective is to generate a shape schema S de- 246

scribing the triples involving nodes in the KG. 247

Schema generation is a challenging task for both 248

traditional rule-based methods (Rabbani et al., 249

2023) and ML approaches like LLMs, primarily 250

due to several factors. Large KGs often contain 251

quality issues, and pattern extraction may inadver- 252

tently encode these issues into generated shapes. 253

Moreover, there is a lack of benchmarks and high- 254

quality ShEx ground truths, making training and 255

evaluation for ML-based approaches particularly 256

difficult. 257

4 Schema Benchmark 258

4.1 Dataset 259

To address the need for benchmarks, we introduce 260

two new dataset, YAGO Schema (YAGOS) and 261

Wikidata EntitySchema (WES). Together, com- 262

prising 86 ShEx schema with a total of 2,552 263

constraints. Detailed statistics are presented in 264

Table 1, and the dataset construction process is 265
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outlined in Appendix A. Each schema in our266

datasets targets a specific class within the respec-267

tive KG. While ShEx offers a rich syntax, the268

schemas in our datasets employ a community-269

prevalent subset to enhance simplicity and read-270

ability while remaining functional (detailed spec-271

ification in Appendix B). In our setting, to sim-272

plify the syntax representation and ease evalua-273

tion and comparison, a shape schema S includes274

a start shape that targets the focus class. The275

remaining shapes in the schema serve as refer-276

ences, each describing one or more classes that277

specify the range of objects allowed for certain278

predicates in the start shape. The schemas predom-279

inantly use four fundamental node constraint types:280

node kind constraints (e.g., IRI), datatype con-281

straints (e.g., xsd:decimal, rdf:langString),282

value set constraints (often specifying object val-283

ues, e.g., [schema:Organization]), and shape284

references (e.g., @<Person>, which links to an-285

other defined shape like <Person> { rdf:type286

[ schema:Person ] }).287

4.2 Evaluation Metrics288

Novel metrics are essential for evaluating the qual-289

ity of constructed schema. Simple text matching is290

unreliable, since the order of constraints and nam-291

ing of shapes in ShEx affect textual similarity but292

not semantic correctness. In this work, we evaluate293

using the ShExJ (JSON format), converted from294

ShExC, which enables structured analysis at shape295

and constraint levels. Our evaluation uses two met-296

ric types: similarity, with graph edit distance at the297

shape level, and classification, with F1-score as the298

main metrics on the constraint level.299

4.2.1 Similarity Metrics300

Given that automatically generated schemas often301

require manual refinement (Rabbani et al., 2022),302

quantifying the structural similarity between a gen-303

erated schema and its ground truth counterpart is304

crucial. To facilitate this comparison, we model305

each shape schema as a rooted, labeled tree graph.306

The shape label (or focus node) serves as the root,307

predicates form the first level of child nodes, node308

constraints linked to predicates occupy the next309

level, and cardinalities appear as leaf nodes, as310

shown in Figure 2b. Based on this graph rep-311

resentation, we employ the Graph Edit Distance312

(GED) (Abu-Aisheh et al., 2015), specifically the313

Tree Edit Distance (Zhang and Shasha, 1989),314

to measure the dissimilarity between a generated315

schema S ′ and the ground truth schema S. GED 316

represents the minimum cost required to transform 317

S ′ into S using a sequence of edit operations: 318

D(S ′,S) = min
e1,··· ,eL ∈γ(S′,S)

L∑
i=1

c(ei) (1) 319

where γ(S ′,S) is the set of all valid edit paths 320

transforming S ′ to S, and c(ei) is the cost of an 321

individual edit operation ei. Simply averaging raw 322

GED scores across a dataset can be misleading. 323

Smaller schemas naturally yield lower scores, pos- 324

sibly hiding significant relative errors, whereas 325

larger schemas might skew the average. To mit- 326

igate this size bias, we normalize the GED by the 327

maximum potential edit cost related to the ground 328

truth schema’s size, defined as 3 · |S|. 329

D̃(S ′,S) = 1

3 · |S|
D(S ′,S) (2) 330

The normalized GED (NGED) ranges from 0 (iden- 331

tical schemas) to potentially above 1 (if the trans- 332

formation cost exceeds deleting the ground truth, 333

e.g., due to many additions in S ′). We report the 334

average GED and average NGED over the dataset 335

of N schemas: 336

GED =
1

N

N∑
i

D(S ′
i ,Si)

NGED =
1

N

N∑
i

D̃(S ′
i ,Si)

(3) 337

The metrics offer an interpretable measure of the 338

structural accuracy of generated schemas against 339

ground truth, considering both the absolute number 340

of edits and the relative error normalized by size. 341

4.2.2 Classification Metrics 342

Since each ShEx constraint comprises three ele- 343

ments (predicate, node constraint, and cardinality), 344

we propose several levels of matching criteria, in- 345

spired by Fernandez-Álvarez et al. (2022), where 346

constraints of different specificity can get positive 347

votes. These criteria reflect practical usage sce- 348

narios and accommodate variations in large KGs 349

modeling, ensuring meaningful evaluation without 350

sacrificing flexibility. 351

Exact Matching We define an exact match be- 352

tween two constraints ψ and ψ′ as Eexact(ψ,ψ
′), 353

where all elements must match: 354

Eexact(ψ,ψ
′) = I[(p ≡ p′) ∧ (τ ≡ τ ′) ∧ (κ ≡ κ′)]

(4) 355
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Approximate Class Matching Node constraints356

involving value shapes (e.g., class constraints) can357

be matched approximately due to the following358

reasons. First, upper ontologies in large KGs are359

often noisy and redundant. Substituting a class360

with a similar one may preserve semantics. Second,361

classes used in ground truth often represent broad362

coverage, not exhaustive correctness. Third, ShEx363

allows flexibility using the EXTRA keyword, which364

tolerates constraints beyond negative definitions.365

Thus, a generated constraint can be considered ap-366

proximately equivalent to the ground truth if both367

involve value shapes and meet either of the follow-368

ing conditions: (1) the class specified in the ground369

truth constraint is a subclass of the one(s) in the370

generated constraint, or (2) in the WES dataset, the371

class used in the generated constraint corresponds372

to the value-type constraint defined for the predi-373

cate. We formalize the criteria as follows:374

Esubclass(τ, τ
′) =

1, ∃c ∈ C(τ), ∃c′ ∈ C(τ ′), c ⊑ c′

1, ∃c ∈ C(p), ∃c′ ∈ C(τ ′), c ⊑ c′

0, otherwise

(5)375

376
Esubclass(ψ,ψ

′) =

I[(p ≡ p′) ∧ Esubclass(τ, τ
′) ∧ (κ ≡ κ′)]

(6)377

Here C(τ) represents the set of classes defined in378

the node constraint τ , and C(p) refers to the list379

of value-type constraints for the predicate p from380

Wikidata.381

Datatype Matching For node constraints, we382

further define a relaxed criterion based on datatype383

compatibility. This criteria defines if the datatype384

of the node constraint matches, while requiring385

exact matches for the predicate and cardinality:386

Edatatype(ψ,ψ
′) =

I[(p ≡ p′) ∧ (d(τ) ≡ d(τ ′)) ∧ (κ ≡ κ′)]
(7)387

where d(τ) extracts the datatype from the388

node constraint. Datatypes within the dataset’s389

scope are converted into four general categories:390

xsd:dateTime, xsd:decimal, xsd:string, and391

IRI. The list of datatypes is extensible and can be392

redefined depending on the characteristics of the393

input KGs.394

Loosened Cardinality Besides node constraints,395

we relax the evaluation by allowing broader396

matches on cardinality. This is particularly useful397

when the exact cardinality range is less critical, and 398

a looser bound—such as simply requiring optional 399

presence—is sufficient for validation: 400

E(κ, κ′) =

{
1, 0 ≤ n′ ≤ n ≤ m ≤ m′

0, otherwise
(8) 401

402
Ecardinality(ψ,ψ

′) = I[(p ≡ p′)∧(τ ≡ τ ′)∧E(κ, κ′)]
(9) 403

Combined Relaxations The relaxation strategies 404

described above can also be combined to accom- 405

modate a wider range of scenarios: 406

Esubclass+cardinality(ψ,ψ
′) =

I[(p ≡ p′) ∧ Esubclass(τ, τ
′) ∧ E(κ, κ′)]

(10) 407

408
Edatatype+cardinality(ψ,ψ

′) =

I[(p ≡ p′) ∧ (d(τ) ≡ d(τ ′)) ∧ E(κ, κ′)]
(11) 409

Give a generated schema and a ground truth 410

schema, we report macro-averaged precision, re- 411

call, and F1-score, defined by: 412

Precision =
|{ψ | E(ψ,ψ′) = 1, ψ ∈ Ψ}|

|Ψ|

Recall =
|{ψ | E(ψ,ψ′) = 1, ψ ∈ Ψ}|

|Ψ′|

F1 = 2 · Precision · Recall
Precision + Recall

(12) 413

5 Experimental Setup 414

5.1 Models 415

To evaluate the capabilities of LLMs in shape 416

generation, we compare against several base- 417

line models. Our primary non-ML baseline 418

is sheXer (Fernandez-Álvarez et al., 2022), a 419

well-established system for KG shape extrac- 420

tion. For LLM-based comparisons, we selected 421

gpt-4o-mini2 and DeepSeek-V3 (DeepSeek-AI, 422

2024). Input data, including triples and global KG 423

information, is retrieved using SPARQL queries 424

against locally deployed SPARQL endpoints. 425

5.2 Prompt Engineering 426

To investigate how LLMs can effectively generate 427

ShEx schemas and understand the impact of in- 428

formation type and generation mode, we designed 429

experiments incorporating different types of infor- 430

mation extracted from a KG. Based on the nature 431

of this information, we developed and evaluated 432

three distinct few-shot prompt engineering settings, 433

summarized in Table 2. 434
2https://platform.openai.com/docs/models/

gpt-4o-mini
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Information Type Local Global Triples

Input

Class URI & label ✓ ✓ ✓
Class description ✓
Predicate URI & label ✓
Predicate description∗ ✓
Instance triples ✓
Predicate triples ✓ ✓
Predicate frequencies ✓
Datatype of objects ✓
Cardinality distributions ✓
Wikidata constraints∗ ✓

Output

Full ShEx schema script ✓ ✓
Formatted constraints ✓

Table 2: Prompt engineering settings. Information types
marked with ‘∗’ are primarily available for WES dataset.

Local Setting This setting provides LLMs with435

a number of representative instance examples of436

the target class, along with their associated triples437

(typically 1-hop neighbors) from KGs. Instances438

are selected based on specific criteria. Wikidata en-439

tities are sorted by ID length and numeric value of440

their ID. The popularity and importance of entities441

is loosely correlated with their IDs, as important442

or fundamental concepts were added early in Wiki-443

data’s history. YAGO entities are sorted by the444

number of distinct predicates associated with them,445

prioritizing those with richer connections. The ra-446

tionale is to allow LLMs to infer patterns directly447

from how entities of that class are described in the448

KG. In this setting, LLMs are asked to directly449

generate the complete ShEx schema, guided by450

few-shot examples of schemas.451

Global Setting This setting focuses on aggre-452

gated, schema-level information about the target453

class and its predicates. As shown in Table 2, in-454

put comprises: (a) basic metadata (URIs, labels,455

and descriptions for the class and relevant predi-456

cates); (b) predicate usage statistics (predicate fre-457

quency and cardinality distributions); (c) datatype458

information (datatypes for predicate objects, and459

class distributions for objects that are URIs, which460

aids in identifying potential referenced shapes);461

(d) representative triple examples associated with462

the predicates; and (e) any available KG-specific463

constraints (for Wikidata, this includes predefined464

predicate constraints such as value-type3 (range)465

3https://www.wikidata.org/wiki/Q21510865

and subject-type4 (domain)). This setting aims to 466

provide LLMs with a comprehensive, high-level 467

summary of the class’s structure and the character- 468

istics of its predicates. LLMs are then tasked with 469

generating these constraints in a structured JSON 470

format, which is subsequently converted program- 471

matically into ShEx. The structured generation 472

process is detailed in Section 5.3. 473

Triples Setting Inspired by findings that rep- 474

resentative samples can suffice for shape extrac- 475

tion (Fernandez-Álvarez et al., 2022), this setting 476

provides the LLM with a set of triples focused 477

on the usage of specific predicates relevant to the 478

entities. Different from the local setting, this set- 479

ting focuses on a set of predicates and provides 480

example triples where those predicates appear, po- 481

tentially sampled across many different instances. 482

The goal is to highlight common patterns for indi- 483

vidual predicates. Similar to the local setting, the 484

LLM generates the ShEx schema with few-shot 485

examples. 486

5.3 Structured Generation 487

Even though LLMs excel at structured generation 488

with well-defined JSON schemas, directly apply- 489

ing the full ShEx syntax to the LLM’s constraint 490

decoding process is still challenging due to its com- 491

plexity. To address this, our structured generation 492

pipeline first simplifies the ShEx syntax within the 493

context of the benchmark by converting it into a 494

more manageable, JSON schema-like representa- 495

tion using ShExJ syntax. This process generates 496

Pydantic models, each corresponding to a segment 497

of ShEx syntax, to guide LLM constraint gener- 498

ation. We leverage the Instructor (Liu and Con- 499

tributors, 2024) to enhance the LLM’s structured 500

generation capabilities. 501

We adopt a decomposed, two-step structured 502

generation workflow specifically for the global set- 503

ting (see Table 2), where the LLM processes global 504

information from KGs. The first step is cardinality 505

prediction. Given global information for a specific 506

predicate relevant to the target class, the LLM is 507

prompted to predict its cardinality, comprising the 508

minimum and maximum occurrence values. The 509

second step is node constraint prediction, applying 510

on the predicates accepted by the previous step. 511

Based on the global information, the LLM predicts 512

the node constraint for the predicate’s objects. If 513

a datatype is evident from the input information, 514

4https://www.wikidata.org/wiki/Q21503250

6

https://www.wikidata.org/wiki/Q21510865
https://www.wikidata.org/wiki/Q21503250


Models Settings
YAGO Schema Wikidata EntitySchema

P R F1 GED NGED P R F1 GED NGED

sheXer / 0.111 0.081 0.092 34.08 0.581 0.106 0.099 0.096 90.30 0.833

gpt-4o-mini
local 0.575 0.550 0.559 16.61 0.308 0.358 0.224 0.264 82.14 0.697

global 0.421 0.362 0.388 21.03 0.366 0.306 0.328 0.312 54.44 0.484
triples 0.631 0.564 0.591 18.36 0.344 0.328 0.196 0.237 72.44 0.577

DeepSeek-V3
local 0.536 0.524 0.526 18.56 0.348 0.322 0.240 0.263 66.16 0.585

global 0.478 0.484 0.479 16.83 0.295 0.304 0.343 0.318 57.36 0.494
triples 0.535 0.505 0.510 21.89 0.468 0.269 0.277 0.269 55.80 0.488

Table 3: Results of LLMs comparing with baseline models across different settings. Note that for YAGO Schema,
entities of triple examples are sorted by predicate count, and for WES, entities are sorted by their IDs. Five entities
and their related triples are retrieved and feed into LLMs. The highest scores are set in bold.

the LLM outputs this datatype. If the predicate’s515

objects are instances of another specific classes, the516

LLM outputs the URIs of these referenced classes,517

forming the basis for a ShEx shape reference. If518

the predicate’s objects are restricted to a fixed list519

of literal values, the LLM generates this complete520

list. Finally, if none of these conditions are strongly521

indicated, the LLM defaults to a general node kind522

constraint, which for our current datasets is typi-523

cally fixed as IRI.524

6 Results525

Table 3 presents a comparative performance anal-526

ysis of the baseline models on YAGOS and WES527

datasets. On YAGOS, gpt-4o-mini achieved the528

highest F1 (0.591) in its triples setting, while529

DeepSeek-V3’s global setting showed the best530

structural similarity (lowest NGED of 0.295). YA-531

GOS’s generally stronger results are attributed to532

its ontology being largely derived and refined from533

schema.org, along with its smaller scale—having534

only half the average number of constraints and535

80% of the average number of instances per class536

compared to WES. For the more challenging WES537

dataset with a complex predicate vocabulary and538

twice the constraints per class, DeepSeek-V3 in539

the global setting yielded the highest F1 (0.318).540

Both gpt-4o-mini and DeepSeek-V3 performed541

well on the NGED score in their global setting.542

Compared to the non-ML baseline sheXer, these543

results underscore the potent schema generation544

capabilities of LLM-based approaches.545

We further analyzed the performance of models546

under different matching criteria, using DeepSeek-547

V3 as an example (Table 4). Full results for other548

models are in Appendix C. In general, loosening549

the matching criteria leads to improved evalua-550

tion scores, as expected. Notably, when combin-551

ing datatype abstraction with loosened cardinal- 552

ity, DeepSeek-V3 in the global setting achieved 553

impressive F1 scores (0.755 on YAGO, 0.839 on 554

WES). These high scores suggest that LLMs can 555

generate schemas for certain practical validation 556

scenarios, particularly where the primary goal is to 557

ensure predicate completeness and general object 558

constraints. 559

As for individual criteria, allowing datatype ab- 560

straction provided the most significant performance 561

gain, especially in the global setting. This indicates 562

LLMs can effectively process given datatype infor- 563

mation, finding it less challenging than inferring 564

cardinality. Allowing approximate subclass match- 565

ing improved classification scores more for WES 566

compared with YAGOS, suggesting predicting the 567

precise class list for referenced shapes is harder 568

for WES, while generating related object classes 569

is not. These findings indicate that although LLM- 570

generated schemas may benefit from refinement, 571

the required adjustments are generally less inten- 572

sive or domain-specific than those for existing auto- 573

mated approaches, while still supporting effective 574

validation. 575

Figure 1 shows the distribution of results across 576

five categories (correct and four error types) for 577

models and settings on WES and YAGOS. Error 578

types are: (1) missing predicates, (2) incorrect 579

cardinality, (3) incorrect node constraint, and (4) 580

both cardinality and node constraint are incorrect. 581

Global settings effectively reduce missing predi- 582

cates for models on both datasets. Missing pred- 583

icates are more frequent on WES than YAGOS, 584

likely due to WES’s larger set of candidate predi- 585

cates. Global settings also tend to reduce instances 586

of only incorrect node constraints, particularly on 587

YAGOS. However, global settings often show a 588

higher rate of errors where both cardinality and 589
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Figure 1: Error distribution across models and settings on WES (Left) and YAGOS (Right) datasets. The figure
shows five categories: four error types and correctly generated constraints.

Settings
Matching Criteria YAGO Schema Wikidata EntitySchema

Node Constraint Cardinality P R F1 P R F1

local

Exact Exact 0.536 0.524 0.526 0.322 0.240 0.263
Subclass Exact 0.551 0.540 0.542 0.413 0.303 0.335
Datatype Exact 0.634 0.625 0.626 0.537 0.396 0.437

Exact Loosened 0.589 0.582 0.580 0.366 0.280 0.303
Subclass Loosened 0.604 0.598 0.596 0.466 0.352 0.384
Datatype Loosened 0.753 0.751 0.746 0.613 0.464 0.507

global

Exact Exact 0.434 0.439 0.435 0.304 0.343 0.318
Subclass Exact 0.521 0.528 0.523 0.482 0.550 0.507
Datatype Exact 0.698 0.709 0.701 0.577 0.655 0.606

Exact Loosened 0.441 0.446 0.442 0.394 0.451 0.415
Subclass Loosened 0.532 0.541 0.535 0.638 0.738 0.676
Datatype Loosened 0.751 0.764 0.755 0.793 0.910 0.839

triples

Exact Exact 0.535 0.505 0.510 0.269 0.277 0.269
Subclass Exact 0.554 0.523 0.528 0.371 0.377 0.367
Datatype Exact 0.630 0.591 0.600 0.536 0.549 0.534

Exact Loosened 0.581 0.550 0.554 0.320 0.334 0.322
Subclass Loosened 0.604 0.570 0.575 0.449 0.461 0.448
Datatype Loosened 0.759 0.720 0.725 0.675 0.699 0.677

Table 4: Results of DeepSeek-V3 under different matching criteria.

node constraint are incorrect, especially on the590

WES dataset.591

7 Conclusion592

The persistent challenge of ensuring data quality593

in large KGs necessitates effective and automated594

methods for generating validation schemas. This595

paper explored the application of LLMs to this task,596

introducing the first benchmark for ShEx schema597

generation from KGs. This benchmark, compris-598

ing two datasets and custom metrics, enabled a599

thorough assessment revealing LLMs’s ability to600

produce high-quality shape schemas. Beyond its601

direct contributions to Semantic Web practices, this 602

work provides a new benchmark for evaluating the 603

nuanced graph understanding and structured gener- 604

ation capabilities of LLMs. Future research could 605

aim to broaden the benchmark’s scope by incor- 606

porating more ShEx features—such as additional 607

constraint types (e.g., string and numeric facet con- 608

straints) and structural elements (e.g., imported 609

schemas and annotations)—as well as by including 610

diverse schema languages like PG-Schema. More- 611

over, advancing the models, particularly by enhanc- 612

ing their structured generation ability for complex 613

schemas will be crucial. 614
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Limitations615

The size of the dataset is constrained by limited616

resources available for its construction. Creating617

high-quality shape schemas is a time-consuming618

process that requires multiple rounds of refinement619

by volunteer knowledge engineers. As a result, the620

current size of the dataset makes it difficult to con-621

vincingly evaluate the effectiveness or efficiency of622

traditional machine learning or deep learning ap-623

proaches—such as embedding-based models—on624

this task.625

Additionally, our evaluation of LLMs is limited626

to those accessible via APIs. Models that can be627

run locally, such as those with 8B or 14B param-628

eters, are not included. Preliminary experiments629

indicate that these smaller, locally runnable LLMs630

struggle to generate valid ShEx schemas and lack631

sufficient structured generation capabilities to re-632

liably produce correct constraint syntax. Never-633

theless, we believe that with further development,634

such models could become strong candidates for635

this task.636

Ethics Statement637

The YAGOS and WES datasets are developed with638

a strong commitment to ethical AI principles. They639

contain no personal, sensitive, or identifiable in-640

formation and are free from harmful, offensive, or641

misleading content. Both datasets strictly comply642

with responsible AI guidelines.643

References644

Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel,645
and Patrick Martineau. 2015. An Exact Graph Edit646
Distance Algorithm for Solving Pattern Recogni-647
tion Problems. In Proceedings of the International648
Conference on Pattern Recognition Applications and649
Methods - Volume 1, ICPRAM 2015, page 271–278,650
Setubal, PRT. SCITEPRESS - Science and Technol-651
ogy Publications, Lda.652

Oshin Agarwal, Heming Ge, Siamak Shakeri, and Rami653
Al-Rfou. 2021. Knowledge Graph Based Synthetic654
Corpus Generation for Knowledge-Enhanced Lan-655
guage Model Pre-training. In Proceedings of the656
2021 Conference of the North American Chapter of657
the Association for Computational Linguistics: Hu-658
man Language Technologies, pages 3554–3565, On-659
line. Association for Computational Linguistics.660

Shqiponja Ahmetaj, Iovka Boneva, Jan Hidders, Katja661
Hose, Maxime Jakubowski, Jose Emilio Labra Gayo,662
Wim Martens, Fabio Mogavero, Filip Murlak, Cem663
Okulmus, Axel Polleres, Ognjen Savković, Mantas664
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A Dataset Construction930

The YAGOS dataset was constructed using YAGO931

4.5 (Suchanek et al., 2024) as the input KG. Ground932

truth ShEx schema construction was informed by933

the existing SHACL schema and the official YAGO934

4.5 design document5. While the provided docu-935

mentation offered a starting point, it was not ex-936

haustive, with only a subset of key properties and937

constraints defined. Therefore, the final ground938

truth ShEx scripts were manually crafted by retain-939

ing constraints explicitly mentioned in the design940

document and adding missing predicates relevant941

to each class. This was achieved by querying the942

KG to understand common property usage for en-943

tities belonging to the target classes and aligning944

these findings with the schema’s intended scope.945

The WES dataset was developed through a semi-946

automatic process based on the Wikidata (Vran-947

dečić and Krötzsch, 2014) truthy statements RDF948

dump (from qEndpoint’s Wikidata release 1.16.16),949

involving knowledge engineers assisted by tools950

for pattern extraction and data querying. Target951

classes for the dataset were selected from three952

main sources:953

1. Community-curated Wikidata EntitySchema954

directory: We drew upon schemas available in955

the Wikidata EntitySchema directory7. Due956

to the variability in quality and completeness957

of these community contributions, we manu-958

ally selected a subset of those deemed rela-959

tively high-quality to serve as initial drafts.960

These selected drafts were then collabora-961

tively reviewed, refined, and standardized by962

our knowledge engineers to meet consistent963

quality criteria.964

2. Classes mapped from YAGOS: A set of965

classes was chosen by mapping them from966

the YAGOS dataset. Since YAGO facts967

are partially derived from Wikidata, creating968

schemas for these corresponding classes in969

WES allows for a comparison of modeling970

scope between the two KGs.971

3. Classes mapped from Wikipedia Categories:972

Additional classes identified through map-973

5https://yago-knowledge.org/data/yago4.5/
design-document.pdf

6https://github.com/the-qa-company/qEndpoint/
releases/tag/v1.16.1

7https://www.wikidata.org/wiki/Wikidata:
Database_reports/EntitySchema_directory

Property Type Count Proportion (%) Rank

WikibaseItem 1,607 14.30% 2
Quantity 646 5.75% 3
String 322 2.86% 4
Url 99 0.88% 5
Time 63 0.56% 7
Monolingualtext 60 0.53% 8

Table 5: Distribution of primary property datatypes in
Wikidata.

pings from relevant Wikipedia Categories8, 974

focusing on well-defined concepts suitable for 975

schema modeling. 976

For each selected class, the following iterative 977

process was undertaken by knowledge engineers: 978

1. Predicate Identification and Prioritization: A 979

comprehensive list of predicates associated 980

with entities of the target class was com- 981

piled, along with their occurrence frequen- 982

cies. Based on usage frequency and modeling 983

importance (as detailed in Table 5, which out- 984

lines key Wikidata property types considered), 985

a working set of candidate properties was se- 986

lected. 987

2. Predicate Inclusion and Refinement: Candi- 988

date predicates were evaluated for inclusion 989

based on their semantic appropriateness (i.e., 990

factual suitability for the class) and through 991

property denoising and deduplication. The lat- 992

ter step involved identifying and consolidating 993

functionally similar or overlapping properties 994

common in Wikidata by selecting the most 995

representative and predominantly used one. 996

For instance, to model an item’s inception, 997

one would choose the most suitable property 998

from options like P580 (start time), P571 (in- 999

ception), etc. 1000

3. Cardinality Determination: The cardinality 1001

for each included predicate was established. 1002

Predicates were generally assigned an op- 1003

tional cardinality (e.g., minimum 0 and maxi- 1004

mum ‘∗’ for zero or more, or minimum 0 and 1005

maximum 1 for at most one). This default 1006

was overridden if high frequency and seman- 1007

tic necessity strongly suggested a mandatory 1008

presence (a minimum of 1) or a more specific 1009

range. 1010

8https://en.wikipedia.org/wiki/Wikipedia:
Contents/Categories
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4. Node Constraint Specification: The con-1011

straints on the object values of each predicate1012

were defined.1013

• Datatype Constraints: If a predicate con-1014

sistently uses a specific datatype, a direct1015

datatype constraint was applied.1016

• Value Set: If objects were consistently1017

drawn from a small, fixed list of literal1018

values or specific URIs, a value set con-1019

straint was used.1020

• Shape Reference: If objects were typ-1021

ically instances of or subclass of a few1022

related classes, a shape reference was cre-1023

ated. Knowledge engineers selected the1024

most relevant object class(es) based on1025

observed distributions and schema read-1026

ability.1027

• Node Kind: If neither a specific datatype,1028

value set, nor a clear referenced shape1029

was appropriate, a general node kind con-1030

straint (typically ‘IRI’) was applied.1031

To ensure the quality and consistency of datasets,1032

three volunteers, all active researchers and engi-1033

neers in ontology engineering with prior schema1034

generation experience, were recruited from Wiki-1035

data community events. This process was sup-1036

ported by semi-automatic tools that incorporated1037

a series of SPARQL queries to gather relevant1038

statistics and patterns from Wikidata (representa-1039

tive examples of these queries are provided in List-1040

ings 1, 2, 3, and 4). Schema annotation involved1041

three experts independently annotating each class’s1042

schema. Their annotations were collected, and a1043

constraint was included in the final ground truth1044

ShEx schema if at least two experts independently1045

proposed an equivalent formulation. Discrepan-1046

cies or cases with less than two-thirds agreement1047

were resolved through discussion among the an-1048

notators or, if consensus could not be reached, the1049

contentious constraint was omitted to maintain high1050

confidence in the final dataset.1051
1052

SELECT DISTINCT ?predicate (COUNT(1053
DISTINCT ?subject) AS ?count)1054

WHERE {1055
?subject wdt:P31 wd:Q1248784 ;1056

?predicate ?object .1057
}1058
GROUP BY ?predicate1059
ORDER BY DESC(?count)10601061

Listing 1: SPARQL query to retrieve predicates used
with instances of Airport (Q1248784) and their usage
frequency.

1062
SELECT DISTINCT ?predicate ?datatype 1063
WHERE { 1064

?subject wdt:P31 wd:Q1248784 ; 1065
?predicate ?object . 1066

BIND (datatype (? object) AS ?datatype) 1067
} 10681069

Listing 2: SPARQL query to identify datatypes
of objects for predicates associated with Airport
(Q1248784).

1070
SELECT (COUNT(DISTINCT ?subject) AS ? 1071

count) 1072
WHERE { 1073

?subject rdf:type schema:Book . 1074
FILTER NOT EXISTS { 1075

?subject schema:illustrator ?object 1076
} 1077

} 10781079

Listing 3: SPARQL query to count instances
of schema:Book lacking a schema:illustrator
predicate.

1080
SELECT ?cardinality (COUNT(DISTINCT ? 1081

subject) AS ?count) 1082
{ 1083

SELECT DISTINCT ?subject (COUNT(? 1084
object) AS ?cardinality) 1085

WHERE { 1086
?subject rdf:type schema:Book ; 1087

schema:illustrator ?object 1088
. 1089

} 1090
GROUP BY ?subject 1091

} 1092
GROUP BY ?cardinality 1093
ORDER BY DESC(?count) 10941095

Listing 4: SPARQL query to determine the distribution
of schema:illustrator predicate occurrences per
schema:Book instance (i.e. cardinality distribution).

YAGO 4.5 is licensed under a CC BY-SA license, 1096

and Wikidata is licensed under the CC0 license9. 1097

Our datasets are under the same licenses as the KGs 1098

from which they were derived, respectively. 1099

B ShEx Specification 1100

The ShEx was initially proposed in 2014, with 1101

its current specification published in 2019. The 1102

language continues to evolve to incorporate new 1103

functionalities addressing the diverse requirements 1104

of KG validation, as evidenced by extensions like 1105

WShEx for Wikidata EntitySchemas (Gayo, 2022). 1106

ShEx is often preferred for KG validation over tra- 1107

ditional ontologies for several reasons. First, while 1108

ontologies can perform some validation tasks, their 1109

primary design focus is typically on entailment and 1110

9https://www.wikidata.org/wiki/Wikidata:
Licensing
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reasoning, which can lead to less expressive or less1111

direct validation capabilities (Mihindukulasooriya1112

et al., 2018). Furthermore, ontologies are not in-1113

herently designed to validate specific subsets of1114

focus nodes extracted from a KG in the same gran-1115

ular way ShEx allows. Second, ShEx benefits from1116

coexisting textual (ShExC) and JSON (ShExJ) syn-1117

taxes, with readily available tools like shex.js101118

and PyShEx11 for conversion between them. This1119

ShExC-ShExJ interoperability is advantageous in1120

the context of LLMs, which can effectively process1121

and generate JSON-structured data. This makes1122

ShEx a promising candidate for LLM-driven struc-1123

tured data generation and knowledge validation1124

tasks, broadening its adoption and impact.1125

In our datasets, the ground truth ShEx schemas1126

utilize a simplified yet functional subset of the1127

ShEx language. This approach prioritizes core val-1128

idation requirements while ensuring the schemas1129

remain human-understandable. An illustrative ex-1130

ample, the schema for ‘Museum (Q33506)’ from1131

the WES dataset, is shown in Figure 2.1132

Node Constraints A key feature adopted in our1133

dataset, and emphasized in the Wikidata Enti-1134

tySchema initiative, is the use of shape references1135

to create modular and interconnected schemas, of-1136

ten facilitated by IMPORT declarations in more com-1137

plex scenarios. As shown in the example, the con-1138

straint on the predicate ‘country (P17)’ specifies1139

that its object values must belong to the class rep-1140

resenting countries. This is achieved using a shape1141

reference, @<Country>, which points to the defini-1142

tion of the ‘Country’ shape (Figure 2a, lines 17-20),1143

ensuring that objects of the ‘country (P17)’ predi-1144

cate are instances of ‘country (Q6256)’.1145

Cardinality Cardinalities in ShExC are repre-1146

sented by the strings ‘?’, ‘+’, ‘∗’ (following nota-1147

tion similar to the XML specification) and ranges1148

such as {m,} to indicate that at least m elements1149

are required. In ShExJ, they are represented by1150

‘min’ and ‘max’ values indicating their lower and1151

upper bounds.1152

C Experimental Details1153

LLM-based experiments were conducted by access-1154

ing the LLM APIs. The similarity metrics leverage1155

the Zhang-Shasha algorithm, implemented using1156

10https://github.com/shexjs/shex.js
11https://github.com/hsolbrig/PyShEx

an open-source package12. 1157

Listing 5 presents a sample input from the global 1158

setting experiments, derived from the few-shot ex- 1159

amples, for the class ‘film award (Q4220917)’ and 1160

predicate ‘organizer (P664)’. 1161

Table 6 details the performance of the 1162

gpt-4o-mini model across six different compo- 1163

sitions of matching criteria, evaluating its preci- 1164

sion, recall, and F1-score on both datasets. A clear 1165

trend observable for gpt-4o-mini is the consistent 1166

improvement in F1-scores as the matching crite- 1167

ria are relaxed. For instance, in the triples setting 1168

on the YAGO dataset, the F1-score climbs from 1169

0.591 under ’Exact’ node constraint and ’Exact’ 1170

cardinality matching to 0.695 when ’Datatype’ ab- 1171

straction is allowed for node constraints and cardi- 1172

nality is ’Loosened’. Similarly, on the more chal- 1173

lenging Wikidata EntitySchema dataset, the global 1174

setting sees its F1-score rise from 0.312 (Exact/Ex- 1175

act) to 0.651 (Datatype/Loosened). This demon- 1176

strates that while gpt-4o-mini produces a solid 1177

number of perfectly accurate constraints, its output 1178

contains an even larger proportion of constraints 1179

that are valid under more flexible, practical inter- 1180

pretations, particularly when considering datatype 1181

abstractions. 1182

Compared to DeepSeek-V3, gpt-4o-mini per- 1183

forms better under strict exact-matching condi- 1184

tions. However, as the matching criteria are re- 1185

laxed, DeepSeek-V3 surpasses gpt-4o-mini. This 1186

indicates that while gpt-4o-mini excels at gener- 1187

ating precisely accurate constraints, DeepSeek-V3 1188

is more capable of producing constraints that fulfill 1189

the core functional requirements of ShEx, making 1190

it more practical for real-world applications. 1191

12https://pypi.org/project/zss/
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1 <Museum > EXTRA wdt:P31 {
2 # WikibaseItem property
3 # instance of
4 wdt:P31 [ wd:Q33506 ] ;
5 # country
6 wdt:P17 @<Country > ;
7 ...
8
9 # URL , String , Quantity , Time

property
10 # official website
11 wdt:P856 IRI * ;
12 # visitors per year
13 wdt:P1174 xsd:decimal * ;
14 ...
15 }
16
17 <Country > EXTRA wdt:P31 {
18 # country
19 wdt:P31 [ wd:Q6256 ] ;
20 }

(a)

Museum

wdt:P1174 xsd:decimal *

wdt:P856 IRI *

wdt:P17 @<Country> {1, 1}

wdt:P31 [ wd:Q33506 ] {1, 1}

(b)

Figure 2: Example ShEx schema fragment for ‘Museum (Q33506)’ from the WES dataset: (a) the ShExC textual
representation, where comments above each constraint indicate the label of its predicate, and (b) its corresponding
tree structure representation used for similarity metrics.

Settings
Matching Criteria YAGO Schema Wikidata EntitySchema

Node Constraint Cardinality P R F1 P R F1

local

Exact Exact 0.575 0.550 0.559 0.370 0.175 0.222
Subclass Exact 0.598 0.572 0.581 0.407 0.190 0.242
Datatype Exact 0.640 0.611 0.621 0.613 0.290 0.368

Exact Loosened 0.614 0.590 0.597 0.408 0.198 0.249
Subclass Loosened 0.640 0.616 0.623 0.456 0.217 0.275
Datatype Loosened 0.685 0.658 0.666 0.698 0.338 0.427

global

Exact Exact 0.421 0.362 0.388 0.306 0.328 0.312
Subclass Exact 0.421 0.362 0.388 0.326 0.349 0.333
Datatype Exact 0.681 0.587 0.628 0.570 0.618 0.587

Exact Loosened 0.428 0.367 0.394 0.326 0.350 0.334
Subclass Loosened 0.428 0.367 0.394 0.346 0.372 0.354
Datatype Loosened 0.739 0.636 0.681 0.635 0.685 0.651

triples

Exact Exact 0.631 0.564 0.591 0.335 0.200 0.242
Subclass Exact 0.650 0.581 0.608 0.391 0.232 0.281
Datatype Exact 0.698 0.621 0.652 0.643 0.395 0.472

Exact Loosened 0.678 0.607 0.634 0.377 0.231 0.276
Subclass Loosened 0.697 0.625 0.652 0.440 0.267 0.320
Datatype Loosened 0.744 0.664 0.695 0.754 0.477 0.563

Table 6: Results of gpt-4o-mini under different matching criteria.

Matching Criteria YAGO Schema Wikidata EntitySchema

Node Constraint Cardinality P R F1 P R F1

Exact Exact 0.111 0.081 0.092 0.106 0.099 0.096
Subclass Exact 0.111 0.081 0.092 0.106 0.099 0.096
Datatype Exact 0.536 0.393 0.445 0.211 0.189 0.188

Exact Loosened 0.111 0.081 0.092 0.149 0.129 0.129
Subclass Loosened 0.111 0.081 0.092 0.151 0.131 0.131
Datatype Loosened 0.630 0.465 0.525 0.356 0.297 0.304

Table 7: Results of sheXer under different matching criteria.
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{
"class_uri ": "http ://www.wikidata.org/entity/Q4220917",
"class_label ": "film award",
"class_description ": "recognition for cinematic achievements",
"predicate_uri ": "http ://www.wikidata.org/prop/direct/P664",
"predicate_label ": "organizer",
"predicate_description ": "person or institution organizing an event",
"triple_examples ": [

"{'s': 'wd:Q3910523 ', 'p': 'wdt:P664 (organizer)', 'o': ['wd:Q2288813 (Italian
National Syndicate of Film Journalists) ']}",

"{'s': 'wd:Q11624249 (Fujimoto Prize)', 'p': 'wdt:P664 (organizer)', 'o': ['wd:
Q114256803 ']}",

"{'s': 'wd:Q18640780 (Florida Film Critics Circle Awards)', 'p': 'wdt:P664 (
organizer)', 'o': ['wd:Q3074282 (Florida Film Critics Circle) ']}",

"{'s': 'wd:Q106867277 (NBR Freedom of Expression)', 'p': 'wdt:P664 (organizer)',
'o': ['wd:Q1133614 (National Board of Review of Motion Pictures) ']}",

"{'s': 'wd:Q109259295 (Gotham Independent Film Award for Breakthrough Nonfiction
Series)', 'p': 'wdt:P664 (organizer)', 'o': ['wd:Q892112 (Independent

Feature Project) ']}"
],
"frequency ": "1.73% instance(s) in the class use the predicate",
"cardinality_distribution ": "1.73% instances in the class have 1 object(s) when

using the predicate",
"datatype_of_objects ": "IRI",
"object_class_distribution ": "13.33% of subjects have objects in class wd:Q43229 (

organization), 6.67% of subjects have objects in class wd:Q101007233 (film
critics association), 6.67% of subjects have objects in class wd:Q10689397 (
television production company)",

"subject_type_constraint ": "Based on the subject type constraint of Wikidata , the
item described by such predicates should be a subclass or instance of ['wd:
Q170584 (project)', 'wd:Q288514 (fair)', 'wd:Q464980 (exhibition)', 'wd:
Q1190554 (occurrence)', 'wd:Q14136353 (fictional occurrence)', 'wd:Q15275719 (
recurring event)', 'wd:Q15900616 (event sequence)', 'wd:Q107736918 (series of
concerts) '].",

"value_type_constraint ": "Based on the value type constraint of Wikidata , the
value item should be a subclass or instance of ['wd:Q5 (human)', 'wd:Q43229 (
organization)', 'wd:Q49773 (social movement)', 'wd:Q4164871 (position)', 'wd:
Q14623646 (fictional organization)', 'wd:Q15275719 (recurring event)', 'wd:
Q16334295 (group of humans)', 'wd:Q30017383 (fictional organism) ']."

}

Listing 5: An example of global information input.
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