

000 001 002 003 004 005 FATE: FOCAL-MODULATED ATTENTION ENCODER FOR 006 MULTIVARIATE TIME-SERIES FORECASTING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

011 Accurate multivariate time-series forecasting is crucial for understanding and mili-
012 gating the effects of climate change, as reliable long-horizon predictions support
013 effective monitoring and informed decision-making. Existing neural approaches
014 ranging from CNNs and RNNs to attention-based Transformers have achieved
015 notable progress. Yet, they often suffer from two key limitations: difficulty in
016 capturing hierarchical spatiotemporal dependencies and computational inefficiencies
017 when scaling to high-dimensional meteorological data. We propose FATE
018 (Focal-modulated Attention Encoder), a new Transformer architecture tailored
019 for robust multivariate time-series forecasting. FATE introduces a tensorized fo-
020 cal modulation mechanism that enhances spatiotemporal dependency modeling
021 while maintaining scalability. To improve interpretability, we further design dual
022 modulation scores that identify critical environmental features driving the fore-
023 casts. Comprehensive experiments on seven diverse real-world datasets including
024 benchmark energy, traffic, and large-scale climate datasets demonstrate that FATE
025 consistently surpasses state-of-the-art methods, particularly on long-horizon and
026 high-variability settings. Extensive ablations confirm the generalization ability of
027 FATE across heterogeneous forecasting tasks. To foster reproducibility and future
028 research, we will release the full implementation.
029

1 INTRODUCTION

030 The Transformer architecture (Vaswani et al., 2017a) has become a cornerstone of modern deep
031 learning, driving breakthroughs in natural language processing (Brown et al., 2020; Radford et al.,
032 2019; Devlin et al., 2018b; Radford et al., 2021), computer vision (Dosovitskiy et al., 2020; Zhu et al.,
033 2021; Yang et al., 2022), and large-scale foundation models (Kaplan et al., 2020). Motivated by this
034 success, recent works have applied Transformers to multivariate time-series forecasting, leveraging
035 their ability to model pairwise dependencies and extract multi-level sequence representations (Wu
036 et al., 2021a; Nie et al., 2023). However, their effectiveness in this domain remains contested.
037 Notably, simple linear models rooted in classical statistics (Box & Jenkins, 1968) have been shown
038 to outperform Transformers in both accuracy and efficiency (Zeng et al., 2023a; Das et al., 2023a).
039 At the same time, emerging architectures that explicitly model multivariate correlations (Zhang &
040 Yan, 2023a; Ekambaram et al., 2023) underscore the limitations of vanilla self-attention for complex
041 time-series dynamics.
042

043 We identify three fundamental shortcomings of existing Transformer-based approaches for multi-
044 variate forecasting: (1) *Permutation-invariant self-attention* fails to capture *temporal order*, leading
045 to weak modeling of *sequential dynamics*. (2) *Uniform attention across tokens* not only overlooks
046 the *varying significance of climate variables across spatiotemporal scales*, but also leads to *compu-
047 tational inefficiencies* when scaling to *high-dimensional meteorological data*. (3) The architecture
048 lacks an explicit mechanism to model *hierarchical spatiotemporal correlations*, which are crucial for
049 *long-horizon forecasting*.
050

051 Unlike FocalNet (Yang et al., 2022), which was designed for spatial representation learning in vision
052 tasks, FATE introduces key innovations tailored for multivariate time-series forecasting:
053

- 054 • **Tensorized Attention Design:** FATE preserves the full 3D tensor structure ($X \in \mathbb{R}^{T \times S \times P}$),
055 maintaining temporal and variable axes explicitly. This enables more effective modeling of
056 long-range dependencies through grouped attention across both time and features.
057

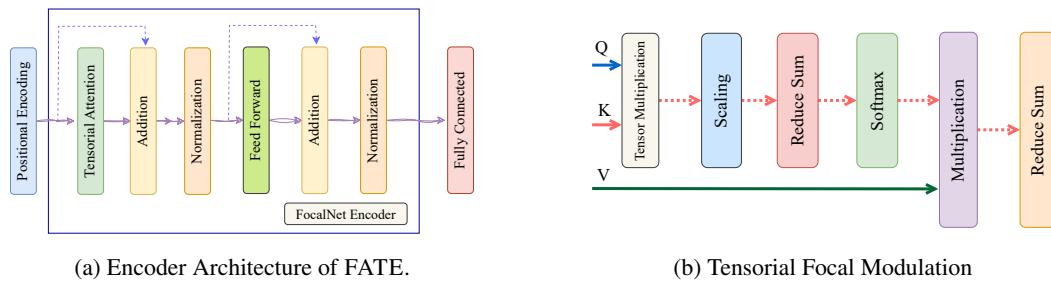


Figure 1: Our proposed architecture consists of two main components: Figure 1a shows the overall architecture of FATE encoder. The input time series data passes first through positional encoding, and then Tensorial Attention, which incorporates spatial as well as temporal information. Figure 1b explains the internal working of the tensorial focal-modulation block. The Query (Q), Key (K), and Value (V) tensors undergo a series of tensor multiplication, scaling, reduction, and softmax operations to create attention maps. These maps are then used by the model to determine which regions of the inputs are more significant.

- **Focal Grouping for Temporal Blocks:** Instead of spatial grids, FATE dynamically defines *temporal focal groups* that adapt to prediction horizons, allowing the model to capture hierarchical temporal dependencies unique to time-series data.
- **Cross-axis Modulation:** Focal modulation is extended beyond temporal steps to the variable dimension, enabling rich cross-feature interactions that are absent in FocalNet.

In this way, FATE is not a simple adaptation of FocalNet, but a principled redesign that leverages the structural properties and forecasting demands of multivariate time-series data.

Long-term variations in temperature, precipitation, wind, and other environmental factors define climate change (Barrett et al., 2015). These shifts have profound global impacts, threatening sustainability in domains such as food security, public health, and energy systems. For instance, a projected increase of up to 2°C in global mean temperature this century could severely reduce crop yields. Unlike short-term fluctuations, climate change evolves over decades, driven primarily by greenhouse gas emissions, deforestation, and limited adoption of renewable energy (Latake et al., 2015). Accurate long-horizon forecasting of such multivariate processes is therefore critical. It enables policymakers and practitioners to assess risks, monitor climate drivers, and design mitigation strategies (Huntingford et al., 2019). However, the multidimensional and highly correlated nature of climate data poses significant challenges for existing forecasting models.

To address these challenges, we propose FATE, a novel Transformer that (1) introduces tensorized focal modulation for explicit spatiotemporal correlation modeling, (2) employs dual modulation scores to enhance interpretability, and (3) adaptively emphasizes relevant tokens via selective attention. We evaluate FATE across seven diverse real-world datasets and demonstrate that it consistently outperforms state-of-the-art methods, particularly on long-horizon and high-dimensional climate datasets. Extensive ablation studies further confirm that FATE generalizes effectively across broader multivariate forecasting tasks.

Contributions. The main contributions of this work are threefold:

- We introduce FATE, a Transformer architecture with a novel focal-modulation mechanism that preserves 3D tensor structure ($T \times S \times P$) for multivariate time-series forecasting.
- We design *dual modulation scores* that improve both predictive performance and interpretability by identifying critical temporal and variable dependencies.
- We achieve new state-of-the-art results on seven benchmark datasets, including accuracy gains of 13.3%, 9.1%, and 10.1% on ETTm2 (Zhou et al., 2021a), Weather5k (Han et al., 2024), and LargeST (Liu et al., 2023), respectively, with strong improvements across all other datasets.

108
109
110
2 RELATED WORK111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

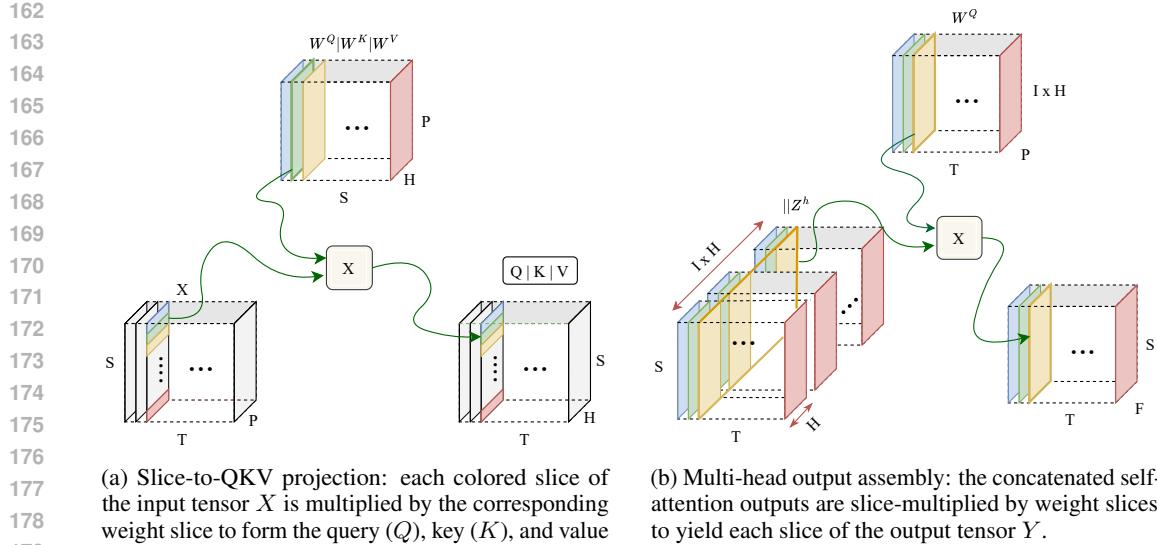
Transformers for Time Series Forecasting. Transformer architectures (Vaswani et al., 2017a) have achieved remarkable success across NLP (Devlin et al., 2018a; Brown et al., 2020; Radford et al., 2019), computer vision (Dosovitskiy et al., 2021; Bao et al., 2022; He et al., 2021), and speech (Baevski et al., 2020; Hsu et al., 2021) due to their scalability and effective sequence modeling. Vision Transformers (ViTs) divide images into patches to preserve local semantic information (Dosovitskiy et al., 2021; Geiger et al., 2013; Li et al., 2020), while NLP models like BERT (Devlin et al., 2018b) leverage subword tokenization for contextual dependencies. Inspired by these successes, Transformer variants have been widely adapted for time-series forecasting (Jake Grigsby & Qi, 2021; Nie et al., 2023). Early models, such as LogTrans (Li et al., 2019) and Informer (Li et al., 2021), addressed computational inefficiencies via sparse attention. Autoformer (Wu et al., 2021a) introduced decomposition-based inductive biases, FEDformer (Zhou et al., 2022a) employed Fourier-enhanced blocks for seasonal modeling, Pyraformer (Liu et al., 2021) added pyramidal attention for multi-scale dependencies, and Triformer (Cirstea et al., 2022) proposed pseudo-timestamp-based patch attention. Despite these advances, many Transformer forecasters still rely on point-wise or handcrafted attention, limiting their ability to capture semantic relationships across patches or dimensions (Sakaridis et al., 2018; Ashish, 2017; Zhu et al., 2023). For example, Autoformer’s fixed auto-correlation modules may fail to generalize, and Triformer does not treat patches as first-class units nor model internal semantics. TimeMixer++ (Wang et al., 2024) advances multi-scale, multi-resolution forecasting by converting time series into 2D time images (via Multi-Resolution Time Imaging, MRTI) and separating seasonal/trend components in latent space using dual-axis attention, followed by hierarchical Multi-Scale Mixing (MCM) and Multi-Resolution Mixing (MRM). This allows parallel modeling of concurrent temporal contexts (daily, weekly, seasonal), improving forecasting, classification, and anomaly detection. TimeTensor (Liang et al., 2024) generalizes linear attention to 3D tensor inputs via Kronecker decomposition, improving efficiency while retaining the standard attention paradigm. In contrast, FATE introduces *tensorized focal modulation*, explicitly preserving 3D spatiotemporal structure, enabling hierarchical and localized context aggregation, and jointly modeling long- and short-range dependencies. This represents a novel architectural strategy distinct from previous tensorized attention mechanisms.

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

Self-supervised and Representation Learning. Transformer adaptations for time series can be categorized into four directions (Kalyan et al., 2021): (i) attention-level modifications for efficiency, (ii) adaptations for stationarity and signal processing, (iii) architectural changes capturing cross-variate and temporal dependencies, and (iv) novel tensor-based designs. Most methods focus on the first three, while few explore fundamental tensor-based redesigns. Self-supervised learning (SSL) has also gained traction for time-series representation learning. Methods such as TNC (Tonekaboni et al., 2021), TS2Vec (Yue et al., 2022), and BTSF (Yang & Hong, 2022) learn rich representations without supervision, whereas Transformer-based SSL models like TST (Zerveas et al., 2021) and TS-TCC (Eldele et al., 2021) remain underexplored for capturing complex temporal and cross-variate dependencies. FATE’s tensorized focal modulation inherently supports richer hierarchical representations, bridging this gap by jointly modeling time, feature, and spatial dimensions. *Focal Modulated Tensorized Encoder* introduces a novel tensorized focal modulation mechanism tailored for multivariate time-series forecasting. It preserves the input’s 3D tensor structure ($T \times S \times P$), enables hierarchical spatiotemporal correlation modeling, and applies *tensorized attention design*, *temporal focal grouping*, and *cross-axis modulation*. Unlike prior work, FATE balances efficiency with semantic richness and provides a principled framework for long- and short-range dependency modeling in high-dimensional time series.

157
158
159
160
161
3 PROPOSED METHODOLOGY157
158
159
160
161

In this section, we present FATE, a *Focal Modulated Tensorized Encoder Transformer* designed for multivariate time-series forecasting. The architecture preserves the full 3D structure of the input tensor to jointly model temporal, spatial (station-wise), and feature dimensions. Central to FATE are tensorized focal modulation mechanisms that efficiently capture hierarchical temporal patterns, cross-station interactions, and feature dependencies, while providing interpretable modulation scores that highlight the contribution of each station and attention head. The following subsections detail



(a) Slice-to-QKV projection: each colored slice of the input tensor X is multiplied by the corresponding weight slice to form the query (Q), key (K), and value (V) tensors.

(b) Multi-head output assembly: the concatenated self-attention outputs are slice-multiplied by weight slices to yield each slice of the output tensor Y .

Figure 2: (a) Slice multiplication for QKV extraction. (b) Slice multiplication for multi-head attention output.

the encoder design, the tensorial focal modulation computations, and the aggregation strategy for interpretable predictions.

3.1 MULTI-DIMENSIONAL TENSORED FOCALNET ENCODER

We extend the FocalNet Transformer (Yang et al., 2022) to propose the *Tensorized Focal Encoder Transformer*, specifically designed to capture complex patterns in multi-dimensional time-series data. Our model operates on climate parameters organized as a 3D tensor $X \in \mathbb{R}^{T \times S \times P}$, where T denotes the temporal dimension, S indexes different stations, and P represents diverse climate parameters (e.g., temperature, humidity, wind speed). The full 3D structure preserves variable-time step relationships and supports parallel yet separate attention across temporal and feature dimensions.

The architecture is encoder-only, as illustrated in Figure 1, and comprises: (i) a positional encoding layer, (ii) a tensorial focal modulation encoder layer, and (iii) a linearly activated fully-connected layer. Each encoder layer integrates tensorial modulation (Sections 3.2 and 3.3) followed by a residual connection and normalization. A densely connected FFN, consisting of two linear transformations with ReLU activation, follows the modulation layer, and is again succeeded by residual connection and normalization, consistent with (Yang et al., 2022).

3.2 TENSORIAL FOCAL MODULATION

To encode temporal hierarchies, we apply a constant positional encoding (Yang et al., 2022) along the time axis T and parameter axis P :

$$\text{PE}(\text{pos}, 2i) = \sin \left(\frac{\text{pos}}{10000 \cdot 2^i / P} \right), \quad (1)$$

where pos indexes time and i indexes parameters; the station axis S transmits the encoded values.

Focal modulation replaces pairwise attention with hierarchical context aggregation (Yang et al., 2022), offering three key benefits: (i) improved computational efficiency, (ii) preservation of locality biases, and (iii) non-quadratic long-range dependency modeling. For multivariate time series, FATE leverages this through: (1) nested focal windows that hierarchically aggregate temporal information, and (2) dynamic contextual gating that adapts to input distributions, outperforming fixed receptive fields or conventional attention kernels.

We formalize tensor slices as follows: for a tensor $N \in \mathbb{R}^{X \times Y \times Z}$, $(N_{y,z})_x \in \mathbb{R}^{Y \times Z}$ denotes the x -slice, and $(N_z)_{x,y} \in \mathbb{R}^Z$ denotes the x, y -slice. Lowercase letters indicate slice sizes.

Tensorial focal modulation operates on $X \in \mathbb{R}^{T \times S \times P}$. We first compute 3D Query (Q), Key (K), and Value (V) tensors, $Q, K, V \in \mathbb{R}^{T \times S \times H}$, via element-wise multiplication with learnable weight tensors $W^Q, W^K, W^V \in \mathbb{R}^{S \times F \times H}$:

$$\begin{aligned} (Q_h)_{t,s} &= (X_p)_{t,s} \times (W^Q)_{p,h,s}, \\ (K_h)_{t,s} &= (X_p)_{t,s} \times (W^K)_{p,h,s}, \\ (V_h)_{t,s} &= (X_p)_{t,s} \times (W^V)_{p,h,s}, \quad \forall t = 1..T, s = 1..S. \end{aligned} \quad (2)$$

Next, we compute the multiplicative interaction across time steps:

$$(\tilde{R}_{s,s^l})_{t,t^l} = (Q_{s,h})_t \times ((K_{s^l,h})_{t^l})^T, \quad R = \frac{1}{\sqrt{H}} \sum_{s^l=1}^S (\tilde{R}_{t,t^l,s})_{s^l}, \quad (3)$$

followed by a softmax across the station dimension to obtain attention weights $\tilde{A} \in \mathbb{R}^{T \times T^l \times S}$:

$$(\tilde{A}_s)_{t,t^l} = \text{Softmax}((R_{t,t^l,s})_s), \quad \forall t, t^l = 1..T. \quad (4)$$

Finally, the output $Z \in \mathbb{R}^{T \times C \times D}$ is computed by broadcasting $(\tilde{A}_s)_{t,t^l}$ to match the shape of $(V_{s,d})_{t^l}$ and summing over the temporal dimension:

$$(Z_{s,d})_t = \sum_{t'=1}^T \text{broadcast}((\tilde{A}_s)_{t,t'}) \circ (V_{s,d})_{t'}, \quad \forall t = 1..T. \quad (5)$$

3.3 FOCAL MODULATION AGGREGATION

Modulation weights have been widely used for feature selection and interpretability (Wiegreffe & Pinter, 2019). In FATE, the focal modulation tensors \tilde{A} (Eq. 4) serve to provide interpretable insights into model predictions.

To quantify the relationship between attention heads and cities (stations), we compute *head-wise focal modulation scores*:

$$N\tilde{A}_s^h = \sum_{t=1}^T \sum_{t'=1}^{T'} A_{t,t',c}^h, \quad \forall h = 1..H, c = 1..C. \quad (6)$$

We then aggregate across all heads to obtain *city-wise modulation scores*, reflecting the overall contribution of each city to the prediction:

$$N\tilde{A}_s = \sum_{h=1}^H N\tilde{A}_s^h, \quad \forall c = 1..C. \quad (7)$$

This aggregation completes the tensorial focal modulation process, explicitly linking attention heads to cities and highlighting the importance of each city in driving the model’s forecasts.

4 EXPERIMENTS

To rigorously evaluate FATE, we conduct extensive experiments on seven diverse real-world datasets spanning environmental and infrastructural domains, comparing against 17 state-of-the-art baselines including Transformer-, RNN/CNN-, Linear-, and spatial-temporal models. We analyze predictive

270 performance across short- and long-horizon forecasts using standard metrics (MAE, MSE), bench-
 271 mark computational and memory efficiency, and provide interpretability through focal modulation
 272 visualization. These studies demonstrate FATE’s superior accuracy, robustness, and capacity to
 273 model multi-scale temporal and spatiotemporal dependencies.

275 4.1 DATASETS

278 We evaluate FATE on seven diverse real-world multivariate time-series datasets, encompassing
 279 both environmental (Weather5k, USA-Canada, Europe) and infrastructural (ETTh1, ETTh2, Traffic,
 280 LargeST) domains.

281 **ETTh1** Zhou et al. (2021a) and **ETTh2** Zhou et al. (2021a) are electricity transformer datasets
 282 at hourly and minute resolutions, respectively, capturing seasonal and trend-driven consumption
 283 patterns. **Traffic** Zhao (2019) consists of road occupancy rates from multiple sensors, serving as
 284 a standard benchmark for traffic flow prediction. **Weather5k** Han et al. (2024) is a large-scale
 285 dataset with 10 years of hourly measurements from 5,672 weather stations worldwide, including
 286 temperature, humidity, wind speed, and other climate parameters. **USA-Canada** Meteorological
 287 Development Laboratory, Office of Science and Technology, National Weather Service, NOAA, U.S.
 288 Department of Commerce (1987) contains hourly meteorological data from 30 cities (Oct 2012–Nov
 289 2017), enriched with spatial coordinates and temporal features such as hour and day-of-year. The
 290 **Europe** dataset Huber et al. (2022) spans 18 European cities (May 2005–Apr 2020), with normalized
 291 temporal and meteorological features; the test split covers 2017–2020, and the training/validation
 292 span 2005–2017. Finally, **LargeST** Liu et al. (2023) provides traffic data from 8,600 sensors in
 293 California over 5 years, including rich sensor metadata for enhanced interpretability.

294 Across all datasets, FATE consistently outperforms baselines—including Transformer Vaswani et al.
 295 (2017b); Yang et al. (2022), 3D-CNN Mehrkanoon (2019b), LSTM Hochreiter & Schmidhuber
 296 (1997), and ConvLSTM Shi et al. (2015)—achieving the lowest Mean Absolute Error (MAE) and
 297 Mean Squared Error (MSE), particularly on long-horizon and high-dimensional climate datasets.

298 4.2 ADDITIONAL IMPLEMENTATION DETAILS

300 **Computational and Memory Requirements.** We use a fixed 30-day input window; for climate
 301 datasets, we consider 7 meteorological features, while feature selection for other datasets follows the
 302 original data schema. Experiments were conducted on an NVIDIA A100 GPU with 40GB VRAM.
 303 Optimizers were selected per architecture following prior best practices.

305 We analyze FATE’s computational complexity and provide empirical runtime benchmarks against
 306 Transformer and CNN-based baselines. While tensorized focal modulation introduces moderate
 307 overhead compared to standard Transformers, the performance gains in long-horizon forecasting
 308 justify this cost. Preserving the 3D tensor increases memory complexity due to grouped modulation,
 309 but efficient projections keep runtime and GPU usage comparable to baseline Transformers.

310 **Hyperparameters.** Table 1 details all training
 311 hyperparameters. Multi-head attention is used
 312 in both FATE and Transformer models, with
 313 FATE employing four focal levels and eight at-
 314 tention heads to capture hierarchical temporal
 315 dependencies. 3D-CNN Mehrkanoon (2019b)
 316 and ConvLSTM Shi et al. (2015) models use
 317 convolutional layers with kernel sizes tuned for
 318 spatiotemporal patterns. LSTM Hochreiter &
 319 Schmidhuber (1997) and ConvLSTM models
 320 employ recurrent units with hidden dimensions
 321 optimized for sequential modeling. Scheduled
 322 learning rate decay is applied in FATE and
 323 Transformer models, while 3D-CNN, LSTM,
 324 and ConvLSTM use fixed rates. Batch sizes are
 325 scaled for memory efficiency and stable training.

326 Table 1: Hyperparameters used for all the models.
 327 All hyperparameters were selected using 5-fold
 328 cross-validation. Tuning was done independently
 329 on each dataset to avoid overfitting or unfair trans-
 330 fer of settings.

Hyper-parameter	FATE	Transformer	3D CNN	LSTM	ConvLSTM
Focal Levels	4	3	-	-	-
Layer Number	1	1	-	1	3
Head	8	1	-	-	-
Key Dim	32	32	-	-	-
Dense Units	64	64	128	-	-
Filters	-	-	10	-	16
Kernel Size	-	-	4	-	13
Hidden Units	-	-	-	128	-
Learning Rate	Schedule	Schedule	10^{-4}	10^{-4}	10^{-4}
Batch Size	64	32	128	256	128

324
325

4.3 FORECASTING RESULTS

We evaluate FATE across diverse real-world datasets and benchmark it against 17 state-of-the-art models spanning four categories: (1) *Transformer-based*: iTransformer Nie et al. (2024), Autoformer Wu et al. (2021b), etc.; (2) *RNN/CNN-based*: LSTM Hochreiter & Schmidhuber (1997), ConvLSTM Shi et al. (2015), 3D-CNN Mehrkanoon (2019b); (3) *Linear-based*: DLinear Zeng et al. (2023b), TiDE Das et al. (2023b); (4) *Spatial-temporal* (LargeST dataset): DGCRN Li et al. (2023a), D2STGNN Shao et al. (2022).

Table 2: The test results for temperature prediction, evaluated using the Mean Absolute Error (MAE) and Mean Squared Error (MSE), were obtained for the **USA-Canada** and **Europe** datasets. The best-performing results are highlighted in **bold**, while the second-best are marked in **red** for clarity.

Station	Model	MAE						MSE						Station	Model	MAE						
		4 hrs	8 hrs	12 hrs	16 hrs	4 hrs	8 hrs	12 hrs	16 hrs	3 days	5 days	7 days	3 days	5 days	7 days	3 days	5 days	7 days				
Vancouver	Transformer Vaswani et al. (2017b)	1.238	1.858	1.987	2.146	2.566	5.787	6.617	7.748	3D CNN Mehrkanoon (2019a)	1.426	1.834	2.134	2.329	3.705	9.599	7.455	8.879	10.73	11.702	14.660	15.926
	LSTM Hochreiter & Schmidhuber (1997)	1.411	1.824	1.939	2.047	2.712	6.977	8.577	9.377	ConvLSTM Shi et al. (2015)	1.338	1.829	1.992	2.104	2.967	5.553	6.571	7.990	3.759	2.787	2.948	12.882
	Autoformer Wu et al. (2021b)	1.258	1.982	2.695	2.695	2.576	6.598	6.395	6.087	Autoformer Wu et al. (2021b)	1.258	1.982	2.690	2.870	2.880	5.456	6.873	8.293	2.798	2.878	3.212	12.489
	SCINet Liu et al. (2022a)	1.458	2.903	2.890	1.870	2.880	5.456	6.873	8.293	SCINet Liu et al. (2022a)	1.458	2.903	2.890	1.870	2.880	5.456	6.873	8.293	2.902	2.789	3.404	12.213
	FEIDformer Zhou et al. (2022b)	1.429	1.563	1.992	2.309	3.556	5.679	6.263	6.946	FEIDformer Zhou et al. (2022b)	1.429	1.563	1.992	2.309	3.556	5.679	6.263	6.946	2.709	2.778	3.112	13.074
	RLinear Li et al. (2023a)	1.259	1.590	1.890	2.450	2.990	4.678	5.987	6.289	RLinear Li et al. (2023a)	1.673	1.256	1.890	2.450	2.990	4.678	5.987	6.289	2.834	2.543	3.342	11.897
	PatchTST Li et al. (2023b)	1.568	1.789	1.640	2.180	1.764	4.234	5.239	3.923	PatchTST Li et al. (2023b)	1.568	1.789	1.640	2.180	1.764	4.234	5.239	3.923	2.623	3.234	3.375	12.456
	Crossformer Zhang & Yan (2023b)	1.456	1.598	1.678	1.990	1.676	3.989	4.786	5.257	Crossformer Zhang & Yan (2023b)	1.555	1.726	1.430	2.789	2.276	3.278	3.987	4.890	2.854	2.874	3.123	12.654
	TiDE Das et al. (2023b)	1.145	1.567	1.686	1.863	2.048	3.998	3.678	3.980	TiDE Das et al. (2023b)	1.145	1.567	1.686	1.863	2.048	3.998	3.678	3.980	2.542	2.690	3.078	12.267
	TimesNet Wu et al. (2023)	1.151	1.566	1.686	1.863	2.047	3.980	3.665	3.953	TimesNet Wu et al. (2023)	1.151	1.566	1.686	1.863	2.047	3.980	3.665	3.953	2.874	2.874	3.321	12.754
New York	DLinear Zeng et al. (2023b)	1.118	1.566	1.686	1.863	2.047	3.980	3.665	3.953	DLinear Zeng et al. (2023b)	1.118	1.566	1.686	1.863	2.047	3.980	3.665	3.953	2.507	2.645	3.015	11.687
	iTransformer Nie et al. (2024)	1.123	1.487	1.435	1.670	1.910	2.847	2.847	2.847	iTransformer Nie et al. (2024)	1.123	1.487	1.435	1.670	1.910	2.847	2.847	2.847	2.680	2.989	3.076	10.456
	FATE (Ours)	1.021	2.127	1.346	1.121	1.464	1.669	1.844	2.238	FATE (Ours)	1.021	2.127	1.346	1.121	1.464	1.669	1.844	2.238	2.174	2.665	2.695	8.515
	Transformer Vaswani et al. (2017b)	1.438	2.043	2.271	2.494	3.850	7.533	9.268	10.987	Transformer Vaswani et al. (2017b)	1.438	2.043	2.271	2.494	3.850	7.533	9.268	10.987	4.776	5.033	5.407	30.891
	3D CNN Mehrkanoon (2019a)	1.835	2.316	2.673	2.673	2.073	5.159	6.159	11.964	3D CNN Mehrkanoon (2019a)	1.835	2.316	2.673	2.673	2.073	5.159	6.159	11.964	4.776	5.078	5.469	30.823
	LSTM Hochreiter & Schmidhuber (1997)	1.596	2.126	2.325	2.507	4.724	8.103	9.749	10.985	LSTM Hochreiter & Schmidhuber (1997)	1.596	2.126	2.325	2.507	4.724	8.103	9.749	10.985	3.982	5.036	5.373	24.860
	ConvLSTM Shi et al. (2015)	1.394	2.134	2.419	2.104	4.940	7.790	9.257	10.341	ConvLSTM Shi et al. (2015)	1.394	2.134	2.419	2.104	4.940	7.790	9.257	10.341	4.578	4.863	5.322	32.699
	Autoformer Wu et al. (2021b)	1.756	1.981	2.587	2.446	4.436	7.234	10.457	9.357	Autoformer Wu et al. (2021b)	1.645	2.475	2.432	2.334	3.786	6.935	11.356	10.497	4.898	5.987	5.670	32.969
	SCINet Liu et al. (2022a)	1.982	1.879	2.859	2.976	4.876	6.905	12.786	10.345	SCINet Liu et al. (2022a)	1.982	1.879	2.859	2.976	4.876	6.905	12.786	10.345	4.886	5.109	5.348	33.123
	FEIDformer Zhou et al. (2022b)	1.620	1.566	1.986	2.567	4.267	8.458	10.255	11.964	FEIDformer Zhou et al. (2022b)	1.620	1.566	1.986	2.567	4.267	8.458	10.255	11.964	4.600	5.069	5.509	35.834
	RLinear Li et al. (2023a)	1.455	1.912	2.532	2.540	4.768	7.548	10.567	10.344	RLinear Li et al. (2023a)	1.455	1.912	2.532	2.540	4.768	7.548	10.567	10.344	4.679	5.784	5.940	32.569
Los Angeles	PatchTST Li et al. (2023b)	1.465	1.893	2.230	4.434	5.453	5.990	13.365	10.497	PatchTST Li et al. (2023b)	1.465	1.893	2.230	4.434	5.453	5.990	13.365	10.497	4.798	5.078	5.749	32.564
	Crossformer Zhang & Yan (2023b)	2.124	2.496	2.432	2.334	4.786	6.935	11.346	9.346	Crossformer Zhang & Yan (2023b)	2.124	2.496	2.432	2.334	4.786	6.935	11.346	9.346	4.56	5.694	5.678	31.455
	TiDE Das et al. (2023b)	1.969	2.231	2.232	2.943	3.658	7.345	10.349	9.438	TiDE Das et al. (2023b)	1.969	2.231	2.232	2.943	3.658	7.345	10.349	9.438	4.969	5.345	5.374	32.468
	TimesNet Wu et al. (2023)	1.567	1.860	2.032	2.452	2.458	3.654	9.610	11.348	TimesNet Wu et al. (2023)	1.567	1.860	2.032	2.452	2.458	3.654	9.610	11.348	4.574	5.344	5.432	30.234
	DLinear Zeng et al. (2023b)	1.563	2.086	2.124	2.983	3.767	6.455	9.378	9.347	DLinear Zeng et al. (2023b)	1.563	2.086	2.124	2.983	3.767	6.455	9.378	9.347	4.998	5.234	5.876	30.457
	iTransformer Nie et al. (2024)	1.274	1.908	1.992	2.264	3.278	3.879	6.349	8.282	iTransformer Nie et al. (2024)	1.274	1.908	1.992	2.264	3.278	3.879	6.348	8.282	4.458	5.343	5.765	30.578
	FATE (Ours)	1.183	1.530	1.920	2.041	3.180	5.496	6.677	8.185	FATE (Ours)	1.183	1.530	1.920	2.041	3.180	5.496	6.677	8.185	3.196	4.335	4.925	19.927
	FEIDformer Zhou et al. (2022b)	1.600	2.043	2.271	2.494	3.850	7.533	9.268	10.987	FEIDformer Zhou et al. (2022b)	1.600	2.043	2.271	2.494	3.850	7.533	9.268	10.987	4.595	5.262	5.407	32.454
	RLinear Li et al. (2023a)	1.834	2.316	2.833	2.673	5.587	9.159	13.467	11.968	RLinear Li et al. (2023a)	1.834	2.316	2.833	2.673	5.587	9.159	13.467	11.968	4.595	5.049	5.262	34.578
	PatchTST Li et al. (2023b)	1.296	2.026	2.325	2.207	4.724	7.790	9.457	10.341	PatchTST Li et al. (2023b)	1.296	2.026	2.325	2.207	4.724	7.790	9.457	10.341	3.974	4.830	5.023	22.484
	ConvLSTM Shi et al. (2015)	1.594	2.134	2.419	2.704	4.949	7.790	9.457	10.341	ConvLSTM Shi et al. (2015)	1.594	2.134	2.419	2.704	4.949	7.790	9.457	10.341	3.958	5.896	5.456	22.467
	Autoformer Wu et al. (2021b)	1.645	2.457	2.856	2.980	3.886	6.923	9.203	13.124	Autoformer Wu et al. (2021b)	1.645	2.457	2.856	2.980	3.886	6.923	9.203	13.124	4.898	5.109	5.348	33.123
	SCINet Liu et al. (2022a)	1.843	2.276	2.235	2.956	3.578	8.438	11.959	13.455	SCINet Liu et al. (2022a)	1.843	2.276	2.235	2.956	3.578	8.438	11.959	13.455	4.574	5.343	5.765	32.569
	FEIDformer Zhou et al. (2022b)	1.748	2.479	2.567	2.647	3.680	7.904	12.548	12.453	FEIDformer Zhou et al. (2022b)	1.748	2.479	2.567	2.647	3.680	7.904	12.548	12.453	4.595	5.563	5.396	23.467
	Stationary Liu et al. (2022b)	1.983	2.986	2.096	2.676	3.976	8.348	12.548	11.579	Stationary Liu et al. (2022b)	1.983	2.986	2.096	2.676	3.976	8.348	12.548	11.579	3.589	5.970	5.446	22.366
	RLinear Li et al. (2023a)	1.849	2.226	2.345	2.956	3.578	8.438	11.959	13.455	RLinear Li et al. (2023a)	1.849	2.226	2.345	2.956	3.578	8.438	11.959	13.455	3.335	5.340	5.785	20.456
	PatchTST Li et al. (2023b)	1.648	2.562	2.432	2.334	3.086	3.658	9.143	9.449	PatchTST Li et al. (2023b)	1.648	2.562	2.432	2.334	3.086	3.658	9.143	9.449	3.595	5.795	5.679	21.458
	Crossformer Zhang & Yan (2023b)	1.843	2.872	2.645	2.845	3.688	6.937	10.453	10.488	Crossformer Zhang & Yan (2023b)	1.843	2.872	2.645	2.845	3.688	6.937	10.453	10.488	3.579	5.675	5.685	23.546
	TiDE Das et al. (2023b)	1.919	2.190	2.345	2.452	3.278	3.976	7.349	7.399	TiDE Das et al. (2023b)	1.919											

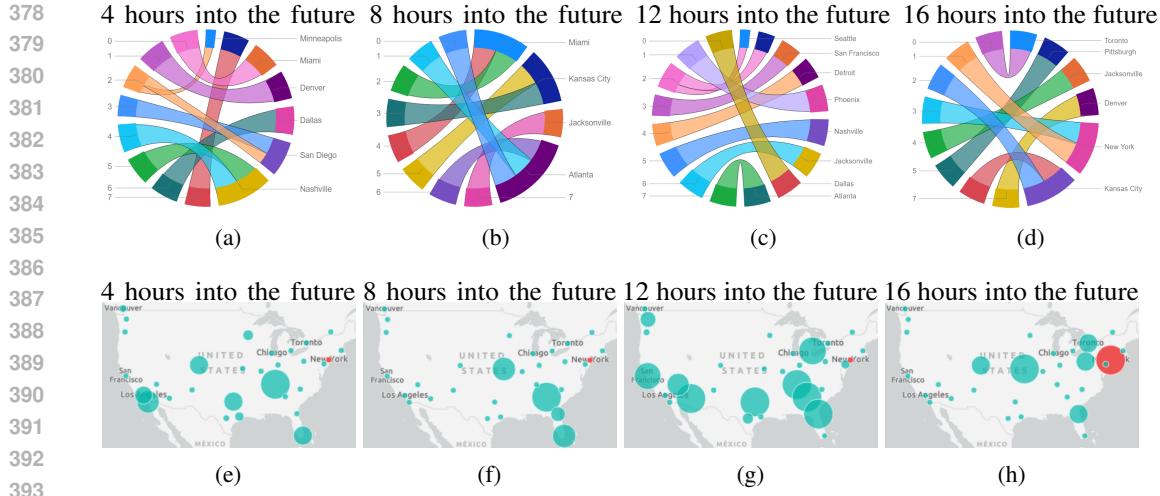


Figure 3: Attention visualization for **New York** in USA-Canada dataset. The circular graphs show which city each of the most important heads attends to. The thickness of the line represents the amount of attention each of the heads is paying to the cities. The size of the circles indicates the importance of Each city in the temperature prediction for the target city. The target city is marked as a red circle, and its size corresponds to the importance of the attention to itself.

to high-dimensional noise. - ETTm2: 13.3% MAE and 7.9% MSE improvements, confirming generalizability across diverse datasets. These results collectively validate FATE’s ability to model multi-scale temporal and spatial dependencies, yielding accurate and stable forecasts across both regional and large-scale datasets.

Table 4: Comparison of MAE and MSE on temperature prediction across diverse real-world multi-variate time-series datasets. The best performing results are highlighted in **bold** and the second best are marked in **red** for clarity.

Model	ETTH1		Traffic		Weather5K		ETTM2	
	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE
FATE (Ours)	0.381	0.377	0.254	0.349	0.179	0.128	0.221	0.151
CI-TSMixer Ekambaram et al. (2023)	0.398	0.368	0.278	0.356	0.197	0.146	0.255	0.164
PatchTST Li et al. (2023b)	0.400	0.370	0.249	0.360	0.198	0.149	0.256	0.166
DLinear Zeng et al. (2023b)	0.399	0.375	0.282	0.410	0.237	0.176	0.260	0.167
FEDformer Zhou et al. (2022b)	0.419	0.376	0.366	0.587	0.296	0.217	0.287	0.203
Autoformer Wu et al. (2021b)	0.459	0.449	0.388	0.613	0.336	0.266	0.339	0.255
Informer Zhou et al. (2021b)	0.713	0.865	0.391	0.719	0.384	0.300	0.453	0.365

4.4 MODULATION VISUALIZATION AND ABLATION STUDY

Figure 3 illustrates the interpretability of FATE through focal modulation scores. Panels (a)–(d) show head-wise scores \tilde{A}_s^h (Eq. 6), highlighting each head’s focus in generating predictions. Aggregated city-wise scores \tilde{A}_s (Eq. 7) reveal the contribution of each city to the target city. Panels (e)–(h) depict these interactions as graphs, where line thickness indicates attention strength and circle size represents city importance; the red circle marks the target city’s self-attention. As forecast horizons extend, the target city increasingly attends to more distant contributors, reflecting dynamic spatiotemporal dependencies. Additional visualizations are provided in Appendix § A.1.

5 OUTLOOK AND FUTURE DIRECTIONS

The strong empirical performance of FATE opens multiple avenues for advancing spatio-temporal forecasting.

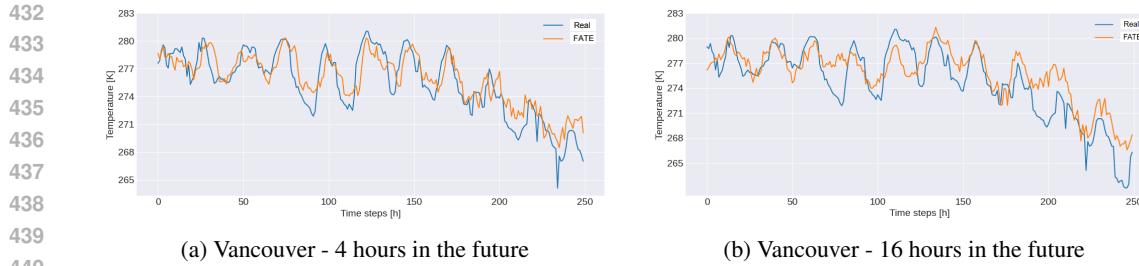


Figure 4: The comparison between the predictions of the FATE model and the real measurements for the hourly temperature of the test set of Vancouver.

Scaling to global and ultra-long horizons. While FATE performs strongly on regional datasets (Table 2), scaling to continental or global domains requires optimized training and inference. Future work may explore hierarchical or distributed focal-modulation architectures to retain interpretability while handling millions of spatial points over decades of data. **Richer variables and cross-domain fusion.** Current experiments emphasize temperature and standard meteorological features (Table 4). Adding variables such as precipitation, aerosols, oceanic indices, or soil moisture and fusing satellite imagery, reanalysis products, and socio-economic data could enhance predictive power and policy relevance. **Self-supervised pretraining.** Unlabeled climate data motivates self-supervised learning tailored to the focal-tensor setup. Objectives like contrastive or masked prediction can enrich spatio-temporal representations, improve robustness, and reduce dependence on labeled data. **Physics-informed inductive biases.** Incorporating physical constraints e.g., conservation laws or dynamical couplings into focal-modulation blocks may improve physical plausibility and reduce extrapolation error (Appendix §A.2). Hybrid integration with NWP ensembles is a promising future direction. **Efficiency and real-time inference.** Though efficient, FATE remains costlier than linear baselines. Techniques such as tensor compression, sparse kernels, or adaptive focal levels could enable lightweight, real-time variants for edge or on-device use. **Decision-support and societal impact.** Translating forecasts into actionable insights for agriculture, energy, and disaster response remains a key challenge. Interpretable modulation maps (Figure 3) and tailored visualizations can foster trust and support decision-making.

Summary. The tensorized focal-modulation design of FATE offers a scalable, extensible foundation for climate forecasting. Future extensions across scale, modality, physics, and application position it as a comprehensive tool for sustainable development.

6 CONCLUSION

In this study, we introduced the *Focal-Modulated Tensorized Encoder* (FATE), a framework designed to capture complex spatiotemporal dependencies in climate data. By leveraging tensorized focal modulation, FATE effectively models multi-scale interactions across time, space, and climate parameters. We evaluated FATE on seven diverse real-world multivariate time series datasets, consistently achieving state-of-the-art performance. Additionally, we proposed head-wise and city-wise modulation scores to enhance interpretability and conducted ablation studies to quantify their impact. This work provides a foundation for informed climate policy decisions and broader applications that exploit 3D tensor-structured data.

LIMITATIONS

Our current evaluation focuses on temperature and related climate variables within mid-scale regional datasets. Extending FATE to additional meteorological variables and global-scale grids is a direction for future work. While FATE introduces modest computational overhead (trainable on a single A100 GPU), it remains practical for deployment and can be further optimized for edge or real-time applications. These limitations are operational rather than conceptual.

486 REFERENCES
487

488 Vaswani Ashish. Attention is all you need. *Advances in neural information processing systems*, 30:I,
489 2017.

490 Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A framework
491 for self-supervised learning of speech representations. *Advances in Neural Information Processing
492 Systems*, 33:12449–12460, 2020.

493 Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEiT: BERT pre-training of image transformers.
494 In *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=p-BhZSz59o4>.

495 Bruce Barrett, Joel W Charles, and Jonathan L Temte. Climate change, human health, and epidemiological
496 transition. *Preventive medicine*, 70:69–75, 2015.

497 George EP Box and Gwilym M Jenkins. Some recent advances in forecasting and control. *Journal of
498 the Royal Statistical Society. Series C (Applied Statistics)*, 17(2):91–109, 1968.

499 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
500 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
501 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

502 Razvan-Gabriel Cirstea, Chenjuan Guo, Bin Yang, Tung Kieu, Xuanyi Dong, and Shirui Pan.
503 Triforger: Triangular, variable-specific attentions for long sequence multivariate time series
504 forecasting. In *Proceedings of the Thirty-First International Joint Conference on Artificial
505 Intelligence, IJCAI-22*, pp. 1994–2001, 7 2022. doi: 10.24963/ijcai.2022/277. URL <https://doi.org/10.24963/ijcai.2022/277>.

506 Abhimanyu Das, Weihao Kong, Andrew Leach, Rajat Sen, and Rose Yu. Long-term forecasting with
507 tide: Time-series dense encoder. *arXiv preprint arXiv:2304.08424*, 2023a.

508 Abhimanyu Das, Weihao Kong, Andrew Leach, Rajat Sen, and Rose Yu. Long-term forecasting with
509 TIDE: Time-series dense encoder. *arXiv preprint arXiv:2304.08424*, 2023b.

510 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
511 bidirectional transformers for language understanding. *CoRR*, abs/1810.04805, 2018a. URL
512 <http://arxiv.org/abs/1810.04805>.

513 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
514 bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*, 2018b.

515 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
516 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
517 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint
518 arXiv:2010.11929*, 2020.

519 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
520 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
521 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
522 In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=YicbFdNTTy>.

523 Vijay Ekambaran, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam.
524 Tsmixer: Lightweight mlp-mixer model for multivariate time series forecasting. *KDD*, 2023.

525 Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li, and
526 Cuntai Guan. Time-series representation learning via temporal and contextual contrasting. In
527 *Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21*, pp.
528 2352–2359, 2021.

529 Aysu Ezen-Can. A comparison of lstm and bert for small corpus. *arXiv preprint arXiv:2009.05451*,
530 2020.

540 Zheng Fang, Qingqing Long, Guojie Song, and Kunqing Xie. Spatial-temporal graph ode networks
 541 for traffic flow forecasting. In *Proceedings of the 27th ACM SIGKDD conference on knowledge*
 542 *discovery & data mining*, pp. 364–373, 2021.

543 Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The kitti
 544 dataset. *The International Journal of Robotics Research*, 32(11):1231–1237, 2013.

545 Qipeng Guo, Xipeng Qiu, Pengfei Liu, Yunfan Shao, Xiangyang Xue, and Zheng Zhang. Star-
 546 transformer. *arXiv preprint arXiv:1902.09113*, 2019.

547 Tao Han, Song Guo, Zhenghao Chen, Wanghan Xu, and Lei Bai. Weather-5k: A large-scale global
 548 station weather dataset towards comprehensive time-series forecasting benchmark, 2024.

549 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross B. Girshick. Masked
 550 autoencoders are scalable vision learners. *CoRR*, abs/2111.06377, 2021. URL <https://arxiv.org/abs/2111.06377>.

551 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural Computation*, 9(8):
 552 1735–1780, 1997.

553 Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhota, Ruslan Salakhutdinov,
 554 and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked
 555 prediction of hidden units. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*,
 556 29:3451–3460, 2021.

557 F. Huber, D. van Kuppevelt, P. Steinbach, C. Sauze, Y. Liu, and B. Weel. Weather prediction dataset,
 558 September 2022. URL <https://doi.org/10.5281/zenodo.7525955>.

559 Chris Huntingford, Elizabeth S Jeffers, Michael B Bonsall, Hannah M Christensen, Thomas Lees,
 560 and Hui Yang. Machine learning and artificial intelligence to aid climate change research and
 561 preparedness. *Environmental Research Letters*, 14(12):124007, 2019.

562 Zhe Wang Jake Grigsby and Yanjun Qi. Long-range transformers for dynamic spatiotemporal
 563 forecasting. *arXiv preprint arXiv:2109.12218*, 2021.

564 Katikapalli Subramanyam Kalyan, Ajit Rajasekharan, and Sivanesan Sangeetha. Ammus: A sur-
 565 vey of transformer-based pretrained models in natural language processing. *arXiv preprint*
 566 *arXiv:2108.05542*, 2021.

567 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
 568 Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
 569 *arXiv preprint arXiv:2001.08361*, 2020.

570 Pooja T Latake, Pooja Pawar, and Anil C Ranveer. The greenhouse effect and its impacts on
 571 environment. *Int. J. Innov. Res. Creat. Technol*, 1(3), 2015.

572 Congcong Li, Dawei Du, Libo Zhang, Longyin Wen, Tiejian Luo, Yanjun Wu, and Pengfei Zhu.
 573 Spatial attention pyramid network for unsupervised domain adaptation, 2020.

574 Fuxian Li, Jie Feng, Huan Yan, Guangyin Jin, Fan Yang, Funing Sun, Depeng Jin, and Yong Li.
 575 Dynamic graph convolutional recurrent network for traffic prediction: Benchmark and solution.
 576 *ACM Transactions on Knowledge Discovery from Data*, 17(1):1–21, 2023a.

577 Jianxin Li, Xiong Hui, and Wancai Zhang. Informer: Beyond efficient transformer for long sequence
 578 time-series forecasting. *arXiv: 2012.07436*, 2021.

579 Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyu Zhou, Wenhui Chen, Yu-Xiang Wang, and
 580 Xifeng Yan. Enhancing the locality and breaking the memory bottleneck of transformer
 581 on time series forecasting. In *Advances in Neural Information Processing Systems*, volume 32,
 582 2019. URL <https://proceedings.neurips.cc/paper/2019/file/6775a0635c302542da2c32aa19d86be0-Paper.pdf>.

583 Yuqi Li, Zachary Shen, Nam Nguyen, and Jayant Kalagnanam. PatchTST: A time series is worth 64
 584 patches. In *International Conference on Learning Representations*, 2023b.

594 Zhe Li, Shiyi Qi, Yiduo Li, and Zenglin Xu. Revisiting long-term time series forecasting: An
 595 investigation on linear mapping. *arXiv preprint arXiv:2305.10721*, 2023c.
 596

597 Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Tensor attention training: Provably efficient
 598 learning of higher-order transformers. *arXiv preprint arXiv:2405.16411*, 2024.
 599

600 Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. SCINet:
 601 Time series modeling and forecasting with sample convolution and interaction. In *Advances in
 602 Neural Information Processing Systems*, volume 35, pp. 3440–3452, 2022a.
 603

604 Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dust-
 605 dar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and
 606 forecasting. *International conference on learning representations*, 2021.
 607

608 Xu Liu, Yutong Xia, Yuxuan Liang, Junfeng Hu, Yiwei Wang, Lei Bai, Chao Huang, Zhenguang
 609 Liu, Bryan Hooi, and Roger Zimmermann. Largest: A benchmark dataset for large-scale traffic
 610 forecasting. In *Advances in Neural Information Processing Systems*, 2023.
 611

612 Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
 613 the stationarity in time series forecasting. In *Advances in Neural Information Processing Systems*,
 614 volume 35, pp. 11839–11851, 2022b.
 615

616 Siamak Mehrkanoon. Deep shared representation learning for weather elements forecasting.
 617 *Knowledge-Based Systems*, 179:120–128, 2019a.
 618

619 Siamak Mehrkanoon. Deep shared representation learning for weather elements forecasting.
 620 *Knowledge-Based Systems*, 179:120–128, 2019b.
 621

622 Meteorological Development Laboratory, Office of Science and Technology, National Weather
 623 Service, NOAA, U.S. Department of Commerce. Tdl u.s. and canada surface hourly observations,
 624 1987. URL <https://rda.ucar.edu/datasets/dsd472000/>.
 625

626 Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
 627 words: Long-term forecasting with transformers. *ICLR*, 2023.
 628

629 Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
 630 64 words: Long-term forecasting with transformers. In *International Conference on Learning
 631 Representations*, 2024.
 632

633 A. Radford, J.W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
 634 and J. Clark et al. Learning transferable visual models from natural language supervision. In
 635 *ICML*, pp. 8748–8763, 2021.
 636

637 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 638 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.
 639

640 Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Semantic foggy scene understanding with
 641 synthetic data. *International Journal of Computer Vision*, 126:973–992, 2018.
 642

643 Zezhi Shao, Zhao Zhang, Wei Wei, Fei Wang, Yongjun Xu, Xin Cao, and Christian S Jensen.
 644 Decoupled dynamic spatial-temporal graph neural network for traffic forecasting. *arXiv preprint
 645 arXiv:2206.09112*, 2022.
 646

647 Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo.
 648 Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In
 649 *Advances in Neural Information Processing Systems*, volume 28, pp. 802–810, 2015.
 650

651 Kai Sun, Jiangshe Zhang, Junmin Liu, Ruixuan Yu, and Zengjie Song. Drcnn: Dynamic routing
 652 convolutional neural network for multi-view 3d object recognition. *IEEE Transactions on Image
 653 Processing*, 30:868–877, 2021. doi: 10.1109/TIP.2020.3039378.
 654

655 Sana Tonekaboni, Danny Eytan, and Anna Goldenberg. Unsupervised representation learning
 656 for time series with temporal neighborhood coding. In *International Conference on Learning
 657 Representations*, 2021. URL <https://openreview.net/forum?id=8qDwejCuCN>.
 658

648 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
 649 Kaiser, and Illia Polosukhin. Attention is all you need. *NeurIPS*, 2017a.
 650

651 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 652 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in Neural Information Processing
 653 Systems*, 30:5998–6008, 2017b.

654 Shiyu Wang, Jiawei Li, Xiaoming Shi, Zhou Ye, Baichuan Mo, Wenze Lin, Shengtong Ju, Zhixuan
 655 Chu, and Ming Jin. Timemixer++: A general time series pattern machine for universal predictive
 656 analysis. *arXiv preprint arXiv:2410.16032*, 2024.
 657

658 Sarah Wiegreffe and Yuval Pinter. Attention is not not explanation. *arXiv preprint arXiv:1908.04626*,
 659 2019.
 660

661 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
 662 with Auto-Correlation for long-term series forecasting. *NeurIPS*, 2021a.

663 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
 664 with Auto-Correlation for long-term series forecasting. In *Advances in Neural Information
 665 Processing Systems*, pp. 22419–22430, 2021b.
 666

667 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. TimesNet:
 668 Temporal 2D-Variation modeling for general time series analysis. In *International Conference on
 669 Learning Representations*, 2023.

670 Jianwei Yang, Chunyuan Li, Xiyang Dai, and Jianfeng Gao. Focal modulation networks. *Advances
 671 in Neural Information Processing Systems*, 35:4203–4217, 2022.
 672

673 Ling Yang and Shenda Hong. Unsupervised time-series representation learning with iterative bilinear
 674 temporal-spectral fusion. In *ICML*, 2022.
 675

676 Xueyan Yin, Feifan Li, Genze Wu, Pengfei Wang, Yanming Shen, Heng Qi, and Baocai Yin. Stnn:
 677 A spatial-temporal graph neural network for traffic prediction. In *2021 IEEE 27th International
 678 Conference on Parallel and Distributed Systems (ICPADS)*, pp. 146–152, 2021. doi: 10.1109/
 679 ICPADS53394.2021.00024.

680 Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and
 681 Bixiong Xu. Ts2vec: Towards universal representation of time series. In *Proceedings of the AAAI
 682 Conference on Artificial Intelligence*, volume 36, pp. 8980–8987, 2022.
 683

684 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
 685 forecasting? *AAAI*, 2023a.

686 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
 687 forecasting? In *Proceedings of the 37th AAAI Conference on Artificial Intelligence*, pp. 11121–
 688 11129, 2023b.
 689

690 George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten Eickhoff.
 691 A transformer-based framework for multivariate time series representation learning. In *Proceedings
 692 of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining*, pp. 2114–2124,
 693 2021.

694 Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for
 695 multivariate time series forecasting. *ICLR*, 2023a.
 696

697 Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for
 698 multivariate time series forecasting. In *International Conference on Learning Representations*,
 699 2023b.

700 Liang Zhao. Traffic Flow Forecasting. UCI Machine Learning Repository, 2019. DOI:
 701 <https://doi.org/10.24432/C57897>.

702 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
703 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *The Thirty-*
704 *Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Conference*, volume 35, pp.
705 11106–11115. AAAI Press, 2021a.

706 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
707 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Proceedings*
708 *of the AAAI conference on artificial intelligence*, volume 35, pp. 11106–11115, 2021b.

710 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Frequency
711 enhanced decomposed transformer for long-term series forecasting. *ICML*, 2022a.

712 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Frequency
713 enhanced decomposed transformer for long-term series forecasting. In *Proceedings of the 39th*
714 *International Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning*
715 *Research*, pp. 27268–27286, 2022b.

717 Jinjing Zhu, Haotian Bai, and Lin Wang. Patch-mix transformer for unsupervised domain adaptation:
718 A game perspective. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
719 *Recognition*, pp. 3561–3571, 2023.

720 Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable {detr}:
721 Deformable transformers for end-to-end object detection. In *International Conference on Learning*
722 *Representations*, 2021. URL <https://openreview.net/forum?id=gZ9hCDWe6ke>.

756 **A APPENDIX**
757758 **A.1 FURTHER VISUALIZATIONS**
759

760 We further visualized the feature selection process of the tensorial modulation mechanism, specifically
761 focusing on the visualizations for selected cities. From a spatiotemporal perspective, the mechanism
762 progressively emphasizes more distant cities as the prediction time step increases. This behavior
763 highlights the model’s ability to adaptively focus on relevant spatial regions over time.

764 The computations for the Query, Key, and Value tensors are defined as follows:
765

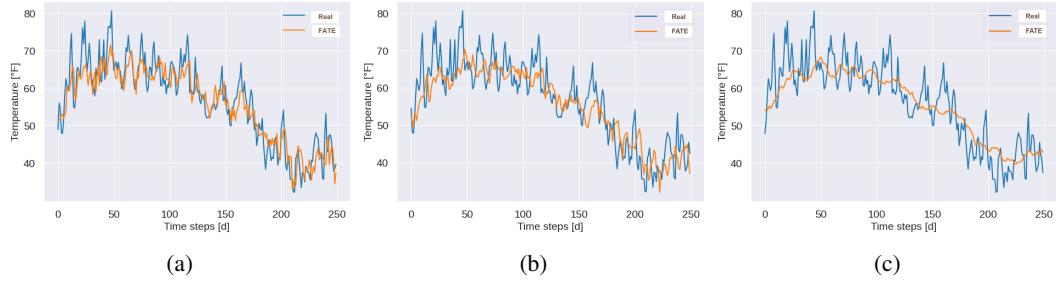
$$766 Q_{t,c,d} = X_{t,c,f} \cdot W_{f,d,c}^Q \quad \forall t = 1, \dots, T, \quad c = 1, \dots, C, \quad (8)$$

$$767 K_{t,c,d} = X_{t,c,f} \cdot W_{f,d,c}^K \quad \forall t = 1, \dots, T, \quad c = 1, \dots, C, \quad (9)$$

$$769 V_{t,c,d} = X_{t,c,f} \cdot W_{f,d,c}^V \quad \forall t = 1, \dots, T, \quad c = 1, \dots, C. \quad (10)$$

770 Here, $X_{t,c,f}$ represents the input tensor with temporal index t , spatial index c , and feature index f .
771 The learnable weight matrices $W_{f,d,c}^Q$, $W_{f,d,c}^K$, and $W_{f,d,c}^V$ map the input features to the Query (Q),
772 Key (K), and Value (V) tensors, respectively. These operations allow the model to dynamically
773 compute across time, space, and features.
774

775 Maastricht - 2 days in the future Maastricht - 4 days in the future Maastricht - 6 days in the future
776

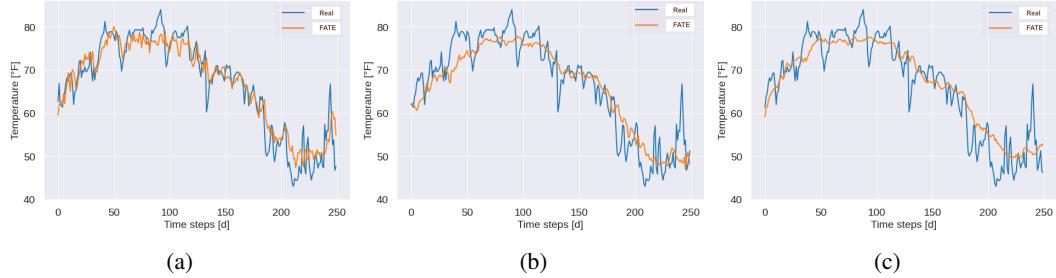


777 Figure 5: The comparison between the predictions of FATE model and the real measurements for
778 **average daily temperature** of the test set of **Maastricht**.
779

780 Figure 5 presents the model predictions alongside real measurements for Maastricht, showcasing 2,
781 4, and 6-day forecast horizons. While FATE accurately captures smaller variations for 2- and 4-day
782 predictions, its performance over 6 days primarily reflects broader temperature trends. Unlike the
783 previous dataset, the results on the Europe dataset demonstrate varying performance, with FATE
784 ranking as the second-best model overall. Notably, FATE outperforms other models in predicting 4-
785 and 6-day horizons specifically for Maastricht.
786

787 Experiments on this dataset were conducted for 2, 4, and 6 days ahead predictions, using an empirically
788 determined lag parameter of 8 days to construct the regressors. Target cities included Barcelona,
789

790 Barcelona - 2 days in the future Barcelona - 4 days in the future Barcelona - 6 days in the future
791



800 Figure 6: The comparison between the predictions of FATE model and the real measurements for
801 **average daily temperature** of the test set of **Barcelona**.
802

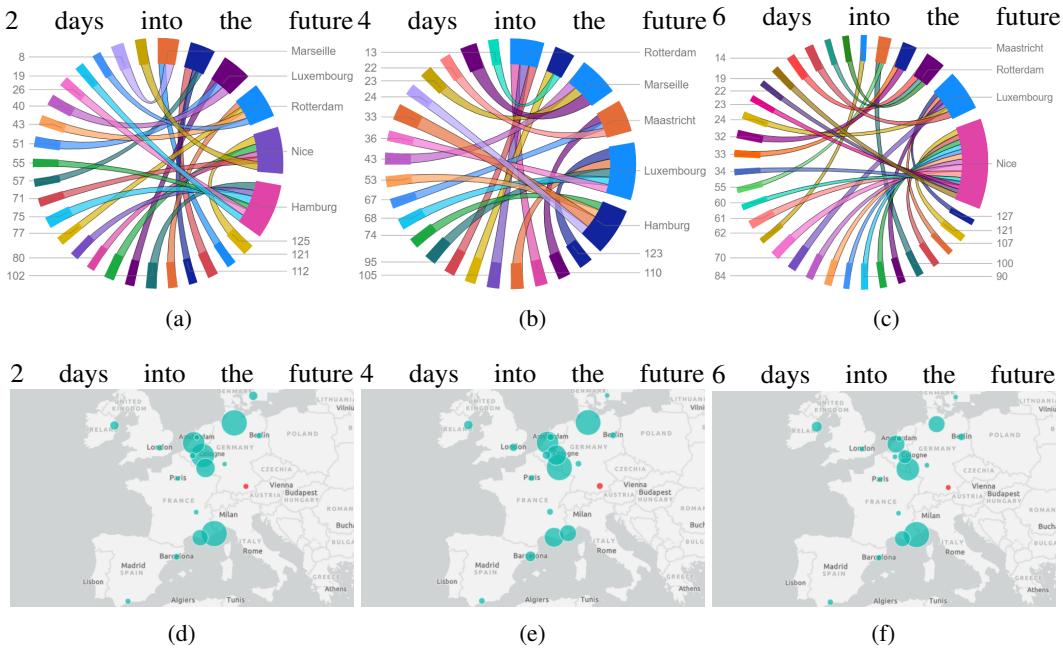


Figure 7: Focal Modulation visualization for **Munich** in Europe dataset. The top graphs show which city each of the heads attends. The thickness of the line represents the amount of modulation each of the heads is paying to the cities.

Maastricht, and Munich, with the average temperature as the primary prediction feature. Additionally, Figure. 6 highlights model predictions versus real measurements for Barcelona at 2, 4, and 6 days into the future. Despite FATE’s competitive performance in specific scenarios, the LSTM-based model achieved the lowest MAE in 5 city-time-step pairs and the lowest MSE in 4 pairs. Prior studies Guo et al. (2019); Ezen-Can (2020) have reported that Transformers can struggle in scenarios with limited data, which may explain why the Europe dataset constrained FATE’s performance compared to LSTM. Interestingly, in the Europe dataset, certain cities demonstrated minimal contribution to the predictions, suggesting inherent feature selection by the model. This observation is evident in Munich’s predictions, shown in the Figure. 7, where the circular graphs and maps illustrate limited spatial dependencies for some cities. Unlike the US-Canada dataset, a distinct spatiotemporal pattern was not observed for Munich’s predictions. Lastly, focal modulation visualizations are shown in the Figures. 8, 9, and 3 reveal both spatial and temporal dynamics, combining map-based views and circular graphs for each forecast horizon. These visualizations underline the adaptability of FATE in leveraging key features, particularly in datasets with varying data distributions and prediction horizons.

In this study, we leverage focal modulation weights to enhance model interpretability, specifically by identifying which areas of the input data the model prioritizes when making predictions. A major challenge in many practical applications is the cost of collecting labeled data, which often results in a limited number of training samples, particularly when dealing with high-dimensional datasets. This can lead to the curse of dimensionality, a significant hurdle when trying to effectively learn from such data. We focus on three primary challenges in this context. First, temperature forecasting is a multifaceted problem that requires not only past temperature data for the target location but also additional features such as wind speed, wind direction, atmospheric pressure, and humidity. These features add complexity to the model, making it crucial to handle high-dimensional data effectively. The second challenge arises from the increase in input dimensionality. This expansion must be reflected in the model’s weight structure. One possible approach is to flatten the input data to preserve the transformer architecture as it is. However, this could lead to a loss of critical information, thereby degrading model performance. Alternatively, we could retain the full dimensionality of the input data, which would require expanding the model’s capacity to handle this higher-dimensional space. While this method maintains data integrity, it also results in increased computational demands and

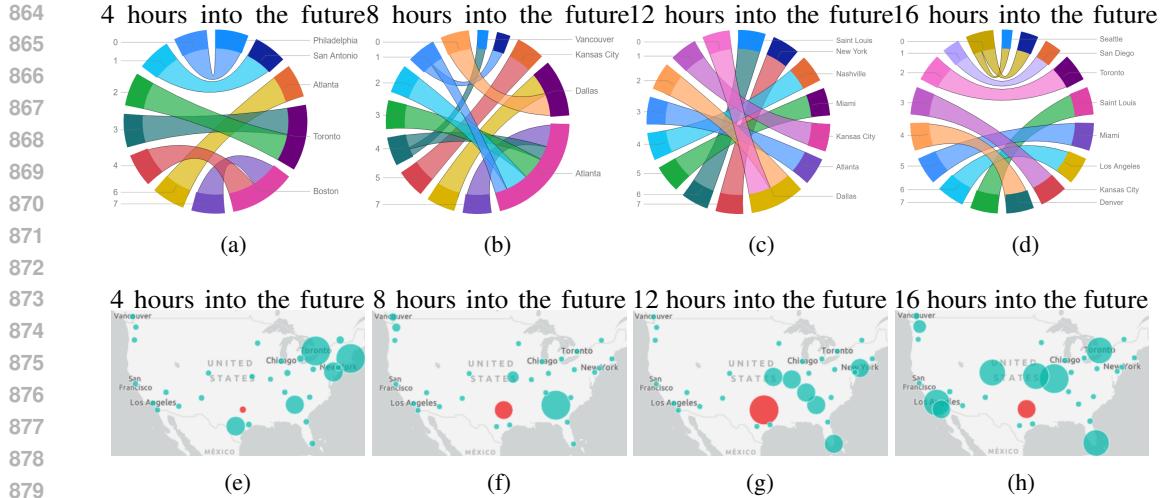


Figure 8: The Focal Modulation visualization for **Dallas** in the USA-Canada dataset illustrates the attention mechanism of the model. The circular graphs depict which cities are attended to by the most important attention heads. The line thickness represents the strength of the attention each head allocates to these cities, while the circle size indicates the relative importance of each city in predicting the temperature for the target city. The target city, marked by a red circle, has its size proportional to the level of focal modulation it receives from the model.

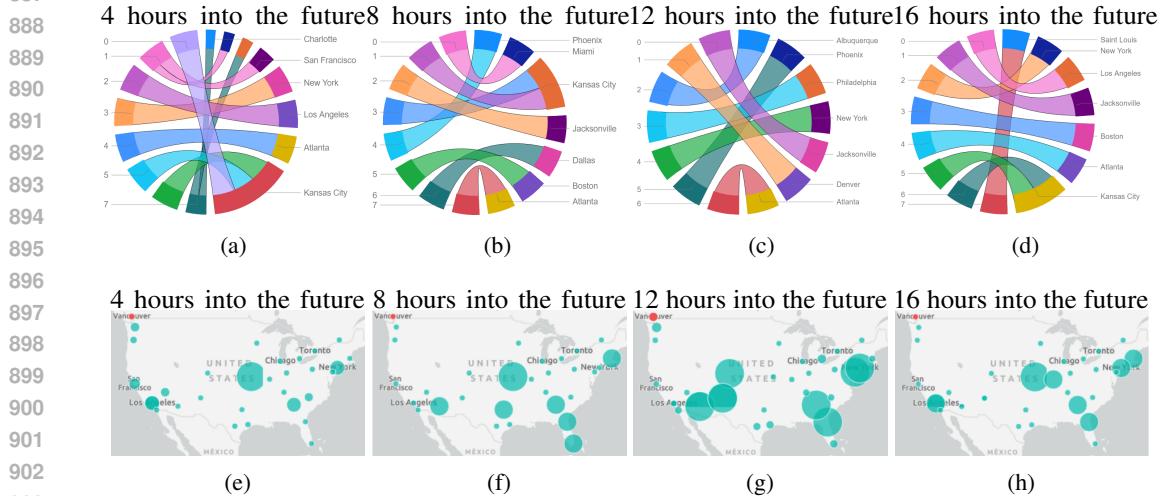


Figure 9: Focal Modulation visualization for **Vancouver** in USA-Canada dataset. The circular graphs show which city each of the most important heads attends to. The thickness of the line represents the amount of attention each of the heads is paying to the cities. The size of the circles indicates the importance of Each city in the temperature prediction for the target city. The target city is marked as a red circle, and its size corresponds to the importance of the focal modulation to itself.

longer training times. A potential solution to this issue is the use of Tensor Processing Units (TPUs), which can significantly speed up both training and evaluation phases. The third challenge is related to model explainability, which has become a pressing concern as models are increasingly used to automate tasks without transparent reasoning behind their predictions. To address this, we utilize focal modulation weights to pinpoint the areas of the input that the model focuses on most heavily when making its predictions, thereby offering valuable insights into its decision-making process. By tackling these challenges, this work contributes to improving both the efficiency and interpretability of temperature forecasting models in high-dimensional settings.

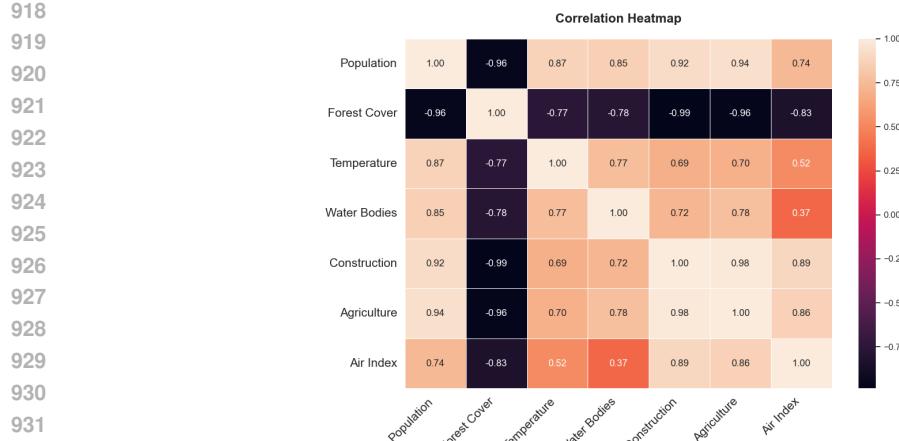


Figure 10: Correlation Heatmap: It illustrates the relationships between various climatic parameters

A.2 CORRELATION BETWEEN PARAMETERS

The correlation matrix, as depicted in Figure 10, provides a comprehensive analysis of the relationships between the seven selected parameters: Air Index, Forest Cover, Water Bodies, Agriculture and Vegetation, Population, Surface Temperature, and Construction. The matrix reveals the intricate interdependencies among these variables, offering insight into the underlying dynamics of the study area. Notably, most parameters exhibit positive correlations, suggesting that as one variable increases, others tend to follow suit. For example, it is expected that an increase in population may lead to higher construction activity and possibly a reduction in forest cover. Similarly, an increase in agricultural and vegetation areas may correlate with changes in surface temperature or water body extent.

In contrast, the parameter *Forest Cover* stands out due to its negative correlation with several other parameters. The gradual reduction in forest cover over time reflects the increasing anthropogenic activities such as construction and agriculture. This negative correlation is indicative of environmental degradation, as the expansion of urban areas and agricultural practices leads to deforestation, which in turn impacts other environmental factors. The relationship between these variables underscores the complexity of the region's ecological balance and emphasizes the need for sustainable practices to mitigate the adverse effects of rapid development.

The correlation matrix serves as a vital tool in understanding the interconnectedness of these environmental and socio-economic parameters, guiding future analyses and policy recommendations aimed at fostering more sustainable development strategies.