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ABSTRACT

Accurate multivariate time-series forecasting is crucial for understanding and miti-
gating the effects of climate change, as reliable long-horizon predictions support
effective monitoring and informed decision-making. Existing neural approaches
ranging from CNNs and RNNs to attention-based Transformers have achieved
notable progress. Yet, they often suffer from two key limitations: difficulty in
capturing hierarchical spatiotemporal dependencies and computational inefficien-
cies when scaling to high-dimensional meteorological data. We propose FATE
(Focal-modulated Attention Encoder), a new Transformer architecture tailored
for robust multivariate time-series forecasting. FATE introduces a tensorized fo-
cal modulation mechanism that enhances spatiotemporal dependency modeling
while maintaining scalability. To improve interpretability, we further design dual
modulation scores that identify critical environmental features driving the fore-
casts. Comprehensive experiments on seven diverse real-world datasets including
benchmark energy, traffic, and large-scale climate datasets demonstrate that FATE
consistently surpasses state-of-the-art methods, particularly on long-horizon and
high-variability settings. Extensive ablations confirm the generalization ability of
FATE across heterogeneous forecasting tasks. To foster reproducibility and future
research, we will release the full implementation.

1 INTRODUCTION

The Transformer architecture (Vaswani et al.l |2017al) has become a cornerstone of modern deep
learning, driving breakthroughs in natural language processing (Brown et al.,|2020} Radford et al.|
2019; |Devlin et al.|[2018b; |Radford et al.l|2021)), computer vision (Dosovitskiy et al.,|2020; Zhu et al.,
2021 |Yang et al.l 2022)), and large-scale foundation models (Kaplan et al., 2020). Motivated by this
success, recent works have applied Transformers to multivariate time-series forecasting, leveraging
their ability to model pairwise dependencies and extract multi-level sequence representations (Wu
et al.| [2021a; [Nie et al.| [2023). However, their effectiveness in this domain remains contested.
Notably, simple linear models rooted in classical statistics (Box & Jenkins|, |1968) have been shown
to outperform Transformers in both accuracy and efficiency (Zeng et al., [2023a; |Das et al., [2023al).
At the same time, emerging architectures that explicitly model multivariate correlations (Zhang &
Yanl 2023a; [Ekambaram et al., 2023)) underscore the limitations of vanilla self-attention for complex
time-series dynamics.

We identify three fundamental shortcomings of existing Transformer-based approaches for multi-
variate forecasting: (1) Permutation-invariant self-attention fails to capture temporal order, leading
to weak modeling of sequential dynamics. (2) Uniform attention across tokens not only overlooks
the varying significance of climate variables across spatiotemporal scales, but also leads to compu-
tational inefficiencies when scaling to high-dimensional meteorological data. (3) The architecture
lacks an explicit mechanism to model hierarchical spatiotemporal correlations, which are crucial for
long-horizon forecasting.

Unlike FocalNet (Yang et al., 2022}, which was designed for spatial representation learning in vision
tasks, FATE introduces key innovations tailored for multivariate time-series forecasting:

» Tensorized Attention Design: FATE preserves the full 3D tensor structure (X € R7*5*F),
maintaining temporal and variable axes explicitly. This enables more effective modeling of
long-range dependencies through grouped attention across both time and features.
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(a) Encoder Architecture of FATE. (b) Tensorial Focal Modulation

Figure 1: Our proposed architecture consists of two main components: Figure|lalshows the overall
architecture of FATE encoder. The input time series data passes first through positional encoding,
and then Tensorial Attention, which incorporates spatial as well as temporal information. Figure[Tb]
explains the internal working of the tensorial focal-modulation block. The Query (Q), Key (K), and
Value (V) tensors undergo a series of tensor multiplication, scaling, reduction, and softmax operations
to create attention maps. These maps are then used by the model to determine which regions of the
inputs are more significant.

* Focal Grouping for Temporal Blocks: Instead of spatial grids, FATE dynamically defines
temporal focal groups that adapt to prediction horizons, allowing the model to capture
hierarchical temporal dependencies unique to time-series data.

* Cross-axis Modulation: Focal modulation is extended beyond temporal steps to the variable
dimension, enabling rich cross-feature interactions that are absent in FocalNet.

In this way, FATE is not a simple adaptation of FocalNet, but a principled redesign that leverages the
structural properties and forecasting demands of multivariate time-series data.

Long-term variations in temperature, precipitation, wind, and other environmental factors define
climate change (Barrett et al., [2015). These shifts have profound global impacts, threatening sus-
tainability in domains such as food security, public health, and energy systems. For instance, a
projected increase of up to 2°C in global mean temperature this century could severely reduce crop
yields. Unlike short-term fluctuations, climate change evolves over decades, driven primarily by
greenhouse gas emissions, deforestation, and limited adoption of renewable energy (Latake et al.,
2015). Accurate long-horizon forecasting of such multivariate processes is therefore critical. It
enables policymakers and practitioners to assess risks, monitor climate drivers, and design mitigation
strategies (Huntingford et al.,|2019). However, the multidimensional and highly correlated nature of
climate data poses significant challenges for existing forecasting models.

To address these challenges, we propose FATE, a novel Transformer that (1) introduces tensorized
focal modulation for explicit spatiotemporal correlation modeling, (2) employs dual modulation scores
to enhance interpretability, and (3) adaptively emphasizes relevant tokens via selective attention.
We evaluate FATE across seven diverse real-world datasets and demonstrate that it consistently
outperforms state-of-the-art methods, particularly on long-horizon and high-dimensional climate
datasets. Extensive ablation studies further confirm that FATE generalizes effectively across broader
multivariate forecasting tasks.

Contributions. The main contributions of this work are threefold:

* We introduce FATE, a Transformer architecture with a novel focal-modulation mechanism
that preserves 3D tensor structure (1" x S x P) for multivariate time-series forecasting.

e We design dual modulation scores that improve both predictive performance and inter-
pretability by identifying critical temporal and variable dependencies.

* We achieve new state-of-the-art results on seven benchmark datasets, including accuracy
gains of 13.3%, 9.1%, and 10.1% on ETTm2 (Zhou et al.,[2021a)), "eather5k (Han et al.,
2024), and LargeST (Liu et al.|[2023])), respectively, with strong improvements across all
other datasets.
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2 RELATED WORK

Transformers for Time Series Forecasting. Transformer architectures (Vaswani et al., 2017al)
have achieved remarkable success across NLP (Devlin et al., 2018a}; | Brown et al., 2020; Radford
et al.l 2019), computer vision (Dosovitskiy et al.l 2021} |Bao et al., [2022; He et al., 2021), and
speech (Baevski et al.,|2020; Hsu et al.| [2021)) due to their scalability and effective sequence modeling.
Vision Transformers (ViTs) divide images into patches to preserve local semantic information (Doso;
vitskiy et al.l 2021; Geiger et al., 2013} |Li et al., [ 2020), while NLP models like BERT (Devlin et al.,
2018b) leverage subword tokenization for contextual dependencies. Inspired by these successes,
Transformer variants have been widely adapted for time-series forecasting (Jake Grigsby & Qil, 2021}
Nie et al., 2023). Early models, such as LogTrans (Li et al., [2019) and Informer (L1 et al., [2021)),
addressed computational inefficiencies via sparse attention. Autoformer (Wu et al.|[2021a) introduced
decomposition-based inductive biases, FEDformer (Zhou et al., 2022a) employed Fourier-enhanced
blocks for seasonal modeling, Pyraformer (Liu et al., 2021) added pyramidal attention for multi-scale
dependencies, and Triformer (Cirstea et al.,[2022) proposed pseudo-timestamp-based patch attention.
Despite these advances, many Transformer forecasters still rely on point-wise or handcrafted attention,
limiting their ability to capture semantic relationships across patches or dimensions (Sakaridis et al.,
2018 |Ashish, [2017; [Zhu et al.l 2023). For example, Autoformer’s fixed auto-correlation modules
may fail to generalize, and Triformer does not treat patches as first-class units nor model internal
semantics. TimeMixer++ (Wang et al., 2024)) advances multi-scale, multi-resolution forecasting by
converting time series into 2D time images (via Multi-Resolution Time Imaging, MRTI) and sepa-
rating seasonal/trend components in latent space using dual-axis attention, followed by hierarchical
Multi-Scale Mixing (MCM) and Multi-Resolution Mixing (MRM). This allows parallel modeling of
concurrent temporal contexts (daily, weekly, seasonal), improving forecasting, classification, and
anomaly detection. TimeTensor (Liang et al.,|2024) generalizes linear attention to 3D tensor inputs
via Kronecker decomposition, improving efficiency while retaining the standard attention paradigm.
In contrast, FATE introduces tensorized focal modulation, explicitly preserving 3D spatiotempo-
ral structure, enabling hierarchical and localized context aggregation, and jointly modeling long-
and short-range dependencies. This represents a novel architectural strategy distinct from previous
tensorized attention mechanisms.

Self-supervised and Representation Learning. Transformer adaptations for time series can be
categorized into four directions (Kalyan et al., 2021)): (i) attention-level modifications for efficiency,
(ii) adaptations for stationarity and signal processing, (iii) architectural changes capturing cross-
variate and temporal dependencies, and (iv) novel tensor-based designs. Most methods focus on the
first three, while few explore fundamental tensor-based redesigns. Self-supervised learning (SSL)
has also gained traction for time-series representation learning. Methods such as TNC (Tonekaboni
et al.,[2021)), TS2Vec (Yue et al., 2022), and BTSF (Yang & Hongl 2022) learn rich representations
without supervision, whereas Transformer-based SSL models like TST (Zerveas et al., [2021)) and
TS-TCC (Eldele et al., 2021)) remain underexplored for capturing complex temporal and cross-
variate dependencies. FATE ’s tensorized focal modulation inherently supports richer hierarchical
representations, bridging this gap by jointly modeling time, feature, and spatial dimensions. Focal
Modulated Tensorized Encoder introduces a novel tensorized focal modulation mechanism tailored
for multivariate time-series forecasting. It preserves the input’s 3D tensor structure (1" x S x P),
enables hierarchical spatiotemporal correlation modeling, and applies tensorized attention design,
temporal focal grouping, and cross-axis modulation. Unlike prior work, FATE balances efficiency
with semantic richness and provides a principled framework for long- and short-range dependency
modeling in high-dimensional time series.

3  PROPOSED METHODOLOGY

In this section, we present FATE, a Focal Modulated Tensorized Encoder Transformer designed for
multivariate time-series forecasting. The architecture preserves the full 3D structure of the input
tensor to jointly model temporal, spatial (station-wise), and feature dimensions. Central to FATE
are tensorized focal modulation mechanisms that efficiently capture hierarchical temporal patterns,
cross-station interactions, and feature dependencies, while providing interpretable modulation scores
that highlight the contribution of each station and attention head. The following subsections detail
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(a) Slice-to-QKV projection: each colored slice of (b) Multi-head output assembly: the concatenated self-
the input tensor X is multiplied by the corresponding  attention outputs are slice-multiplied by weight slices
weight slice to form the query (Q), key (K), and value  to yield each slice of the output tensor Y.

(V) tensors.

Figure 2: (a) Slice multiplication for QKV extraction. (b) Slice multiplication for multi-head attention
output.

the encoder design, the tensorial focal modulation computations, and the aggregation strategy for
interpretable predictions.

3.1 MULTI-DIMENSIONAL TENSORED FOCALNET ENCODER

We extend the FocalNet Transformer (Yang et al.l 2022) to propose the Tensorized Focal Encoder
Transformer, specifically designed to capture complex patterns in multi-dimensional time-series
data. Our model operates on climate parameters organized as a 3D tensor X € RT*9XP where
T denotes the temporal dimension, .S indexes different stations, and P represents diverse climate
parameters (e.g., temperature, humidity, wind speed). The full 3D structure preserves variable—time
step relationships and supports parallel yet separate attention across temporal and feature dimensions.

The architecture is encoder-only, as illustrated in Figure I} and comprises: (i) a positional encoding
layer, (ii) a tensorial focal modulation encoder layer, and (iii) a linearly activated fully-connected
layer. Each encoder layer integrates tensorial modulation (Sections 3.2 and 3.3) followed by a residual
connection and normalization. A densely connected FFN, consisting of two linear transformations
with ReLU activation, follows the modulation layer, and is again succeeded by residual connection
and normalization, consistent with (Yang et al.,[2022).

3.2 TENSORIAL FOCAL MODULATION

To encode temporal hierarchies, we apply a constant positional encoding (Yang et al.,[2022)) along
the time axis 7" and parameter axis P:

. . pos
PE(pos, 2i) = sin | ——2> 1
(pos, 2i) = sin (10000-21/13) ’ M

where pos indexes time and ¢ indexes parameters; the station axis .S transmits the encoded values.

Focal modulation replaces pairwise attention with hierarchical context aggregation (Yang et al.|
2022), offering three key benefits: (i) improved computational efficiency, (ii) preservation of locality
biases, and (iii) non-quadratic long-range dependency modeling. For multivariate time series, FATE
leverages this through: (1) nested focal windows that hierarchically aggregate temporal information,
and (2) dynamic contextual gating that adapts to input distributions, outperforming fixed receptive
fields or conventional attention kernels.



Under review as a conference paper at ICLR 2026

We formalize tensor slices as follows: for a tensor N € RX*Y*Z (N, ), € RY*Z denotes the
z-slice, and (N,),,, € RZ denotes the z, y-slice. Lowercase letters indicate slice sizes.

Tensorial focal modulation operates on X € RT*5*F We first compute 3D Query (Q), Key (K),
and Value (V) tensors, Q, K,V € RT*5*H yia element-wise multiplication with learnable weight
tensors W&, WK WV ¢ RS*FxH,

(Qh)t,s = (Xp)t,s X (WQ)p,h,s’
(Kh)t,s = (Xp)t,s X (WK)p,h,sa (2)
Vidts = (Xp)es x WY )pns, VE=1.T,s=1.8.

Next, we compute the multiplicative interaction across time steps:

s
~ 1 ~
(Rs,sl)t,tl = (Qs,h)t X ((Ksl,h)tl)T7 R= ﬁ Sl:l(Rt,tl,s)sla (3)
followed by a softmax across the station dimension to obtain attention weights A e RTXT'xS,
(Ag)rp = Softmax ((Ryp.)s), ¥t =1.T. )

Finally, the output Z € R7*¢*P is computed by broadcasting (A, ), to match the shape of (Vi 4) -
and summing over the temporal dimension:

T
(Zoa)r =Y broadeast((Ay)i ) o (Vaa)y, Vt=1.T. )

t'=1
3.3 FOCAL MODULATION AGGREGATION

Modulation weights have been widely used for feature selection and interpretability (Wiegreffe &
Pinter, |2019). In FATE, the focal modulation tensors A (Eq. @ serve to provide interpretable insights
into model predictions.

To quantify the relationship between attention heads and cities (stations), we compute head-wise
focal modulation scores:

T T
NAP=3"N"Ap, . Vh=1.H c=1.C. (©)

t=1t'=1

We then aggregate across all heads to obtain city-wise modulation scores, reflecting the overall
contribution of each city to the prediction:

H
NA, =) NA! Ve=1.C. @)
h=1

This aggregation completes the tensorial focal modulation process, explicitly linking attention heads
to cities and highlighting the importance of each city in driving the model’s forecasts.

4 EXPERIMENTS

To rigorously evaluate FATE, we conduct extensive experiments on seven diverse real-world datasets
spanning environmental and infrastructural domains, comparing against 17 state-of-the-art baselines
including Transformer-, RNN/CNN-, Linear-, and spatial-temporal models. We analyze predictive
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performance across short- and long-horizon forecasts using standard metrics (MAE, MSE), bench-
mark computational and memory efficiency, and provide interpretability through focal modulation
visualization. These studies demonstrate FATE’s superior accuracy, robustness, and capacity to
model multi-scale temporal and spatiotemporal dependencies.

4.1 DATASETS

We evaluate FATE on seven diverse real-world multivariate time-series datasets, encompassing
both environmental (Weather5k, USA-Canada, Europe) and infrastructural (ETTh1, ETTm2, Traffic,
LargeST) domains.

ETTh1 [Zhou et al.| (2021a) and ETTm?2 [Zhou et al.|(2021a)) are electricity transformer datasets
at hourly and minute resolutions, respectively, capturing seasonal and trend-driven consumption
patterns. Traffic Zhao| (2019) consists of road occupancy rates from multiple sensors, serving as
a standard benchmark for traffic flow prediction. Weather5k |Han et al.| (2024)) is a large-scale
dataset with 10 years of hourly measurements from 5,672 weather stations worldwide, including
temperature, humidity, wind speed, and other climate parameters. USA-Canada [Meteorological
Development Laboratory, Office of Science and Technology, National Weather Service, NOAA, U.S|
Department of Commerce|(1987) contains hourly meteorological data from 30 cities (Oct 2012-Nov
2017), enriched with spatial coordinates and temporal features such as hour and day-of-year. The
Europe dataset|Huber et al.|(2022) spans 18 European cities (May 2005—-Apr 2020), with normalized
temporal and meteorological features; the test split covers 2017-2020, and the training/validation
span 2005-2017. Finally, LargeST [Liu et al.| (2023) provides traffic data from 8,600 sensors in
California over 5 years, including rich sensor metadata for enhanced interpretability.

Across all datasets, FATE consistently outperforms baselines—including Transformer |Vaswani et al.
(2017b); | Yang et al.| (2022), 3D-CNN |[Mehrkanoon| (2019b)), LSTM |Hochreiter & Schmidhuber
(1997)), and ConvLSTM |Shi et al.|(2015)—achieving the lowest Mean Absolute Error (MAE) and
Mean Squared Error (MSE), particularly on long-horizon and high-dimensional climate datasets.

4.2 ADDITIONAL IMPLEMENTATION DETAILS

Computational and Memory Requirements. We use a fixed 30-day input window; for climate
datasets, we consider 7 meteorological features, while feature selection for other datasets follows the
original data schema. Experiments were conducted on an NVIDIA A100 GPU with 40GB VRAM.
Optimizers were selected per architecture following prior best practices.

We analyze FATE ’s computational complexity and provide empirical runtime benchmarks against
Transformer and CNN-based baselines. While tensorized focal modulation introduces moderate
overhead compared to standard Transformers, the performance gains in long-horizon forecasting
justify this cost. Preserving the 3D tensor increases memory complexity due to grouped modulation,
but efficient projections keep runtime and GPU usage comparable to baseline Transformers.

Hyperparameters. Table [T details all training
hyperparameters. Multi-head attention is used
in both FATE and Transformer models, with
FATE employing four focal levels and eight at-
tention heads to capture hierarchical temporal
dependencies. 3D-CNN Mehrkanoon| (2019b)
and ConvLSTM |Shi et al.| (2015) models use
convolutional layers with kernel sizes tuned for  “Hyper-parameter | FATE | Transformer | 3D CNN | LSTM | ComvLSTM

Table 1: Hyperparameters used for all the models.
All hyperparameters were selected using 5-fold
cross-validation. Tuning was done independently
on each dataset to avoid overfitting or unfair trans-
fer of settings.

spatiotemporal patterns. LSTM Hochreiter & Focal Lovels 4 3 : . ;
Schmidhuber| (1997) and ConvLSTM models  Head 8 I . ; l
employ recurrent units with hidden dimensions  pewe Ui P P 128 -
optimized for sequential modeling. Scheduled s ... : : 2 : s
learning rate decay is applied in FATE and E:?:lrrl.:;l:e Schedule | Schedule 0 1102*84 10
Transformer models, while 3D-CNN, LSTM,  Bachsize 64 32 128 256 128

and ConvLSTM use fixed rates. Batch sizes are
scaled for memory efficiency and stable training.
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4.3 FORECASTING RESULTS

We evaluate FATE across diverse real-world datasets and benchmark it against 17 state-of-the-art
models spanning four categories: (1) Transformer-based: iTransformer [Nie et al| (2024), Auto-
former (2021b), etc.; (2) RNN/CNN-based: LSTM [Hochreiter & Schmidhuber, (1997),

ConvLSTM |Shi et al.[(2015), 3D-CNN |[Mehrkanoon| (2019b); (3) Linear-based: DLinear |Zeng et al.
(2023D)), TiDE Das et al. (2023b); (4) Spatial-temporal (LargeST dataset): DGCRN Li et al.| (2023a),

D2STGNN [Shao et al.| (2022).

Table 2: The test results for temperature prediction, evaluated using the Mean Absolute Error (MAE) and Mean
Squared Error (MSE), were obtained for the USA-Canada and Europe datasets. The best-performing results
are highlighted in bold, while the second-best are marked in red for clarity.

‘ MAE MSE . Model MAE MSE
Station 4hrs Shrs 12hrs 16hrs | 4brs Shrs  I2hrs  16hrs || S@HON ode] 3days Sdays 7days | 3days Sdays 7days
1238 1858 1987 2.146 | 2566 5787 6617 7748 Transformer] Vaswani et al X 2901 3347 [ 11702 14660 15926
1499 1896 2131 2329 | 3704 5950 7455 8879 v 3015 3059 | 1073 13654 15740
1311 1834 2039 2210 | 2917 5712 6970 8237 2801 2931 | 9354 11328 14931
1338 1829 1992 2094 | 2967 5553 6571 7.990 2787 2948 | 12882 12272 14920
1258 1982 2682 2695 | 2578 4598 6395 6087 2878 3212 | 12489 12976 15345
1458 2905 1890 1870 | 2880 5456 6873 8293 2789 3404 | 12213 13643 15895
1590 1563 355 5679 6163 6946 2778 3012 | 11678 13234 15543
Vancouver 1354 1430 2 3050 4987 6201 7845 | Barcelona 2987 3641 | 12975 12075 14887
1673 1256 2990 4678 5987 6289 3543 3342 | 11897 12675 15967
1568 1.789 1764 4234 5239 3.923 15325
1456 1590 1678 3989 478 5257 15564
1555 1728 2278 3278 3987 4890 14243
1145 1567 2789 2908 3678 3980 14675
1134 1556 1890 2465 2967 3653 13.990
1123 1487 1670 1910 2456 2847 13.696
1021 1217 1464 1660 1844 2238 13523
1426 2043 3836 7533 9268 10978 350678
1835 2316 5587 9159 13468 11.964 49410
1596 2126 4724 8103 9749 10985 46590
1394 2134 4949 7790 9257 10341 43288
1756 1.981 4436 7234 10457 9.357 48.939
1940 1879 4876 6905 12755 10.345 E 33 47834
1650 1809 4345 6469 12657 9235 5680 5456 | 32689 41549 45834
New York 1903 1.980 3957 7458 11466 9.587 | Maastricht Stati 5786 5940 | 32569 40457 47394
1455 1912 4768 7548 10567 10344 5079 5749 | 32564 41348 50576
1465 1893 4534 5990 13565 10497 5768 5088 | 31455 39457 49785
2124 2498 4786 6935 11356 9346 5698 5678 | 31455 41694 46876
1967 2231 3654 7345 10549 9438 5345 5543 31289 40694 48567
NefWu ctal | 1.567  1.890 3234 7.095  9.657 10.348 5234 5432 | 30234 41457 50345
L ued 1563 2.086 3767 6455 9378 9347 5234 5876 | 30457 40345 49.566
iTransformer Nic ct al. |1 2024] 1274 1.908 3.555 5839  7.994 904 5343 5765 | 30.578 39457 43456
0.982 1.689 3180 5296 6677  8.193 4410 4940 | 21458 35501 39707
1426 2.043 3836 7533 9268 10978 5286 5275 | 23954 39057 43526
1835 2316 5587 9.159 13467 11968 5049 5262 | 24870 39578 43507
1296 2026 4724 8403 9749 10983 4730 5189 | 20235 34.021 42733
1504 2134 4949 7790 BAST 12342 4830 5023 | 22484 35401 37.767
1645 2457 3886 9203 13124 12588 5800 5456 | 22467 37347 40458
1458 2346 3508 9.034 12244 12458 5461 5546 | 20567 40890 44.102
1748 2479 3680 7904 13598 1245 5563 5986 | 23467 39.834 42549
Los Angeles 1983 2986 3976 8348 12548 11579 | Munich 5970 5446 | 22366 38.787 43124
1849 2228 3578 8438 11959 11345 5348 5785 | 20456 39456 42957
1648 2.562 3877 7348 11345 10397 5795 5679 | 21458 40683 42458
1843 2875 3689 6937 10543 10458 5675 5685 | 23546 40348 44939
1937 2780 3273 6348 9434 10439 5235 5436 | 23754 39457 44345
1893 2549 3679 6438 8934 9948 5344 5543 | 23456 38458 42589
1457 2456 3879 6349 8282 9348 5234 5567 | 22546 37450 43548
iTransformer Nie et al. | 2024] 1247 1.908 3979 6475 8348 8458 a 4948 5745 | 21455 36845 40347
FATE (Ours) 1183 1530 3180 5496 6677 8185 FATE (Ours) 3196 4335 4925 | 19927 32454 36309

Continental-scale Forecasting. On USA-Canada and Europe datasets, we evaluate 4—16 hour
forecasts using MAE and MSE (Table2). FATE consistently outperforms all baselines, including
robust Transformers and linear models. For example, in Vancouver, FATE reduces MAE and
MSE by up to 15.9% and 24.9%, respectively, over the best baseline. The Europe dataset exhibits
similar trends, highlighting FATE’s robustness and ability to model long-horizon temporal dynamics
effectively.

Large-Scale Spatiotemporal Forecasting. On ) .
the LargeST dataset (Table[3), FATE achieves Table 3: Comparison of model performance on
the lowest MAE and MSE (0.160 and 0.255), L@78eST dataset. The best performing model is
surpassing D2STGNN by 10.1% and 13.6%, re- shown in bold and the second best in red for clarity.
spectively. These results demonstrate FATE’s
capacity to capture intricate spatiotemporal de-
pendencies in large-scale traffic data, making it
highly suitable for real-world forecasting appli-
cations.

Model MAE MSE

LSTM Hochreiter & Schmidhuber|(1997)  0.266  0.417
0.213  0.333
0.186 0.311

. 0.195 0335
Benchmark Dataset Evaluation.  Across 0180  0.300

four standard multivariate time series datasets N B 0.178  0.295
(ETTh1, ETTm2, Traffic, Weather5k; Table , FATE (Ours) 0160 0255
FATE consistently achieves state-of-the-art or
competitive performance. Notably: - ETThl:
4.3% lower MAE, capturing fine-grained tem-
poral patterns. - Traffic: compared to PatchTST, MAE is slightly higher, but MSE decreases by 3%. -
Weather5k: 9.1% MAE and 12.3% MSE improvements over CI-TSMixer, demonstrating robustness
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Figure 3: Attention visualization for New York in USA-Canada dataset. The circular graphs show
which city each of the most important heads attends to. The thickness of the line represents the
amount of attention each of the heads is paying to the cities. The size of the circles indicates the
importance of Each city in the temperature prediction for the target city. The target city is marked as
ared circle, and its size corresponds to the importance of the attention to itself.

to high-dimensional noise. - ETTm2: 13.3% MAE and 7.9% MSE improvements, confirming
generalizability across diverse datasets. These results collectively validate FATE ’s ability to model
multi-scale temporal and spatial dependencies, yielding accurate and stable forecasts across both
regional and large-scale datasets.

Table 4: Comparison of MAE and MSE on temperature prediction across diverse real-world multi-
variate time-series datasets. The best performing results are highlighted in bold and the second best
are marked in red for clarity.

Model ETTH1 Traffic Weather5K ETTM2
MAE MSE | MAE MSE | MAE MSE | MAE MSE
FATE (Ours) 0.381 0377 | 0.254 0349 | 0.179 0.128 | 0.221 0.151
CI-TSMixer Ekambaram et a1.|(]2023} 0.398 0368 | 0.278 0.356 | 0.197 0.146 | 0.255 0.164
PatchTST|Li et al. {2023bt 0.400 0370 | 0.249 0360 | 0.198 0.149 | 0.256 0.166
DLinear|Zeng et al. 0.399 0375 | 0.282 0410 | 0.237 0.176 | 0.260 0.167
FEDformer Zhou et al.|(2022b 0419 0376 | 0.366 0.587 | 0.296 0.217 | 0.287 0.203
Autoformer m‘nm 0.459 0449 | 0388 0.613 | 0336 0.266 | 0.339 0.255
Informer|Zhou et al.|(2021b 0.713 0.865 | 0.391 0.719 | 0.384 0.300 | 0453 0.365

4.4 MODULATION VISUALIZATION AND ABLATION STUDY

Figure [3]illustrates the interpretability of FATE through focal modulation scores. Panels (a)—(d) show
head-wise scores N A" (Eq.|6), highlighting each head’s focus in generating predictions. Aggregated
city-wise scores N A, (Eq.[7) reveal the contribution of each city to the target city. Panels (e)—(h)
depict these interactions as graphs, where line thickness indicates attention strength and circle
size represents city importance; the red circle marks the target city’s self-attention. As forecast
horizons extend, the target city increasingly attends to more distant contributors, reflecting dynamic
spatiotemporal dependencies. Additional visualizations are provided in Appendix § [AT]

5 OUTLOOK AND FUTURE DIRECTIONS

The strong empirical performance of FATE opens multiple avenues for advancing spatio-temporal
forecasting.
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Figure 4: The comparison between the predictions of the FATE model and the real measurements for
the hourly temperature of the test set of Vancouver.

Scaling to global and ultra-long horizons. While FATE performs strongly on regional datasets
(Table 2, scaling to continental or global domains requires optimized training and inference. Future
work may explore hierarchical or distributed focal-modulation architectures to retain interpretability
while handling millions of spatial points over decades of data. Richer variables and cross-domain
fusion. Current experiments emphasize temperature and standard meteorological features (Table [).
Adding variables such as precipitation, aerosols, oceanic indices, or soil moisture and fusing satel-
lite imagery, reanalysis products, and socio-economic data could enhance predictive power and
policy relevance. Self-supervised pretraining. Unlabeled climate data motivates self-supervised
learning tailored to the focal-tensor setup. Objectives like contrastive or masked prediction can
enrich spatio-temporal representations, improve robustness, and reduce dependence on labeled data.
Physics-informed inductive biases. Incorporating physical constraints e.g., conservation laws or
dynamical couplings into focal-modulation blocks may improve physical plausibility and reduce
extrapolation error (Appendix §A.2). Hybrid integration with NWP ensembles is a promising future
direction. Efficiency and real-time inference. Though efficient, FATE remains costlier than linear
baselines. Techniques such as tensor compression, sparse kernels, or adaptive focal levels could
enable lightweight, real-time variants for edge or on-device use. Decision-support and societal
impact. Translating forecasts into actionable insights for agriculture, energy, and disaster response
remains a key challenge. Interpretable modulation maps (Figure [3) and tailored visualizations can
foster trust and support decision-making.

Summary. The tensorized focal-modulation design of FATE offers a scalable, extensible foundation
for climate forecasting. Future extensions across scale, modality, physics, and application position it
as a comprehensive tool for sustainable development.

6 CONCLUSION

In this study, we introduced the Focal-Modulated Tensorized Encoder (FATE), a framework designed
to capture complex spatiotemporal dependencies in climate data. By leveraging tensorized focal mod-
ulation, FATE effectively models multi-scale interactions across time, space, and climate parameters.
We evaluated FATE on seven diverse real-world multivariate time series datasets, consistently achiev-
ing state-of-the-art performance. Additionally, we proposed head-wise and city-wise modulation
scores to enhance interpretability and conducted ablation studies to quantify their impact. This work
provides a foundation for informed climate policy decisions and broader applications that exploit 3D
tensor-structured data.

LIMITATIONS

Our current evaluation focuses on temperature and related climate variables within mid-scale regional
datasets. Extending FATE to additional meteorological variables and global-scale grids is a direction
for future work. While FATE introduces modest computational overhead (trainable on a single
A100 GPU), it remains practical for deployment and can be further optimized for edge or real-time
applications. These limitations are operational rather than conceptual.
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A APPENDIX

A.1 FURTHER VISUALIZATIONS

We further visualized the feature selection process of the tensorial modulation mechanism, specifically
focusing on the visualizations for selected cities. From a spatiotemporal perspective, the mechanism
progressively emphasizes more distant cities as the prediction time step increases. This behavior
highlights the model’s ability to adaptively focus on relevant spatial regions over time.

The computations for the Query, Key, and Value tensors are defined as follows:

Qued=Xiep Wy, Vt=1,....T, c=1,....C, )
Kica=Xtes Wiy, Vt=1,....T, c=1,...,C, )
Viea=Xtefr Wige Vt=1,...,T, c=1,...,C. (10)

Here, X, . s represents the input tensor with temporal index ¢, spatial index c, and feature index f.
The learnable weight matrices Wﬁd’c, Wffdp, and W]‘/ 4,c map the input features to the Query (Q),

Key (K), and Value (V') tensors, respectively. These operations allow the model to dynamically
compute across time, space, and features.
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Figure 5: The comparison between the predictions of FATE model and the real measurements for
average daily temperature of the test set of Maastricht.

Figure. 5] presents the model predictions alongside real measurements for Maastricht, showcasing 2,
4, and 6-day forecast horizons. While FATE accurately captures smaller variations for 2- and 4-day
predictions, its performance over 6 days primarily reflects broader temperature trends. Unlike the
previous dataset, the results on the Europe dataset demonstrate varying performance, with FATE
ranking as the second-best model overall. Notably, FATE outperforms other models in predicting 4-
and 6-day horizons specifically for Maastricht.

Experiments on this dataset were conducted for 2, 4, and 6 days ahead predictions, using an empiri-
cally determined lag parameter of 8 days to construct the regressors. Target cities included Barcelona,
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Figure 6: The comparison between the predictions of FATE model and the real measurements for
average daily temperature of the test set of Barcelona.
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Figure 7: Focal Modulation visualization for Munich in Europe dataset. The top graphs show which
city each of the heads attends. The thickness of the line represents the amount of modulation each of
the heads is paying to the cities.

Maastricht, and Munich, with the average temperature as the primary prediction feature. Additionally,
Figure. [6]highlights model predictions versus real measurements for Barcelona at 2, 4, and 6 days into
the future. Despite FATE ’s competitive performance in specific scenarios, the LSTM-based model
achieved the lowest MAE in 5 city—time-step pairs and the lowest MSE in 4 pairs. Prior studies
Guo et al.|(2019); Ezen-Can| (2020) have reported that Transformers can struggle in scenarios with
limited data, which may explain why the Europe dataset constrained FATE ’s performance compared
to LSTM. Interestingly, in the Europe dataset, certain cities demonstrated minimal contribution to
the predictions, suggesting inherent feature selection by the model. This observation is evident in
Munich’s predictions, shown in the Figure. [7] where the circular graphs and maps illustrate limited
spatial dependencies for some cities. Unlike the US-Canada dataset, a distinct spatiotemporal pattern
was not observed for Munich’s predictions. Lastly, focal modulation visualizations are shown in the
Figures. [8] 0] and [3|reveal both spatial and temporal dynamics, combining map-based views and
circular graphs for each forecast horizon. These visualizations underline the adaptability of FATE
in leveraging key features, particularly in datasets with varying data distributions and prediction
horizons.

In this study, we leverage focal modulation weights to enhance model interpretability, specifically by
identifying which areas of the input data the model prioritizes when making predictions. A major
challenge in many practical applications is the cost of collecting labeled data, which often results
in a limited number of training samples, particularly when dealing with high-dimensional datasets.
This can lead to the curse of dimensionality, a significant hurdle when trying to effectively learn from
such data. We focus on three primary challenges in this context. First, temperature forecasting is
a multifaceted problem that requires not only past temperature data for the target location but also
additional features such as wind speed, wind direction, atmospheric pressure, and humidity. These
features add complexity to the model, making it crucial to handle high-dimensional data effectively.
The second challenge arises from the increase in input dimensionality. This expansion must be
reflected in the model’s weight structure. One possible approach is to flatten the input data to preserve
the transformer architecture as it is. However, this could lead to a loss of critical information, thereby
degrading model performance. Alternatively, we could retain the full dimensionality of the input
data, which would require expanding the model’s capacity to handle this higher-dimensional space.
While this method maintains data integrity, it also results in increased computational demands and
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Figure 8: The Focal Modulation visualization for Dallas in the USA-Canada dataset illustrates the
attention mechanism of the model. The circular graphs depict which cities are attended to by the
most important attention heads. The line thickness represents the strength of the attention each
head allocates to these cities, while the circle size indicates the relative importance of each city in
predicting the temperature for the target city. The target city, marked by a red circle, has its size
proportional to the level of focal modulation it receives from the model.
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Figure 9: Focal Modulation visualization for Vancouver in USA-Canada dataset. The circular graphs
show which city each of the most important heads attends to. The thickness of the line represents
the amount of attention each of the heads is paying to the cities. The size of the circles indicates the
importance of Each city in the temperature prediction for the target city. The target city is marked as
ared circle, and its size corresponds to the importance of the focal modulation to itself.

longer training times. A potential solution to this issue is the use of Tensor Processing Units (TPUs),
which can significantly speed up both training and evaluation phases. The third challenge is related
to model explainability, which has become a pressing concern as models are increasingly used to
automate tasks without transparent reasoning behind their predictions. To address this, we utilize
focal modulation weights to pinpoint the areas of the input that the model focuses on most heavily
when making its predictions, thereby offering valuable insights into its decision-making process. By
tackling these challenges, this work contributes to improving both the efficiency and interpretability
of temperature forecasting models in high-dimensional settings.
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Figure 10: Correlation Heatmap: It illustrates the relationships between various climatic parameters

A.2 CORRELATION BETWEEN PARAMETERS

The correlation matrix, as depicted in Figure[I0} provides a comprehensive analysis of the relation-
ships between the seven selected parameters: Air Index, Forest Cover, Water Bodies, Agriculture
and Vegetation, Population, Surface Temperature, and Construction. The matrix reveals the intricate
interdependencies among these variables, offering insight into the underlying dynamics of the study
area. Notably, most parameters exhibit positive correlations, suggesting that as one variable increases,
others tend to follow suit. For example, it is expected that an increase in population may lead to higher
construction activity and possibly a reduction in forest cover. Similarly, an increase in agricultural
and vegetation areas may correlate with changes in surface temperature or water body extent.

In contrast, the parameter Forest Cover stands out due to its negative correlation with several other
parameters. The gradual reduction in forest cover over time reflects the increasing anthropogenic
activities such as construction and agriculture. This negative correlation is indicative of environmental
degradation, as the expansion of urban areas and agricultural practices leads to deforestation, which
in turn impacts other environmental factors. The relationship between these variables underscores the
complexity of the region’s ecological balance and emphasizes the need for sustainable practices to
mitigate the adverse effects of rapid development.

The correlation matrix serves as a vital tool in understanding the interconnectedness of these environ-
mental and socio-economic parameters, guiding future analyses and policy recommendations aimed
at fostering more sustainable development strategies.
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