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ABSTRACT

Accurate multivariate time-series forecasting is crucial for understanding and miti-
gating the effects of climate change, as reliable long-horizon predictions support
effective monitoring and informed decision-making. Existing neural approaches
ranging from CNNs and RNNs to attention-based Transformers have achieved
notable progress. Yet, they often suffer from two key limitations: difficulty in
capturing hierarchical spatiotemporal dependencies and computational inefficien-
cies when scaling to high-dimensional meteorological data. We propose FATE
(Focal-modulated Attention Encoder), a new Transformer architecture tailored
for robust multivariate time-series forecasting. FATE introduces a tensorized fo-
cal modulation mechanism that enhances spatiotemporal dependency modeling
while maintaining scalability. To improve interpretability, we further design dual
modulation scores that identify critical environmental features driving the fore-
casts. Comprehensive experiments on seven diverse real-world datasets including
benchmark energy, traffic, and large-scale climate datasets demonstrate that FATE
consistently surpasses state-of-the-art methods, particularly on long-horizon and
high-variability settings. Extensive ablations confirm the generalization ability of
FATE across heterogeneous forecasting tasks. To foster reproducibility and future
research, we will release the full implementation.

1 INTRODUCTION

The Transformer architecture (Vaswani et al., 2017a) has become a cornerstone of modern deep
learning, driving breakthroughs in natural language processing (Brown et al., 2020; Radford et al.,
2019; Devlin et al., 2018b; Radford et al., 2021), computer vision (Dosovitskiy et al., 2020; Zhu et al.,
2021; Yang et al., 2022), and large-scale foundation models (Kaplan et al., 2020). Motivated by this
success, recent works have applied Transformers to multivariate time-series forecasting, leveraging
their ability to model pairwise dependencies and extract multi-level sequence representations (Wu
et al., 2021a; Nie et al., 2023). However, their effectiveness in this domain remains contested.
Notably, simple linear models rooted in classical statistics (Box & Jenkins, 1968) have been shown
to outperform Transformers in both accuracy and efficiency (Zeng et al., 2023a; Das et al., 2023a).
At the same time, emerging architectures that explicitly model multivariate correlations (Zhang &
Yan, 2023a; Ekambaram et al., 2023) underscore the limitations of vanilla self-attention for complex
time-series dynamics.

We identify three fundamental shortcomings of existing Transformer-based approaches for multi-
variate forecasting: (1) Permutation-invariant self-attention fails to capture temporal order, leading
to weak modeling of sequential dynamics. (2) Uniform attention across tokens not only overlooks
the varying significance of climate variables across spatiotemporal scales, but also leads to compu-
tational inefficiencies when scaling to high-dimensional meteorological data. (3) The architecture
lacks an explicit mechanism to model hierarchical spatiotemporal correlations, which are crucial for
long-horizon forecasting.

Unlike FocalNet (Yang et al., 2022), which was designed for spatial representation learning in vision
tasks, FATE introduces key innovations tailored for multivariate time-series forecasting:

• Tensorized Attention Design: FATE preserves the full 3D tensor structure (X ∈ RT×S×P ),
maintaining temporal and variable axes explicitly. This enables more effective modeling of
long-range dependencies through grouped attention across both time and features.
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(a) Encoder Architecture of FATE.
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(b) Tensorial Focal Modulation

Figure 1: Our proposed architecture consists of two main components: Figure 1a shows the overall
architecture of FATE encoder. The input time series data passes first through positional encoding,
and then Tensorial Attention, which incorporates spatial as well as temporal information. Figure 1b
explains the internal working of the tensorial focal-modulation block. The Query (Q), Key (K), and
Value (V) tensors undergo a series of tensor multiplication, scaling, reduction, and softmax operations
to create attention maps. These maps are then used by the model to determine which regions of the
inputs are more significant.

• Focal Grouping for Temporal Blocks: Instead of spatial grids, FATE dynamically defines
temporal focal groups that adapt to prediction horizons, allowing the model to capture
hierarchical temporal dependencies unique to time-series data.

• Cross-axis Modulation: Focal modulation is extended beyond temporal steps to the variable
dimension, enabling rich cross-feature interactions that are absent in FocalNet.

In this way, FATE is not a simple adaptation of FocalNet, but a principled redesign that leverages the
structural properties and forecasting demands of multivariate time-series data.

Long-term variations in temperature, precipitation, wind, and other environmental factors define
climate change (Barrett et al., 2015). These shifts have profound global impacts, threatening sus-
tainability in domains such as food security, public health, and energy systems. For instance, a
projected increase of up to 2◦C in global mean temperature this century could severely reduce crop
yields. Unlike short-term fluctuations, climate change evolves over decades, driven primarily by
greenhouse gas emissions, deforestation, and limited adoption of renewable energy (Latake et al.,
2015). Accurate long-horizon forecasting of such multivariate processes is therefore critical. It
enables policymakers and practitioners to assess risks, monitor climate drivers, and design mitigation
strategies (Huntingford et al., 2019). However, the multidimensional and highly correlated nature of
climate data poses significant challenges for existing forecasting models.

To address these challenges, we propose FATE, a novel Transformer that (1) introduces tensorized
focal modulation for explicit spatiotemporal correlation modeling, (2) employs dual modulation scores
to enhance interpretability, and (3) adaptively emphasizes relevant tokens via selective attention.
We evaluate FATE across seven diverse real-world datasets and demonstrate that it consistently
outperforms state-of-the-art methods, particularly on long-horizon and high-dimensional climate
datasets. Extensive ablation studies further confirm that FATE generalizes effectively across broader
multivariate forecasting tasks.

Contributions. The main contributions of this work are threefold:

• We introduce FATE, a Transformer architecture with a novel focal-modulation mechanism
that preserves 3D tensor structure (T × S × P ) for multivariate time-series forecasting.

• We design dual modulation scores that improve both predictive performance and inter-
pretability by identifying critical temporal and variable dependencies.

• We achieve new state-of-the-art results on seven benchmark datasets, including accuracy
gains of 13.3%, 9.1%, and 10.1% on ETTm2 (Zhou et al., 2021a), Weather5k (Han et al.,
2024), and LargeST (Liu et al., 2023), respectively, with strong improvements across all
other datasets.
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2 RELATED WORK

Transformers for Time Series Forecasting. Transformer architectures (Vaswani et al., 2017a)
have achieved remarkable success across NLP (Devlin et al., 2018a; Brown et al., 2020; Radford
et al., 2019), computer vision (Dosovitskiy et al., 2021; Bao et al., 2022; He et al., 2021), and
speech (Baevski et al., 2020; Hsu et al., 2021) due to their scalability and effective sequence modeling.
Vision Transformers (ViTs) divide images into patches to preserve local semantic information (Doso-
vitskiy et al., 2021; Geiger et al., 2013; Li et al., 2020), while NLP models like BERT (Devlin et al.,
2018b) leverage subword tokenization for contextual dependencies. Inspired by these successes,
Transformer variants have been widely adapted for time-series forecasting (Jake Grigsby & Qi, 2021;
Nie et al., 2023). Early models, such as LogTrans (Li et al., 2019) and Informer (Li et al., 2021),
addressed computational inefficiencies via sparse attention. Autoformer (Wu et al., 2021a) introduced
decomposition-based inductive biases, FEDformer (Zhou et al., 2022a) employed Fourier-enhanced
blocks for seasonal modeling, Pyraformer (Liu et al., 2021) added pyramidal attention for multi-scale
dependencies, and Triformer (Cirstea et al., 2022) proposed pseudo-timestamp-based patch attention.
Despite these advances, many Transformer forecasters still rely on point-wise or handcrafted attention,
limiting their ability to capture semantic relationships across patches or dimensions (Sakaridis et al.,
2018; Ashish, 2017; Zhu et al., 2023). For example, Autoformer’s fixed auto-correlation modules
may fail to generalize, and Triformer does not treat patches as first-class units nor model internal
semantics. TimeMixer++ (Wang et al., 2024) advances multi-scale, multi-resolution forecasting by
converting time series into 2D time images (via Multi-Resolution Time Imaging, MRTI) and sepa-
rating seasonal/trend components in latent space using dual-axis attention, followed by hierarchical
Multi-Scale Mixing (MCM) and Multi-Resolution Mixing (MRM). This allows parallel modeling of
concurrent temporal contexts (daily, weekly, seasonal), improving forecasting, classification, and
anomaly detection. TimeTensor (Liang et al., 2024) generalizes linear attention to 3D tensor inputs
via Kronecker decomposition, improving efficiency while retaining the standard attention paradigm.
In contrast, FATE introduces tensorized focal modulation, explicitly preserving 3D spatiotempo-
ral structure, enabling hierarchical and localized context aggregation, and jointly modeling long-
and short-range dependencies. This represents a novel architectural strategy distinct from previous
tensorized attention mechanisms.

Self-supervised and Representation Learning. Transformer adaptations for time series can be
categorized into four directions (Kalyan et al., 2021): (i) attention-level modifications for efficiency,
(ii) adaptations for stationarity and signal processing, (iii) architectural changes capturing cross-
variate and temporal dependencies, and (iv) novel tensor-based designs. Most methods focus on the
first three, while few explore fundamental tensor-based redesigns. Self-supervised learning (SSL)
has also gained traction for time-series representation learning. Methods such as TNC (Tonekaboni
et al., 2021), TS2Vec (Yue et al., 2022), and BTSF (Yang & Hong, 2022) learn rich representations
without supervision, whereas Transformer-based SSL models like TST (Zerveas et al., 2021) and
TS-TCC (Eldele et al., 2021) remain underexplored for capturing complex temporal and cross-
variate dependencies. FATE ’s tensorized focal modulation inherently supports richer hierarchical
representations, bridging this gap by jointly modeling time, feature, and spatial dimensions. Focal
Modulated Tensorized Encoder introduces a novel tensorized focal modulation mechanism tailored
for multivariate time-series forecasting. It preserves the input’s 3D tensor structure (T × S × P ),
enables hierarchical spatiotemporal correlation modeling, and applies tensorized attention design,
temporal focal grouping, and cross-axis modulation. Unlike prior work, FATE balances efficiency
with semantic richness and provides a principled framework for long- and short-range dependency
modeling in high-dimensional time series.

3 PROPOSED METHODOLOGY

In this section, we present FATE, a Focal Modulated Tensorized Encoder Transformer designed for
multivariate time-series forecasting. The architecture preserves the full 3D structure of the input
tensor to jointly model temporal, spatial (station-wise), and feature dimensions. Central to FATE
are tensorized focal modulation mechanisms that efficiently capture hierarchical temporal patterns,
cross-station interactions, and feature dependencies, while providing interpretable modulation scores
that highlight the contribution of each station and attention head. The following subsections detail
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(V ) tensors.
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(b) Multi-head output assembly: the concatenated self-
attention outputs are slice-multiplied by weight slices
to yield each slice of the output tensor Y .

Figure 2: (a) Slice multiplication for QKV extraction. (b) Slice multiplication for multi-head attention
output.

the encoder design, the tensorial focal modulation computations, and the aggregation strategy for
interpretable predictions.

3.1 MULTI-DIMENSIONAL TENSORED FOCALNET ENCODER

We extend the FocalNet Transformer (Yang et al., 2022) to propose the Tensorized Focal Encoder
Transformer, specifically designed to capture complex patterns in multi-dimensional time-series
data. Our model operates on climate parameters organized as a 3D tensor X ∈ RT×S×P , where
T denotes the temporal dimension, S indexes different stations, and P represents diverse climate
parameters (e.g., temperature, humidity, wind speed). The full 3D structure preserves variable–time
step relationships and supports parallel yet separate attention across temporal and feature dimensions.

The architecture is encoder-only, as illustrated in Figure 1, and comprises: (i) a positional encoding
layer, (ii) a tensorial focal modulation encoder layer, and (iii) a linearly activated fully-connected
layer. Each encoder layer integrates tensorial modulation (Sections 3.2 and 3.3) followed by a residual
connection and normalization. A densely connected FFN, consisting of two linear transformations
with ReLU activation, follows the modulation layer, and is again succeeded by residual connection
and normalization, consistent with (Yang et al., 2022).

3.2 TENSORIAL FOCAL MODULATION

To encode temporal hierarchies, we apply a constant positional encoding (Yang et al., 2022) along
the time axis T and parameter axis P :

PE(pos, 2i) = sin

(
pos

10000 · 2i/P

)
, (1)

where pos indexes time and i indexes parameters; the station axis S transmits the encoded values.

Focal modulation replaces pairwise attention with hierarchical context aggregation (Yang et al.,
2022), offering three key benefits: (i) improved computational efficiency, (ii) preservation of locality
biases, and (iii) non-quadratic long-range dependency modeling. For multivariate time series, FATE
leverages this through: (1) nested focal windows that hierarchically aggregate temporal information,
and (2) dynamic contextual gating that adapts to input distributions, outperforming fixed receptive
fields or conventional attention kernels.
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We formalize tensor slices as follows: for a tensor N ∈ RX×Y×Z , (Ny,z)x ∈ RY×Z denotes the
x-slice, and (Nz)x,y ∈ RZ denotes the x, y-slice. Lowercase letters indicate slice sizes.

Tensorial focal modulation operates on X ∈ RT×S×P . We first compute 3D Query (Q), Key (K),
and Value (V ) tensors, Q,K, V ∈ RT×S×H , via element-wise multiplication with learnable weight
tensors WQ,WK ,WV ∈ RS×F×H :

(Qh)t,s = (Xp)t,s × (WQ)p,h,s,

(Kh)t,s = (Xp)t,s × (WK)p,h,s,

(Vh)t,s = (Xp)t,s × (WV )p,h,s, ∀t = 1..T, s = 1..S.

(2)

Next, we compute the multiplicative interaction across time steps:

(R̃s,sl)t,tl = (Qs,h)t × ((Ksl,h)tl)
T , R =

1√
H

S∑
sl=1

(R̃t,tl,s)sl , (3)

followed by a softmax across the station dimension to obtain attention weights Ã ∈ RT×T l×S :

(Ãs)t,tl = Softmax
(
(Rt,tl,s)s

)
, ∀t, tl = 1..T. (4)

Finally, the output Z ∈ RT×C×D is computed by broadcasting (Ãs)t,t′ to match the shape of (Vs,d)t′
and summing over the temporal dimension:

(Zs,d)t =

T∑
t′=1

broadcast((Ãs)t,t′) ◦ (Vs,d)t′ , ∀t = 1..T. (5)

3.3 FOCAL MODULATION AGGREGATION

Modulation weights have been widely used for feature selection and interpretability (Wiegreffe &
Pinter, 2019). In FATE, the focal modulation tensors Ã (Eq. 4) serve to provide interpretable insights
into model predictions.

To quantify the relationship between attention heads and cities (stations), we compute head-wise
focal modulation scores:

NÃh
s =

T∑
t=1

T ′∑
t′=1

Ah
t,t′,c, ∀h = 1..H, c = 1..C. (6)

We then aggregate across all heads to obtain city-wise modulation scores, reflecting the overall
contribution of each city to the prediction:

NÃs =

H∑
h=1

NÃh
s , ∀c = 1..C. (7)

This aggregation completes the tensorial focal modulation process, explicitly linking attention heads
to cities and highlighting the importance of each city in driving the model’s forecasts.

4 EXPERIMENTS

To rigorously evaluate FATE, we conduct extensive experiments on seven diverse real-world datasets
spanning environmental and infrastructural domains, comparing against 17 state-of-the-art baselines
including Transformer-, RNN/CNN-, Linear-, and spatial-temporal models. We analyze predictive

5
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performance across short- and long-horizon forecasts using standard metrics (MAE, MSE), bench-
mark computational and memory efficiency, and provide interpretability through focal modulation
visualization. These studies demonstrate FATE’s superior accuracy, robustness, and capacity to
model multi-scale temporal and spatiotemporal dependencies.

4.1 DATASETS

We evaluate FATE on seven diverse real-world multivariate time-series datasets, encompassing
both environmental (Weather5k, USA-Canada, Europe) and infrastructural (ETTh1, ETTm2, Traffic,
LargeST) domains.

ETTh1 Zhou et al. (2021a) and ETTm2 Zhou et al. (2021a) are electricity transformer datasets
at hourly and minute resolutions, respectively, capturing seasonal and trend-driven consumption
patterns. Traffic Zhao (2019) consists of road occupancy rates from multiple sensors, serving as
a standard benchmark for traffic flow prediction. Weather5k Han et al. (2024) is a large-scale
dataset with 10 years of hourly measurements from 5,672 weather stations worldwide, including
temperature, humidity, wind speed, and other climate parameters. USA-Canada Meteorological
Development Laboratory, Office of Science and Technology, National Weather Service, NOAA, U.S.
Department of Commerce (1987) contains hourly meteorological data from 30 cities (Oct 2012–Nov
2017), enriched with spatial coordinates and temporal features such as hour and day-of-year. The
Europe dataset Huber et al. (2022) spans 18 European cities (May 2005–Apr 2020), with normalized
temporal and meteorological features; the test split covers 2017–2020, and the training/validation
span 2005–2017. Finally, LargeST Liu et al. (2023) provides traffic data from 8,600 sensors in
California over 5 years, including rich sensor metadata for enhanced interpretability.

Across all datasets, FATE consistently outperforms baselines—including Transformer Vaswani et al.
(2017b); Yang et al. (2022), 3D-CNN Mehrkanoon (2019b), LSTM Hochreiter & Schmidhuber
(1997), and ConvLSTM Shi et al. (2015)—achieving the lowest Mean Absolute Error (MAE) and
Mean Squared Error (MSE), particularly on long-horizon and high-dimensional climate datasets.

4.2 ADDITIONAL IMPLEMENTATION DETAILS

Computational and Memory Requirements. We use a fixed 30-day input window; for climate
datasets, we consider 7 meteorological features, while feature selection for other datasets follows the
original data schema. Experiments were conducted on an NVIDIA A100 GPU with 40GB VRAM.
Optimizers were selected per architecture following prior best practices.

We analyze FATE ’s computational complexity and provide empirical runtime benchmarks against
Transformer and CNN-based baselines. While tensorized focal modulation introduces moderate
overhead compared to standard Transformers, the performance gains in long-horizon forecasting
justify this cost. Preserving the 3D tensor increases memory complexity due to grouped modulation,
but efficient projections keep runtime and GPU usage comparable to baseline Transformers.

Table 1: Hyperparameters used for all the models.
All hyperparameters were selected using 5-fold
cross-validation. Tuning was done independently
on each dataset to avoid overfitting or unfair trans-
fer of settings.

Hyper-parameter FATE Transformer 3D CNN LSTM ConvLSTM

Focal Levels 4 3 - - -
Layer Number 1 1 - 1 3
Head 8 1 - - -
Key Dim 32 32 - - -
Dense Units 64 64 128 - -
Filters - - 10 - 16
Kernel Size - - 4 - 13
Hidden Units - - - 128 -
Learning Rate Schedule Schedule 10−4 10−4 10−4

Batch Size 64 32 128 256 128

Hyperparameters. Table 1 details all training
hyperparameters. Multi-head attention is used
in both FATE and Transformer models, with
FATE employing four focal levels and eight at-
tention heads to capture hierarchical temporal
dependencies. 3D-CNN Mehrkanoon (2019b)
and ConvLSTM Shi et al. (2015) models use
convolutional layers with kernel sizes tuned for
spatiotemporal patterns. LSTM Hochreiter &
Schmidhuber (1997) and ConvLSTM models
employ recurrent units with hidden dimensions
optimized for sequential modeling. Scheduled
learning rate decay is applied in FATE and
Transformer models, while 3D-CNN, LSTM,
and ConvLSTM use fixed rates. Batch sizes are
scaled for memory efficiency and stable training.
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4.3 FORECASTING RESULTS

We evaluate FATE across diverse real-world datasets and benchmark it against 17 state-of-the-art
models spanning four categories: (1) Transformer-based: iTransformer Nie et al. (2024), Auto-
former Wu et al. (2021b), etc.; (2) RNN/CNN-based: LSTM Hochreiter & Schmidhuber (1997),
ConvLSTM Shi et al. (2015), 3D-CNN Mehrkanoon (2019b); (3) Linear-based: DLinear Zeng et al.
(2023b), TiDE Das et al. (2023b); (4) Spatial-temporal (LargeST dataset): DGCRN Li et al. (2023a),
D2STGNN Shao et al. (2022).

Table 2: The test results for temperature prediction, evaluated using the Mean Absolute Error (MAE) and Mean
Squared Error (MSE), were obtained for the USA-Canada and Europe datasets. The best-performing results
are highlighted in bold, while the second-best are marked in red for clarity.

Station Model MAE MSE Station Model MAE MSE
4 hrs 8 hrs 12 hrs 16 hrs 4 hrs 8 hrs 12 hrs 16 hrs 3 days 5 days 7 days 3 days 5 days 7 days

Vancouver

Transformer Vaswani et al. (2017b) 1.238 1.858 1.987 2.146 2.566 5.787 6.617 7.748

Barcelona

Transformer Vaswani et al. (2017b) 2.608 2.901 3.347 11.702 14.660 15.926
3D CNN Mehrkanoon (2019a) 1.499 1.896 2.131 2.329 3.704 5.950 7.455 8.879 3D CNN Mehrkanoon (2019a) 2.502 3.015 3.059 10.73 13.654 15.740
LSTM Hochreiter & Schmidhuber (1997) 1.311 1.834 2.039 2.210 2.917 5.712 6.970 8.237 LSTM Hochreiter & Schmidhuber (1997) 2.303 2.801 2.931 9.354 11.328 14.931
ConvLSTM Shi et al. (2015) 1.338 1.829 1.992 2.194 2.967 5.553 6.571 7.990 ConvLSTM Shi et al. (2015) 2.759 2.787 2.948 12.882 12.272 14.920
Autoformer Wu et al. (2021b) 1.258 1.982 2.682 2.695 2.578 4.598 6.395 6.087 Autoformer Wu et al. (2021b) 2.798 2.878 3.212 12.489 12.976 15.345
SCINet Liu et al. (2022a) 1.458 2.905 1.890 1.870 2.880 5.456 6.873 8.293 SCINet Liu et al. (2022a) 2.902 2.789 3.404 12.213 13.643 15.895
FEDformer Zhou et al. (2022b) 1.590 1.563 1.992 2.809 3.556 5.679 6.163 6.946 FEDformer Zhou et al. (2022b) 2.709 2.778 3.112 11.678 13.234 15.543
Stationary Liu et al. (2022b) 1.354 1.430 2.058 2.890 3.050 4.987 6.201 7.845 Stationary Liu et al. (2022b) 2.765 2.987 3.641 12.975 12.075 14.887
RLinear Li et al. (2023c) 1.673 1.256 1.890 2.450 2.990 4.678 5.987 6.289 RLinear Li et al. (2023c) 2.834 3.543 3.342 11.897 12.675 15.967
PatchTST Li et al. (2023b) 1.568 1.789 1.640 2.180 1.764 4.234 5.239 3.923 PatchTST Li et al. (2023b) 2.623 3.234 3.375 12.456 11.907 15.325
Crossformer Zhang & Yan (2023b) 1.456 1.590 1.678 1.990 1.678 3.989 4.786 5.257 Crossformer Zhang & Yan (2023b) 2.854 2.878 3.123 12.654 12.985 15.564
TiDE Das et al. (2023b) 1.555 1.728 1.430 1.789 2.278 3.278 3.987 4.890 TiDE Das et al. (2023b) 2.542 2.690 3.078 12.267 12.754 14.243
TimesNet Wu et al. (2023) 1.145 1.567 1.678 1.890 2.789 2.908 3.678 3.980 TimesNet Wu et al. (2023) 2.876 2.879 3.321 11.654 11.754 14.675
DLinear Zeng et al. (2023b) 1.134 1.556 1.567 1.567 1.890 2.465 2.967 3.653 DLinear Zeng et al. (2023b) 2.567 3.165 3.145 11.687 11.946 13.990
iTransformer Nie et al. (2024) 1.123 1.487 1.435 1.345 1.670 1.910 2.456 2.847 iTransformer Nie et al. (2024) 2.680 2.989 3.076 10.456 11.896 13.696

FATE (Ours) 1.021 1.217 1.346 1.131 1.464 1.660 1.844 2.238 FATE (Ours) 2.174 2.665 2.695 8.515 10.914 13.523

New York

Transformer Vaswani et al. (2017b) 1.426 2.043 2.271 2.489 3.836 7.533 9.268 10.978

Maastricht

Transformer Vaswani et al. (2017b) 4.770 5.293 5.649 30.891 43.283 50.678
3D CNN Mehrkanoon (2019a) 1.835 2.316 2.833 2.673 5.587 9.159 13.468 11.964 3D CNN Mehrkanoon (2019a) 4.276 5.078 5.609 28.823 40.531 49.410
LSTM Hochreiter & Schmidhuber (1997) 1.596 2.126 2.325 2.507 4.724 8.103 9.749 10.985 LSTM Hochreiter & Schmidhuber (1997) 3.982 5.036 5.373 24.860 39.484 46.590
ConvLSTM Shi et al. (2015) 1.394 2.134 2.419 2.104 4.949 7.790 9.257 10.341 ConvLSTM Shi et al. (2015) 4.578 4.863 5.322 32.699 39.819 43.288
Autoformer Wu et al. (2021b) 1.756 1.981 2.587 2.446 4.436 7.234 10.457 9.357 Autoformer Wu et al. (2021b) 4.896 5.987 5.670 32.969 39.563 48.939
SCINet Liu et al. (2022a) 1.940 1.879 2.859 2.976 4.876 6.905 12.755 10.345 SCINet Liu et al. (2022a) 4.886 5.109 5.348 33.123 40.909 47.834
FEDformer Zhou et al. (2022b) 1.650 1.809 2.865 2.768 4.345 6.469 12.657 9.235 FEDformer Zhou et al. (2022b) 4.609 5.689 5.456 32.689 41.549 45.834
Stationary Liu et al. (2022b) 1.903 1.980 2.786 2.567 3.957 7.458 11.466 9.587 Stationary Liu et al. (2022b) 4.679 5.786 5.940 32.569 40.457 47.394
RLinear Li et al. (2023c) 1.455 1.912 2.532 2.545 4.768 7.548 10.567 10.344 RLinear Li et al. (2023c) 4.798 5.079 5.749 32.564 41.348 50.576
PatchTST Li et al. (2023b) 1.465 1.893 2.230 2.443 4.534 5.990 13.565 10.497 PatchTST Li et al. (2023b) 4.765 5.768 5.088 31.455 39.457 49.785
Crossformer Zhang & Yan (2023b) 2.124 2.498 2.432 2.234 4.786 6.935 11.356 9.346 Crossformer Zhang & Yan (2023b) 4.56 5.698 5.678 31.455 41.694 46.876
TiDE Das et al. (2023b) 1.967 2.231 2.241 2.948 3.654 7.345 10.549 9.438 TiDE Das et al. (2023b) 4.969 5.345 5.543 31.289 40.694 48.567
TimesNet Wu et al. (2023) 1.567 1.890 2.532 2.468 3.234 7.095 9.657 10.348 TimesNet Wu et al. (2023) 4.579 5.234 5.432 30.234 41.457 50.345
DLinear Zeng et al. (2023b) 1.563 2.086 2.124 2.983 3.767 6.455 9.378 9.347 DLinear Zeng et al. (2023b) 4.998 5.234 5.876 30.457 40.345 49.566
iTransformer Nie et al. (2024) 1.274 1.908 2.343 2.435 3.555 5.839 7.994 8.904 iTransformer Nie et al. (2024) 4.458 5.343 5.765 30.578 39.457 43.456

FATE (Ours) 0.982 1.689 1.974 1.995 3.180 5.296 6.677 8.193 FATE (Ours) 4.164 4.410 4.940 21.458 35.501 39.707

Los Angeles

Transformer Vaswani et al. (2017b) 1.426 2.043 2.271 2.489 3.836 7.533 9.268 10.978

Munich

Transformer Vaswani et al. (2017b) 4.136 5.286 5.275 23.954 39.057 43.526
3D CNN Mehrkanoon (2019a) 1.835 2.316 2.833 2.673 5.587 9.159 13.467 11.968 3D CNN Mehrkanoon (2019a) 3.931 5.049 5.262 24.870 39.578 43.507
LSTM Hochreiter & Schmidhuber (1997) 1.296 2.026 2.325 2.207 4.724 8.403 9.749 10.983 LSTM Hochreiter & Schmidhuber (1997) 3.551 4.730 5.189 20.235 34.021 42.733
ConvLSTM Shi et al. (2015) 1.594 2.134 2.419 2.704 4.949 7.790 8.457 12.342 ConvLSTM Shi et al. (2015) 3.974 4.830 5.023 22.484 35.401 37.767
Autoformer Wu et al. (2021b) 1.645 2.457 2.856 2.980 3.886 9.203 13.124 12.588 Autoformer Wu et al. (2021b) 3.958 5.890 5.456 22.467 37.347 40.458
SCINet Liu et al. (2022a) 1.458 2.346 2.456 2.608 3.508 9.134 12.244 12.458 SCINet Liu et al. (2022a) 4.545 5.461 5.546 20.567 40.890 44.102
FEDformer Zhou et al. (2022b) 1.748 2.479 2.567 2.647 3.680 7.904 13.598 12.453 FEDformer Zhou et al. (2022b) 3.957 5.563 5.986 23.467 39.834 42.549
Stationary Liu et al. (2022b) 1.983 2.986 2.096 2.678 3.976 8.348 12.548 11.579 Stationary Liu et al. (2022b) 3.589 5.970 5.446 22.366 38.787 43.124
RLinear Li et al. (2023c) 1.849 2.228 2.345 2.956 3.578 8.438 11.959 11.345 RLinear Li et al. (2023c) 3.335 5.348 5.785 20.456 39.456 42.957
PatchTST Li et al. (2023b) 1.648 2.562 2.956 2.907 3.877 7.348 11.345 10.397 PatchTST Li et al. (2023b) 3.595 5.795 5.679 21.458 40.683 42.458
Crossformer Zhang & Yan (2023b) 1.843 2.875 2.645 2.845 3.689 6.937 10.543 10.458 Crossformer Zhang & Yan (2023b) 3.579 5.675 5.685 23.546 40.348 44.939
TiDE Das et al. (2023b) 1.937 2.780 2.454 2.689 3.273 6.348 9.434 10.439 TiDE Das et al. (2023b) 3.584 5.235 5.436 23.754 39.457 44.345
TimesNet Wu et al. (2023) 1.893 2.549 2.644 2.997 3.679 6.438 8.934 9.948 TimesNet Wu et al. (2023) 3.545 5.344 5.543 23.456 38.458 42.589
DLinear Zeng et al. (2023b) 1.457 2.456 2.344 2.578 3.879 6.349 8.282 9.348 DLinear Zeng et al. (2023b) 3.565 5.234 5.567 22.546 37.459 43.548
iTransformer Nie et al. (2024) 1.247 1.908 1.992 2.264 3.979 6.475 8.348 8.458 iTransformer Nie et al. (2024) 3.234 4.948 5.745 21.455 36.845 40.347

FATE (Ours) 1.183 1.530 1.920 2.041 3.180 5.496 6.677 8.185 FATE (Ours) 3.196 4.335 4.925 19.927 32.454 36.309

Continental-scale Forecasting. On USA-Canada and Europe datasets, we evaluate 4–16 hour
forecasts using MAE and MSE (Table 2). FATE consistently outperforms all baselines, including
robust Transformers and linear models. For example, in Vancouver, FATE reduces MAE and
MSE by up to 15.9% and 24.9%, respectively, over the best baseline. The Europe dataset exhibits
similar trends, highlighting FATE’s robustness and ability to model long-horizon temporal dynamics
effectively.

Table 3: Comparison of model performance on
LargeST dataset. The best performing model is
shown in bold and the second best in red for clarity.

Model MAE MSE

LSTM Hochreiter & Schmidhuber (1997) 0.266 0.417
DRCNN Sun et al. (2021) 0.213 0.333
STNN Yin et al. (2021) 0.186 0.311
STGODE Fang et al. (2021) 0.195 0.335
DGCRN Li et al. (2023a) 0.180 0.300
D2STGNN Shao et al. (2022) 0.178 0.295

FATE (Ours) 0.160 0.255

Large-Scale Spatiotemporal Forecasting. On
the LargeST dataset (Table 3), FATE achieves
the lowest MAE and MSE (0.160 and 0.255),
surpassing D2STGNN by 10.1% and 13.6%, re-
spectively. These results demonstrate FATE’s
capacity to capture intricate spatiotemporal de-
pendencies in large-scale traffic data, making it
highly suitable for real-world forecasting appli-
cations.

Benchmark Dataset Evaluation. Across
four standard multivariate time series datasets
(ETTh1, ETTm2, Traffic, Weather5k; Table 4),
FATE consistently achieves state-of-the-art or
competitive performance. Notably: - ETTh1:
4.3% lower MAE, capturing fine-grained tem-
poral patterns. - Traffic: compared to PatchTST, MAE is slightly higher, but MSE decreases by 3%. -
Weather5k: 9.1% MAE and 12.3% MSE improvements over CI-TSMixer, demonstrating robustness
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4 hours into the future

(a)

8 hours into the future

(b)

12 hours into the future

(c)

16 hours into the future

(d)

4 hours into the future

(e)

8 hours into the future

(f)

12 hours into the future

(g)

16 hours into the future

(h)

Figure 3: Attention visualization for New York in USA-Canada dataset. The circular graphs show
which city each of the most important heads attends to. The thickness of the line represents the
amount of attention each of the heads is paying to the cities. The size of the circles indicates the
importance of Each city in the temperature prediction for the target city. The target city is marked as
a red circle, and its size corresponds to the importance of the attention to itself.

to high-dimensional noise. - ETTm2: 13.3% MAE and 7.9% MSE improvements, confirming
generalizability across diverse datasets. These results collectively validate FATE ’s ability to model
multi-scale temporal and spatial dependencies, yielding accurate and stable forecasts across both
regional and large-scale datasets.

Table 4: Comparison of MAE and MSE on temperature prediction across diverse real-world multi-
variate time-series datasets. The best performing results are highlighted in bold and the second best
are marked in red for clarity.

Model ETTH1 Traffic Weather5K ETTM2
MAE MSE MAE MSE MAE MSE MAE MSE

FATE (Ours) 0.381 0.377 0.254 0.349 0.179 0.128 0.221 0.151
CI-TSMixer Ekambaram et al. (2023) 0.398 0.368 0.278 0.356 0.197 0.146 0.255 0.164
PatchTST Li et al. (2023b) 0.400 0.370 0.249 0.360 0.198 0.149 0.256 0.166
DLinear Zeng et al. (2023b) 0.399 0.375 0.282 0.410 0.237 0.176 0.260 0.167
FEDformer Zhou et al. (2022b) 0.419 0.376 0.366 0.587 0.296 0.217 0.287 0.203
Autoformer Wu et al. (2021b) 0.459 0.449 0.388 0.613 0.336 0.266 0.339 0.255
Informer Zhou et al. (2021b) 0.713 0.865 0.391 0.719 0.384 0.300 0.453 0.365

4.4 MODULATION VISUALIZATION AND ABLATION STUDY

Figure 3 illustrates the interpretability of FATE through focal modulation scores. Panels (a)–(d) show
head-wise scores NÃh

s (Eq. 6), highlighting each head’s focus in generating predictions. Aggregated
city-wise scores NÃs (Eq. 7) reveal the contribution of each city to the target city. Panels (e)–(h)
depict these interactions as graphs, where line thickness indicates attention strength and circle
size represents city importance; the red circle marks the target city’s self-attention. As forecast
horizons extend, the target city increasingly attends to more distant contributors, reflecting dynamic
spatiotemporal dependencies. Additional visualizations are provided in Appendix § A.1.

5 OUTLOOK AND FUTURE DIRECTIONS

The strong empirical performance of FATE opens multiple avenues for advancing spatio-temporal
forecasting.
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FATE

Real

(a) Vancouver - 4 hours in the future (b) Vancouver - 16 hours in the future

Figure 4: The comparison between the predictions of the FATE model and the real measurements for
the hourly temperature of the test set of Vancouver.

Scaling to global and ultra-long horizons. While FATE performs strongly on regional datasets
(Table 2), scaling to continental or global domains requires optimized training and inference. Future
work may explore hierarchical or distributed focal-modulation architectures to retain interpretability
while handling millions of spatial points over decades of data. Richer variables and cross-domain
fusion. Current experiments emphasize temperature and standard meteorological features (Table 4).
Adding variables such as precipitation, aerosols, oceanic indices, or soil moisture and fusing satel-
lite imagery, reanalysis products, and socio-economic data could enhance predictive power and
policy relevance. Self-supervised pretraining. Unlabeled climate data motivates self-supervised
learning tailored to the focal-tensor setup. Objectives like contrastive or masked prediction can
enrich spatio-temporal representations, improve robustness, and reduce dependence on labeled data.
Physics-informed inductive biases. Incorporating physical constraints e.g., conservation laws or
dynamical couplings into focal-modulation blocks may improve physical plausibility and reduce
extrapolation error (Appendix §A.2). Hybrid integration with NWP ensembles is a promising future
direction. Efficiency and real-time inference. Though efficient, FATE remains costlier than linear
baselines. Techniques such as tensor compression, sparse kernels, or adaptive focal levels could
enable lightweight, real-time variants for edge or on-device use. Decision-support and societal
impact. Translating forecasts into actionable insights for agriculture, energy, and disaster response
remains a key challenge. Interpretable modulation maps (Figure 3) and tailored visualizations can
foster trust and support decision-making.

Summary. The tensorized focal-modulation design of FATE offers a scalable, extensible foundation
for climate forecasting. Future extensions across scale, modality, physics, and application position it
as a comprehensive tool for sustainable development.

6 CONCLUSION

In this study, we introduced the Focal-Modulated Tensorized Encoder (FATE), a framework designed
to capture complex spatiotemporal dependencies in climate data. By leveraging tensorized focal mod-
ulation, FATE effectively models multi-scale interactions across time, space, and climate parameters.
We evaluated FATE on seven diverse real-world multivariate time series datasets, consistently achiev-
ing state-of-the-art performance. Additionally, we proposed head-wise and city-wise modulation
scores to enhance interpretability and conducted ablation studies to quantify their impact. This work
provides a foundation for informed climate policy decisions and broader applications that exploit 3D
tensor-structured data.

LIMITATIONS

Our current evaluation focuses on temperature and related climate variables within mid-scale regional
datasets. Extending FATE to additional meteorological variables and global-scale grids is a direction
for future work. While FATE introduces modest computational overhead (trainable on a single
A100 GPU), it remains practical for deployment and can be further optimized for edge or real-time
applications. These limitations are operational rather than conceptual.
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A APPENDIX

A.1 FURTHER VISUALIZATIONS

We further visualized the feature selection process of the tensorial modulation mechanism, specifically
focusing on the visualizations for selected cities. From a spatiotemporal perspective, the mechanism
progressively emphasizes more distant cities as the prediction time step increases. This behavior
highlights the model’s ability to adaptively focus on relevant spatial regions over time.

The computations for the Query, Key, and Value tensors are defined as follows:

Qt,c,d = Xt,c,f ·WQ
f,d,c ∀t = 1, . . . , T, c = 1, . . . , C, (8)

Kt,c,d = Xt,c,f ·WK
f,d,c ∀t = 1, . . . , T, c = 1, . . . , C, (9)

Vt,c,d = Xt,c,f ·WV
f,d,c ∀t = 1, . . . , T, c = 1, . . . , C. (10)

Here, Xt,c,f represents the input tensor with temporal index t, spatial index c, and feature index f .
The learnable weight matrices WQ

f,d,c, WK
f,d,c, and WV

f,d,c map the input features to the Query (Q),
Key (K), and Value (V ) tensors, respectively. These operations allow the model to dynamically
compute across time, space, and features.

Maastricht - 2 days in the future

FATE

Real

(a)

Maastricht - 4 days in the future

(b)

Maastricht - 6 days in the future

(c)

Figure 5: The comparison between the predictions of FATE model and the real measurements for
average daily temperature of the test set of Maastricht.

Figure. 5 presents the model predictions alongside real measurements for Maastricht, showcasing 2,
4, and 6-day forecast horizons. While FATE accurately captures smaller variations for 2- and 4-day
predictions, its performance over 6 days primarily reflects broader temperature trends. Unlike the
previous dataset, the results on the Europe dataset demonstrate varying performance, with FATE
ranking as the second-best model overall. Notably, FATE outperforms other models in predicting 4-
and 6-day horizons specifically for Maastricht.

Experiments on this dataset were conducted for 2, 4, and 6 days ahead predictions, using an empiri-
cally determined lag parameter of 8 days to construct the regressors. Target cities included Barcelona,

Barcelona - 2 days in the future

(a)

Barcelona - 4 days in the future

(b)

Barcelona - 6 days in the future

(c)

Figure 6: The comparison between the predictions of FATE model and the real measurements for
average daily temperature of the test set of Barcelona.
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2 days into the future

(a)

4 days into the future

(b)

6 days into the future

(c)

2 days into the future

(d)

4 days into the future

(e)

6 days into the future

(f)

Figure 7: Focal Modulation visualization for Munich in Europe dataset. The top graphs show which
city each of the heads attends. The thickness of the line represents the amount of modulation each of
the heads is paying to the cities.

Maastricht, and Munich, with the average temperature as the primary prediction feature. Additionally,
Figure. 6 highlights model predictions versus real measurements for Barcelona at 2, 4, and 6 days into
the future. Despite FATE ’s competitive performance in specific scenarios, the LSTM-based model
achieved the lowest MAE in 5 city–time-step pairs and the lowest MSE in 4 pairs. Prior studies
Guo et al. (2019); Ezen-Can (2020) have reported that Transformers can struggle in scenarios with
limited data, which may explain why the Europe dataset constrained FATE ’s performance compared
to LSTM. Interestingly, in the Europe dataset, certain cities demonstrated minimal contribution to
the predictions, suggesting inherent feature selection by the model. This observation is evident in
Munich’s predictions, shown in the Figure. 7, where the circular graphs and maps illustrate limited
spatial dependencies for some cities. Unlike the US-Canada dataset, a distinct spatiotemporal pattern
was not observed for Munich’s predictions. Lastly, focal modulation visualizations are shown in the
Figures. 8, 9, and 3 reveal both spatial and temporal dynamics, combining map-based views and
circular graphs for each forecast horizon. These visualizations underline the adaptability of FATE
in leveraging key features, particularly in datasets with varying data distributions and prediction
horizons.

In this study, we leverage focal modulation weights to enhance model interpretability, specifically by
identifying which areas of the input data the model prioritizes when making predictions. A major
challenge in many practical applications is the cost of collecting labeled data, which often results
in a limited number of training samples, particularly when dealing with high-dimensional datasets.
This can lead to the curse of dimensionality, a significant hurdle when trying to effectively learn from
such data. We focus on three primary challenges in this context. First, temperature forecasting is
a multifaceted problem that requires not only past temperature data for the target location but also
additional features such as wind speed, wind direction, atmospheric pressure, and humidity. These
features add complexity to the model, making it crucial to handle high-dimensional data effectively.
The second challenge arises from the increase in input dimensionality. This expansion must be
reflected in the model’s weight structure. One possible approach is to flatten the input data to preserve
the transformer architecture as it is. However, this could lead to a loss of critical information, thereby
degrading model performance. Alternatively, we could retain the full dimensionality of the input
data, which would require expanding the model’s capacity to handle this higher-dimensional space.
While this method maintains data integrity, it also results in increased computational demands and
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4 hours into the future

(a)

8 hours into the future

(b)

12 hours into the future

(c)

16 hours into the future

(d)

4 hours into the future

(e)

8 hours into the future

(f)

12 hours into the future

(g)

16 hours into the future

(h)

Figure 8: The Focal Modulation visualization for Dallas in the USA-Canada dataset illustrates the
attention mechanism of the model. The circular graphs depict which cities are attended to by the
most important attention heads. The line thickness represents the strength of the attention each
head allocates to these cities, while the circle size indicates the relative importance of each city in
predicting the temperature for the target city. The target city, marked by a red circle, has its size
proportional to the level of focal modulation it receives from the model.

4 hours into the future

(a)

8 hours into the future

(b)

12 hours into the future

(c)

16 hours into the future

(d)

4 hours into the future

(e)

8 hours into the future

(f)

12 hours into the future

(g)

16 hours into the future

(h)

Figure 9: Focal Modulation visualization for Vancouver in USA-Canada dataset. The circular graphs
show which city each of the most important heads attends to. The thickness of the line represents
the amount of attention each of the heads is paying to the cities. The size of the circles indicates the
importance of Each city in the temperature prediction for the target city. The target city is marked as
a red circle, and its size corresponds to the importance of the focal modulation to itself.

longer training times. A potential solution to this issue is the use of Tensor Processing Units (TPUs),
which can significantly speed up both training and evaluation phases. The third challenge is related
to model explainability, which has become a pressing concern as models are increasingly used to
automate tasks without transparent reasoning behind their predictions. To address this, we utilize
focal modulation weights to pinpoint the areas of the input that the model focuses on most heavily
when making its predictions, thereby offering valuable insights into its decision-making process. By
tackling these challenges, this work contributes to improving both the efficiency and interpretability
of temperature forecasting models in high-dimensional settings.
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Figure 10: Correlation Heatmap: It illustrates the relationships between various climatic parameters

A.2 CORRELATION BETWEEN PARAMETERS

The correlation matrix, as depicted in Figure 10, provides a comprehensive analysis of the relation-
ships between the seven selected parameters: Air Index, Forest Cover, Water Bodies, Agriculture
and Vegetation, Population, Surface Temperature, and Construction. The matrix reveals the intricate
interdependencies among these variables, offering insight into the underlying dynamics of the study
area. Notably, most parameters exhibit positive correlations, suggesting that as one variable increases,
others tend to follow suit. For example, it is expected that an increase in population may lead to higher
construction activity and possibly a reduction in forest cover. Similarly, an increase in agricultural
and vegetation areas may correlate with changes in surface temperature or water body extent.

In contrast, the parameter Forest Cover stands out due to its negative correlation with several other
parameters. The gradual reduction in forest cover over time reflects the increasing anthropogenic
activities such as construction and agriculture. This negative correlation is indicative of environmental
degradation, as the expansion of urban areas and agricultural practices leads to deforestation, which
in turn impacts other environmental factors. The relationship between these variables underscores the
complexity of the region’s ecological balance and emphasizes the need for sustainable practices to
mitigate the adverse effects of rapid development.

The correlation matrix serves as a vital tool in understanding the interconnectedness of these environ-
mental and socio-economic parameters, guiding future analyses and policy recommendations aimed
at fostering more sustainable development strategies.
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