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ABSTRACT

Conditional generative modeling (CGM), which approximates the conditional
probability distribution of data given a condition, holds significant promise for
generating new data across diverse representations. While CGM is crucial for
generating images, video, and text, its application to scientific computing, such
as molecular generation and physical simulations, is also highly anticipated. A
key challenge in applying CGM to scientific fields is the sparseness of avail-
able data conditions, which requires extrapolation beyond observed conditions.
This paper proposes the Extended Flow Matching (EFM) framework to address
this challenge. EFM achieves smooth transitions in distributions when depart-
ing from observed conditions, avoiding the unfavorable changes seen in existing
flow matching (FM) methods. By introducing a flow with respect to the condi-
tional axis, EFM ensures that the conditional distribution changes gradually with
the condition. Specifically, we apply an extended Monge–Kantorovich theory to
conditional generative models, creating a framework for learning matrix fields in
a generalized continuity equation instead of vector fields. Furthermore, by com-
bining the concept of Dirichlet energy on Wasserstein spaces with Multi-Marginal
Optimal Transport (MMOT), we derive an algorithm called MMOT-EFM. This
algorithm controls the rate of change of the generated conditional distribution.
Our proposed method outperforms existing methods in molecular generation tasks
where conditions are sparsely observed.

1 INTRODUCTION

Conditional generative modeling (CGM), which involves approximating a conditional probability
distribution p (x | c) of data x given condition c, holds great promise for generating new, previously
non-existent data across a wide range of representations. Currently, CGM is pivotal in generating
images, videos (Rombach et al., 2021; Saharia et al., 2022a;b; Voleti, 2023), and text (Li et al., 2022;
Strudel et al., 2022; Gao et al., 2024), but it is also expected to be applied to scientific computing,
such as molecular generation (Kang & Cho, 2019) and physical simulations (Huang et al., 2024;
Gebhard et al., 2023).

One of the key challenges of applying CGM in scientific fields is the sparsity of available data con-
ditions. This sparsity necessitates extrapolating beyond the observed conditions (Lee et al., 2023).
An important example of scientific applications is molecular generation—imagine that you wish to
discover a new molecule xdesired with a desired chemical property cdesired, for which no molecular
data may be available. Here, we have only observed a limited number of properties cobs, which
may be very sparse and require difficult extrapolation. This sparsity issue is more apparent when the
condition or property is multi-dimensional.

In contrast, recent deep generative models for CGM have been designed mainly for situations where
the conditions are densely observed. Consider the example of methods (Ding et al., 2021; Zhao
et al., 2024; Ding et al., 2024) based on Vicinal risk minimization (VRM) by Chapelle et al. (2000).
In VRM, the observed conditions cobs are augmented with Gaussian noise wc ∼ N (0, I), and the
generative model is trained so that the unknown conditional distribution p (x | cobs + wc) becomes
close to the known distribution p (x | cobs). Thus, if we can only observe two conditions c1obs and
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Figure 1: Difference between FM and EFM.

Figure 2: Visualization of the flow for (a) condi-
tional generation along γc1 and γc2 (Algorithm 2),
and (b) style transfer along γc1→c2 (Algorithm 3).

c2obs, which are somewhat distant from each other, then we cannot introduce any inductive bias into
the interpolated or extrapolated condition cdesired. As a result, the accuracy of the generation of data
given cdesired would not improve. Indeed, Figure 4b will show another example where the quality
of the generation at c = cdesired deteriorates compared to c = cobs if no bias is introduced.

We expect that one of the hopes to overcome this difficulty is dynamical generative models, includ-
ing diffusion models (Song et al., 2021; Ho et al., 2020) and, in particular, the simplest of these——
Flow matching (FM) (Liu et al., 2023; Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023). FM
itself is the method of generative modeling to approximate a probability distribution p(x). In FM,
two probability distributions are gradually deformed by flows induced by ordinary differential equa-
tions (ODEs). This deformation makes it possible to formulate the learning of the generative model
as an estimation of the “vector field”, i.e., the way in which the ODE infinitesimally transformed
the data. In particular, the methods based on FM stabilize the learning of vector fields, making it
possible to generate a variety of data representations, including images (Esser et al., 2024), text (Hu
et al., 2024), audio (Le et al., 2023), DNA (Stark et al., 2024), and molecules (Song et al., 2023;
Miller et al., 2024).

This paper proposes the framework of Extended Flow Matching (EFM), which realizes a “smooth”
change of distributions for departure from the observed conditions, where we introduce an inductive
bias of low sensitivity of p (x | c) with respect to conditions c . If we assume that the target data is
in nature, such as molecules, it is reasonable to impose this inductive bias. We remark that this kind
of inductive bias has been used throughout the history of generative models as a method to prevent
overfitting and a method to stabilize generative models; see, e.g., (Miyato et al., 2018). Therefore,
our method addresses extrapolation by learning a model such that the data to be extrapolated follows
this inductive bias of low sensitivity.

More specifically, we apply the extended Monge–Kantorovich theory introduced by Brenier (2003)
to conditional generative models. This leads to a framework for learning matrix fields in a general-
ized continuity equation instead of vector fields in the continuity equations in FM.

Furthermore, by combining the concept of Dirichlet energy on Wasserstein spaces introduced by
Lavenant (2019) with Multi-Marginal Optimal Transport (MMOT), we can derive an algorithm
called MMOT-EFM that reduces the sensitivity of the generated conditional distribution. In addition,
our proposed method is shown to outperform existing methods in the task of molecular generation
in situations where conditions are sparsely observed.

NOTATION

Let us use · to denote a placeholder, ∥ · ∥ to denote the Euclidean norm, and 0k := (0, . . . , 0)⊤ ∈ Rk
to denote the zero vector. We denote by P(M) the space of probability distributions on a metric
space M , and denote by δx ∈ P(M) the delta distribution supported on x ∈ M . For a distribution
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µ ∈ P(M) on M and a vector-valued function f on M , we denote by EX∼µ[f(X)] the expectation
of a random variable f(X), where X ∼ µ is a random variable following µ.

We also denote I := [0, 1] and [m : n] := {m,m + 1, . . . , n} for m, n ∈ N such that m < n.
For a function g on I , we write ġ(t) for the derivative dg

dt (t) with respect to time t ∈ I . Further,
we let D ⊂ Rd be the data space. For any subscript ξ, we will denote by pξ the density of a
probability distribution µξ on D ⊂ Rd, i.e., µξ(dx) = pξ(x)dx in a measure-theoretic notation.
In the following mathematical discussion, we will assume that any probability distribution has a
density, but this assumption is superficial and is used only for simplicity of explanation.

2 PRELIMINARIES

To motivate EFM, we first present Flow Matching by Lipman et al. (2023) and its variant, OT-CFM
(Pooladian et al., 2023; Tong et al., 2023b), through the lens of Monge–Kantorovich theory.

2.1 FLOW MATCHING (FM)

Continuity Equation: As a method of generative modeling, the goal of FM is to learn a map that
transforms a source distribution to a target distribution in the form of µ: [0, 1] → P(D), where D is
the space of dataset. Instead of learning µ directly, flow matching as a method learns a vector field
v: [0, 1]×D → Rd such that the continuity equation (CE)

∂tpt(x) + divx(pt(x)v(t, x)) = 0 ((t, x) ∈ [0, 1]×D) (2.1)

holds with respect to the density pt of µt, and we use this v for the sample generation.

Inference: X1 ∼ µ1 can be sampled by solving the ODE with Ẋ(t) = v(t,X(t)), X(0) ∼ p0.

2.2 OT-CFM

OT-CFM, which has been proposed to use optimal transport for constructing the vector field, can
be interpreted as a method of minimizing the Dirichlet energy, or the energy of transport for µ
conditional to the boundary condition µ0 = µsource, µ1 = µtarget. Specifically, we will show that a
straight line in the construction of OT-CFM can be regarded as a minimizer of the Dirichlet energy.

Objective energy: Formerly, Dirichlet or the kinetic energy of the curve µ can be written as

Dir(µ) := inf
v:I×D→Rd

{
1

2

∫∫
I×D

∥v(t, x)∥2pt(x)dxdt The pair (p, v) satisfies (2.1)
}
. (2.2)

Objective function: To derive the algorithm used in OT-CFM, we first introduce some definitions.
Let Q be a distribution over a space H(I;D) := {ψ: I → D ψ is differentiable} of paths that map
time t ∈ I to data x ∈ D, ψ: I → D be a sample from Q, and use µψt to denote the delta distribution
δψ(t) ∈ P(D) supported at ψ(t) ∈ D. With these definitions, we can represent µ = µQ from Q as

µQ: I ∋ t 7 −→ Eψ∼Q[µψt ]∈ P(D). (2.3)

As a matter of fact, we can see that the optimal probability path µQ
∗
, which minimizes

infQDir(µQ) subject to µQ0 = µsource, µ
Q
1 = µtarget, is concentrated on the set of “straight lines”

ψ (t | x1, x2) = tx2 + (1 − t)x1 between joint samples (x1, x2) from the target and the source.
By (Ambrosio et al., 2008, Theorem 8.2.1), the function D × D ∋ (x1, x2) 7→ ψ (· | x1, x2) ∈
H(I;D) allows a parametrization of Q with the optimal transport plan π with marginals µsource and
µtarget. This would allow us to write ∥ψ(t | x1, x2)∥2= ∥x1−x2∥2 for the optimal Q∗. This would
reduce the optimization with respect to Q to the classic optimal transport problem for the joint prob-
ability π with cost c(x, y) = ∥x−y∥2. In OT-CFM, this is approximated through batches. Following
the same logic as in (Kerrigan et al., 2024a), or our later theorem (Theorem 3.4), the vector field v,
which generates µQ

∗
via CE can be obtained as the minimizer of

Eψ∼Q∗,t∼Unif(I)[∥v(t, ψ(t))− ψ̇(t)∥2] = E(x1,x2)∼π∗,t∼Unif(I)[∥v(t, ψ(t))− ψ̇ (t | x1, x2) ∥2].
(2.4)
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This derives the learning of v through a neural network vθ as shown in Algorithm 5. Indeed, Dirichlet
energy that OT-CFM is aiming to minimize is a form of inductive bias regarding the continuity of
the generation process with respect to time t.

In naive application of OT-CFM to conditional generation, ψ(t) is replaced with ψ(t, c) for the target
c. However the energy of OT-CFM only relates to ∥∂tψ(t, c)∥2, unlike our EFM in Section 3.

3 THEORY OF EFM

In this section, we extend the standard FM theory to consider conditional probability with condi-
tions c within a bounded domain Ω ⊂ Rk. Let pc(x) := p (x | c) be the unknown target conditional
probability density, and let p0,c(x) := p0 (x | c) be a user-chosen tractable conditional density given
c = (ci)i∈[1:k] = (c1, . . . , ck) ∈ Ω, such as normal distributions with mean and variance parameter-
ized by c. We will use the notation in the previous section, that is, we will denote by µc and µ0,c the
distribution of the probability density function pc and p0,c, respectively.

3.1 EXTENSION OF FM

We will present this subsection in parallel with § 2.1.

Generalized Continuity Equation: We directly extend the interpretation of FM by extending the
domain of ψ in (2.3) from I to I × Ω, where Ω is the space of conditions. For brevity, instead
of using explicit I × Ω, we would like to use a general bounded domain Ξ in Euclidean space
as an analog of Ω of the previous section and analogously set the goal of EFM to the learning of
µ: Ξ → P(D). Now, just like FM, instead of learning µ directly, EFM aims to learn a matrix field
u: Ξ×D → Rd×dimΞ such that generalized CE (Brenier, 2003; Lavenant, 2019)

∇ξpξ(x) + divx(pξ(x)u(ξ, x)) = 0 ((ξ, x) ∈ Ξ×D) (3.1)

holds for the density pξ of µξ. Here, div is an extended divergence operator, see Appendix (A.1).

Inference: Inference based on the matrix field u is slightly more complicated than in FM, which
provides a single vector field to integrate the ODE. Various tasks can be solved solely with the
matrix field, including the typical cases of generation and transfer. For Ξ = I × Ω, the generation
given condition c will be performed by transforming µ0,c → µ1,c, and the transfer from c to c′ by
transforming µ1,c → µ1,c′ . Both are performed by integrating the matrix field along the path in
I × Ω. More precisely, the following result justifies our use of the matrix field u in (3.1) to achieve
the goal of conditional generative modeling:

Proposition 3.1 (GCE generates γ-induced CE). Let µ: Ξ → P(D) and u: Ξ × D →
Rd×dimΞ be a probability path and a matrix field, respectively, that satisfy (3.1). Then,
for any differentiable path γ: I → Ξ, the γ-induced probability path µγ := µ ◦ γ and the
γ-induced vector field vγ : I × D ∋ (s, x) 7→ u(γ(s), x)γ̇(s) ∈ Rd satisfy the continuity
equation, i.e., the density pγ of µγ and vγ satisfy ∂spγs (x) + divx(p

γ
s (x)v

γ(s, x)) = 0.

The rigorous version of Proposition 3.1 is given in Proposition A.2 in the Appendix. Proposition 3.1
shows that the flow on D corresponding to an arbitrary probability path on {µξ ∈ P(D) ξ ∈ Ξ}
can be constructed from the γ-induced vector field obtained from multiplying the matrix u to the
vector γ̇. Thus, once the matrix field u is obtained, the desired vector field vγ is to be calibrated by
choosing an appropriate γ that suits the purpose of choice. When the pair of pξ and uξ satisfies GCE
(3.1), the designs of γ in the following two examples possess significant practical importance (See
Figure 1 and Figure 2 ):
Example 3.2 (Conditional generation). When the goal is to sample from the unknown conditional
distribution µc∗ given condition c∗ ∈ Ω, we can choose γc∗ : I → I × Ω such that γc∗(1) = (1, c∗);
typically, we can set γc∗(s) = (s, c∗) for s ∈ I . Then, by virtue of Proposition 3.1 and the continuity
equation (2.1), we only need to compute the flow ϕ by solving the ODE{

ϕ̇s(x0) = u(s, c∗, ϕs(x0))
[

1
0k

]
(s ∈ I),

x0 ∼ µ0,c∗ ,
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and obtain samples ϕ1(x0) from µ1,c∗ = µc∗ . The trajectories in the front and rear plane of (a) in
Figure 2 respectively represent the flows corresponding to this example with c∗ = c1 and c∗ = c2.
Example 3.3 (Style transfer). When the goal is to transform a sample generated from µc1 to a sample
of another distribution µc2 given c2 ∈ Ω, we may choose γc1→c2 : I → I×Ω satisfying γc1→c2(0) =
(1, c1) and γc1→c2(1) = (1, c2). For example, we can set γc1→c2(s) = (1, (1 − s)c1 + sc2) for
s ∈ I . In this case, we only need to solve the ODE{

ϕ̇s(x0) = u(1, γc1→c2(s), ϕs(x0))
[

0
c2−c1

]
(s ∈ I),

x0 ∼ µc1 .

The solution trajectories in (b) in Figure 2 represent the flows corresponding to this style transfer.

3.2 OBJECTIVE ENERGY AND MMOT-EFM

Now we extend the arguments in § 2.2 to EFM.

Objective energy: Just like in § 2.2, we use the representation of µ as (2.3) through a distribution
Q over a space H(Ξ;D) of differentiable maps ψ from Ξ to D. Now, the construction of EFM
allows us to introduce inductive bias regarding a property of ψ: Ξ → D and hence how µ behaves
with respect to ξ. In particular, if a given energy E with respect to µψ is convex, then by Jensen’s in-
equality we can bound E(µ) from above by Eψ∼Q[E(µψ)]. Please also see Propositions B.1 and B.2
for more precise statements of these results.

In MMOT-EFM, we consider the case in which E is the following generalization of the Dirichlet
energy (2.2). According to Lavenant (2019), a generalization of Dirichlet energy of a function
µ: Ξ → P(D) is given by

Dir(µ) := inf
u:Ξ×D→Rd

{
1

2

∫∫
Ξ×D

∥u(ξ, x)∥2pξ(x)dxdξ The pair (p, u) satisfies (3.1)
}
, (3.2)

where pξ is the density of µξ. This energy is of great practical importance because it also measures
how large µ changes with respect to ξ.

Objective function: Unfortunately, unlike in the case of OT, the energy-minimizing µ that can
be written as µ = µQ := Eψ∼Q[µψ] is not necessarily achieved with Q concentrated on “straight
paths”, or (flat) hyperplanes interpolating joint samples from {µξ}. Thus we choose to constrain
the search of Q to a specific subspace F of H(Ξ;D), such as Reproducing Kernel Hilbert Space
(RKHS). In this search, we also require Q to satisfy the boundary condition (BC) that

Eψ∼Q
[
δψ(ξ)

]
= µξ (ξ ∈ A), (3.3)

where A ⊂ Ξ is a finite set for which µξ (ξ ∈ A) is either known or observed. Instead of (3.3),
suppose xA := (xξ)ξ∈A for A ⊂ Ξ is a joint sample with xξ ∼ µξ. Then, let ϕ:D|A| → F be the
function-valued mapping, returning the function Ξ ∋ ξ 7→ ϕ (ξ | xA) ∈ D defined by the regression

ϕ (· | xA) ∈ arg min
f∈F

∑
ξ∈A

∥f(ξ)− xξ∥2, (3.4)

i.e., ϕ (· | xA) satisfies
∑
ξ∈A∥ϕ (ξ | xA) − xξ∥2= minf∈F

∑
ξ∈A∥f(ξ) − xξ∥2 for each xA ∈

D|A|. For a joint distribution on π on D|A|, the parametrization Q → ϕ#π of random paths allows
us to bound the energy from above in the following way:

inf
Q

Dir(µQ) ≤ inf
Q

∫∫
H(Ξ;D)×Ξ

∥∇ξψ(ξ)∥2Q(dψ)dc ≤ inf
π

∫∫
D|A|×Ξ

∥∇ξϕ (ξ | xA) ∥2π(dxA)dc.

Now observe that the upper bound is the form of a marginal optimal transport problem about π with
marginals µA and c(xA) =

∫
Ξ
∥∇ξϕ (ξ | xA))∥2dξ, whose solution π∗ can be approximated with

batch as in the OT-CFM case. See Table 1 for the parallellism between MMOT-EFM and OT-CFM.
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Table 1: Constructions of ψ: [0, 1] → D and ψ̄: Ω → D and π in OT-CFM and MMOT-EFM. Note
that they agree when F is a set of linear functions from Ω to D and when Ω = [0, 1] ⊂ R.

OT-CFM MMOT-EFM

Interpolator ψ (t | x, y) = tx+ (1− t)y ψ̄ (· | x = (xi)i) ∈ arg min
ϕ∈F

∑
i ∥ϕ(ci)− xi∥2

Cost

∫∫∫
[0,1]×D2

∥ψ̇ (t | x, y) ∥2dt π(dx, dy)

(=
∫∫
D2

∥x− y∥2π(dx, dy))

∫∫
Ω×D|C|

∥∥∇cψ̄ (c | x)
∥∥2 dc π(dx)

Similarly to (2.4), Theorem 3.4 below let us train u corresponding to µQ
∗

via (3.1) as the minimizer
of

Eψ∼Q∗,ξ∼Unif(Ξ)[∥u(ξ, ψ(ξ))−∇ξψ(ξ)∥2] = ExA∼π∗,ξ∼Unif(Ξ)[∥u(ξ, ψ(ξ))−∇ξϕ (ξ | xA) ∥2]
(3.5)

which we would use as the objective function of MMOT-EFM. Please also see Lemma A.4.

Theorem 3.4. Assume we have a random path ψ ∼ Q ∈ P(H(Ξ;D)) that satisfies (3.3)
and let µξ = Eψ∼Q

[
δψ(ξ)

]
for ξ ∈ Ξ. For neural networks uθ, set

L′(θ) =

∫
Ξ

Eψ∼Q
[
∥uθ(ξ, ψ(ξ))−∇ξψ(ξ)∥2

]
dξ. (3.6)

If there exists a matrix field u: Ξ × D → Rd×(1+k) satisfying (3.1), then it follows that
∇θL(θ) = ∇θL′(θ) for θ ∈ Rp. Here, we set L(θ) :=

∫
Ξ
Ex∼µξ

[
∥(uθ − u)(ξ, x)∥2

]
dξ.

4 TRAINING ALGORITHM

In this section, we leverage the EFM theory of § 3 to construct an algorithm for learning uθ in
Proposition 3.1, which can be used for conditional generation tasks as well as for style transfer. We
summarize the training algorithm in Algorithms 1 and 8.

Because EFM is a direct extension of FM, our algorithm roughly follows the same line of procedures
as that of FM (Algorithm 5): (a) sampling data, (b) constructing the supervisory signal ∇ψ, and (c)
updating the network by averaged loss. However, in our algorithm, the domain of ψ is I × Ω as
opposed to just I . We developed our algorithm so that, when it is applied to the unconditional case,
the trained model agrees with FM. Although the general EFM, as opposed to MMOT-EFM, does not
necessarily need to parametrize Q with respect to joint distribution π, in this paper, we focus on the
procedure that uses the joint distribution π and ψ in the form of (3.4) and (3.5).

Step 1 Sampling from Datasets: Our objective begins from the sampling of ψ, whose Jacobian
serves as the supervisory signal in the objective (3.5). In order to sample ψ, we construct Q from a
joint distribution π defined over D2Nc with marginals that are approximately (µt,c)t∈{0,1},c∈C0

. To

this end, we begin by randomly choosing a subset C0 := {ci}Nci=1 from C so that C0 consists of close
points. We then sample a batch B0,c from µ0,c and B1,c from Dc for each c ∈ C0. For the reason
we describe at the end of this section, we chose µ0,c = Law(R(c) + z) with z being a common
Gaussian component, and R: Ω → D is regressed from {(ci,Mean[Dci ])}i by a linear map. We
choose this option because it theoretically aids us in reducing Dir(µ) (See Proposition B.2).

Step 2 Constructing the supervisory paths: Given the samples B = (Bt,c)t∈{0,1},c∈C0
, we

sample (xt,c)c∈C0,t∈{0,1} from a joint distribution π overD2Nc with support onB. In MMOT-EFM,
as an internal step, we train the joint distribution π with c(xA) =

∫
I×Ω

∥∇t,cϕ (t, c | xA) ∥2dtdc

6
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Algorithm 1 Algorithm of EFM

Input: Conditions C ⊂ Ω, set of datasets Dc ⊂ D (c ∈ C), network uθ: I × Ω×D → Rd×(1+k),
source distributions p0 ( · | c) (c ∈ C)

Return: θ ∈ Rp
1: for each iteration do

# Step 1: Sample
2: Sample C0 from C, B0,c from p0 (· | c) and B1,c from Dc (c ∈ C0). Put B0 := {B0,c}c∈C0 ,

B1 := {Bc}c∈C0

# Step 2: Construct ψ: I × Ω → D
3: Construct a transport plan π among B0 and B1 #§ 4
4: Sample (xt,c)t,c ∼ π
5: Define ψ: I × Ω → D s.t. (4.1)
6: Sample t ∼ Unif(I), c ∼ Unif(ConvC0), where ConvC0 is the convex hull of C0.
7: Compute

ψt,c := ψ(t, c)

∇ψt,c := ∇t,cψ(t, c)

8: Update θ by ∇θ∥uθ(t, c, ψt,c)−∇ψt,c∥2
9: end for

with ϕ solved analytically for (3.4) with Ξ := I × Ω, by e.g., Kernel Regression, Linear regression.
When possible, the regression function may be chosen to reflect the prior knowledge of the metrics
on Ω by extending the philosophy of Chen & Lipman (2024) to the space of conditions. In practice,
however, the computational cost of MMOT scales exponentially with the number of marginals, so
we optimize the joint distributions over B1 = (B1,c)1,c∈C0

only and couple the analogous B0 to
B1 via the usual optimal transport. Please see § D.3 for a more detailed sampling procedure. Now,
given a joint sample (xt,c)c∈C0,t∈{0,1}, we construct ψ as

ψ (t, c | x0,c,xC0
) = (1− t)x0,c + tψ̄ (c | xC0

) (4.1)

where ψ̄ (c | xC0
) is the solution of the kernel regression problem for the map T :Rk ∋ c 7→ x1,c ∈

Rd with any choice of kernel on Rk. Note that this construction of ψ satisfies the boundary condition
(3.3) with A = {0, 1} × C0, and generalizes the ψ used in OT-CFM.

Step 3 Learning the matrix fields: Thanks to the result of Theorem 3.4, we may train uθ: I×Ω →
Rd×(1+k) via the loss function being the Monte Carlo approximation of (3.6).

5 INFERENCE METHOD

The sampling procedures for style transfer and conditional generation respectively follow Exam-
ple 3.3 and Example 3.2. For the task of style transfer from c0 to c∗, we use the flow along the
path µ1,c0 → µ1,c∗ . For the task of conditional generation with target condition c∗, we use the flow
along µ0,c∗ → µ1,c∗ . See Algorithms 2 and 3 for the pseudo-codes. When generating a sample for
c∗ ̸∈ C, the source distribution µ0,c∗ is constructed by R(c∗) +N (0, I) where R is as in training.

6 RELATED WORKS

Guidance-based methods: Since Lipman et al. (2023), several studies have formalized the use
of flow-based models for conditional generation. Some works by (Dao et al., 2023; Zheng et al.,
2023) parametrize the vector field v with the conditional value c and guidance scale ω ∈ R as
v(t, c, x) = ωvt (x | ∅) + (1 − ω)vt (x | c), inspired by the classifier-free guidance scheme of Ho
& Salimans (2022). Zheng et al. (2023) showed that if vt (x | c) approximates the conditional score
∇ log p (x | c) well, then with the right ω, vt(x, c) aligns with the sequence of distributions from the
standard Gaussian to the target distribution. Hu et al. (2023) created a guidance vector by averaging
vt(xctargets) − vt(xcothers

). However, these methods do not control the continuity of generated µc
with respect to c, except through the network’s architecture. Unlike these, EFM constructs the flow

7
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Algorithm 2 Generation using the matrix field
uθ

Input: Trained uθ, source distribution p0,0, tar-
get condition c∗

Return: A sample x1 from p (· | c∗)
Sample z from source distribution p0,0
Solve the regression problem R: c 7 −→
Mean[Dc] on C
Set x0,c = z +R(c)
Return ODEsolve

(
x0,c, uθ( · , c, · )

[
1
0k

])

Algorithm 3 Transfer using the matrix field uθ
Input: Trained Network uθ, source sample
x0 ∼ p1,c1 with condition label c1, target
condition c2

Return: A sample x2 from p (· | c2)
Return

ODEsolve(x0, uθ(1, γ
c1→c2( · ), · )

[
0

c2−c1
]
)

# γc1→c2 is defined in
Example 3.3

for any condition c ∈ Ω through the matrix field u, which solves GCE, allowing an inductive bias on
µc’s continuity via the distribution Q of ψ. The Dirichlet energy used in EFMcontrols the Lipschitz
constant for ψ and µ, ensuring the generation of conditional distributions during training. When
u is trained with random conditional paths and appropriate boundary conditions, our EFM theory
guarantees that the flow ϕγ

c

transforms the source to the target conditional distribution whenever c
is used in training.

Dynamical generative models (DGMs) for CGM: In addition to the VRM-based method men-
tioned in § 1, there are two other methods: COT-FM (Kerrigan et al., 2024b) and Bayesian-
FM (Chemseddine et al., 2024), both based on Conditional Optimal Transport (Hosseini et al.,
2024). These methods rely on the relatively weak assumption that the map of conditional distri-
butions c 7→ p (x | c) is measurable, or can be discontinuous with respect to c. In contrast, the
learning algorithm of EFM is designed under the assumption that p (x | c) is continuous with re-
spect to c. This distinction arises because the former addresses situations where high-dimensional
conditions, such as inverse problems of PDEs, can be densely observed, while the latter ad-
dresses scenarios where relatively low-dimensional conditions, such as molecular generation, can
be sparsely observed. Various other methods for learning CGMs have been proposed, depending
on how the data and conditions are available. For example, making the vector field depend on the
transport plan π (Atanackovic et al., 2024) or obtaining a joint sample (c, x) in a Bayesian manner
(Wildberger et al., 2023). Note that these methods are not about continuity with respect to c in the
distribution p (x | c).

Energy principles in DGMs: We also mention the family of Schrödinger-bridge based methods
by (Tong et al., 2023a; Koshizuka & Sato, 2022), which also aims to interpolate between an arbitrary
pair of distribution. This family solves the continuity equation while minimizing the regularized en-
ergy of the user’s choice in the generation process. Kim et al. (2023) also uses Wasserstein Barycen-
ter for distributional interpolation. Multi-marginal stochastic interpolants by Albergo et al. (2024)
learn a model that is similar to EFM. The method optimizes not only the vector fields but also the
path γ: [0, 1] → Ω in Proposition 3.1 to minimize kinetic energy. Our MMOT-EFM is novel in that
it minimizes the transport cost in a complementary way to the stochastic interpolant. MMOT-EFM

Figure 3: Train data in § 7.1

trains only a matrix field to minimize Dirichlet energy, which is a
generalization of the kinetic cost. This makes it possible to learn a
model that transports optimally without optimization of γ.

7 EXPERIMENTS

We conducted experiments to investigate our method in applications.

7.1 SYNTHETIC 2D POINT CLOUDS

We first demonstrate the performance of our method on a conditional distribution consisting of
synthetic point clouds in a two-dimensional domain D ⊂ R2. Here, we consider the case where the
space Ω of the condition is square, i.e., Ω = [0, 1]2, and train the model when only samples from
the conditional distributions p (· | c) at the four corner points c of the square Ω can be observed,

8
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see Figure 6 in Appendix. We compared our method against COT-FM (Chemseddine et al., 2024;

(a) Wasserstein distance. (b) Generated points.

(c) Transfer.

Figure 4: Results of § 7.1. Figures 4b and 4c visualize ϕs in Examples 3.2 and 3.3, respectively.

Kerrigan et al., 2024b), as well as OT-CFM (Tong et al., 2023b) and GG-EFM with the plan π, which
is constructed in the way of generalized geodesic, see § E.

See Figures 4b and 4c for the generation and transfer visualizations, and see Figure 4a for the error
between GT and predicted distributions. Note that our method, MMOT-EFM, performs competi-
tively with all its rivals in interpolation and generation tasks. Also, note that the style transfer with
MMOT-EFM preserves the structure of the inner and outer clusters.

7.2 MNIST WITH BACKGROUND

As another proof of concept, we compared EFM against Guided-flows (Zheng et al., 2023) on the
colored/rotated MNIST dataset with a background of a CIFAR-10 image. In this experiment,
we compress the image into a 16-dimensional latent vector space using a pre-trained Wasserstein
autoencoder (WAE) in Tolstikhin et al. (2018). We conditioned each image with the rotation an-
gle and (normalized) RGB color of the digit, constituting four dimensional c ∈ [0, 1]

4
=: Ω,

where we also normalize the rotation angle so that 180◦ becomes 1. For training, we used
12 conditions uniformly sampled from [0, 1]4. This is a very difficult setting even to exclu-
sively learn the condition of color because 12 uniformly sampled conditions in 4-dimensional
space are very sparsely located with no apparent structures like a grid. With the above set-
tings, we evaluated the extra/interpolation performance of the EFM as in § 7.1. On the right

9
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of Figure 5, we plot the error W1(µc, µ̂c) against d(c, C) := minc′∈C d(c, c
′) for each grid

point c ∈
{
(ci)4i=1 ∈ [0, 1]4 ci ∈ {0, 0.5, 1} for i ∈ [1 : 4]

}
. Our model performs competi-

tively in terms of W1 distance for the generation of distributions with arbitrary conditions.

Figure 5: Results in § 7.2

7.3 CONDITIONAL MOLECULAR GENERATION

Molecular design applications often require the simul-
taneous consideration of multiple chemical properties.
Most traditional molecular design methods combine all
property requirements and their constraints into a single
objective function. We applied MMOT-EFM to the task
of generating constraints for the following two simulta-
neous properties of molecules in the ZINC-250k dataset
by Gómez-Bombarelli et al. (2018): (1) the number of
rotatable bonds and (2) the number of hydrogen bond ac-
ceptors (HBAs). The experimental setup is described in
detail in § F. We first trained a VAE model to encode
molecular structures into a 32-dimensional latent space
and then trained EFM to perform out-of-distribution con-
ditional generation over this latent space. We measure
the MAE between the condition and actual value of the
generated compounds. As shown in Table 2, our method
outperforms all baseline methods on the averaged MAE
for out-of-distribution conditional generation.

8 CONCLUSION

In this paper, we developed the theory of EFM, an ex-
tension of FM that models the transformation of distribu-
tions with respect to conditions by a matrix field. EFM
explicitly shows how distributions change under different
conditions. The EFM theory is complementary to many
powerful existing ideas, particularly through the design of
ψ and Q. We also introduce MMOT-EFM, an extension
of OT-CFM that aims to minimize the generation sensi-
tivity to continuous conditions and demonstrate its com-
petitiveness. Although MMOT-EFM is computationally
expensive, the application of EFM will expand in the fu-
ture as more efficient algorithms for MMOT are developed.

Table 2: MMOT-EFM vs. baselines in conditional molecular generations in § 7.3.

Conditional Generation MAE

FM (Tong et al., 2023b) 1.120± 0.142
COT-FM (Chemseddine et al., 2024) 0.966± 0.122

MMOT-EFM (ours) 0.918 ± 0.122

10
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A MATHEMATICAL DESCRIPTION OF EXTENDED FLOW MATCHING THEORY

We aim to sample from the unknown conditional distribution Ω ∋ c 7→ p(• | c) ∈ P(D). We extend
the flow matching technique developed in (Lipman et al., 2023) for this aim. The technique evolves
unconditional probability distributions µt ∈ P(D), t ∈ [0, 1] from a source distribution µ0 (such
as Gaussian N (,)) to a target distribution µ1 ≈ pdata by means of a continuity equation. We then
introduce a generalized continuity equation that evolves conditional distributions µt,c, t ∈ [0, 1],
c ∈ Ω from source distributions µ0 to the target distributions µt=1,c ≈ pdata(• | c).
To realize this evolution, this section gives an example of how to construct a (at least approximate)
solution of the generalized continuity equation and a design of the source distributions µt=0,c, c ∈ Ω.

A.1 NOTATIONS

• ⟨•, •⟩ is the standard inner product and |•| :=
√

⟨•, •⟩.

• D ∋ x = (x1, . . . , xq); data space

• t ∈ [0, 1]; generation time

• c ∈ Ω ⊂ Rp; conditions in a bounded domain Ω.

• ξ = (ξ0, ξ1, . . . , ξp) := (t, c) ∈ Ω̃ := [0, 1]× Ω.

• x ∈ D ⊂ Rq; data in a compact subset D

• For a matrix-valued function u: Ξ×D → Rd×dimΞ, let ui,j denote its (i, j)-th coordinate,
where i ∈ [d], j ∈ [dimΞ]. We then define

divx u: Ξ×D → RdimΞ as divx u(ξ, x) :=

(
d∑
i=1

∂iui,0(ξ, x), . . . ,

d∑
i=1

∂iui,dimΞ(ξ, x)

)⊤

.

(A.1)

• For φ ∈ C1(Ω̃×D;Rp+1),

∇xφ :=

∂x1φ0 . . . ∂x1φp

...
. . .

...
∂xqφ

0 . . . ∂xqφ
p

 ∈ Rq×(p+1).

• P(X); the space of Borel probability measures on a space X , endowed with the narrow
topology

• P2(X); the L2-Wasserstein space

• δx ∈ P2(X); the delta measure supported at x ∈ X

• µ•: Ω̃ ∋ ξ 7→ µξ ∈ P(D) conditional probability distribution

• L2(Ω;X); the Lebesgue space valued in a metric space X , see (Lavenant, 2019, Definition
3.1)

• H1(Ω;X); the Sobolev space valued in a metric space X , see (Lavenant, 2019, Definition
3.18). In particular, we set Γ := H1(Ω̃;D)

• Dir(µ) is the Dirichlet energy of µ ∈ L2(Ω;P(D)), see (Lavenant, 2019, Definition 3.5).

• Unif(S) is the uniform distribution on a subset S of a Euclidean space with unit mass.

• Q ∈ P(Ψ). We will denote by ψ the sample from a probability distribution Q.

• σ(X) denotes the σ-algebra of a random variable

Following the notation in (Durrett, 2019), we also use the notation x ∼ p to designate that x is
sampled from the distribution p.
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A.2 GENERALIZED CONTINUITY EQUATION

According to (Lavenant, 2019, Definition 3.4), we introduce a distributional solution of a generalized
continuity equation formally given as

∇ξµ(ξ, x) + divx(µ(ξ, x)v(ξ, x)) = 0. (A.2)

The rigorous sense of (A.2) is stated in the following.

Definition A.1 (A distributional solution of the generalized continuity equation). A pair (µ, v) of a
Borel mapping µ: Ω̃ → P(D) valued in probability measures and a Borel matrix field v: Ω̃×D →
Rq×(p+1) is a solution of the continuity equation if it holds that∫

Ω̃

∫
Rq

|v(ξ, x)|2 dµξ (x) dξ < +∞,

and ∫
Ω̃

∫
Rq

(divξ φ(ξ, x) + ⟨∇xφ(ξ, x), v(ξ, x)⟩) dµξ(x) dξ = 0,

for all φ ∈ C∞
c (Ω̃× Rq;Rp+1).

If a solution (µ, v) of the continuity equation is smooth, a path γ on Ω̃ induces a path on P(D):

Proposition A.2 (Lifting conditional paths to probability paths). Let (µ, v) be a solution of the
continuity equation and γ: [0, 1] ∋ s 7→ γ(s) ∈ Ω̃ be a continuously differentiable curve in Ω̃. Set
µγ := µγ(•): [0, 1] → P(D) and vγ(s, x) := v(γ(s), x)γ̇(s) ∈ Rq for (s, x) ∈ [0, 1]× Rq .

Suppose that Dir(µ) < +∞ and there exists a probability density ρ ∈ C∞(Ω̃;L∞(D)) of µ with
respect to the Lebesgue measure.

Then, (µγ , vγ) satisfies the continuity equation in the sense of distributions, i.e.,

1∫
0

∫
Rq

(∂sζ(s, x) + ⟨∇xζ(s, x), v
γ(s, x)⟩) dµγs (x) ds = 0,

for all ζ ∈ C∞
c ([0, 1]× Rq).

Proof. By (Lavenant, 2019, Proposition 3.16), there exists a unique φ(ξ, •) ∈ H1(D;Rp+1) for

every ξ ∈
◦
Ω̃ satisfying

∇ξρ(ξ, x) + divx(ρ(ξ, x)∇xφ(ξ, x)) = 0, x ∈
◦
D,

and v = ∇xφ on suppµ, where
◦
X is the interior of a subset X . Thus, we have

∂sρ(γ(s)) + divx(ρ(γ(s), x)v
γ(s, x)) = (∇ξρ(γ(s), x) + divx(ρ(γ(s), x)v(γ(s), x)))γ̇(s)

= (∇ξρ(γ(s), x) + divx(ρ(γ(s), x)∇xφ(γ(s), x)))γ̇(s)

= 0.

■

Remark A.3. The smoothness assumption of Proposition A.2 recommends us to use some smooth
probability measures as source distributions µt=1,c, c ∈ Ω.

According to Proposition A.2 and the well-known fact (see (Ambrosio et al., 2008, Proposition
8.1.8)), if we want a sample under a certain condition c ∈ Ω, we can flow samples from a source
distribution according to the family (vγ(s, •))s∈[0,1] of vector fields determined from a path γ satis-
fying γ(1) = (1, c).
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A.3 PRINCIPLED MASS ALIGNMENT

A straightforward generalization of (Kerrigan et al., 2024a, Theorem 1 and Theorem 3) yields the
following principle in flow marching theory.
Lemma A.4 (Principled mass alignment lemma). Let F be a separable (complete) metric space
and P be a Borel probability measure on F . Let (µf , vf ) be a solution of the continuity equation,
in the sense of Definition A.1, for each f ∈ F . Set the marginal distribution as

µ̄ :=

∫
F

µf dP (f) .

Assume that ∫
F

∫
Ω̃

∫
Rq

∣∣vf (ξ, x)∣∣2 dµfξ (x) dξ dP (f) < +∞,

and µfξ is absolutely continuous with respect to µ̄ξ for P -a.e. f and a.e. ξ ∈ Ω̃. Then, (µ̄, v̄) is also
a solution, where

v̄(ξ, x) =

∫
F

vf (ξ, x)
dµfξ
dµξ

(x) dP (f) ,

for (ξ, x) ∈ Ω̃×D. Moreover, for another matrix field u satisfying∫
Ω̃

∫
Rq

|u(ξ, x)|2 dµ̄ξ (x) dξ < +∞,

we have∫
Ω̃

∫
Rq

⟨v̄(ξ, x), u(ξ, x)⟩dµ̄ξ (x) dξ =
∫
F

∫
Ω̃

∫
Rq

〈
vf (ξ, x), u(ξ, x)

〉
dµfξ (x) dξ dP (f) . (A.3)

Lemma A.4 leads to Theorem 3.4 as follows: first, in Lemma A.4, identify (v̄, u) with (u, uθ) in
Theorem 3.4. hen we see from (A.3) that

•
∫
Ξ
Ex∼µξ [⟨u(ξ, x), uθ(ξ, x)⟩] dξ and

•
∫
Ξ
Eψ∼Q,x∼µψξ

[
⟨vψ(ξ, x), uθ(ξ, x)⟩

]
dξ are equal,

where vψ is a matrix field such that vψ(ξ, ψ(ξ)) = ∇ξψ(ξ) with ξ ∈ Ξ. Also, because µψξ = δψ(ξ) is
a delta distribution concentrated on ψ(ξ), these are both equal to

∫
Ξ
Eψ∼Q [⟨∇ξψ(ξ), uθ(ψ(ξ))⟩] dξ,

as well. If we use this identity to the expansion of the square norm in (3.6), then the Theorem 3.4
follows from the same logic as (Kerrigan et al., 2024a, Theorem 3).

A.4 LIFTING DATA-VALUED FUNCTION TO PROBABILITY-MEASURE-VALUED FUNCTION

In order to construct a solution of the generalized continuity equation, we start to consider a particle-
based solution of the continuity equation.

According to (Brenier, 2003, Subsection 3.1) and (Lavenant, 2019, Section 5), we can easily con-
struct a solution of the continuity equation from a given function ψ ∈ H1(Ω̃;D).

Lemma A.5. Let ψ ∈ H1(Ω̃;D) be a function satisfying∫
Ω̃

|∇ξψ(ξ)|2 dξ < +∞.

Set µψ• := δψ(•) ∈ H1(Ω̃;P(D)). Assume that there exists a matrix field satisfying

vψ(ξ, ψ(ξ)) = ∇ξψ(ξ), (A.4)

for ξ ∈ Ω̃. Then, (µψ, vψ) is a solution of the continuity equation.
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Combining Lemmas A.4 and A.5, we can construct another solution of the continuity equation.

Corollary A.6 (The paths make the solution.). Let Q ∈ P(H1(Ω̃;D)) be a Borel probability mea-
sure, and (µψ, vψ) be a solution defined in Lemma A.5 Q-a.e. ψ ∈ H1(Ω̃;D) and

µQ :=

∫
H1(Ω̃;D)

µψ dQ(ψ)

is their marginal distribution. Assume that∫
H1(Ω̃;D)

∫
Ω̃

∫
Rq

∣∣vψ(ξ, x)∣∣2 dµψξ (x) dξ dQ(ψ) < +∞,

and µψ ≪ µQ. Then, (µQ, vQ) is also a solution of the continuity equation, where

vQ =

∫
H1(Ω̃;D)

vψ(ξ, x)
dµψξ
dµξ

(x) dQ(ψ) .

B TECHNICAL PROOFS

The following claim follows immediately from the convexity of the Dirichlet energy as shown in
Lavenant (2019, Proposition 3.13) and from Jensen’s inequality:
Proposition B.1 (Straightness is controlled by ψ). Let µt,c = Eψ∼Q

[
δψ(t,c)

]
((t, c) ∈ I ×Ω) with

η ∈ P(D). Then, the Dirichlet energy of µ: I × Ω → P(D) is bounded as

DirI×Ω(µ) ≤
∫∫

I×Ω

Eψ∼Q ∥∇t,cψ(t, c)∥2 dtdc .

Proposition B.2. Let µ ∈ H1(Ω̃;P(D)) be a smooth solution of the continuity equation, and
v: Ω̃×Rq → Rq×(p+1) is the matrix field associated with µ. Assume that v ∈ C1(Ω̃×Rq;Rq×(p+1))

and the derivatives ∂cv, ∂xv of v is bounded on Ω̃×Rq . Then, there exists a constant C > 0 depend
on p, q such that

Dir(µ(1, •)) ≤ C exp
(
∥∂xv∥L∞(Ω̃×Rq ;B(Rq×Ω̃;Rq))

)
(Dir(µ(0, •)) + ∥∂cv∥∞).

Here, ∥f∥∞ = sup(ξ,x)∈Ω̃×Rq |f(ξ, x)| for a finite-dimensional valued continuous function f on

Ω̃× Rq .

The proof of Proposition B.2 is similar to (Isobe, 2023, Proposition 5.4).

Proof. By virtue of (Lavenant, 2019, Proposition 3.21), we have to estimate

Dir(µ(1, •)) = lim
ε→0

Cp
εp+2

∫∫
Ω2

W 2
2 (µ(1, c

1), µ(1, c2)) dc1dc2 .

The integrand of the above is decomposed as

W2(µ(1, c
1), µ(1, c2)) =W2

(
Φ1,c1

# µ(0, c1),Φ1,c2

# µ(0, c2)
)

≤W2

(
Φ1,c1

# µ(0, c1),Φ1,c2

# µ(0, c1)
)
+W2

(
Φ1,c2

# µ(0, c1),Φ1,c2

# µ(0, c2)
)
.

(B.1)

Here Φt,c:Rq → Rq is a flow mapping satisfying

Φt,c(x) = x+

t∫
0

v(s, c,Φt,c(x))

(
1
0

)
ds .
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The first term of (B.1) is bounded as

W2

(
Φ1,c1

# µ(0, c1),Φ1,c2

# µ(0, c1)
)2

≤
∫
Rq

∣∣∣Φt,c1(x)− Φt,c
2

(x)
∣∣∣2 dµ0,c1(x) .

Then, the integrand is also bounded by∣∣∣Φt,c1(x)− Φt,c
2

(x)
∣∣∣ ≤ t∫

0

∥∥∥v(s, c1,Φs,c1(x))− v(s, c2,Φs,c
2

(x))
∥∥∥
op

ds

≤
∣∣c1 − c2

∣∣∥∂cv∥∞
+

t∫
0

∥∂xv∥∞
∣∣∣Φt,c1(x))− Φt,c

2

(x))
∣∣∣ds .

Thus, the Gronwall inequality yields∣∣∣Φt,c1(x)− Φt,c
2

(x)
∣∣∣ ≤ ∣∣c1 − c2

∣∣∥∂cv∥L∞(Ω̃×Rq ;B(Ω×Ω̃;Rq)) exp
(
∥∂xv∥L∞(Ω̃×Rq ;B(Rq×Ω̃;Rq))

)
.

(B.2)
By a similar argument, the second term of (B.1) is also bounded as

W2

(
Φ1,c2

# µ(0, c1),Φ1,c2

# µ(0, c2)
)
≤W2(µ(0, c

1), µ(0, c2)) exp
(
∥∂xv∥L∞(Ω̃×Rq ;B(Rq×Ω̃;Rq))

)
.

(B.3)
Combining (B.2) and (B.3) completes the proof. ■

C PSEUDO-CODES

Algorithm 4 Algorithm of OT-CFM

Input: Neural Network vθ: I × D → Rd, the source distribution µ0, the dataset D∗ ⊂ D from a
target distribution µ.

Return: θ ∈ Rp
1: for each iteration do

# Step 1: Sample from datasets
2: Sample a batch B0 from µ0

3: Sample a batch B1 from D∗
# Step 2: Construct ψ: I → D

4: Construct an optimal transport plan π between B0 and B1

5: Jointly sample (x0, x1) ∼ π
6: Sample t ∼ Unif(I)
7: Compute

ψt := ψ (t | x0, x1)
= (1− t)x0 + tx1

ψ̇t := ψ̇ (t | x0, x1)
= x1 − x0

8: Update θ by the gradient of ∥vθ(t, ψt)− ψ̇t∥2
9: end for

D SAMPLING OF ψ̄ IN (4.1) IN § 4 FOR MMOT-EFM

In this section, we follow the notation in § 4 and describe in more detail the construction of ψ̄(c|xC0
)

in (4.1), which is
ψ (t, c | x0,c,xC0) = (1− t)x0,c + tψ̄ (c | xC0)
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Algorithm 5 Flow Matching (Training)

Input: Neural Network vθ: I × D → Rd, the source distribution µ0, the dataset D∗ ⊂ D from a
target distribution µ.

Return: θ ∈ Rp
1: for each iteration do

# Step 1: Sampling from datasets
2: Sample batches B0 = {xi0}Ni=1 from source p0
3: Sample batches B1 = {xj1}Nj=1 from dataset D∗

# Step 2: Constructing a supervisory path ψ
4: Construct an optimal transport plan π ∈ RN×N between B0 and B1

5: Jointly sample (x0, x1) ∈ B0 ×B1 from π
6: Sample t ∈ I
7: Compute

(A) ψt := ψ (t | x0, x1) = (1− t)x0 + tx1
(B) ∇ψt := ∇tψ (t | x0, x1) = x1 − x0
# Step 3: Learning vector fields

8: Update θ by the gradient of ∥vθ(t, ψt)−∇ψt∥2
9: end for

Algorithm 6 ODEsolve for generation

Input: Initial data x0 ∈ D, vector fields v: I ×D → Rd
Return: Terminal value ϕv1(x0) of the solution of ODE ϕ̇vt (x0) = v(t, ϕvt (x0))

1: Compute ϕ1(x0) via a discretization of the ODE in t

Algorithm 7 Extended Flow Matching (Training)

Input: Condition set C ⊂ Ω ⊂ Rk, set of datasets Dc ⊂ D ⊂ Rd for each c ∈ C, network
uθ: I × Ω×D → Rd×(1+k), source distributions p0 ( · | c) (c ∈ C)

Return: θ ∈ Rp
1: for each iteration do

# Step 1: Sampling from datasets
2: Sample C0 = {ci}Nci=1 ⊂ C
3: Sample a batch B0,c from p0 (x | c) for each c ∈ C0

4: Sample a batch B1,c from Dc for each c ∈ C0

5: Put B0 := {B0,c}c∈C0 and B1 := {Bc}c∈C0

# Step 2: Constructing supervisory paths {ψj}Nj=1

6: Construct a transport plan π among B0 and B1

# see § 4
7: Sample {(xjt,c)(t,c)∈{0,1}×C0

}Nj=1 ⊂ D2Nc from π

8: For all j ∈ [1 : N ], define ψj : I × Ω → D that regresses (xjt,c)(t,c)∈{0,1}×C0
on {0, 1} × C0

# see Equation (4.1)
9: Sample {tk}Ntk=1 ⊂ I

10: Sample {c′l}
N ′
c

l=1 ⊂ Conv(C0)
11: For all j ∈ [1 : N ], k ∈ [1 : Nt], l ∈ [1 : N ′

c], compute
(A) ψj,k,l := ψj(tk, c

′
l)

(B) ∇ψj,k,l := ∇t,cψj(tk, c
′
l)

# Step 3: Learning matrix fields
12: Compute the loss

L(θ) =
1

NNtN ′
c

∑
j,k,l

∥uθ(tk, c′l, ψj,k,l)−∇ψj,k,l∥
2

13: Update θ by the gradient of L(θ)
14: end for
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and the corresponding joint distribution of xC0
:= {xi}ci∈C0

on D2|C0| we used in step 2 of the
training algorithm. In the final part of this section, we also elaborate how we couple x0,c with xC0

.

As we describe in the main manuscript, we introduce our EFM as a direct extension of FM as a
method to transform one distribution to another through a learned vector field. In particular, we
present in this paper an implementation of EFM which extends OT-CFM Tong et al. (2023b), which
aims to train FM as an approximate optimal transport between two distributions (source µ0 and target
µ1). To formalize this extension, we need to desribe OT as a minimization of Dirichlet Energy.

D.1 OT-CFM AS APPROXIMATE DICIRHLET ENERGY MINIMIZATION

As is principally described in Lavenant (2019), OT emerges as a coupling of the source µ0 and
the target µ1 constructed from the constant-speed geodesic (with respect to Wasserstein distance)
between µ0 and µ1, which can be realized by minimizing the Dirichlet energy

Dir(µ) = inf
v:I×D→Rd


∫

[0,1]×D

1

2
∥v(t, x)∥2µt(dx)dt ∂tµt(x) + divx(µt(x)v(t, x)) = 0

 (D.1)

over all set of µ: [0, 1] → P(D) satisfying µ(0) = µ0, µ(1) = µ1. It is well known that in the
standard Euclidean metric space, the minimal energy is achieved by µ corresponding to v(t, x) that
is the derivative of a straight-line of form ψT (t | x) = tT (x) + (1 − t)x where T :D → D, and
more particularly as the minimum of∫

D×D

1

2
∥x− y∥2π(dx, dy) =

∫
D

1

2
∥∂tψT (t|x)∥2(I × T )#µ0(dx) (D.2)

over all π ∈ P(D × D) with marginal distribution µ0 and µ1 or equivalently over all T with
T#µ0 = µ1. In OT-CFM, this π(or T ) is approximated by the discrete optimal transport solution
over a pair of batches B0, B1 sampled respectively from source and target distributions. Note that,
in this view, (I × T )#µ0 induces a distribution Q on the path [0, 1] → D generating ψT (t|x) with
randomness derived from x.

Theorem 3.1 of Yim et al. (2024) guarantees that the (batch)sample-averaged version of µ and the
(batch)sample-averaged version of v satisfies the continuity equation, thereby yielding the approxi-
mation of the dirichlet energy minimizing flow map.

D.2 MMOT-EFM AS APPROXIMATE DICIRHLET ENERGY MINIMIZATION

To mimic this construction in multi-marginal setting of EFM, we aim to approximate the solution to
the minimization of

Dir(µ) = inf
v:Ω×D→Rd×k


∫

Ω×D

1

2
∥v(c, x)∥2µξ(dx)dc ∂cµξ(x) + divx(µ(c, x)v(c, x)) = 0


(D.3)

over all set of µ: Ω → P(D) satisfying µ(ci) = µi for all ci ∈ C0. Note that when Ω = [0, 1],
this minimization problem (i.e. Dirichlet Problem) agrees with that of the OT problem on which the
method of FM is established.

Now, in a similar philosophy as FM, we would aim to approximate this Dirichlet energy through
multi-marginal optimal transport Piran et al. (2024) over discrete samples. Now, under sufficient
regularity condition (Prop 5.6 Lavenant (2019)), we can similarly argue that there exists some prob-
ability Q on the space F = H1(Ω, D) of a map from “condition” to “data” satisfying

Dir(µ) =

∫
Ω×F

∥∂cψ(c)∥2Q(dψ)dc (D.4)

and our goal winds down to finding the energy-minimizing distribution Q. In this endeavor, we
implicitly find Q by specifying a particular space of functions F and generating ψ: Ω → D from
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a set of {(ci, xi)}ci∈C0
of ”condition value” and ”observation” for jointly sampled {xi}i as the

regression

ψ̄(·|{xi}i) = arg min
ψ∈F

∑
ci∈C0

∥ψ(ci)− xi∥2 (D.5)

and minimize the energy with respect to the joint distribution π onD|C| from which to sample {xi}i.
That is, we aim to minimize ∫

∥∇cψ̄(c|{xi}i)∥2π({dxi}i)dc (D.6)

with respect to π. This, indeed, is in the format of MMOT problem, where c({xi}i) :=
∥∇cψ(c|{xi}i)∥2. F can be chosen, for example, as an RKHS or a space of linear function, so
that the regression can be solved analytically with respect to c.

Just as is done in OT-CFM, we approximate this π with the joint distribution over a finite tuple of
batches {Bi}i with each Bi sampled from µi corresponding to condition ci. This approximation is
indeed the very π that we adopt in MMOT version of our EFM in step 2.

Now, by the virtue of Theorem of principle-mass-alignment A.6, we can argue that the
(batch)sample-averaged distributions µψ and the (batch)sample-averaged vψ = ∂cψ solve the gen-
eralized continuity equation, thereby yielding the approximation of the Dirichlet energy minimizing
map µ : Ω → P(D).

Note that the above constructions of ψ ∼ Q is in complete parallel with that of OT-CFM. See Table3
for the correspondences. We also note that this argument can be extended to Ω̃ = [0, 1]×Ω in place

Table 3: OT-CFM vs MMOT-EFM

Framework OT-CFM MMOT-EFM

µ [0, 1] → P(D) Ω → P(D)
ψ [0, 1] → D Ω → D
v ∂tψ ∇cψ̄
(µ, v) relation Continuity Generalized Continuity
Boundaries {µ0, µ1} {µi}ci∈C0

Approximation OT MMOT

of Ω. However, because of the computational cost of MMOT, we construct our generative model
from (4.1), which combines ψ̄ and the OT-CFM construction. In the next section, we elaborate on
the construction of the approximation of π in (D.6) from which to sample ψ̄ in (4.1)

D.3 APPROXIMATING MMOT

In general, MMOT is computationally heavy, and even with the advanced methods like the multi-
marginal Sinkhorn method developed in (Lin et al., 2022), the computational cost scales as |B||C|,
where |B| is the batch size and |C| is the number of conditions to be simultaneously considered.
To reduce this cost, we took the approach of approximating MMOT through clustering. More par-
ticularly, when a batch from Bi is sampled each from µi for condition ci, we applied K-means
nearest neighborhood clustering (KNN) to Bi, yielding sub-batches {Uik}ci∈C0,k∈[1:K] with mean
values {mik}ci∈C0,k∈1:K , where ∪k∈1:KUik = Bi. Let Mi = {mik}k∈[1:K] be the set of cluster-
means for batch i. Instead of conducting MMOT directly on batch Bi, we conduct the MMOT
on {Mi}i, whose cost will be on the order of K |C|. Applying argmax operations on the re-
sult of MMOT from methods like the Sinkhorn method, we can obtain the deterministic coupling
πm = (×i

Ti)#Unif(M0) where Unif(M0) is the uniform distribution on M0. After sampling
m0k∗ ∼ Unif(M0), we couple UiTi(k∗) with a method of user’s choice, where Ti(k∗) is an abuse of
notation satisfying

miTi(k∗) = Ti(m0k∗).

In our implementation of MMOT-EFM, we coupled {UiTi(k∗)}i with generalized-geodesic coupling
as is used in Fan & Alvarez-Melis (2023), with center distribution being the standard Gaussian with
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mean being the average of {UiTi(k∗)}i. Although we provide a brief description of generalized-
geodesic in § E, we would like to refer to Ambrosio et al. (2008) for a more thorough study.

Below, we summarize the sampling procedure of of {xi}ci∈C0 in ψ(·|{xi}ci∈C0) of MMOT-EFM.

Algorithm 8 MMOT sampling with Cluster

Input: Set of batches {Bi}i with each Bi sampled from p(·|ci)
Return: Joint sample {xi}ifrom {Bi}i

# Step 1: Cluster MMOT setup
1: Cluster each Bi as ∪k∈[1:K]Uik = Bi with mean(Uik) = mik

2: Set Mi = {mik}k∈[1:K]

3: Use MMOT to produce coupling on {Mi}i via {Ti}i#Unif(M0)
# Step 2: Sampling

4: Sample m0k∗ from Unif(M0)
5: Compute miTi(k∗) := Ti(m0k∗)
6: Jointly sample from {UiTi(k∗)} with the method of user’s choice, preferrably with deterministic

coupling, such as another round of MMOT or generalized-geodesic.

D.4 COUPLING OF {x0,ci}ci∈C0
AND {xi}ci∈C0

Ideally, it is more closely aligned with the theory of Dirichlet energy to include the source distribu-
tions {µ(0, ci)}i into the set of distributions to be coupled in the MMOT, and enact the argument in
§ D.2 with Ω̃ = [0, 1]×Ω in place of Ω. As mentioned in the previous section, however, the cost of
empirical MMOT scales exponentially with the number of distributions to couples. We, therefore,
took an alternative coupling strategy as a computational compromise.

First, recall from the step 1 of § 4 that {x0,ci}ci∈C0
are already coupled with common stan-

dard Gaussian sample in the form of µ0,c = Mean[Dc] + N (0, I). To couple {x0,ci}ci∈C0
with

{xi}ci∈C0
which are deterministically coupled through the routine of Section D.3 as {xi}ci∈C0

=
{Ti(x0)}ci∈C0 with x0 sampled from p (· | c0), we may simply couple x0,c0 with x0 and this will
automatically induce the deterministic coupling of {x0,ci}ci∈C0 and {xi}ci∈C0 . In particular, if
B0,c0 is a batch of samples from p0 (· | c0) and B1,c0 is a batch of samples from Dc0 in the step1
of the training, we may couple B0,c0 with B1,c0 with optimal transport with the methods of user’s
choice, such as those provided in Flamary et al. (2021).

E A REMARK ON GENERALIZED GEODESIC COUPLING(GGC) AND THE
SAMPLING OF ψ̄ IN (4.1) IN § 4 FOR GGC-EFM

As we have mentioned in Section 3.1, EFM can be defined with any distribution Q ∈ P(Ψ) on the
space of functions Ψ := {ψ: I × Ω → D ψ is differentiable} satisfying the boundary conditions
(3.3). We also present still another construction of ψ̄ derived from different coupling.

E.1 GENERALIZED GEODESIC COUPLING

Generalized geodesic of {µi} with base ν ∈ P(D), also known in the name of linear optimal
transport Moosmüller & Cloninger (2020) in mathematical literatures, was introduced in (Ambrosio
et al., 2008) as

ρa :=

(∑
i=1

aiTi

)
#

ν, a ∈ ∆m−1 (E.1)

where Ti is the optimal map from ν to µi and ∆m−1 is the set of all {ai}mi=1 with
∑
i ai = 1. This

is indeed one of the generalizations to the McCann’s interpolation used in OT between µ0 and µ1

through the expression
ρt := ((1− t) Id+tT )#µ0, t ∈ [0, 1]
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which runs along the geodesic in P(D) with respect to Wasserstein distance. Note that ρa in Gener-
alized Geodesic provides not only provides deterministic coupling of {µi} through ρei = Ti#ν =
µi, it also interpolates unknown distributions for any a ∈ ∆m−1. We would refer to the deterministic
coupling in the form of Ti#ν = µi as GGc-coupling.

E.2 GGC SAMPLING OF ψ̄

In analogy to the sampling procedure of ψ̄ (· | {xi}i) in MMOT-EFM with MMOT-coupled {xi}i,
we may sample ψ̄ (· | {xi}i) with {xi}i that is jointly sampled with GGc-coupling. We emphasize
that ψ̄ constructed in such a way does not necessarily minimize an explicit objective as Dirichlet
energy and this might result in EFM with a somewhat erratic style transfer. For more empirical
investigations, please see the main manuscript.

F EXPERIMENT DETAILS FOR CONDITIONAL MOLECULAR GENERATION

F.1 METRICS

To evaluate our conditional generation, we use the pre-trained VAE model to encode EFM-generated
latent vectors into molecular structures and compute the Mean Absolute Error(MAE) between the
generated molecule’s property values and the conditioning property values. MAEs are calculated
separately for interpolation and extrapolation. All MAEs are first calculated for each property and
then averaged for both properties.

F.2 DATASET AND BASELINES

We first trained a Site-information-encoded Junction Tree Variational Autoencoder (SJT-VAE)
model, a variant implementation of the Junction Tree Variational Autoencoder (JT-VAE) (Jin et al.,
2018). SJT-VAE was initially designed to eliminate the arbitrariness of JT-VAE and enable appli-
cations such as RJT-RL (Ishitani et al., 2022). We chose SJT-VAE over JT-VAE due to its superior
reconstruction accuracy and faster training times. However, we expect that similar results could be
reproduced with the original JT-VAE implementation.

Our SJT-VAE model was trained on the ZINC-250k dataset (Gómez-Bombarelli et al., 2018;
Akhmetshin et al., 2021). A random subset of 80, 000 molecules was labeled with the number
of HBAs and the number of rotatable bonds, with all labels computed using RDKit. These 80, 000
molecules were then binned into a 2D matrix based on their property values. From this matrix,
we selected a region with concentrated data: molecules with 2 and 4 rotatable bonds and 3 and 5
HBAs, forming 4 bins with property sets (2, 3), (2, 5), (4, 3), and (4, 5). To balance the dataset, we
up-sampled or capped the number of training examples to 5, 000 per bin.

To evaluate out-of-distribution conditional generation, we generated molecules with property sets
not included in the training set, specifically (3, 4), (2, 4), (4, 4), (3, 3), and (5, 5). For property sets
where only one property is out-of-distribution, we calculated the MAE based solely on the out-of-
distribution property.

All flow matching-based models, including MMOT-EFM and baselines, are trained with a batch size
of 250 and the learning rate of 1e−4 for 160, 000 iterations. Training on a single Nvidia V-100 GPU
with evaluation every 5000 iterations took around 4 hours.

G COMPUTATIONAL RESOURCES

All models were trained on a single Nvidia V100-16G GPU, and 100 epochs were completed within
4 hours. Training for the MMOT-EFM model is performed on a single Nvidia V100-16G GPU
within 2.5 hours. The results of MMOT-EFM for synthetic experiments were yielded from a model
trained over 100000 iterations in 5 hours.

H ADDITIONAL FIGURES
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Figure 6: Training set rotatable bonds and HBAs label distribution

Figure 7: Conditional generation of the synthetic dataset by FM, organized in the grid for two axes
of conditions.
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Figure 8: Conditional generation of the synthetic dataset by MMOT-EFM, organized in the grid for
two axes of conditions. The figures in the bottom row are the result of style transfer.
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Figure 9: Conditional generation of synthetic dataset by Baysian(COT)-FM with β = 102, organized
in grid for two axis of conditions.
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