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ABSTRACT

Conditional generative modeling (CGM), which approximates the conditional
probability distribution of data given a condition, holds significant promise for
generating new data across diverse representations. While CGM is crucial for
generating images, video, and text, its application to scientific computing, such
as molecular generation and physical simulations, is also highly anticipated. A
key challenge in applying CGM to scientific fields is the sparseness of avail-
able data conditions, which requires extrapolation beyond observed conditions.
This paper proposes the Extended Flow Matching (EFM) framework to address
this challenge. EFM achieves smooth transitions in distributions when depart-
ing from observed conditions, avoiding the unfavorable changes seen in existing
flow matching (FM) methods. By introducing a flow with respect to the condi-
tional axis, EFM ensures that the conditional distribution changes gradually with
the condition. Specifically, we apply an extended Monge—Kantorovich theory to
conditional generative models, creating a framework for learning matrix fields in
a generalized continuity equation instead of vector fields. Furthermore, by com-
bining the concept of Dirichlet energy on Wasserstein spaces with Multi-Marginal
Optimal Transport (MMOT), we derive an algorithm called MMOT-EFM. This
algorithm controls the rate of change of the generated conditional distribution.
Our proposed method outperforms existing methods in molecular generation tasks
where conditions are sparsely observed.

1 INTRODUCTION

Conditional generative modeling (CGM), which involves approximating a conditional probability
distribution p (z | ¢) of data 2 given condition ¢, holds great promise for generating new, previously
non-existent data across a wide range of representations. Currently, CGM is pivotal in generating
images, videos (Rombach et al., 2021; Saharia et al., 2022a;b; Voleti, 2023), and text (Li et al., 2022;
Strudel et al., 2022; Gao et al., 2024), but it is also expected to be applied to scientific computing,
such as molecular generation (Kang & Cho, 2019) and physical simulations (Huang et al., 2024;
Gebhard et al., 2023).

One of the key challenges of applying CGM in scientific fields is the sparsity of available data con-
ditions. This sparsity necessitates extrapolating beyond the observed conditions (Lee et al., 2023).
An important example of scientific applications is molecular generation—imagine that you wish to
discover a new molecule xqesireqd With a desired chemical property Cqesired, for which no molecular
data may be available. Here, we have only observed a limited number of properties cops, Which
may be very sparse and require difficult extrapolation. This sparsity issue is more apparent when the
condition or property is multi-dimensional.

In contrast, recent deep generative models for CGM have been designed mainly for situations where
the conditions are densely observed. Consider the example of methods (Ding et al., 2021; Zhao
et al., 2024; Ding et al., 2024) based on Vicinal risk minimization (VRM) by Chapelle et al. (2000).
In VRM, the observed conditions c,p,s are augmented with Gaussian noise w, ~ N (0, I), and the
generative model is trained so that the unknown conditional distribution p (« | cobs + w.) becomes

close to the known distribution p (x | cops). Thus, if we can only observe two conditions ¢!, , and
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Figure 2: Visualization of the flow for (a) condi-
tional generation along v°* and y“? (Algorithm 2),
Figure 1: Difference between FM and EFM. and (b) style transfer along v 7“2 (Algorithm 3).

c?, +» which are somewhat distant from each other, then we cannot introduce any inductive bias into
the interpolated or extrapolated condition cgesireq. AS a result, the accuracy of the generation of data
given Cgesired Would not improve. Indeed, Figure 4b will show another example where the quality
of the generation at ¢ = cgesired deteriorates compared to ¢ = c,pg if no bias is introduced.

We expect that one of the hopes to overcome this difficulty is dynamical generative models, includ-
ing diffusion models (Song et al., 2021; Ho et al., 2020) and, in particular, the simplest of these
Flow matching (FM) (Liu et al., 2023; Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023). FM
itself is the method of generative modeling to approximate a probability distribution p(z). In FM,
two probability distributions are gradually deformed by flows induced by ordinary differential equa-
tions (ODESs). This deformation makes it possible to formulate the learning of the generative model
as an estimation of the “vector field”, i.e., the way in which the ODE infinitesimally transformed
the data. In particular, the methods based on FM stabilize the learning of vector fields, making it
possible to generate a variety of data representations, including images (Esser et al., 2024), text (Hu
et al., 2024), audio (Le et al., 2023), DNA (Stark et al., 2024), and molecules (Song et al., 2023;
Miller et al., 2024).

This paper proposes the framework of Extended Flow Matching (EFM), which realizes a “smooth”
change of distributions for departure from the observed conditions, where we introduce an inductive
bias of low sensitivity of p (x | ¢) with respect to conditions ¢ . If we assume that the target data is
in nature, such as molecules, it is reasonable to impose this inductive bias. We remark that this kind
of inductive bias has been used throughout the history of generative models as a method to prevent
overfitting and a method to stabilize generative models; see, e.g., (Miyato et al., 2018). Therefore,
our method addresses extrapolation by learning a model such that the data to be extrapolated follows
this inductive bias of low sensitivity.

More specifically, we apply the extended Monge—Kantorovich theory introduced by Brenier (2003)
to conditional generative models. This leads to a framework for learning matrix fields in a general-
ized continuity equation instead of vector fields in the continuity equations in FM.

Furthermore, by combining the concept of Dirichlet energy on Wasserstein spaces introduced by
Lavenant (2019) with Multi-Marginal Optimal Transport (MMOT), we can derive an algorithm
called MMOT-EFM that reduces the sensitivity of the generated conditional distribution. In addition,
our proposed method is shown to outperform existing methods in the task of molecular generation
in situations where conditions are sparsely observed.

NOTATION

Letus use - to denote a placeholder, || - || to denote the Euclidean norm, and 0y, := (0,...,0) T € R¥
to denote the zero vector. We denote by P(M) the space of probability distributions on a metric
space M, and denote by §, € P(M) the delta distribution supported on x € M. For a distribution
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p € P(M) on M and a vector-valued function f on M, we denote by Ex ., [f(X)] the expectation
of a random variable f(X), where X ~ p is a random variable following .

We also denote I := [0,1] and [m : n| := {m,m + 1,...,n} for m, n € N such that m < n.
For a function g on I, we write ¢(t) for the derivative %(t) with respect to time ¢ € I. Further,
we let D C R? be the data space. For any subscript £, we will denote by pe the density of a
probability distribution ¢ on D C R4, i.e., pg(dz) = pe(x)da in a measure-theoretic notation.
In the following mathematical discussion, we will assume that any probability distribution has a
density, but this assumption is superficial and is used only for simplicity of explanation.

2 PRELIMINARIES

To motivate EFM, we first present Flow Matching by Lipman et al. (2023) and its variant, OT-CFM
(Pooladian et al., 2023; Tong et al., 2023b), through the lens of Monge—Kantorovich theory.

2.1 FLOW MATCHING (FM)

Continuity Equation: As a method of generative modeling, the goal of FM is to learn a map that
transforms a source distribution to a target distribution in the form of u: [0, 1] — P (D), where D is
the space of dataset. Instead of learning v directly, flow matching as a method learns a vector field
v:[0,1] x D — R? such that the continuity equation (CE)

Oept(z) + divy (pe(z)v(t, z)) = 0 ((t,z) € [0,1] x D) (2.1

holds with respect to the density p; of 1, and we use this v for the sample generation.
Inference: X, ~ 11 can be sampled by solving the ODE with X (¢) = v(t, X (t)), X (0) ~ po.

2.2 OT-CFM

OT-CFM, which has been proposed to use optimal transport for constructing the vector field, can
be interpreted as a method of minimizing the Dirichlet energy, or the energy of transport for p
conditional to the boundary condition (g = pUsource, 41 = Htarget- SPecifically, we will show that a
straight line in the construction of OT-CFM can be regarded as a minimizer of the Dirichlet energy.

Objective energy: Formerly, Dirichlet or the kinetic energy of the curve p can be written as

1
Dir(u) ==  inf = H |lv(t, x)||?ps (z)dzdt | The pair (p, v) satisfies (2.1) p . (2.2)
v:iIxD—RI | 2 IxD

Objective function: To derive the algorithm used in OT-CFM, we first introduce some definitions.
Let @ be a distribution over a space H (I; D) := {t¢): I — D | 1) is differentiable} of paths that map
timet € [ todataxz € D, ¢: I — D be asample from @, and use /Lf’ to denote the delta distribution
Sy(1) € P(D) supported at 1(t) € D. With these definitions, we can represent y = @ from @ as

p@: I3 t1— Eyogulle P(D). (2.3)

As a matter of fact, we can see that the optimal probability path ;@ , which minimizes
infg Dir(uQ) subject to ,uf]‘? = lsource, /L? = [luarger» 15 concentrated on the set of “straight lines”
Y (t] xy1,22) = txs + (1 — t)z; between joint samples (27, x2) from the target and the source.
By (Ambrosio et al., 2008, Theorem 8.2.1), the function D x D > (zy,22) +— (- | z1,22) €
H(I; D) allows a parametrization of () with the optimal transport plan 7 with marginals {tsource and
Mtarget- This would allow us to write |[¢(¢ | 21, 22)||?= ||z1 — 22|? for the optimal Q*. This would
reduce the optimization with respect to @ to the classic optimal transport problem for the joint prob-
ability 7 with cost ¢(x,y) = ||z —y||>. In OT-CFM, this is approximated through batches. Following
the same logic as in (Kerrigan et al., 2024a), or our later theorem (Theorem 3.4), the vector field v,
which generates ?" via CE can be obtained as the minimizer of

E g+ tmtmit(n [0 (8) = (D)) = Eqay so)mme tmtmit(ny [10(8, (1)) =9 (¢ | 21, 22) ||(;]-4)
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This derives the learning of v through a neural network vg as shown in Algorithm 5. Indeed, Dirichlet
energy that OT-CFM is aiming to minimize is a form of inductive bias regarding the continuity of
the generation process with respect to time t.

In naive application of OT-CFM to conditional generation, 1 (t) is replaced with ¢ (¢, ¢) for the target
c. However the energy of OT-CFM only relates to ||0;1 (%, c)||?, unlike our EFM in Section 3.

3 THEORY OF EFM

In this section, we extend the standard FM theory to consider conditional probability with condi-
tions ¢ within a bounded domain 2 C R¥. Let p.(x) := p (x | ¢) be the unknown target conditional
probability density, and let po .(x) := po (x | ) be a user-chosen tractable conditional density given
c= (ci)ie[L K = (¢!, ...,c*) € €, such as normal distributions with mean and variance parameter-
ized by c. We will use the notation in the previous section, that is, we will denote by i and (g . the
distribution of the probability density function p. and pg ., respectively.

3.1 EXTENSION OF FM

We will present this subsection in parallel with § 2.1.

Generalized Continuity Equation: We directly extend the interpretation of FM by extending the
domain of ¢ in (2.3) from [ to I x §2, where 2 is the space of conditions. For brevity, instead
of using explicit I x €2, we would like to use a general bounded domain = in Euclidean space
as an analog of €2 of the previous section and analogously set the goal of EFM to the learning of
w:Z — P(D). Now, just like FM, instead of learning y directly, EFM aims to learn a matrix field
w2 x D — RIXAmE guch that generalized CE (Brenier, 2003; Lavenant, 2019)

Vepe () + dive (pe(2)u(§, x)) = 0 ((§,2) € Ex D) 3.0
holds for the density p¢ of ji¢. Here, div is an extended divergence operator, see Appendix (A.1).

Inference: Inference based on the matrix field u is slightly more complicated than in FM, which
provides a single vector field to integrate the ODE. Various tasks can be solved solely with the
matrix field, including the typical cases of generation and transfer. For = = I x (), the generation
given condition ¢ will be performed by transforming pio,. — f1,c, and the transfer from c to ¢’ by
transforming 41 . — f1,-. Both are performed by integrating the matrix field along the path in
I x ). More precisely, the following result justifies our use of the matrix field u in (3.1) to achieve
the goal of conditional generative modeling:

Proposition 3.1 (GCE generates «y-induced CE). Let u:= — P(D) and w:E x D —
RIXNME o g probability path and a matrix field, respectively, that satisfy (3.1). Then,
for any differentiable path v: I — E, the y-induced probability path ¥ = p o v and the
y-induced vector field vV: 1 x D > (s,z) — u(y(s),2)5(s) € R? satisfy the continuity
equation, i.e., the density p¥ of u¥ and v" satisfy 0sp (z) + div, (pY (z)v7 (s, z)) = 0.

The rigorous version of Proposition 3.1 is given in Proposition A.2 in the Appendix. Proposition 3.1
shows that the flow on D corresponding to an arbitrary probability path on {pe € P(D) | £ € E}
can be constructed from the vy-induced vector field obtained from multiplying the matrix « to the
vector . Thus, once the matrix field u is obtained, the desired vector field v” is to be calibrated by
choosing an appropriate vy that suits the purpose of choice. When the pair of p; and ¢ satisfies GCE
(3.1), the designs of v in the following two examples possess significant practical importance (See
Figure 1 and Figure 2 ):

Example 3.2 (Conditional generation). When the goal is to sample from the unknown conditional
distribution p., given condition ¢, € 2, we can choose y*: I — I x € such that v+ (1) = (1, ¢4 );
typically, we can set v°* (s) = (s, ¢, ) for s € I. Then, by virtue of Proposition 3.1 and the continuity
equation (2.1), we only need to compute the flow ¢ by solving the ODE

{és@co) = u(s, e, ds(20)) [0, ] (s € 1),

Ty ~ HO,c. s
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and obtain samples ¢ (xo) from pq ., = pc,. The trajectories in the front and rear plane of (a) in
Figure 2 respectively represent the flows corresponding to this example with ¢, = ¢; and ¢, = co.
Example 3.3 (Style transfer). When the goal is to transform a sample generated from fi., to a sample
of another distribution p., given ca € 2, we may choose y“17<2: [ — I x ) satisfying 7172 (0) =
(1,¢1) and v 7°2(1) = (1,cq). For example, we can set 7“1 72 (s) = (1, (1 — s)c; + scq) for
s € I. In this case, we only need to solve the ODE

{ésm) = u(1,7°72(s), ¢s(20)) [ 0%, ] (s € 1),

o ~ Heq -

The solution trajectories in (b) in Figure 2 represent the flows corresponding to this style transfer.

3.2 OBIECTIVE ENERGY AND MMOT-EFM

Now we extend the arguments in § 2.2 to EFM.

Objective energy: Just like in § 2.2, we use the representation of y as (2.3) through a distribution
Q over a space H(=; D) of differentiable maps ¢ from = to D. Now, the construction of EFM
allows us to introduce inductive bias regarding a property of ¢): = — D and hence how p behaves
with respect to &. In particular, if a given energy £ with respect to u¥ is convex, then by Jensen’s in-
equality we can bound & (1) from above by Eyq[€(1?)]. Please also see Propositions B.1 and B.2
for more precise statements of these results.

In MMOT-EFM, we consider the case in which £ is the following generalization of the Dirichlet
energy (2.2). According to Lavenant (2019), a generalization of Dirichlet energy of a function
w:Z — P(D) is given by

Dir(u) == inf {1ﬂ |u(&, ) ||*pe (x)dad€ | The pair (p, u) satisfies (3.1)} , (32
=ExD

wExD—oRE | 2

where p¢ is the density of u¢. This energy is of great practical importance because it also measures
how large i changes with respect to .

Objective function: Unfortunately, unlike in the case of OT, the energy-minimizing 4 that can
be written as 1 = p? = Ey~o[u¥] is not necessarily achieved with ) concentrated on “straight
paths”, or (flat) hyperplanes interpolating joint samples from {j¢}. Thus we choose to constrain
the search of @ to a specific subspace F of H(Z; D), such as Reproducing Kernel Hilbert Space
(RKHS). In this search, we also require () to satisfy the boundary condition (BC) that

Eynq [6p(e)] = pe (€ € A), (3.3)

where A C E is a finite set for which pe (§ € A) is either known or observed. Instead of (3.3),
suppose 4 = (z¢)eeca for A C Eis a joint sample with x¢ ~ . Then, let ¢: DAl — F be the
function-valued mapping, returning the function Z 3 £ — ¢ (£ | £ 4) € D defined by the regression

¢ (- | ma) € arg min Y [ (&) — ze |, (3.4)
Ter  eca
e (| @a) satisfies e 416 (€ | @a) — wel>= minper Do oI (€) — w¢|]® for each x4 €

DI, For a joint distribution on 7 on D!4!, the parametrization Q — ¢4 m of random paths allows
us to bound the energy from above in the following way:

i) <inf | IVes©PQUde <int | IVeo (¢ @) Prdaae
H(E;D)xE DIAIx=

Now observe that the upper bound is the form of a marginal optimal transport problem about 7 with
marginals 14 and ¢(x4) = [2||Ved (€ | 24))]|2dE, whose solution 7* can be approximated with
batch as in the OT-CFM case. See Table 1 for the parallellism between MMOT-EFM and OT-CFM.
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Table 1: Constructions of t: [0, 1] — D and ¢: Q2 — D and 7 in OT-CFM and MMOT-EFM. Note
that they agree when F is a set of linear functions from €2 to D and when 2 = [0,1] C R.

OT-CFM MMOT-EFM
Interpolator 4 (¢ | 2,y) = tw + (1 - )y (- | = (x:);) € arg min ¥, [l6(cs) —
peEF

[l (¢ 2, y) At w(de, dy)

C [O’]]XDz v(:7 C 2dC7T da;
= [Tz =yl n(az, dy) H IVt (¢ | )| dem(da)

Qx DICI

Similarly to (2.4), Theorem 3.4 below let us train u corresponding to 4@ via (3.1) as the minimizer
of

Eypnge entmit@ (&, ¥(€) = Ve (O)1?] = Eg yons emtmitm) [[u(€, 0(€) — Ve (€ | za) |17
3.5)

which we would use as the objective function of MMOT-EFM. Please also see Lemma A.4.

Theorem 3.4. Assume we have a random path ¢ ~ Q € P(H(E; D)) that satisfies (3.3)
and let (1 = Eyp0 [5¢(§)] for & € E. For neural networks ug, set

£0) = [Bona [Ila(e, w(6)) - Ver©I]ae. 6.6

[

If there exists a matrix field u:= x D — R¥>O+5) sarisfying (3.1), then it follows that
VoL(0) = VgL' (0) for 6 € RP. Here, we set L(0) = [2Eqrp, [H(ug —u)(&, a:)HQ} d¢.

4 TRAINING ALGORITHM

In this section, we leverage the EFM theory of § 3 to construct an algorithm for learning ug in
Proposition 3.1, which can be used for conditional generation tasks as well as for style transfer. We
summarize the training algorithm in Algorithms 1 and 8.

Because EFM is a direct extension of FM, our algorithm roughly follows the same line of procedures
as that of FM (Algorithm 5): (a) sampling data, (b) constructing the supervisory signal V), and (c)
updating the network by averaged loss. However, in our algorithm, the domain of ¢ is I x {2 as
opposed to just . We developed our algorithm so that, when it is applied to the unconditional case,
the trained model agrees with FM. Although the general EFM, as opposed to MMOT-EFM, does not
necessarily need to parametrize () with respect to joint distribution 7, in this paper, we focus on the
procedure that uses the joint distribution 7 and v in the form of (3.4) and (3.5).

Step 1 Sampling from Datasets: Our objective begins from the sampling of 1), whose Jacobian
serves as the supervisory signal in the objective (3.5). In order to sample 1), we construct () from a
joint distribution 7 defined over D?M¢ with marginals that are approximately (z..) +€{0,1},c€Co" To

this end, we begin by randomly choosing a subset Cyy = {Cz}f\;1 from C so that Cy consists of close
points. We then sample a batch By . from (i . and By . from D, for each ¢ € Cy. For the reason
we describe at the end of this section, we chose 9. = Law(R(c) + 2) with z being a common
Gaussian component, and R: ) — D is regressed from {(c;, Mean[D,,])}; by a linear map. We
choose this option because it theoretically aids us in reducing Dir(u) (See Proposition B.2).

Step 2 Constructing the supervisory paths: Given the samples B = (By.),. {0,1},c€Co>
c€Co,te{0,1} from a joint distribution 7 over D¢ with support on B. In MMOT-EFM,
as an internal step, we train the joint distribution m with ¢(x4) = [, ol|Vi,cd (t,c¢| 24) [|*dtde

we

sample (x¢ )
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Algorithm 1 Algorithm of EFM

Input: Conditions C' C €, set of datasets D. C D (c € C), network ug: I x Q x D — R&x(1+k),
source distributions pg (- | ¢) (c € C)

Return: 6 € R?

1: for each iteration do

# Step 1: Sample

2:  Sample Cj from C, By . from py (- | ¢) and By . from D, (¢ € Cp). Put B® := {By . }cecy»
Bl = {BC}CGCO
# Step 2: Construct ¢¥:I xQ — D
Construct a transport plan 7 among BY and B! #§ 4
Sample (T¢c)t,c ~ T
Define ¢: I x Q — D s.t. (4.1)
Sample ¢t ~ Unif(I), ¢ ~ Unif(Conv Cp), where Conv Cj is the convex hull of Cy.

Compute
’l/)t,(: = 1/}(t7 C)

th,c = vt,c¢(t7 C)

8: Update 0 by V@HU@ (ta C, ’(/)t,C) - V,(/)t,c 2
9: end for

AR A

with ¢ solved analytically for (3.4) with £ := I x (2, by e.g., Kernel Regression, Linear regression.
When possible, the regression function may be chosen to reflect the prior knowledge of the metrics
on (2 by extending the philosophy of Chen & Lipman (2024) to the space of conditions. In practice,
however, the computational cost of MMOT scales exponentially with the number of marginals, so
we optimize the joint distributions over B = (Bl’c>1,c€CO only and couple the analogous By to
B via the usual optimal transport. Please see § D.3 for a more detailed sampling procedure. Now,
given a joint sample (xtvc)cECo,te{O,l}’ we construct ) as

Y (te|zo.exoy) = (1 —t)xo,e + 1t (¢ | xcy) 4.1

where 1 (¢ | Z¢,) is the solution of the kernel regression problem for the map T:R* > ¢ +— z . €

R? with any choice of kernel on R*. Note that this construction of ¢/ satisfies the boundary condition
(3.3) with A = {0, 1} x Cy, and generalizes the 1) used in OT-CFM.

Step 3 Learning the matrix fields: Thanks to the result of Theorem 3.4, we may train ug: I X2 —
R¥*(1+k) yia the loss function being the Monte Carlo approximation of (3.6).

5 INFERENCE METHOD

The sampling procedures for style transfer and conditional generation respectively follow Exam-
ple 3.3 and Example 3.2. For the task of style transfer from ¢y to c., we use the flow along the
path ptq,c, — f41,¢,. For the task of conditional generation with target condition c,., we use the flow
along 110.c, — [41,c.. See Algorithms 2 and 3 for the pseudo-codes. When generating a sample for
c* ¢ C, the source distribution jig . is constructed by R(c*) + N(0, ) where R is as in training.

6 RELATED WORKS

Guidance-based methods: Since Lipman et al. (2023), several studies have formalized the use
of flow-based models for conditional generation. Some works by (Dao et al., 2023; Zheng et al.,
2023) parametrize the vector field v with the conditional value ¢ and guidance scale w € R as
v(t,c,z) = wu (x| D) + (1 —w)ve (x| ¢), inspired by the classifier-free guidance scheme of Ho
& Salimans (2022). Zheng et al. (2023) showed that if v; (x | ¢) approximates the conditional score
Vlogp (z | ¢) well, then with the right w, v¢(z, ¢) aligns with the sequence of distributions from the
standard Gaussian to the target distribution. Hu et al. (2023) created a guidance vector by averaging
Ve (Zegargers) — Vt(Teyiens ). However, these methods do not control the continuity of generated s
with respect to ¢, except through the network’s architecture. Unlike these, EFM constructs the flow
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Algorithm 2 Generation using the matrix field
ug

Input: Trained wg, source distribution py o, tar-
get condition ¢,
Return: A sample x; from p (- | ¢.)

Algorithm 3 Transfer using the matrix field uy

Input: Trained Network wug, source sample
2o ~ Pi1, With condition label ¢, target
condition ¢y

Return: A sample x5 from p (- | ¢2)

Sample z from source distribution pg o Return
Solve the regression problem R:c
Mean[D,] on C

Set x9.. = z + R(c)

Return ODEsolve (xo,c, ug(-,c, ) [olk ])

—
DDESOlve(xmuG(l?’yCl_wQ('>7 ')[62961])
# 417 is defined in

Example 3.3

for any condition ¢ € €2 through the matrix field u, which solves GCE, allowing an inductive bias on
1c’s continuity via the distribution @) of . The Dirichlet energy used in EFMcontrols the Lipschitz
constant for ¢ and pu, ensuring the generation of conditional distributions during training. When
u is trained with random conditional paths and appropriate boundary conditions, our EFM theory
guarantees that the flow ¢ transforms the source to the target conditional distribution whenever ¢
is used in training.

Dynamical generative models (DGMs) for CGM: In addition to the VRM-based method men-
tioned in § 1, there are two other methods: COT-FM (Kerrigan et al., 2024b) and Bayesian-
FM (Chemseddine et al., 2024), both based on Conditional Optimal Transport (Hosseini et al.,
2024). These methods rely on the relatively weak assumption that the map of conditional distri-
butions ¢ — p (x| ¢) is measurable, or can be discontinuous with respect to ¢. In contrast, the
learning algorithm of EFM is designed under the assumption that p (x | ¢) is continuous with re-
spect to ¢. This distinction arises because the former addresses situations where high-dimensional
conditions, such as inverse problems of PDEs, can be densely observed, while the latter ad-
dresses scenarios where relatively low-dimensional conditions, such as molecular generation, can
be sparsely observed. Various other methods for learning CGMs have been proposed, depending
on how the data and conditions are available. For example, making the vector field depend on the
transport plan 7 (Atanackovic et al., 2024) or obtaining a joint sample (¢, x) in a Bayesian manner
(Wildberger et al., 2023). Note that these methods are not about continuity with respect to c in the
distribution p (x | ¢).

Energy principles in DGMs: We also mention the family of Schrodinger-bridge based methods
by (Tong et al., 2023a; Koshizuka & Sato, 2022), which also aims to interpolate between an arbitrary
pair of distribution. This family solves the continuity equation while minimizing the regularized en-
ergy of the user’s choice in the generation process. Kim et al. (2023) also uses Wasserstein Barycen-
ter for distributional interpolation. Multi-marginal stochastic interpolants by Albergo et al. (2024)
learn a model that is similar to EFM. The method optimizes not only the vector fields but also the
path 7: [0, 1] — © in Proposition 3.1 to minimize kinetic energy. Our MMOT-EFM is novel in that
it minimizes the transport cost in a complementary way to the stochastic interpolant. MMOT-EFM
trains only a matrix field to minimize Dirichlet energy, which is a

generalization of the kinetic cost. This makes it possible to learn a 2 ?E'" {‘3’
model that transports optimally without optimization of ~. 1 Be=(0,1)  He=(1,1)
% &
of
7 EXPERIMENTS .o
1T fe=(0,0)  He=(1,0)
. . . . L 2 o il&
We conducted experiments to investigate our method in applications. A ‘ %
-2 0 2

7.1 SYNTHETIC 2D POINT CLOUDS Figure 3: Train data in § 7.1

We first demonstrate the performance of our method on a conditional distribution consisting of
synthetic point clouds in a two-dimensional domain D C R?. Here, we consider the case where the
space (2 of the condition is square, i.e., = [0, 1]2, and train the model when only samples from
the conditional distributions p (- | ¢) at the four corner points ¢ of the square {2 can be observed,
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see Figure 6 in Appendix. We compared our method against COT-FM (Chemseddine et al., 2024;

c=(0,0) |e=(0.25,0) c=(0.5,0)
(observable) (unobservable) (unobservable)
e e :
15 -4 fm M. 0 . . i
—— COT-FM .
—— MMOT-EFM : -
—— GG-EFM
= 1.0- ‘ :
> ' Tae :
= COT- :+ = = .
= FM :
0.5 : 5 :
MmoT *® e =
0.0-. i t EFM . * : :
0.0 0.5 1.0 (ours) - ; o
d(e, C’) ", Source pt., @ Trajectory, @ Generated pt., @Ground truth
(a) Wasserstein distance. (b) Generated points.
Transfer (1 9) -, (0,0) (0,0) = (0,1) (LO)= (L) (L1) = (0,1)

from...

-EFM . T | kbl =
(ours) : : ;

Source pt., @ Trajectory, () Transferred pt.

(c) Transfer.

Figure 4: Results of § 7.1. Figures 4b and 4c visualize ¢, in Examples 3.2 and 3.3, respectively.

Kerrigan et al., 2024b), as well as OT-CFM (Tong et al., 2023b) and GG-EFM with the plan 7, which
is constructed in the way of generalized geodesic, see § E.

See Figures 4b and 4c for the generation and transfer visualizations, and see Figure 4a for the error
between GT and predicted distributions. Note that our method, MMOT-EFM, performs competi-
tively with all its rivals in interpolation and generation tasks. Also, note that the style transfer with
MMOT-EFM preserves the structure of the inner and outer clusters.

7.2 MNIST WITH BACKGROUND

As another proof of concept, we compared EFM against Guided-flows (Zheng et al., 2023) on the
colored/rotated MNIST dataset with a background of a CIFAR-10 image. In this experiment,
we compress the image into a 16-dimensional latent vector space using a pre-trained Wasserstein
autoencoder (WAE) in Tolstikhin et al. (2018). We conditioned each image with the rotation an-
gle and (normalized) RGB color of the digit, constituting four dimensional ¢ € [0, 1]4 = Q,
where we also normalize the rotation angle so that 180° becomes 1. For training, we used
12 conditions uniformly sampled from [0,1]%. This is a very difficult setting even to exclu-
sively learn the condition of color because 12 uniformly sampled conditions in 4-dimensional
space are very sparsely located with no apparent structures like a grid. With the above set-
tings, we evaluated the extra/interpolation performance of the EFM as in § 7.1. On the right
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of Figure 5, we plot the error Wi (pe, fic) against d(c,C) = mingec d(c, ') for each grid
point ¢ € {(c)t; €[0,1]* | ¢ €{0,0.5,1} fori € [1:4]}. Our model performs competi-
tively in terms of W) distance for the generation of distributions with arbitrary conditions.

Figure 5: Results in § 7.2

generated

7.3 CONDITIONAL MOLECULAR GENERATION

Molecular design applications often require the simul-
taneous consideration of multiple chemical properties.
Most traditional molecular design methods combine all
property requirements and their constraints into a single
objective function. We applied MMOT-EFM to the task
of generating constraints for the following two simulta-
neous properties of molecules in the ZINC-250k dataset
by G6émez-Bombarelli et al. (2018): (1) the number of
rotatable bonds and (2) the number of hydrogen bond ac-
ceptors (HBAs). The experimental setup is described in
detail in § F. We first trained a VAE model to encode
molecular structures into a 32-dimensional latent space
and then trained EFM to perform out-of-distribution con-
ditional generation over this latent space. We measure
the MAE between the condition and actual value of the
generated compounds. As shown in Table 2, our method
outperforms all baseline methods on the averaged MAE
for out-of-distribution conditional generation.

8 CONCLUSION

In this paper, we developed the theory of EFM, an ex-
tension of FM that models the transformation of distribu-

tions with respect to conditions by a matrix field. EFM sof ¢ guidedl2 !

explicitly shows how distributions change under different ~ 4s{ , 33:32313 Lo P4 $
conditions. The EFM theory is complementary to many  £,,| ¢ €™M | Tad o -
powerful existing ideas, particularly through the design of 5, .é ;z' ?t"’) T
¥ and Q. We also introduce MMOT-EFM, an extension 5, " ' ”;. AR TATRU
of OT-CFM that aims to minimize the generation sensi- %2 J % . : ) o ?.3: "‘.” '
tivity to continuous conditions and demonstrate its com- =~ | ¢ % ¢ .‘f“

petitiveness. Although MMOT-EFM is computationally i: , ‘

expensive, the application of EFM will expand in the fu-
ture as more efficient algorithms for MMOT are developed.

03 04 05 06 0.7
Distance from training conditions

0.8

Table 2: MMOT-EFM vs. baselines in conditional molecular generations in § 7.3.

Conditional Generation MAE

FM (Tong et al., 2023b) 1.120 + 0.142
COT-FM (Chemseddine et al., 2024) 0.966 £ 0.122
MMOT-EFM (ours) 0.918 + 0.122

10
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A MATHEMATICAL DESCRIPTION OF EXTENDED FLOW MATCHING THEORY

We aim to sample from the unknown conditional distribution 2 3 ¢ — p(e | ¢) € P(D). We extend
the flow matching technique developed in (Lipman et al., 2023) for this aim. The technique evolves
unconditional probability distributions p; € P(D), t € [0,1] from a source distribution 1 (such
as Gaussian N(,)) to a target distribution ;11 ~ p“®*® by means of a continuity equation. We then
introduce a generalized continuity equation that evolves conditional distributions ., ¢t € [0,1],

c € ) from source distributions /i to the target distributions fi;—1 . ~ pdata(o | ).

To realize this evolution, this section gives an example of how to construct a (at least approximate)
solution of the generalized continuity equation and a design of the source distributions fi;—q ¢, ¢ € €2.

A.1 NOTATIONS
* (e, @) is the standard inner product and || := \/(e, o).
e D> = (x,... 2%); data space
* t € [0, 1]; generation time
¢ ¢ € Q C RP; conditions in a bounded domain €.
E=(£0,6L,...,€P) = (t,c) € Q:=1[0,1] x Q.
* x € D C RY; data in a compact subset D

» For a matrix-valued function u: = x D — R4*4mE e i, & denote its (i, j)-th coordinate,
where i € [d], j € [dim Z]. We then define

.
div, u:ExD — RI™E a5 div, u(é, x) = (zd: Ouio(€, ), ..., Zd: it aim=(§, x)
i=1 i=1 A1)
« For ¢ € C1(2 x D;RPTY),
Op® ... OpipP
Vo = e RIX(P+1)
Opa0® ... Opap?
* P(X); the space of Borel probability measures on a space X, endowed with the narrow
topology
* P2(X); the L?-Wasserstein space
* 0y € P2(X); the delta measure supported at x € X
© Uei ()D& pe € P(D) conditional probability distribution

o [2 (2; X); the Lebesgue space valued in a metric space X, see (Lavenant, 2019, Definition
3.1)

o« H! (©2; X); the Sobolev space valued in a metric space X, see (Lavenant, 2019, Definition
3.18). In particular, we set ' := H'(Q; D)

¢ Dir(u) is the Dirichlet energy of u € L?(Q2; P(D)), see (Lavenant, 2019, Definition 3.5).
¢ Unif(S) is the uniform distribution on a subset S of a Euclidean space with unit mass.

* Q € P(¥). We will denote by % the sample from a probability distribution Q.

* o(X) denotes the s-algebra of a random variable

Following the notation in (Durrett, 2019), we also use the notation z ~ p to designate that z is
sampled from the distribution p.
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A.2 GENERALIZED CONTINUITY EQUATION

According to (Lavenant, 2019, Definition 3.4), we introduce a distributional solution of a generalized
continuity equation formally given as

Vep(§, o) + dive (u(€, z)v(§, x)) = 0. (A2)
The rigorous sense of (A.2) is stated in the following.

Definition A.1 (A distributional solution of the generalized continuity equation). A pair (i, v) of a

Borel mapping p: Q- P(D) valued in probability measures and a Borel matrix field v: Q x D —
R2*(P+1) is a solution of the continuity equation if it holds that

j j (&, 2)? dpte () dE < +o0,
QR
and

J J (dive (€, 2) + (Vaipl&, ), v(E, 2))) dpie () dé = 0,

QRe

for all ¢ € C°(€2 x R9; RPTL),

If a solution (u, v) of the continuity equation is smooth, a path  on Q induces a path on P(D):

Proposition A.2 (Lifting conditional paths to probability paths). Let (u,v) be a solution of the

continuity equation and v:[0,1] 3 s — ~(s) € Qbea continuously differentiable curve in Q. Set
WY = fiyey: [0,1] = P(D) and v (s, x) == v(v(s),x)¥(s) € RY for (s,x) € [0,1] x R9.

Suppose that Dir(p) < +oo and there exists a probability density p € C* (?2, L>(D)) of p with
respect to the Lebesgue measure.

Then, (u”,v") satisfies the continuity equation in the sense of distributions, i.e.,

j j (0 (5. 2) + (Vo (5,2), 07 (5, 2))) dpad (&) ds = O,
0

R4

forall { € C2°([0,1] x RY).

Proof. By (Lavenant, 2019, Proposition 3.16), there exists a unique ¢ (&, o) € H'(D;RPT) for

every £ € Q satisfying

Vep(€,3) + diva (p(€, 2)Vagp(£,3)) = 0, w € D,

o]

and v = V¢ on supp p, where X is the interior of a subset X. Thus, we have

95p(7(s)) + diva(p(v(s), 2)07 (s, 2)) = (Vep(v(s), 2) + diva (p(v(s), 2)v(v(s), 2)))7(s)
= (Vep(r(s), 2) + diva(p(1(s), 2) Vaip(v(s), 7)) ¥ (s)
=0.
]

Remark A.3. The smoothness assumption of Proposition A.2 recommends us to use some smooth
probability measures as source distributions ft;—; ., ¢ € €.

According to Proposition A.2 and the well-known fact (see (Ambrosio et al., 2008, Proposition
8.1.8)), if we want a sample under a certain condition ¢ € 2, we can flow samples from a source
distribution according to the family (v7 (s, )), e[o,1] Of vector fields determined from a path -y satis-

fying v(1) = (1, ¢).
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A.3 PRINCIPLED MASS ALIGNMENT

A straightforward generalization of (Kerrigan et al., 2024a, Theorem 1 and Theorem 3) yields the
following principle in flow marching theory.

Lemma A.4 (Principled mass alignment lemma). Let F be a separable (complete) metric space
and P be a Borel probability measure on F. Let (u/,v/) be a solution of the continuity equation,
in the sense of Definition A. 1, for each f € F. Set the marginal distribution as

pi= [ ufap().
F
Assume that

2
” J |07 (€,2)|” duf (x) A€ dP(f) < +oo,
F g Re
and ,ug is absolutely continuous with respect to ji¢ for P-a.e. f and a.e. § € Q. Then, (m,v) is also
a solution, where
duéc

o€, x) = [ v/ (€, 2)—(z
(€.2) i (€. e (2) 4P,

for (&) € Q x D. Moreover, for another matrix field u satisfying

| [ rute P dne (@) e < -+

&R
we have
| | @) utean due@ac= [ | | (Fg,au60)duf @ acar(). a3
aRa F G Ra

Lemma A.4 leads to Theorem 3.4 as follows: first, in Lemma A.4, identify (7, u) with (u,ug) in
Theorem 3.4. hen we see from (A.3) that

o [oBampe [(u(€ ), ug(€,2))] € and
* Iz Ewa,a;N,Lg’ [(v¥ (& x), uo(&, 2))] d are equal,

where v is a matrix field such that v¥ (&, 1(€)) = Ve (€) with € € =. Also, because ug’ = Oy(e) is

a delta distribution concentrated on v (¢), these are both equal to [ Ey~q [(VEW(E), ua(¥(€)))] dE,
as well. If we use this identity to the expansion of the square norm in (3.6), then the Theorem 3.4
follows from the same logic as (Kerrigan et al., 2024a, Theorem 3).

A.4 LIFTING DATA-VALUED FUNCTION TO PROBABILITY-MEASURE-VALUED FUNCTION

In order to construct a solution of the generalized continuity equation, we start to consider a particle-
based solution of the continuity equation.

According to (Brenier, 2003, Subsection 3.1) and (Lavenant, 2019, Sectioil 5), we can easily con-
struct a solution of the continuity equation from a given function v» € H*(§2; D).

Lemma A.5. Let ¢ € H' ((~2, D) be a function satisfying

leaw(S)IQdE < +os.

Q

Set pl = bye) € H! (€ P(D)). Assume that there exists a matrix field satisfying
v (& ¥(€)) = Ver(©), (Ad)

for € € Q. Then, (u?,v¥) is a solution of the continuity equation.
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Combining Lemmas A.4 and A.5, we can construct another solution of the continuity equation.

Corollary A.6 (The paths make the solution.). Let Q € P(H'(; D)) be a Borel probability mea-
sure, and (u¥,v¥) be a solution defined in Lemma A.5 Q-a.e. ) € H'(Q; D) and

= | uraew)

H1(;D)

is their marginal distribution. Assume that

J J J 0% (&,2)|” dpf (x) € AQ(w) < +ov,

H1(Q;D) QR?
and p¥ < p®. Then, (u9,v?) is also a solution of the continuity equation, where

d P
9 = J viﬂ(s?x)dil;(x)dczw)-

H'(Q;D)
B TECHNICAL PROOFS

The following claim follows immediately from the convexity of the Dirichlet energy as shown in
Lavenant (2019, Proposition 3.13) and from Jensen’s inequality:

Proposition B.1 (Straightness is controlled by ). Let py.c = By [0p(1.0)] ((t,¢) € T x Q) with
n € P(D). Then, the Dirichlet energy of pu: I x Q — P (D) is bounded as

Ditrxa(i) < || Eumo [Vecw(t,o)| dede.
IxQ

Proposition B.2. Let n € H 1(§~2; P(D)) be a smooth solution of the continuity equation, and
v: QX RI — RI*PHY) s the matrix field associated with . Assume that v € C*(Qx R%; RI*(P+1))

and the derivatives 0.v, O,v of v is bounded on Q) x RY. Then, there exists a constant C > 0 depend
on p, q such that

Dir(p(1,#)) < C exp (11001 e (6 mrs(mxizaay ) Pir(1(0,#) + 0.0

floe = SUD (¢ 1) efixRa | (&, 2)| for a finite-dimensional valued continuous function f on
Q x R

Here,

The proof of Proposition B.2 is similar to (Isobe, 2023, Proposition 5.4).

Proof. By virtue of (Lavenant, 2019, Proposition 3.21), we have to estimate

C
Dir(p(1,)) = lim =75 o W3 (u(1, "), (1, ¢%)) de'de?.

The integrand of the above is decomposed as
1 2\\ 1,¢t 1 1,¢? 2
Walu(1,¢), (1, ¢%) = Wa (4 u(0,¢), @4 (0, %))
l,c1 1 1702 1 1,(:2 1 1,(:2 2
< W, (b# IM(O,C),(I)# ILL(O,C) + Wy (I)# M(O,C),(I)# /J,(O,C) :
B.1)

Here ®*¢: RY — R? is a flow mapping satisfying

t

O () = x + Jv(s, ¢, 35 (z)) (é) ds.

0
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The first term of (B.1) is bounded as

1,¢t 1 1,¢2 1 2 t,ct t,c? 2
Wa (@, n(0,¢7), @4 u(0,c¢7)) < | |2 (z) — " (2)| duo,er ().
Ra
Then, the integrand is also bounded by

ds

op

(s, ', @ (x)) — v(s, 2, &5 (z))

t
o (@) — & (a) gJ
0

§|c1 — 62|||3CU||oo
¢
+ J 050l o[ @ (2)) = @ (@) ds .
0
Thus, the Gronwall inequality yields

t,c1 t,c2 1 2 _ _ _ _
"I) (r) - @ (x)‘ <lc' ¢ ‘Hacv”LOO(QX]R‘?;B(QXQ;]RLI))exp(HaﬂﬂvHLw(QxRCI;B(RqxQ;]RQ))>'
(B.2)
By a similar argument, the second term of (B.1) is also bounded as

C2 02
Wa (@47 (0, ¢, @47 (0, ¢%)) < Wapu(0, ), o(0,¢2)) exD (|10sl| o i iy )
(B.3)
Combining (B.2) and (B.3) completes the proof. [ |

C PSEUDO-CODES

Algorithm 4 Algorithm of OT-CFM

Input: Neural Network vg: I x D — R, the source distribution 1o, the dataset D, C D from a
target distribution .
Return: 6§ € R?
1: for each iteration do
# Step 1: Sample from datasets
2:  Sample a batch B from p

3:  Sample a batch B! from D,
# Step 2: Construct ¥:I — D
4:  Construct an optimal transport plan 7 between B® and B!
5:  Jointly sample (xg,z1) ~ 7
6:  Sample t ~ Unif(])
7:  Compute
Y = (t [z, 21)
= (1 — t)l’o + tl’l
Yy =P (t | 2o, 71)
=T — Xo
8:  Update 6 by the gradient of ||vg (£, 1;) — vy |2
9: end for

D SAMPLING OF ¢ IN (4.1) IN § 4 FOR MMOT-EFM

In this section, we follow the notation in § 4 and describe in more detail the construction of ¥(c|z¢,)
in (4.1), which is _
Ut el e e,) = (1 —t)zoe+ 0 (c|@c,)
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Algorithm 5 Flow Matching (Training)

Input: Neural Network vg: I x D — R?, the source distribution Lo, the dataset D, C D from a
target distribution .
Return: 6 € R?
1: for each iteration do
# Step 1: Sampling from datasets
2: Sample batches B® = {x{};_, from source po
3:  Sample batches B' = {z1}_, from dataset D,
# Step 2: Constructing a supervisory path ¥

4:  Construct an optimal transport plan 7 € RV*~ between B and B*
5. Jointly sample (zg,71) € B x B! from 7

6: Samplet el

7:  Compute

(A) Yy =1 (t | 2o, 21) = (1 = t)x0 + t21
(B) Vi == Vi (t | 2o, 21) = 21 — X0
# Step 3: Learning vector fields
8:  Update 6 by the gradient of ||vg(t,1;) — Vb
9: end for

Algorithm 6 0DEsolve for generation

Input: Initial data 2o € D, vector fields v: I x D — R¢

Return: Terminal value ¢?(x) of the solution of ODE ¢ (z0) = v(t, ¢V (o))
1: Compute ¢;(x) via a discretization of the ODE in ¢

Algorithm 7 Extended Flow Matching (Training)

Input: Condition set C' C Q C R¥, set of datasets D. € D C R¢ for each ¢ € C, network
ug: I x Q x D — R4(+k) source distributions pg (- | ¢) (¢ € C)
Return: 6 € RP
1: for each iteration do
# Step 1: Sampling from datasets
Sample Cy = {¢;} e, € C
Sample a batch By . from pg (z | ¢) for each ¢ € C)
Sample a batch B, . from D, for each c € Cj
Put B := {By . }cec, and B! == {B.}ccc,
# Step 2: Constructing supervisory paths {L/J};:]
6:  Construct a transport plan 7 among B° and B!

BANE

. # see § 4
7 Sample {(xg,c)(t,c)é{o,l}XCo }évzl C D*Ne from 7
Forall j € [1: N], define ;: I x Q — D that regresses (1 .)(t,c)e{0,1}xc, o0 {0,1} x Co
# see Equation (4.1)
9:  Sample {tk}i\il cl
10:  Sample {c;}lN;l C Conv(Cy)
11:  Forallje[l:N|,ke[l:Ng,l€[l: N/, compute
(A) Y k1 = P (te, c)
(B) VY k1 = Vicj(tr, )
# Step 3: Learning matrix fields
12:  Compute the loss

1 2
L(9) = NN > sty ¢, ¥5k0) = Vibja
€ 4k,l

13:  Update 6 by the gradient of L(6)
14: end for
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and the corresponding joint distribution of &, = {;},cc, on D! we used in step 2 of the
training algorithm. In the final part of this section, we also elaborate how we couple x( . with ¢, .

As we describe in the main manuscript, we introduce our EFM as a direct extension of FM as a
method to transform one distribution to another through a learned vector field. In particular, we
present in this paper an implementation of EFM which extends OT-CFM Tong et al. (2023b), which
aims to train FM as an approximate optimal transport between two distributions (source 11y and target
w1). To formalize this extension, we need to desribe OT as a minimization of Dirichlet Energy.

D.1 OT-CFM AS APPROXIMATE DICIRHLET ENERGY MINIMIZATION

As is principally described in Lavenant (2019), OT emerges as a coupling of the source py and
the target ;1; constructed from the constant-speed geodesic (with respect to Wasserstein distance)
between po and ft1, which can be realized by minimizing the Dirichlet energy

1
Dir(u) = u:I><igf~>]Rd J §\|v(t,x)H2ut(dx)dt Oppee () + divy (pe(x)v(t,z)) =0 p (D.1)

[0,1]xD

over all set of u:[0,1] — P(D) satisfying u(0) = po, u(1) = p1. It is well known that in the
standard Euclidean metric space, the minimal energy is achieved by i corresponding to v(t, z) that
is the derivative of a straight-line of form 7 (¢ | x) = tT'(z) + (1 — t)x where T: D — D, and
more particularly as the minimum of

1 1
| Slle = wlPmae,aw) = [ S0 P % T) pnoldo) ®2)
DxD D

over all 7 € P(D x D) with marginal distribution po and p; or equivalently over all T' with
TH# o = p1. In OT-CFM, this 7(or T) is approximated by the discrete optimal transport solution
over a pair of batches By, B; sampled respectively from source and target distributions. Note that,
in this view, (I x T)4 /0 induces a distribution ) on the path [0, 1] — D generating 17 (t|z) with
randomness derived from z.

Theorem 3.1 of Yim et al. (2024) guarantees that the (batch)sample-averaged version of p and the
(batch)sample-averaged version of v satisfies the continuity equation, thereby yielding the approxi-
mation of the dirichlet energy minimizing flow map.

D.2 MMOT-EFM AS APPROXIMATE DICIRHLET ENERGY MINIMIZATION

To mimic this construction in multi-marginal setting of EFM, we aim to approximate the solution to
the minimization of

. . 1 .
Dir(w) = inf j 5ol 2)[Pue(dw)de | depe() + div (u(e, 2)o(e, 2)) = 0
QxD

(D.3)

over all set of u: Q@ — P(D) satisfying u(c;) = p; for all ¢; € Cp. Note that when Q = [0, 1],
this minimization problem (i.e. Dirichlet Problem) agrees with that of the OT problem on which the
method of FM is established.

Now, in a similar philosophy as FM, we would aim to approximate this Dirichlet energy through
multi-marginal optimal transport Piran et al. (2024) over discrete samples. Now, under sufficient
regularity condition (Prop 5.6 Lavenant (2019)), we can similarly argue that there exists some prob-
ability @ on the space F = H'(2, D) of a map from “condition” to “data” satisfying

Dir(js) = J 10:40()|2Q(dp)de (D4)
QxF

and our goal winds down to finding the energy-minimizing distribution (). In this endeavor, we
implicitly find @ by specifying a particular space of functions F and generating : 2 — D from
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a set of {(¢;, ;) }e,ec, of "condition value” and “observation” for jointly sampled {z;}; as the
regression

Ve = aremiy 3, o) — =l (D.5)

and minimize the energy with respect to the joint distribution 7 on D!€! from which to sample {z;}:.
That is, we aim to minimize

9ot aso Ptz ©6)

with respect to w. This, indeed, is in the format of MMOT problem, where c({z;};) =
|Ve(c|{z;}:)||>. F can be chosen, for example, as an RKHS or a space of linear function, so
that the regression can be solved analytically with respect to c.

Just as is done in OT-CFM, we approximate this 7 with the joint distribution over a finite tuple of
batches {B; }; with each B; sampled from p; corresponding to condition ¢;. This approximation is
indeed the very 7 that we adopt in MMOT version of our EFM in step 2.

Now, by the virtue of Theorem of principle-mass-alignment A.6, we can argue that the
(batch)sample-averaged distributions ¥ and the (batch)sample-averaged v¥ = 0,1/ solve the gen-
eralized continuity equation, thereby yielding the approximation of the Dirichlet energy minimizing
map p: Q — P(D).

Note that the above constructions of 1) ~ @ is in complete parallel with that of OT-CFM. See Table3
for the correspondences. We also note that this argument can be extended to 2 = [0, 1] x £ in place

Table 3: OT-CFM vs MMOT-EFM

Framework OT-CFM MMOT-EFM

% [0,1] = P(D) Q— P(D)

P [0,1] = D Q—D

v Oyt Vc"r/;

(u, v) relation Continuity Generalized Continuity
Boundaries {po, 111} {ti}eiccy
Approximation oT MMOT

of 2. However, because of the computational cost of MMOT, we construct our generative model
from (4.1), which combines 1 and the OT-CFM construction. In the next section, we elaborate on
the construction of the approximation of 7 in (D.6) from which to sample 1 in (4.1)

D.3 APPROXIMATING MMOT

In general, MMOT is computationally heavy, and even with the advanced methods like the multi-
marginal Sinkhorn method developed in (Lin et al., 2022), the computational cost scales as | B] |C‘,
where | B] is the batch size and |C| is the number of conditions to be simultaneously considered.
To reduce this cost, we took the approach of approximating MMOT through clustering. More par-
ticularly, when a batch from B; is sampled each from p; for condition c;, we applied K-means
nearest neighborhood clustering (KNN) to B;, yielding sub-batches {Uik}cieCo,ke[l: k] With mean
values {mir, }¢,e0p ke1:x» Where Upe1.xUix = B;. Let M; = {my }re[1:x] be the set of cluster-
means for batch ¢. Instead of conducting MMOT directly on batch B;, we conduct the MMOT
on {M;};, whose cost will be on the order of KI¢I. Applying argmax operations on the re-
sult of MMOT from methods like the Sinkhorn method, we can obtain the deterministic coupling
Tm = (X, Ti)4Unif(Mo) where Unif(Mo) is the uniform distribution on M. After sampling
mog~ ~ Unif(Mo), we couple U;r, () with a method of user’s choice, where T} (k*) is an abuse of
notation satisfying
My, (k) = Ti(Mor~).

In our implementation of MMOT-EFM, we coupled {U;, (x+) }s With generalized-geodesic coupling
as is used in Fan & Alvarez-Melis (2023), with center distribution being the standard Gaussian with
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mean being the average of {U;r,(x-)}i. Although we provide a brief description of generalized-
geodesic in § E, we would like to refer to Ambrosio et al. (2008) for a more thorough study.

Below, we summarize the sampling procedure of of {x;}.,cc, in ¥ (-|{x;}¢,ec,) of MMOT-EFM.

Algorithm 8 MMOT sampling with Cluster

Input: Set of batches { B;}; with each B; sampled from p(:|c;)
Return: Joint sample {z; };from {B;};
# Step 1: Cluster MMOT setup
1: Cluster each B; as Uper. ) Uix = B; with mean(Usx) = mix,
2: Set My = {mir }req k)
3: Use MMOT to produce coupling on {M;}; via {T; };#Unif (M)
# Step 2: Sampling
4: Sample mg+ from Unif (M)
Compute m;, (+) = Ti(mok~)
6: Jointly sample from {U;r, (4~} with the method of user’s choice, preferrably with deterministic
coupling, such as another round of MMOT or generalized-geodesic.

bl

D.4 COUPLING OF {x.c, }c;ec, AND {Z;}e,cc,

Ideally, it is more closely aligned with the theory of Dirichlet energy to include the source distribu-
tions { (0, ¢;) }; into the set of distributions to be coupled in the MMOT, and enact the argument in
§ D.2 with @ = [0, 1] x € in place of 2. As mentioned in the previous section, however, the cost of
empirical MMOT scales exponentially with the number of distributions to couples. We, therefore,
took an alternative coupling strategy as a computational compromise.

First, recall from the step 1 of § 4 that {zo, }¢,ec, are already coupled with common stan-
dard Gaussian sample in the form of y9. = Mean[D.] + N (0, ). To couple {zoc, }c,cc, With
{Zi}¢;ec, which are deterministically coupled through the routine of Section D.3 as {x;}¢.cc, =
{Ti(x0) }¢,ec, With zp sampled from p (- | ¢o), we may simply couple zg ., with z and this will
automatically induce the deterministic coupling of {z¢ ¢, }c,ec, and {z;}c,ec,. In particular, if
By, is a batch of samples from pq (- | ¢o) and B , is a batch of samples from D, in the stepl
of the training, we may couple By ., with B; ., with optimal transport with the methods of user’s
choice, such as those provided in Flamary et al. (2021).

E A REMARK ON GENERALIZED GEODESIC COUPLING(GGC) AND THE
SAMPLING OF v IN (4.1) IN § 4 FOR GGC-EFM

As we have mentioned in Section 3.1, EFM can be defined with any distribution ) € P (V) on the
space of functions ¥ := {¢: I x Q — D | ¢ is differentiable} satisfying the boundary conditions
(3.3). We also present still another construction of 1 derived from different coupling.

E.1 GENERALIZED GEODESIC COUPLING

Generalized geodesic of {u;} with base v € P(D), also known in the name of linear optimal
transport Moosmiiller & Cloninger (2020) in mathematical literatures, was introduced in (Ambrosio
et al., 2008) as

Pa = (Z aiTi> v, a€ Ay (E.1)
i=1 +#

where T is the optimal map from v to ji; and A,,,_; is the set of all {a;};~, with >, a; = 1. This
is indeed one of the generalizations to the McCann’s interpolation used in OT between 1o and 11
through the expression

Pt = ((1 — t) Id —i—tT)#uo, te [0, 1]
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which runs along the geodesic in P(D) with respect to Wasserstein distance. Note that p, in Gener-
alized Geodesic provides not only provides deterministic coupling of {;} through p,, = Tj4v =
145, it also interpolates unknown distributions for any a € A,,,_1. We would refer to the deterministic
coupling in the form of T} ,v = u; as GGe-coupling.

E.2 GGC SAMPLING OF 1)

In analogy to the sampling procedure of ¢ (- | {x;};) in MMOT-EFM with MMOT-coupled {z;};,
we may sample ¢ (- | {z;};) with {x;}; that is jointly sampled with GGc-coupling. We emphasize
that 1 constructed in such a way does not necessarily minimize an explicit objective as Dirichlet
energy and this might result in EFM with a somewhat erratic style transfer. For more empirical
investigations, please see the main manuscript.

F EXPERIMENT DETAILS FOR CONDITIONAL MOLECULAR GENERATION

F.1 METRICS

To evaluate our conditional generation, we use the pre-trained VAE model to encode EFM-generated
latent vectors into molecular structures and compute the Mean Absolute Error(MAE) between the
generated molecule’s property values and the conditioning property values. MAEs are calculated
separately for interpolation and extrapolation. All MAEs are first calculated for each property and
then averaged for both properties.

F.2 DATASET AND BASELINES

We first trained a Site-information-encoded Junction Tree Variational Autoencoder (SJT-VAE)
model, a variant implementation of the Junction Tree Variational Autoencoder (JT-VAE) (Jin et al.,
2018). SJT-VAE was initially designed to eliminate the arbitrariness of JT-VAE and enable appli-
cations such as RJT-RL (Ishitani et al., 2022). We chose SIT-VAE over JT-VAE due to its superior
reconstruction accuracy and faster training times. However, we expect that similar results could be
reproduced with the original JT-VAE implementation.

Our SJT-VAE model was trained on the ZINC-250k dataset (Gomez-Bombarelli et al., 2018;
Akhmetshin et al., 2021). A random subset of 80,000 molecules was labeled with the number
of HBAs and the number of rotatable bonds, with all labels computed using RDKit. These 80, 000
molecules were then binned into a 2D matrix based on their property values. From this matrix,
we selected a region with concentrated data: molecules with 2 and 4 rotatable bonds and 3 and 5
HBAs, forming 4 bins with property sets (2, 3), (2,5), (4, 3), and (4, 5). To balance the dataset, we
up-sampled or capped the number of training examples to 5, 000 per bin.

To evaluate out-of-distribution conditional generation, we generated molecules with property sets
not included in the training set, specifically (3,4), (2,4), (4,4), (3,3), and (5, 5). For property sets
where only one property is out-of-distribution, we calculated the MAE based solely on the out-of-
distribution property.

All flow matching-based models, including MMOT-EFM and baselines, are trained with a batch size
of 250 and the learning rate of 1le~* for 160, 000 iterations. Training on a single Nvidia V-100 GPU
with evaluation every 5000 iterations took around 4 hours.

G COMPUTATIONAL RESOURCES

All models were trained on a single Nvidia V100-16G GPU, and 100 epochs were completed within
4 hours. Training for the MMOT-EFM model is performed on a single Nvidia V100-16G GPU
within 2.5 hours. The results of MMOT-EFM for synthetic experiments were yielded from a model
trained over 100000 iterations in 5 hours.

H ADDITIONAL FIGURES
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Figure 6: Training set rotatable bonds and HBAs label distribution
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of conditions.
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1395 Figure 8: Conditional generation of the synthetic dataset by MMOT-EFM, organized in the grid for
1396 two axes of conditions. The figures in the bottom row are the result of style transfer.
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Figure 9: Conditional generation of synthetic dataset by Baysian(COT)-FM with 3 = 102, organized
in grid for two axis of conditions.
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