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Abstract: High-velocity dynamic actions (e.g., fling or throw) play a crucial
role in our everyday interaction with deformable objects by improving our effi-
ciency and effectively expanding our physical reach range. Yet, most prior works
have tackled cloth manipulation using exclusively single-arm quasi-static actions,
which requires a large number of interactions for challenging initial cloth config-
urations and strictly limits the maximum cloth size by the robot’s reach range. In
this work, we demonstrate the effectiveness of dynamic flinging actions for cloth
unfolding with our proposed self-supervised learning framework, FlingBot. Our
approach learns how to unfold a piece of fabric from arbitrary initial configura-
tions using a pick, stretch, and fling primitive for a dual-arm setup from visual ob-
servations. The final system achieves over 80% coverage within 3 actions on novel
cloths, can unfold cloths larger than the system’s reach range, and generalizes to
T-shirts despite being trained on only rectangular cloths. We also finetuned Fling-
Bot on a real-world dual-arm robot platform, where it increased the cloth coverage
over 4 times more than the quasi-static baseline did. The simplicity of FlingBot
combined with its superior performance over quasi-static baselines demonstrates
the effectiveness of dynamic actions for deformable object manipulation.
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1 Introduction
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Figure 1: Cloth unfolding with dynamic inter-
actions. Given a severely crumpled cloth, Fling-
Bot uses a high-speed fling to unfurl the cloth
with as little as one interaction. In this paper,
we demonstrate that such dynamic actions can ef-
ficiently unfold cloths, generalizable to different
cloth types, and improve the effective reach range
of the system.

High-velocity dynamic actions play a cru-
cial role in our everyday interaction with de-
formable objects. Making our beds in the morn-
ing is not effectively accomplished by picking
up each corner of the blanket and placing them
in the corresponding corners of the bed, one
by one. Instead, we are more likely to grasp
the blanket with two hands, stretch it, and then
unfurl it with a fling over the bed. This fluid
high-velocity flinging action is an example of
dynamic manipulation [1], which is used to im-
prove our physical reachability and action effi-
ciency – allowing us to unfold large crumpled
cloths with as little as one interaction.

From goal-conditioned folding [2] to fabric
smoothing [3, 4], prior works have achieved
success using exclusively single-arm quasi-
static interactions (e.g., pick & place) for cloth
manipulation. However, these approaches require a large number of interactions for challenging ini-
tial configurations (e.g., highly crumpled cloths) or rely on strong assumptions about the cloth (e.g.,
predefined keypoints). Additionally, since the robot arm cannot manipulate the cloth at locations it
can’t reach, the maximum cloth size is greatly limited by the robot arm’s reach range.
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In this work, we focus on the task of cloth unfolding, where the goal is to maximize the cloth’s
coverage. Because unfolding reveals key features of the cloth for downstream perception and ma-
nipulation, it is a typical first step for many cloth manipulation pipelines. An ideal cloth unfolding
approach should be:

• Efficient: the approach should reach a high coverage with a small number of actions from arbi-
trarily crumpled initial configurations.

• Generalizable: the algorithm should not rely on heuristics (e.g., grasp predefined key points).
This is especially important when unfolding is only the initial stage of a cloth perception and
manipulation pipeline, where key points are not visible or severely occluded, and when the system
must handle cloth types unseen during training, which may not contain the predefined key points.

• Flexible Beyond the Workspace: the approach should work with cloths of different sizes, includ-
ing large ones which lie outside the robot’s physical reach range.

To achieve this goal, we present FlingBot, a self-supervised algorithm that learns how to unfold
cloths from arbitrary initial configurations using a pick, stretch, and fling primitive for a dual-arm
setup. At each time step, the policy predicts value maps from its visual observation and picks actions
greedily with respect to its value maps. To provide the supervision signal, the system computes the
difference in coverage of the cloth before and after each action – the delta-coverage – from the
visual input captured by a top-down camera. FlingBot achieves over 80% coverage within 3 actions
on novel cloths and increases the cloth’s coverage by more than twice that of pick & place and pick
& drag quasi-static baselines on rectangular cloths. Our approach is flexible to large cloths whose
dimensions exceed the robot arm’s reach ranges and generalizes to T-shirts despite being trained on
rectangular cloths. We fine-tune our approach in the real world, where, on average, it increased the
cloth coverage over 4 times more than the quasi-static pick & place baseline did. In summary:

• Our main contribution is in demonstrating the effectiveness of dynamic manipulation for cloth
unfolding through our self-supervised learning framework, FlingBot.

• We propose a parameterization for the dual-arm grasp of our fling primitive, which enables the
application of a simple yet effective single-arm grasping technique [5, 6, 7] to dual-arm grasp-
ing while satisfying dual-arm safety constraints. The simplicity of FlingBot combined with its
superior performance over quasi-static baselines further emphasize the effectiveness of dynamic
actions for deformable object manipulation.

• We present a custom simulator1 built on top of PyFlex [8, 9], a CUDA accelerated simulator,
which supports the loading of arbitrarily shaped cloth meshes. We hope this open-source simulator
expands cloth manipulation research to more complex cloth types.

2 Related Work
A convincing argument for the addition of dynamic actions to exclusively quasi-static cloth manipu-
lation pipelines would need to demonstrate their superior performance on a core cloth manipulation
skill. As a typical first step for many cloth manipulation tasks, cloth unfolding is a popular and
important problem setting for studying deformable object manipulation. The goal of cloth unfolding
is to maximize the coverage of the cloth on the workspace, which exposes key visual features of the
cloth for downstream applications. However, achieving a fully unfolded cloth configuration from a
crumpled initial configuration remains a challenging problem. Additionally, doing so efficiently for
many different types of cloths, some larger than the system’s reach range, is extremely challenging.

Quasi-static Cloth Manipulation with Expert Demonstrations. Prior works have explored us-
ing heuristics and identifying key points such as wrinkles [10], corners [11, 12, 13], edges [14], or
combinations of them [15], but fail to generalize to severely self-occluded cloth configurations, to
when required key points aren’t visible, or to non-square cloths. Recent reinforcement learning ap-
proaches [3, 16] relied on cloth unfolding expert demonstrations in quasi-static pick-and-drag action

1Please visit https://flingbot.cs.columbia.edu for experiment videos, code, simulation environment, and data.
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Figure 2: Action Primitives. The dynamic Fling primitive starts with a two-arm grasp at the left L
and right R grasp locations with center point C, followed by a fixed stretch, fling, and place routine.
A good fling could unfold a highly crumpled cloth in as little as a single step. In contrast, the quasi-
static Pick & Place primitive, which grasps at the start location S, lifts, moves, then places at the end
position specified by the arrow tip, requires many steps for such challenging cloth configurations.

spaces, While they sidestep the exploration problem, expert demonstrations can be sub-optimal and
brittle if from hard-coded heuristics [3] or expensive if from humans [16].

Self-supervised Quasi-static Cloth Manipulation. Bypassing the dependency on an expert, self-
supervised cloth manipulation has been demonstrated in unfolding with a factorized pick & place
action space by Wu et al. [4] and goal conditioned folding using spatial action maps [7, 6, 5] by Lee
et al. [2]. However, all these approaches operate entirely in quasi-static action spaces.

Dynamic Cloth Manipulation. In contrast to quasi-static manipulation, which are “operations that
can be analyzed using kinematics, static, and quasi-static forces (such as frictional forces at slid-
ing contacts)” [1], dynamic manipulation involves operations whose analysis additionally requires
“forces of acceleration”. Intuitively, dynamic manipulation (e.g., tossing [6]) involve high-velocity
actions which build up objects’ momentum, such that the manipulated objects continue to move
after the robot’s end-effector stops. Such dynamic manipulation results in an effective increase in
reach range and a reduction in the number of actions to complete the task compared to exclusively
quasi-static manipulation. However, prior works on dynamic cloth manipulation have either relied
on cloth’s vertex positions [17] (so is only practical in simulation), a motion capturing system with
markers combined with human demonstrations [18], or custom hardware [19, 20].

In contrast, our algorithm achieves high performance from severely crumpled initial cloth configu-
rations through self-supervised trial and error and learns directly from visual input without requiring
expert demonstrations or ground truth state information.

3 Method
The goal of cloth unfolding is to manipulate a cloth from an arbitrarily crumpled initial state to
a flattened state. Concretely, this amounts to maximizing the cloth’s coverage on the workspace
surface. Intuitively, dynamic actions have the potential to achieve high performance on cloth un-
folding by appropriately making use of the cloth’s mass in a high-velocity action to unfold the cloth
(Sec. 3.1). From a top-down RGB image of the workspace with the cloth, our policy decides the
next fling action (Sec. 3.2) by picking the highest value action which satisfies the system’s con-
straints (Sec. 3.3). It predicts the value of each action with a value network (Sec. 3.4) which is
trained in a self-supervised manner to take actions that maximally increases the cloth’s coverage.
The supervision signal is computed directly from the visual observation captured by the top-down
camera. After training in simulation, we finetune and evaluate the model in the real world (Sec. 3.5).

3.1 Advantages of the Fling Action Primitive
Quasi-static actions, such as pick & place, rely on friction between the cloth and ground to stretch
the cloth out. The complexity of friction forces between the workspace and the (nonvisible, ground-
facing) surfaces of the cloth means the cloth’s final configuration may be difficult to predict from
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Figure 3: Method Overview. From a top-down RGB image a), our policy evaluates a batch of
different action rotations and scales by transforming the observation b) then predicting the corre-
sponding batch of value maps c). The highest value action d), corresponding to the maximum value
pixel which also satisfies the arms’ reachability constraints e) is chosen. Finally, the chosen pixel’s
location and its observation’s transformation is decoded into the fling action parameters (i.e., center
point, distance, relative orientation between gripper).

only visual observations, especially for novel cloth types or significantly different friction forces
(i.e.: simulation v.s. real). In addition, such systems can’t manipulate points on the cloth to regions
outside of their physical reach range, which limits their maximum cloth dimensions. Meanwhile,
dynamic actions largely rely on cloths’ mass combined with a high-velocity throw to do most of
its work. Since a single dynamic motion primitive can effectively unfold many cloths, dynamic
unfolding systems can learn a simpler policy which generalizes better to different cloth types. In
addition, they can reach higher coverages in smaller numbers of interactions and throw corners of
cloths larger than the system’s reach range, effectively expanding their physical reach range.

We propose to use a dual-arm pick, stretch, and fling primitive. Here, a dual-arm system stretches
the cloth between the arms, which unfolds it in one direction, and then flings the cloth, which makes
use of the cloth’s mass to unfold it in the other direction. The combination of stretching and flinging
ensures that, given two appropriate grasp points, our motion primitive should be sufficient for single
step unfolding when possible.

3.2 Fling Action Primitive Definition
To achieve an efficient, generalizable, and flexible cloth unfolding system, we argue that the system
requires two arms operating in a dynamic action space. To this end, we’ve designed a pick, stretch,
and fling motion primitive for a dual-arm system, where each arm is placed on either side of the cloth
workspace, as follows. First, the arms perform a top-down pinch-grasp on the cloth at locations
L,R ∈ R3. Second, the arms lift the cloth to 0.30m and stretch the cloth taut in between them.
Third, the arms fling the cloth forward 0.70m at 1.4m s−1 then pull backwards 0.50m at 1.4m s−1,
which swings the cloth forwards. Finally, the arms place the cloth down to the workspace and release
their grips. The entire motion primitive is visualized in (Fig. 2a).

Instead of learning all steps of our primitive, we can fix the stretching step to always stretch the cloth
as much as possible without tearing the cloth. We also fix the fling speed and trajectory from the
observation that the real world system could robustly unfold the cloth using a wide range of fling
parameters (i.e.: fling height, fling speed) if given a good grasp (see supplementary materials). Thus,
the problem of learning to pick, stretch, and fling reduces down to the problem of learning where to
pick, which is parameterized with only two grasp locations, one for each arm.

3.3 Constraint Satisfying Fling Action Parameterization
A dual-arm grasp is parameterized by two points L,R ∈ R3, which denotes where the left and right
arm should approach from a top-down grasp respectively, and requires 6 scalars. Without loss of
generality for the purposes of grasping from a top-down RGB-D input, the third dimension could be
specified by depth information. This reduces L and R to two points in R2, each representing pixels
to grasp from the visual input and uses only 4 scalars in total.

However, to minimize collisions between two arms, we wish to impose a constraint that L is always
left of R, and vice versa . Additionally, the grasp width (i.e., the length of the line L−R) be greater
than the physical limit of the system and smaller than the minimum safe distance limit between the
two arms. Directly using L and R will entangle these two contraints (see supplementary materials),
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making them difficult to satisfy. To make these constraints linear and independent, we propose a 4-
scalar parameterization, which consists of the pixel C ∈ R2 at the center of the line L−R, an angle
θ ∈ R denoting the planar rotation of the line L− R, and a grasp width w ∈ R denoting the length
of the line in pixel space. To constrain L to be on the left of R, we can constrain θ ∈ [−90◦, 90◦],
while w can be directly constrained to appropriate system limits.

3.4 Learning Delta-Coverage Maximizing Fling Actions
The naive approach for learning the action parameters ⟨Cx, Cy, θ, w⟩ by directly predicting these
4 scalars does not accommodate the best grasp’s equivariances to the cloth’s translation, rotation,
and scale. However, the learner should be equipped with the inductive bias that cloths in identical
configurations have identical optimal grasp points for flinging relative to the cloth.

To this end, we propose to use spatial action maps [5, 6, 7]. By predicting grasp values with constant
scale and rotation in pixel space from the transformed images, spatial action maps can recover grasp
values with varying scales and rotations in world space by varying the transformation applied to
the image. Concretely, given a visual observation from the top-down view (Fig. 3a), we generate
a batch of rotated and scaled observations (Fig. 3b) then predict the corresponding batch of dense
value maps (Fig. 3c). Each pixel in each value map contains the value of the action parameterized by
that pixel’s location, giving C, and its observation’s rotation and scaling, giving θ and w respectively
(Fig. 3f). The value network is supervised to regress each pixel in the value map to the ground truth
delta-coverage – the difference in coverage before and after the action. Thus, by picking the grasping
action with the highest value (Fig. 3d), the system picks grasp points which it expects would lead
to the greatest increase in cloth coverage. By its architecture, the value network is equivariant to
translation. By rotating and scaling its inputs, it is also equivariant to rotation and scale.

We use 12 rotations in [−90◦, 90◦], 8 scale factors in [1.00, 2.75], both at even intervals, and 64×64
RGB images. To make the use of the scale range, we crop the image such that the cloth takes up
two-thirds of the image width and height before applying one of the 8 scale factors. We also filter
out and reject all grasp point pairs which are out of reach for either arm.

Self-Supervised Learning. The value network is trained end-to-end with self-supervised trials
in simulation then finetuned in the real world. Each fling step is labeled with its normalized delta
coverage, which is computed by counting cloth mask pixels from a top-down view, then dividing
by the cloth mask pixel count of a flattened cloth state. While our experiments have plain black
workspace surface colors and non-textured colored cloths for easy masking, our approach can be
combined with image segmentation or background subtraction approach to obtain the corresponding
cloth mask to work with arbitrary cloth and workspace textures. Note that this supervision signal
(i.e., cloth mask) is only needed during training.

The policy interacts with the cloth until it reaches 10 timesteps or predicts grasps on the workspace.
The latter stopping condition indicates that the policy does not expect any possible action to further
improve the cloth coverage. All policies are trained in simulation until convergence, which takes
around 150,000 simulation steps, or 6 days on a machine with a GTX 1080 Ti. The network is
trained using the Adam optimizer with a learning rate of 1e-3 and a weight decay of 1e-6.

3.5 Experiment Setup

Simulation Setup. Our custom simulator2 is built on top of the PyFleX [8] bindings to Nvidia FleX
provided by SoftGym [9], and can load arbitrary cloth meshes, such as T-shirts, through a Python
API. The observations are rendered using Blender 3D where the cloth HSV color is sampled uni-
formly between [0.0, 1.0], [0.0, 1.0], and [0.5, 1.0] respectively, and the background is dark grey with
a procedurally generated normal map to mimic the wrinkles on the real-world workspace surface.
We further apply brightness, contrast, and hue jittering on observations to help with the transfer

2Our custom simulator is publicly accessible at https://github.com/columbia-ai-robotics/flingbot
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Figure 4: Qualitative Results in Real World. Cloth coverages are labeled on the top right corner.
Red and green circles represent grasps by left and right arms, placed above and below field of view,
respectively. FlingBot discovered through trial-and-error a two-arm corner and edge grasp when
corners and edges are visible. While the pick & place baseline discovered a similar strategy, it
requires significantly more steps to achieve a coverage lower than FlingBot’s.
to real. We manually tuned our simulation fling speed to qualitatively match the real-world cloth
dynamics (see supplementary materials on real world robustness to fling parameters).

Real World Setup. Our real-world experiment setup consists of two UR5s, where one is equipped
with a Schunk WSG50 and the other with an OnRobot RG2, facing each other and positioned 1.35m
apart. The top-down RGB-D image is captured with an Intel RealSense D415. To help with pinch
grasp success in real, we used a 2-inch rubber mat as the workspace and rubber gripper finger
covers. To mitigate the reliance on specialized force sensors, we chose to implement stretched cloth
detection using only a second Intel RealSense D415 capturing a frontal view of the workspace. By
segmenting the cloth from the front camera RGBD view of the workspace, then checking whether
the top edge of the cloth mask is flat as a proxy for the cloth being stretched, we can pull the arms’
end effectors apart until the top of the cloth is no longer bent.

4 Evaluation
We design a series of experiments to evaluate the advantage of dynamic actions over quasi-static
actions in the task of cloth unfolding. The system is evaluated on its efficiency (i.e., reaching high
coverages with a small number of actions), generalization to unseen cloth types (i.e., flattening
different types of T-shirts when only trained on rectangle cloths), and reach range (i.e., on cloths
with dimensions larger than its reach range). Finally, we evaluate the algorithm’s performance on
the real-world setup. Please visit https://flingbot.cs.columbia.edu for experiment videos.

Metrics The performance is measured by the final coverage, delta-coverage from initial coverage,
and the number of interactions. All our coverage statistics are normalized by the coverage of the
cloth in a flattened configuration and can be computed from a top-down camera. To evaluate our
policy, we load a task from the unseen test datasets then run the policy for 10 steps or until the policy
predicts grasps on the floor.
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Figure 5: Coverage v.s. Steps. With 95% confidence interval shaded. FlingBot can achieve high
coverage within a few interaction steps, while the quasi-static baselines never reach high coverages
even with significantly more interaction steps. This demonstrates the difficulty of unfolding from
highly crumpled initial configurations and dynamic action’s superior efficiency.

4.1 Task Dataset Generation
Each task is specified by a cloth mesh, mass, stiffness, and initial configuration. The cloth mesh
is sampled from one of three types: (1) Normal Rect, which contains rectangular cloths with size
within the reach range. Edge lengths are sampled from [0.40m, 0.65m], (2) Large Rect, which
contains rectangular cloths with at least one edge larger than the reach range (0.70m), and (3) Shirt,
which contains a subset of shirts sampled from CLOTH3D’s [21] test split, all of which are resized
to be within the reach range. The cloth mass is sampled from [0.2kg, 2.0kg] and an internal stiffness
from [0.85kg/s2, 0.95kg/s2]. Finally, the cloth’s initial configuration is varied by holding a ran-
domly grasped the cloth at a random height between [0.5m, 1.5m] then dropping and allowing the
cloth to settle (similar to Lee et al. and tier-3 in Seita et al.), resulting in a severely crumpled config-
uration. Please refer to supplementary materials for more details on our task generation process.

In simulation, the policy is trained on 2000 rectangular cloths sampled evenly between Normal Rect
and Large Rect, and evaluated on 600 novel tasks split evenly between Normal Rect, Large Rect,
and Shirt cloths. In real, the simulation policy is deployed to collect real world experience on 150
Normal Rect episodes (257 steps), optimized on both simulation and real world data, then evaluated
on 10 novel tasks in each cloth type.

4.2 Approach Comparisons
We compare against 3 quasi-static baselines, [Pick & Place] (similar to Lee et al. [2], visualized
in Fig. 2b), [Pick & Drag] (similar to Seita et al. [22]), and [Stretch & Drag] (identical to [Pick
& Drag] with an extra stretch step). Our policy, [FlingBot], predicts the optimal two-arm grasp
locations for the flinging primitive (Sec. 3.2). In addition, we compare against [Fling-Reg], which
does not exploit the task’s equivariances (Sec 3.4) and thus completely fails to perform the task
(Tab. 1). Further, we trained [FlingBot-S], which is identical to [FlingBot] but also learns the fling
speed. However, Tab. 1 and Fig. 5 show there aren’t significant performance gains for [FlingBot-S]
over [FlingBot], so we prefer the simpler [FlingBot] for comparisons with baselines. We provide
more information about baselines in the supplementary material.

4.3 Results

Better Efficiency. In this experiment, we compare the unfolding efficiency between quasi-static and
dynamic actions. From the Normal Rect column in Tab. 1, [FlingBot] increases the coverage of the
cloth (+63.1%) by more than two times that of [Pick&Place] and [Pick&Drag] baselines (+29.2%,
and +24.2%). Additionally, from Fig. 5, [FlingBot] achieves over 80% within 3 interactions (sim-
ulation normal cloth), while the quasi-static baselines never reach such a high coverage even with
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significantly more interaction steps or with a stretching subroutine. This demonstrates the difficulty
of unfolding from highly crumpled initial configurations and dynamic action’s superior efficiency.

Normal Rect Large Rect Shirt

Pick&Place 53.0 / 24.2 52.0 / 24.8 79.8 / 33.4
Pick&Drag 58.0 / 29.2 54.2 / 27.1 72.4 / 26.0
Stretch&Drag 77.2 / 48.4 50.2 / 23.1 90.3 / 43.9
Fling-Reg 29.1 / 0.3 27.7 / 0.5 54.0 / 7.6

FlingBot-S 92.6 / 63.8 78.9 / 51.7 93.5 / 47.1
FlingBot 91.9 / 63.1 79.2 / 52.0 93.3 / 46.8

Table 1: Simulation Experiments
(Final / Delta Coverage).

Normal Rect Large Rect Shirt

Pick&Place 43.2 / 13.0 38.4 / 11.0 42.7 / 19.9
FlingBot 81.9 / 55.8 88.5 / 54.9 89.2 / 65.2

Table 2: Real World Experiment
(Final / Delta Coverage).

Increased Reach Range. In this experiment, we
investigate these approaches’ performance on Large
Rect cloths. These cloths are not only challenging
for quasi-static baselines, because the arms can’t
manipulate the cloth at locations beyond its reach
range, but also for our flinging policies, because
the arms can’t fully stretch or lift the cloth off
the ground. Despite these challenges, [FlingBot]
achieves 79.2% (Tab. 1, column Large Rect). Com-
pared to the quasi-static baselines, [FlingBot] in-
creases the coverage by +52.0%, which is roughly
twice that of the quasi-static baselines ( +27.1%,
+24.8%, +23.1%). These results show how high-
velocity actions could effectively expand the phys-
ical reach range, allowing the system to be more
flexible with extreme cloth sizes.

Generalize to Unseen Cloth Types. This experiment investigate how well these approaches, trained
on only rectangular cloths, can generalize to unseen cloth types (i.e.: T-shirts). Qualitative real world
(Fig. 4) and simulation (in supp.) results suggest that our flinging policy has learned to grasp key-
points on cloth (i.e., corners, edges) when it sees them, or otherwise fling to reveal these features.
FlingBot’s generalization performance (93.3% in Tab. 1, column Shirt) to novel cloth geometries
can be attributed to this strategy, since a cloth of any type can be unfolded by grabbing one of its
edges, stretching, then flinging it in a direction perpendicular to the edge. Through self-supervised
exploration, our approach discovered grasping strategies which were manually designed in heuris-
tic based prior works, while being more generalizable to different cloth configurations and types.
Meanwhile, all quasi-static baselines exhibited worse cloth unfolding efficiency. The Sim Shirts
plot in Fig. 5 shows that our flinging policies take only 3 actions to reach their maximum coverages,
while the quasi-static baselines take upwards of 8 steps to reach lower maximum coverages.

Evaluating Real-World Unfolding. Finally, we finetune and evaluate our simulation models from
Tab. 1 with real-world experience on a pair of UR5 arms. Task generation is automated using the
robot arms by randomly grasping the cloth at height 0.50m then dropping it back on the workspace.
We use a 0.35m× 0.45m cloth for Normal Rect, a 0.40m× 0.70m bath towel for Large Rect, and a
0.45m×0.55m T-shirt for Shirt. The system collected 257 experience steps over 150 cloth tasks for
finetuning in total. The performance is reported averaged over 10 test episodes, where real-world
grasp errors are filtered out (see supplementary materials). From Tab. 2, we report that our policy
achieves over 80% on all cloth types, which outperforms the quasi-static pick & place baseline by
over 40%. Additionally, we report that the pre-finetune performance of FlingBot on Normal Cloths
is 69.8%, justifying our decision to finetune to get a 12.1% improvement. Overall, our flinging
primitive takes a median time of 16.7s. While the pick & place primitive only takes a median time
of 8.8s, it is unable to reach the high coverages even with many more interaction steps (Fig. 5, bottom
row). Both primitives incur additional overheads of 2.5s for preparing the transformed observation
batch and 2.9s for a routine which checks whether the cloth is stuck to the gripper after the gripper
is opened (details in supplementary materials).

5 Conclusion and Future Work
We proposed a fling primitive and a self-supervised learning algorithm for learning the grasp param-
eters for the cloth unfolding task, resuling in a policy which is efficient, generalizable, and works
with cloth sizes beyond the reach range of the system in both simulation and the real world. Fu-
ture work could explore dynamic actions for more complex (i.e., goal-condition) cloth manipulation
tasks by combining with quasi-static action spaces and leveraging cloth pose estimation [23].
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