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ABSTRACT

Aligning large pretrained language models with human preferences is fundamental
for improving their capabilities and acceptability in downstream applications, an
objective that can be posed as approximating a target distribution representing some
desired behavior. Existing approaches differ both in the functional form of the target
distribution and the algorithm used to approximate it. For instance, Reinforcement
Learning from Human Feedback (RLHF) corresponds to minimizing a reverse
KL from an implicit target distribution arising from a KL penalty in the objective.
On the other hand, Generative Distributional Control (GDC) has an explicit target
distribution and minimizes a forward KL from it using the Distributional Policy
Gradient (DPG) algorithm. In this paper, we propose a new approach, f -DPG,
which allows the use of any f -divergence to approximate any target distribution.
f -DPG unifies both frameworks (RLHF, GDC) and the approximation methods
(DPG, RL with KL penalties). We show the practical benefits of various choices of
divergence objectives and demonstrate that there is no universally optimal objective
but that different divergences are good for approximating different targets.

1 INTRODUCTION

Large pretrained language models, also known as “Foundation Models” for language, have recently
revolutionized the field of Natural Language Processing thanks to their generative capabilities, which
are useful in a vast number of tasks (Brown et al., 2020; Srivastava et al., 2022). However, generated
texts can also violate widely-held human preferences, e.g. helpfulness (Askell et al., 2021), non-
offensiveness Gehman et al. (2020), truthfulness Lin et al. (2022) or equal treatment Cao et al. (2022).
Aligning LMs with human preferences is the problem of adapting the LM in such a way that generated
content is perceived to match the human’s intent (Ouyang et al., 2022) or that it is helpful, honest,
and harmless (Askell et al., 2021; Bai et al., 2022b). Fundamentally, an aligned LM can be seen
as a desired target distribution that we would like to generate from Korbak et al. (2022c). Viewed
through this lens, approaches to LM alignment can be organised along two axes: how the target
distribution is constructed and how it is approximated. Khalifa et al. (2021) proposes a framework
that they coin Generation with Distributional Control (GDC), by which they explicitly define the
target distribution that represents the fully aligned LM in closed form, and then approximate it via
methods such as distributional policy gradients (DPG; Parshakova et al., 2019), which minimizes the
forward Kullback-Leibler (KL) divergence KL(p||πθ) of the LM πθ to the target distribution p. On
the other hand, even if RL with KL penalties (Todorov, 2006a; Kappen et al., 2012; Jaques et al.,
2017; 2019), which forms the core of reinforcement learning from human feedback or RLHF, is
defined only in terms of reward maximization, it has also been shown to be equivalent to minimizing
the reverse KL divergence KL(πθ||p) of the LM to a target distribution that can also explicitly written
in closed-form (Korbak et al., 2022b).

The possibility of approximating various distributions according to different divergence measures
begs the question: Does the choice of a divergence measure matter? In principle, all divergences lead
to the same optimum, namely the target distribution p. However, when we restrict πθ to a certain
parametric family that does not include p (i.e., the search space is mis-specified), then the minimum
can be found at different points, leading to optimal models with different properties. Moreover,
different divergences present different loss landscapes: some might make it easier for stochastic
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gradient descent to find good minima. Finally, the space of possible divergence measures and forms
of target distributions is a vast and largely uncharted terrain. Prior work has largely failed to decouple
the form of a target distribution and the algorithm used for approximating it.

Here, we introduce f -DPG, a new framework to fine-tuning an LM to approximate any given target
distribution by following any divergence in the f -divergences family. f -DPG generalizes existing
approximation techniques from both DPG and RL with KL penalties algorithms, thus allowing
us to investigate new ways to approximate the target distributions defined by the GDC and RLHF
frameworks. We show that while there is no single best optimization objective for all cases, JS-DPG
often strikes a good balance and significantly improves upon prior work Khalifa et al. (2021); Korbak
et al. (2022a).

2 FORMAL ASPECTS

2.1 f -DIVERGENCES

Consider a convex function f : (0,∞)→ R with f(1) = 0. Let f(0) .
= limt→0 f(t) and f

′
(∞)

.
=

limt→0 tf(
1
t ).

1 Let p1, p2 be two distributions over a discrete set X . The f -divergence between p1
and p2 can be defined as

Df (p1||p2)
.
= Ex∼p2

[
f

(
p1(x)

p2(x)

)]
+ f

′
(∞) p1(p2 = 0) (1)

where p1(p2 = 0) is the p1-mass of the set {x ∈ X : p2(x) = 0} Polyanskiy (2019); Liese & Vajda
(2006). The function f is called a generator of Df . By convention, if p1(p2 = 0) = 0, the last
term of Eq. 1 is set to 0 regardless of the value of f

′
(∞) (which can be infinite).2 It can be shown

that Df (p1||p2) ≥ 0 for any p1 and p2, with equality if p1 = p2; conversely, if Df (p1||p2) = 0
and f is strictly convex at 1, then p1 = p2. The f -divergence family includes many important
divergence measures, in particular KL divergence KL(p1||p2), reverse KL divergence KL(p2||p1),
Jensen-Shannon divergence, and Total Variation distance. We list these f -divergences and their
generators in Tab. 1. For more details about notations and properties of f -divergences, see App. A.1
and also Liese & Vajda (2006); Polyanskiy (2019); Sason & Verdú (2016); Sason (2018).

2.2 DISTRIBUTIONAL ALIGNMENT WITH f -DIVERGENCES

Let X be a discrete countable or finite set, in our case a set of texts. Given a target probability
distribution p(x) over elements x ∈ X , our goal is to approximate p with a generative model (aka
policy) πθ. The generative model πθ is a parametric model, typically an autoregressive neural network,
from which we can (i) directly sample and (ii) evaluate probabilities πθ(x).

We approach this problem by attempting to minimize the f -divergence of πθ to p: minθ∈ΘDf (πθ||p),
where θ varies inside the parametric family Θ. The objective might be solved approximately using
stochastic optimization with samples drawn from the distribution p, as the definition of Df (πθ||p)
involves taking the expectation with respect to p. However, it is often not possible to sample directly
from p, while it is possible to sample from πθ. Our optimization technique is then based on the
following core result, which we prove in App. A.3.
Theorem 1. Let p and πθ be distributions over a discrete set X such that at least one of the following
conditions holds: (i) ∀θ ∈ Θ, Supp(p) ⊂ Supp(πθ), or (ii) Supp(πθ) does not depend on θ. Then:

∇θDf (πθ||p) = Ex∼πθ

[
f

′
(
πθ(x)

p(x)

)
∇θ log πθ(x)

]
. (2)

Note that it may happen in Eq 2 that p(x) = 0 and πθ(x) > 0, hence πθ(x)
p(x) =∞, in which case the

expression f
′
(

πθ(x)
p(x)

)
should be understood as denoting the value f ′(∞) as defined earlier.3

1The limits are well-defined and take values in (−∞,∞]. The convention for f
′
(∞) is motivated by the

fact that limt→∞ f ′(t) = limt→0 tf(
1
t
) Hiriart-Urruty & Lemaréchal (2013).

2Based on the commonly made assumption that the support of p1 is dominated by the support of p2

(Supp(p1) ⊂ Supp(p2)), Eq. 1 simplifies to Df (p1||p2) = Ex∼p2

[
f
(

p1(x)
p2(x)

)]
.

3The derivative f ′(t) of any convex function f(t) is defined almost everywhere. See also App. A.4.
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In the context of LMs, our domain of application, we will use Thm. 1 in situations where πθ, being
a standard softmax-based autoregressive model, has full support over X (i.e. Supp(πθ) = X ) for
all θ’s, while the support of p might be strictly included in X in some experiments. We refer to the
approach in Eq. 2 under the name f -DPG, in reference to the original DPG (Distributional Policy
Gradient) approach introduced in Parshakova et al. (2019), which can be seen as a special case of
f -DPG (“KL-DPG”) with Df (πθ||p) set to KL(p||πθ) as discussed in Sec. 2.3.

2.3 RECOVERING SOME EXISTING METHODS

GDC In GDC, Khalifa et al. (2021) propose a target distribution pGDC bin(x) ∝ a(x)b(x), where
a is a pretrained LM and b(x) = 0 if x contains a curse and b(x) = 1 otherwise. Fitting the policy πθ

to the target p is done using DPG Parshakova et al. (2019), namely by minimizing the forward KL,
KL(p||πθ). In the f -DPG framework, KL(p||πθ) = Df (πθ||p) with f(t) = − log t, f ′(t) = −1/t,
and Thm. 1 leads to the equivalent objective: ∇θDf (πθ||p) = Ex∼πθ

− p(x)
πθ(x)

∇θ log πθ(x).

RL with KL penalties Let’s set the target distribution as p(x) .
= pRLKL(x) = 1/Z a(x) er(x)/β ,

where Z is a normaliser. Then KL(πθ||p) = Df (πθ||p), with f(t) = t log t corre-
sponding to reverse KL, and f ′(t) = 1 + log t. Thm. 1 implies that: ∇θDf (πθ||p) =

Ex∼πθ

(
− r(x)

β + log πθ(x)
a(x)

)
∇θ log πθ(x), where we have exploited the fact that 1 + logZ is

a constant, hence Ex∼πθ
(1 + logZ) ∇θ log πθ(x) = 0. Up to the constant factor β, this

form recovers the original formula for estimating the gradient of the loss : ∇θJRLKL(θ) =

Ex∼πθ

(
r(x)− β log πθ(x)

a(x)

)
∇θ log πθ(x).

3 EXPERIMENTS

Task We evaluate our method on two LM alignment tasks, namely, alignment with scalar prefer-
ences on positive sentiment and alignment with a binary preference on lexical content introduced
by Khalifa et al. (2021). For the first one, we set the target distribution to pRLKL(x) ∝ a(x)er(x)/β ,
where r(x) = log ϕ(x) and ϕ(x) is the probability returned by a sentiment classifier fine-tuned from
Distil-BERT HF Canonical Model Maintainers (2022). (See App. E). We set β = 0.1, which is in line
with the range of values explored by Ziegler et al. (2019). Note that applying RKL-DPG on pRLKL is
equivalent to the RL with KL penalties method, as described in Sec. 2.3. For alignment with lexical
constraint, we use two target distributions, namely pGDC bin(x) ∝ a(x)b(x), with binary preference
b(x) = 1 iff the target word appears in the sequence x, and a scalar preference target distribution
pRLKL where r(x) is set in the same way as b(x). We use four words with different occurrence fre-
quency: “amazing”(1· 10−3), “restaurant” (6· 10−4), “amusing” (6· 10−5), and “Wikileaks” (8· 10−6).
App. B.1 elaborates on the target distributions. We use four instantiations of f -DPG to approximate
these targets, namely KL-DPG, RKL-DPG, TV-DPG and JS-DPG, corresponding to minimizing
the forward KL, reverse KL, Total Variation, and Jensen-Shannon divergences, respectively. We
measure approximation quality in terms of these same divergences. Note that pGDC bin(x) = 0 when
b(x) = 0, implying that reverse KL, namely KL(πθ||p), becomes infinite, so we exclude it for this
target. Implementation details and hyper-parameters are available in App. C.

Metrics The main metrics we report are: (1) Df (πθ||p), the f -divergence between p and πθ, with
four different f ’s corresponding to forward KL, KL(p||πθ); reverse KL, KL(πθ||p); Total Variation,
TV(πθ||p); and Jensen-Shannon, JS(πθ||p), estimated by importance sampling, (2) KL(πθ||a), a
measure of the divergence from original LM a Ziegler et al. (2019); Khalifa et al. (2021), (3) Moments
Ex∼πθ

ϕ(x) of a feature of interest ϕ(x), (4) Normalized Entropy (Berger et al., 1996), a measure
of diversity in probability distribution normalized by number of tokens, (5) Standard deviation of a
minibatch’s pseudo-rewards, std(rθ(x)), with pseudo-rewards rθ(x)

.
= −f ′

(πθ(x)
p(x) ).

Results Fig. 1 shows the evolution of the above-mentioned metrics. For lexical constraints, we
show aggregated evolution of the metrics. Further details and disaggregated results are given in App.
F. We see that all variants of f -DPG reduce the divergence from the target distribution across all
measured f -divergences. Furthermore, as expected, convergence to the target is connected with the
success ratio in producing the desired word, Eπθ

[b(x)], while balancing it with a moderate divergence
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from a, KL(πθ||a). This reflects that approaching the optimal distribution p translates into metrics
in the downstream task. In alignment with scalar preferences (Fig. 1 (a)) we observe that whereas
RKL-DPG achieves by far the best performance in terms of reverse KL, KL(πθ||p) (top-right), it
fails to minimize all other divergence metrics. This shows that minimizing one divergence does
not necessarily imply that other divergences will follow. Yet, notably, all other variants of f -DPG
minimize all four divergences. RKL-DPG yields the highest value of Eπθ

[ϕ(x)] at the cost of a
significant departure from a. We connect this to the strong influence that low values p(x) have on
RKL-DPG, which induces a large pseudo-reward for strongly reducing πθ(x) on those samples and
produces the spike at the beginning of training in std(rewards). In lexical constraints (Fig. 1 (b) and
(c)), strinklingly, the original KL-DPG is outperformed by other variants of f -DPG even in terms
of forward KL. We hypothesize that this is linked to the high variance of the pseudo-rewards in
KL-DPG, as visualized in the last panel. We also observe (Fig. 1 (a) and (c)) that RKL-DPG tends to
produce distributions with lower normalized entropy.
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Figure 1: Comparison of f -DPG on (a) sentiment preference, (b) lexical constraint with GDC framework, and
(c) lexical constraint with RL with KL penalties framework. Evaluation metrics: four f -divergences Df (πθ||p)
(↓ better), Eπθ [ϕ(x)] (↑ better), Entropy (↑ better), standard deviation of pseudo-reward std(rθ(x)). (d) Pseudo-
rewards for various f -divergences. The x-axis denotes p(x)

πθ(x)
and the y-axis denotes the pseudo-reward. The

dotted line denotes the point where p(x) = πθ(x).

4 DISCUSSION AND CONCLUSION

Our experiments show that the choice of the divergence measure can have a significant impact on the
resulting model’s quality, although there is not a single best divergence across distributions. However,
interestingly, for a given target there is one or a few variants that are the best across all measured
divergences even in terms of divergences that they do not directly optimize for. Fig. 1 (d) illustrates the
differences between pseudo-rewards for distinct f -divergences. The forward KL loss aims to ensure
coverage of the subset where p(x) > 0, giving a large pseudo-reward for samples with p(x)>>π(x),
while the optimization can be sensitive to sampling noise in the finite sample approximation (Fig. 1
(b) and (c)). Conversely, the reverse KL loss results in extreme negative rewards for samples with
p(x)<<πθ(x), leading πθ to avoid such regions and resulting in distributional collapse (Fig. 1 (a)).
On the other hand, the Jensen-Shannon loss gives smooth and robust rewards in both directions and
prevents πθ from heavily relying on a single direction, making it a reasonable default.

To conclude, we propose a flexible framework for approximating a target distribution by minimizing
any f -divergence, unifying earlier approaches for aligning LM’s. Our results on a diverse array of
tasks show that minimizing well-chosen f -divergences leads to significant gains over previous work.
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A COMPLEMENTS ON FORMAL ASPECTS AND PROOFS

A.1 EQUIVALENT DEFINITIONS FOR f -DIVERGENCES

The definition of f -divergences of Eq. 1 is equivalent to a second definition, in a more “symmetrical”
format, following Liese & Vajda (2006), which will help in some derivations, in particular in the
proof of Theorem 1.

Definition (f -divergence: “symmetrical” format). The f -divergence Df (p||q), where p and q are
distributions over a discrete set X can be defined as

Df (p||q)
.
=

∑
{x: p(x)>0, q(x)>0}

q(x) f(
p(x)

q(x)
) + f(0) q(p = 0) + f∗(0) p(q = 0), (3)

where the generator function f : (0,∞)→ R is a convex function satisfying f(1) = 0. We denote by
q(p = 0) the q-mass of the set {x : p(x) = 0}, i.e. q(p = 0) =

∑
{x:p(x)=0} q(x) and similarly for

p(q = 0).

In this definition, the function f∗(t) is the so-called perspective transform of f defined by f∗(t) =
t f( 1t ). It can be shown to be also a convex function f∗ : (0,∞)→ R with f∗(1) = 0 and f∗∗ = f .
We also have the following important “swapping” property: Df (p, q) = Df∗(q, p).

Following Liese & Vajda (2006); Polyanskiy (2019), we use the conventions:

f(0)
.
= lim

t→0
f(t), f∗(0) = lim

t→0
f∗(t) = lim

t→0
t f(

1

t
), (4)

0 f(0)
.
= 0, 0 f∗(0)

.
= 0, including when f(0) =∞ and f∗(0) =∞, (5)

f ′(∞)
.
= f∗(0) = lim

t→0
t f(

1

t
). (6)

For the existence of the limits in these equations, where f(0) and f∗(0) can take values in R ∪ {∞},
as well as for the motivation for defining f ′(∞)

.
= limt→0 t f(

1
t ), one may refer to (Liese & Vajda,

2006) and (Hiriart-Urruty & Lemaréchal, 2013, §2.3).

Equivalence of definitions 1 and 3 In order to prove this equivalence, after noting that f ′(∞) =

f∗(0), it remains to show that Ex∼qf
(

p(x)
q(x)

)
is equal to

∑
{x: p(x)>0, q(x)>0} q(x) f(p(x)q(x) ) +

f(0) q(p = 0). We have:

Ex∼q f(
p(x)

q(x)
) =

∑
{x: q(x)>0}

q(x) f(
p(x)

q(x)
)

=
∑

{x: q(x)>0, p(x)>0}

q(x) f(
p(x)

q(x)
) +

∑
{x: q(x)>0, p(x)=0}

q(x) f(0)

=
∑

{x: q(x)>0, p(x)>0}

q(x) f(
p(x)

q(x)
) + f(0) q(p = 0),

which concludes the proof.

A.2 ILLUSTRATIONS OF A FEW f -DIVERGENCES

Let’s now see how the notion of f -divergence can be applied to a few common cases.

Forward and reverse KL By the standard definition for KL divergence, we have, for KL(p||π),
the “forward KL” from a model π to a target p:

KL(p||π) =

{
Ex∼p log p(x)

π(x) if Supp(p) ⊂ Supp(π),
∞, otherwise.

(7)
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If we take f(t) = − log t, as in Table 1, then we have f(0) = ∞. On the other hand we see that
f∗(t) = t log t and f∗(0) = 0. We can then write, using equation 3:

Df (π||p) =
∑

{x: π(x)>0, p(x)>0}

−p(x) log(
π(x)

p(x)
) +∞ p(π = 0) + 0 π(p = 0)

=
∑

{x: π(x)>0, p(x)>0}

p(x) log(
p(x)

π(x)
) +∞ p(π = 0),

where ∞ p(π = 0) is null for Supp(p) ⊂ Supp(π) and infinite otherwise. Hence Df (π||p) =
KL(p||π), the forward KL from π to p.

Now, consider the “reverse KL” from π to p, namely KL(π||p). Based on the previous derivation,
and with the same f(t) = − log t we can write it as KL(π||p) = Df (p||π), but using the perspective
function f∗(t) = t log t, we can also write it (as we actually do in Table 1) as Df∗(π||p) =
Dt log t(π||p).

Total Variation divergence The Total Variation divergence between p and π is standardly defined
as TV(p||π) = 1

2

∑
x∈X |p(x) − π(x)|. We then have TV(p||π) = TV(π||p). Let’s then define

f(t) = 1
2 |1− t|. We have f(0) = 1/2, f∗(t) = f(t), and f∗(0) = 1/2. Then, using equation 3:

Df (π||p) =
∑

{x: π(x)>0, p(x)>0}

1

2
p(x)

∣∣∣∣1− π(x)

p(x)

∣∣∣∣ +
1

2
p(π = 0) +

1

2
π(p = 0)

=
∑

{x: π(x)>0, p(x)>0}

1

2
|p(x)− π(x)| +

1

2
p(π = 0) +

1

2
π(p = 0)

=
∑

{x: π(x)>0, p(x)>0}

1

2
|p(x)− π(x)| +

1

2

∑
{x: π(x)=0, p(x)>0}

|p(x)− π(x)|

+
1

2

∑
{x: π(x)>0, p(x)=0}

|p(x)− π(x)|

=
1

2

∑
x∈X
|p(x)− π(x)| ,

and therefore TV(p||π) = Df (π||p), and also TV(p||π) = TV(π||p) = Df∗(p||π) = Df (p||π).

A.3 PROOF OF THEOREM 1

We restate the theorem here for convenience.

Theorem (Theorem 1). Let p and πθ be distributions over a discrete set X such that at least one of
the following conditions holds: (i) ∀θ ∈ Θ, Supp(p) ⊂ Supp(πθ), or (ii) Supp(πθ) does not depend
on θ. Then:

∇θDf (πθ||p) = Ex∼πθ

[
f

′
(
πθ(x)

p(x)

)
∇θ log πθ(x)

]
. (8)
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Proof. Based on definition equation 3 we have:

∇θDf (πθ||p) =
∑

{x:p(x)>0,πθ(x)>0}

p(x)∇θf(
πθ(x)

p(x)
) + f ′(∞)∇θπθ(p = 0) + f(0)∇θp(πθ = 0)

=
∑

{x:p(x)>0,πθ(x)>0}

p(x) f ′(
πθ(x)

p(x)
)∇θ

πθ(x)

p(x)
+ f ′(∞)∇θπθ(p = 0)

=
∑

{x:p(x)>0,πθ(x)>0}

πθ(x)f
′(
πθ(x)

p(x)
)∇θ log πθ(x) + f ′(∞)∇θπθ(p = 0)

=
∑

{x:p(x)>0,πθ(x)>0}

πθ(x)f
′(
πθ(x)

p(x)
)∇θ log πθ(x) + f ′(∞)∇θ

 ∑
{x:p(x)=0,πθ(x)>0}

πθ(x)


=

∑
{x:p(x)>0,πθ(x)>0}

πθ(x)f
′(
πθ(x)

p(x)
)∇θ log πθ(x) +

∑
{x:p(x)=0,πθ(x)>0}

πθ(x)f
′(∞)∇θ log πθ(x)

=
∑

{x:πθ(x)>0}

πθ(x)f
′(
πθ(x)

p(x)
)∇θ log πθ(x)

= Ex∼πθ
f ′(

πθ(x)

p(x)
)∇θ log πθ(x).

In the first line of this derivation, we use the previously introduced notation f ′(∞)
.
= f∗(0),

employed in particular by Polyanskiy (2019), which is motivated by the fact that limt→∞ f
′
(t) =

limt→∞
1
t f(t) = f∗(0) (See (Hiriart-Urruty & Lemaréchal, 2013)). In the second line, we employ a

variant of the chain-rule for derivatives of multivariate functions. We also exploit the fact that the
condition (i) stating that the support of p is contained in the support of πθ for all θ ∈ Θ implies that
∇θp(πθ = 0) = ∇θ0 = 0, and that the condition (ii) that the support of πθ does not depend on θ
also implies that∇θp(πθ = 0) = 0. In the fourth line, we write πθ(p = 0) as a sum. In the sixth line,
we allow the notation f ′(πθ(x)

p(x) ) instead of f ′(∞) when p(x) = 0 and πθ(x) > 0.

Working with the opposite divergence Df (p||πθ) In case one may prefer to work with a diver-
gence Df (p||πθ) having the opposite argument order, then one can use the identity Df (p||πθ) =
Df∗(πθ||p) to conclude that under the exact same conditions (i) or (ii) as previously, we have:

∇θDf (p||πθ) = ∇θDf∗(πθ||p) = Ex∼πθ

[
f∗′

(
πθ(x)

p(x)

)
∇θ log πθ(x)

]
,

where the derivative is applied to the perspective transform of f .

A.4 ABOUT NON-DIFFERENTIABILITY OF f

The derivative f ′(t) of any convex function f(t) is defined almost everywhere, with the possible
exception of a countable number of non-differentiable points, at which a subgradient can be used
instead Hiriart-Urruty & Lemaréchal (2013); Rockafellar (1970). Furthermore, in practice when
sampling from πθ in Eq 2, the problem of non-differentiability can be neglected, and recourse to
subgradients is typically unnecessary, even for f ’s that have non-differentiability points (such as
e.g. the generator f(t) = 0.5|1 − t| for the Total Variation divergence). Indeed, let Tnd

.
= {t :

f(t) is non differentiable at t}, and let Θnd
.
= {θ : ∃x ∈ X : πθ(x)

p(x) ∈ Tnd} be the set of θ’s for

which f
′
(

πθ(x)
p(x)

)
is undefined on at least one x. Then Θnd ⊂ Rd (with d the parameter dimension)

is the countable union of countable sets, hence is countable, and therefore of null measure inside Rd.
This means that, almost surely over θ, the RHS of Eq 2 is well-defined for all x’s.

A.5 f -DPG ALGORITHM
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Algorithm 1 f -DPG

Input: unnormalized target distribution P (·), initial model a(·), Df generator f(·)
Initialize: πθ(·) ← a(·), Z ← 0, N ← 0 {initialize model πθ, partition Z, sample size N
for moving average}
for each iteration do

for each episode do
sample x from πθ(·)
N ← N + 1
Z ← (N−1)Z + (P (x)/πθ(x))

N {Estimate Z with historical samples, using a moving
average}
p(·)← P (·)/Z
θ ← θ + α(θ)f

′
(

πθ(x)
p(x)

)
∇θ log πθ(x) {Update πθ according to Thm. 1}

end for
end for
Output: πθ

A.6 BASELINE: ALTERNATIVE DERIVATION

The generator function is not uniquely determined for a given f -divergence:

Fact 1. For generators f, g such that f(t) = g(t) + c(t− 1), c ∈ R, Df (p1||p2) = Dg(p1||p2).

We provide here an alternative way to introducing baselines, based on a change of generator.

Theorem (Baseline based on change of generator). If Df (πθ||p) is a divergence with any generator
f , and B ∈ R, there exists a generator g with the same divergence Df (πθ||p) = Dg(πθ||p) such that

∇θDg(πθ||p) = Ex∼πθ

[(
f

′
(
πθ(x)

p(x)

)
−B

)
∇θ log πθ(x)

]
= ∇θDf (πθ||p).

Proof. Recall that Df (πθ||p) = Dg(πθ||p) when g(x) = f(x) − B(x − 1). Therefore,

∇θDf (πθ||p) = ∇θDg(πθ||p) with g
′
(

πθ(x)
p(x)

)
= f

′
(

πθ(x)
p(x)

)
−B.

B BACKGROUND AND RELATED WORK

B.1 DISTRIBUTIONAL APPROACH IN LMS

We can organize approaches to LM alignment along two axes: how the target distribution is con-
structed and how it is approximated. The first problem roughly corresponds to representing human
preferences through the specification of a probability distribution and the second to allowing the
production of samples from that distribution.

B.1.1 DEFINING A TARGET DISTRIBUTION

The target distribution expresses an ideal notion of an LM, incorporating human preferences, as
probabilities p(x) over texts x according to how well they satisfy the preferences.

Formally, p(x) is often defined through a non-negative function P (x) (aka an energy-based model or
EBM) such that p(x) ∝ P (x). P (x) (and p(x) after normalization) can be used to score samples,
but not to directly obtain them because it lacks an autoregressive form.

In the rest of the paper, we will focus on target distributions modeling three types of preferences
prominently employed in recent literature about GDC Khalifa et al. (2021) and RLHF Ziegler et al.
(2019); Stiennon et al. (2020); Ouyang et al. (2022); Menick et al. (2022); Bai et al. (2022a).
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Binary preferences For human preferences naturally expressible as a binary constraint b(x) ∈
{0, 1} (e.g. a sample x must never contain a curse word), Khalifa et al. (2021) proposed the following
target distribution:

pGDC bin(x) ∝ a(x)b(x), (9)
where a is a pretrained LM and b(x) = 0 if x contains a curse and b(x) = 1 otherwise.

pGDC bin is the distribution enforcing that all samples match the binary constraint, which deviates
minimally from a as measured by KL(pGDC bin||a).

Scalar preferences Some human preferences, such as helpfulness, are more naturally expressed
as scalar scores. Alignment with respect to these is typically addressed with RLHF (Stiennon et al.,
2020; Ziegler et al., 2019; Ouyang et al., 2022), which consists of, first, capturing human preferences
as a reward function r(x) (e.g. scores given a reward model trained to predict human preferences)
and second, applying RL with KL penalties (Todorov, 2006a; Kappen et al., 2012; Jaques et al., 2017;
2019) to maximize this reward while penalizing departure from a(x):

JRLKL(θ) = Ex∼πθ

[
r(x)− β log

πθ(x)

a(x)

]
. (10)

This objective can be equivalently framed as minimizing the reverse KL, KL(πθ||pRLKL), where the
target distribution pRLKL is defined as:

pRLKL(x) ∝ a(x) exp(r(x)/β), (11)

where β is a hyperparameter (Korbak et al., 2022b).

Distributional preferences Finally, there is a class of distributional preferences Weidinger et al.
(2021) that cannot be expressed as a function of a single sample x but depend on the entire distribution,
e.g. a particular gender distribution of persons mentioned in LM samples. Khalifa et al. (2021) model
such preferences through distributional constraints using the following exponential family target
distribution

pGDC dist(x) ∝ a(x) exp
[∑

i

λiϕi(x)
]
, (12)

where ϕi are features defined over texts (e.g. the most frequent gender of people mentioned in x) and
λi are coefficients chosen so that the expected values Ex∼p [ϕi(x)] match some desired values µ̄i

(e.g., 50% gender balance). The resulting distribution pGDC-d matches the target feature moments,
while deviating minimally from a as measured by KL(pGDC dist||a).

B.1.2 APPROXIMATING THE TARGET DISTRIBUTION

Drawing samples from a target distribution p constitutes the inference problem. There are broadly
two approaches to this problem: (i) augmenting decoding from a at inference time to obtain samples
from p and (ii) training a new parametric model πθ to approximate p which can then be sampled
from directly. The first family of approaches includes guided decoding methods Dathathri et al.
(2020); Qin et al. (2022), Monte Carlo sampling techniques such as rejection sampling to sample
from simple distributions like pGDC bin Roller et al. (2021); Ziegler et al. (2022), and Quasi Rejection
Sampling (QRS) Eikema et al. (2022) or MCMC techniques (Miao et al., 2019; Goyal et al., 2022)
to sample from more complex distributions, such as pGDC dist. In the rest of the paper, we will
focus on the second family: methods that train a new model πθ to approximate p by minimizing
a divergence measure from p, D(πθ||p). Khalifa et al. (2021) uses Distributional Policy Gradients
(DPG; Parshakova et al., 2019) to approximate the target distribution by minimizing KL(p||πθ), or
equivalently, CE(p, πθ):

∇θCE(p, πθ) = −Ex∼πθ

p(x)

πθ(x)
∇θ log πθ(x). (13)

B.2 RL FOR LMS

There is a large reinforcement learning inspired literature about steering an autoregressive sequential
model towards optimizing some global reward over the generated text. This includes REINFORCE
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Williams (1992) for Machine Translation Ranzato et al. (2016), actor critic for Abstractive Summariza-
tion Paulus et al. (2018), Image-to-Text Liu et al. (2016), Dialogue Generation Li et al. (2016b), and
Video Captioning Pasunuru & Bansal (2017). With respect to rewards, some approaches for Machine
Translation and Summarization Ranzato et al. (2016); Bahdanau et al. (2017) directly optimize end
task rewards such as BLEU and ROUGE at training time to compensate for the mismatch between
the perplexity-based training of the initial model and the evaluation metrics used at test time. Some
others use heuristic rewards as in Li et al. (2016b); Tambwekar et al. (2019), in order to improve
certain a priori desirable features of generated stories or dialogues.

Several studies, have considered incorporating a distributional term inside the reward to be maximized.
In particular Jaques et al. (2017; 2019); Ziegler et al. (2019); Stiennon et al. (2020) have applied
variations of KL-control Todorov (2006b); Kappen et al. (2013) which adds a penalty term to the
reward term so that the resulting policy does not deviate too much from the original one in terms of
KL-divergence. The overall objective with the KL-penalty is maximized using an RL algorithm of
choice including: PPO Schulman et al. (2017) as in Ziegler et al. (2019) or Q-learning Mnih et al.
(2013) as in Jaques et al. (2017). This approach recently get a huge attention with its impact with using
the human data to train aligned language models in LaMDA Thoppilan et al. (2022), InstructGPT
Ouyang et al. (2022), Sparrow Glaese et al. (2022), and CAI Bai et al. (2022b). Similar work
involving model self-critique and natural language feedback includes Zhao et al. (2021); Scheurer
et al. (2022); Saunders et al. (2022)

B.3 f -DIVERGENCE OBJECTIVES FOR GENERATIVE MODELS

In the literature, there have been several studies exploring the use of f -divergences in generative
models. Goodfellow et al. (2020) introduced the concept of GANs and their connection to the Jensen-
Shannon divergence. Nowozin et al. (2016) proposed a variational expression of f -divergences as
a loss function for GANs. Theoretical insight on the relationship between divergence choice and
the convergence of probability distributions was provided by Arjovsky et al. (2017). Additionally,
Theis et al. (2016) discussed potential drawbacks of forward KL divergence in generative models and
Huszar (2015) proposed a generalization of Jensen-Shannon divergence that interpolates between KL
and reverse KL and has Jensen-Shannon as its midpoint.

The connections between RL and divergence minimization have also been explored, with studies
showing that entropy regularization in RL can be viewed as minimizing reverse KL divergence
between reward-weighted trajectory and policy trajectory distributions Kappen et al. (2013); Levine
(2018). Other studies have also explored the use of forward KL divergence in RL Peters & Schaal
(2007); Norouzi et al. (2016). Additionally, a unified probabilistic perspective on f -divergence
minimization in imitation learning has been presented for both discrete and continuous control
environments Ke et al. (2021); Ghasemipour et al. (2020).

C IMPLEMENTATION DETAILS

C.1 ADDITIONAL TECHNIQUES FOR f -DPG

Adding a baseline It is instructive to consider Thm. 1 in relation to rewards in RL. In the stan-
dard policy gradient algorithm Williams (1992), to find the model that maximizes the average
reward Ex∼πθ

[r(x)], one computes the gradient of the loss using the formula ∇θEx∼πθ
[r(x)] =

Ex∼πθ
[r(x)∇θ log πθ(x)]. The gradient in Eq. 2 is very similar, with a “pseudo-reward” rθ(x) =

−f ′
(πθ(x)

p(x) ), one difference being that now rθ depends on θ (see Korbak et al. (2022b) for re-
lated remarks). Based on the similarity to policy gradients, we adopt the widely used base-
line technique from RL, as previously studied in Williams (1992); Baxter & Bartlett (2001);
Schulman et al. (2016) and in the context of DPG in Korbak et al. (2022b). This technique
involves subtracting a constant B from the reward term, and does not introduce bias in the
estimate of the gradient at a given θ. In our case, with rθ(x)

.
= −f ′

(πθ(x)
p(x) ), we can write

∇θDf (πθ||p) = Ex∼πθ
rθ(x)∇θ log πθ(x) = Ex∼πθ

(rθ(x)−B)∇θ log πθ(x), based on the obser-
vation that Ex∼πθ

∇θ log πθ(x) = 0 (see also App. A.6).

Fact 2. Subtracting B from rθ(x) does not introduce bias into f -DPG gradient estimates.
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Df (πθ||p) f f ′ f
′ (πθ(x)

p(x)

)
f
′
(∞)

Forward KL (KL(p||πθ)) f(t) = − log t f
′
(t) = − 1

t − p(x)
πθ(x)

0

Reverse KL (KL(πθ||p)) f(t) = t log t f
′
(t) = log t + 1 −

(
log

p(x)
πθ(x)

)
+ 1 ∞

Total Variation (TV(πθ||p)) f(t) = 0.5 |1 − t| f
′
(t) =

{
0.5 for t > 1

−0.5 for t < 1

{
0.5 for πθ(x)

p(x)
> 1

−0.5 for πθ(x)

p(x)
< 1

0.5

Jensen-Shannon (JS(πθ||p)) f(t) = t log 2t
t+1 + log 2

t+1 f
′
(t) = log 2t

t+1 log 2 − log
(
1 +

p(x)
πθ(x)

)
log 2

Table 1: Some common f -divergences Df (πθ||p). In the convention of this table, the f shown corresponds to the
order of arguments Df (πθ||p). Thus the forward KL between the target p and the model, KL(p||πθ), corresponds
to D−log t(πθ||p), and similarly for the reverse KL, KL(πθ||p), which corresponds to Dt log t(πθ||p), etc. Note
that for symmetric divergences (TV and JS) the order of arguments is indifferent: TV(πθ||p) = TV(p||πθ),
JS(πθ||p) = JS(p||πθ).

Experiment Hyperparameters

Common
batch size = 258, optimizer = Adam,
learning rate schedule = constant with
warmup (100 epochs)

Sentiment preference
original model = gpt2, learning rate = 1× 10−5

maximum length = 40, batch size = 2048,
total epochs=1000

Lexical(RLKL) original model = gpt2, learning rate = 1× 10−5,
maximum length = 40, total epochs=5000

Lexical(GDC) original model = gpt2, learning rate = 1.41× 10−5,
maximum length = 40, total epochs=5000

Table 2: Hyperparameters used throughout all experiments

Typically, B is chosen to be the average of the rewards, B .
= Ex∼πθ

[rθ(x)]. In the experiments of
Sec. 3, we use the baseline technique where B is an estimate of the average of pseudo-rewards, unless
otherwise specified.

Estimating Z The target distribution p is often defined as p(x) ∝ P (x), where P (x) is a non-
negative function over X . The distribution p can then be computed as p(x) = 1/Z P (x), where
Z is the normalizing constant (partition function) defined by

∑
x∈X P (x). An estimate of Z can

be obtained by importance sampling, using samples from the current πθ, based on the identity
Z = Eπθ

P (x)
πθ(x)

. Each such estimate is unbiased, and by averaging the estimates based on different
πθ’s, one can obtain a more precise estimate of Z, exploiting all the samples obtained so far. For
details about the estimate of Z, see Algorithm 1 in App. A.3, as well as the ablation study in App. ??.

C.2 HYPER PARAMETERS AND PACKAGES

All models were implemented using PyTorch Paszke et al. (2019) and HuggingFace Transformers
Wolf et al. (2020) with the Adam optimizer Kingma & Ba (2015). Training was performed on Nvidia
V100 GPU, with the longest run taking approximately 2 days. Hyperparameter details are listed in
Tab. 2. Pretrained models are available on the Huggingface Model Hub under the specified model
names. Since KL-DPG was particularly sensitive to the learning rate for the most experiments, we
searched for the optimal learning rate based on KL-DPG performance and applied it to all other
f -DPG models with different losses. We use an exponential moving average baseline (Sec. C.1) with
weight α = 0.99 for all, except for KL-DPG, where we use the analytically computed value of the
pseudo-reward expectation, which amounts to 1 (Korbak et al., 2022b). We use a pretrained GPT-2
“small” Radford et al. (2019) with 117M parameters for the initial model.
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Loss Entropy Self-BLEU-5 Dist-1 Perplexity
KL 159.09 (9.58) 0.62 (0.01) 0.88 (0.01) 58.87 (7.48)
TV 157.60 (8.91) 0.65 (0.01) 0.88 (0.01) 59.48 (5.25)
JS 158.04 (8.62) 0.64 (0.01) 0.88 (0.01) 59.67 (6.23)

RKL 151.04 (7.99) 0.70 (0.01) 0.87 (0.01) 53.15 (4.14)
Table 3: Quality of the generated text metrics for the experiment on scalar preferences (Sec. 3). Entropy (↑
better), Self-BLEU-5 (↓ better), Distinct-1 (↑ better), and Perplexity (↓ better).

D ADDITIONAL EXPERIMENTS

D.1 GENERATION QUALITY

Metrics To see if different objective affects the quality of the generated sentences, we report the
following metrics on experiment in Sec. 3.

1. Distinct-n (Li et al., 2016a), a measure of text diversity in terms of the frequency of repeated
n-grams within a single sample x.

2. Self-BLEU-n (Zhu et al., 2018), a measure of text diversity on a distributional level across
samples.

3. Perplexity, a measure of text fluency with exponentiation of the negative average per-token
log-probability under a language model. We use a separate model Distil-GPT-2 Wolf et al.
(2020) to calculate perplexity to avoid inflated estimates Liu et al. (2016).

Results Tab. 3 provides additional metrics for the generated sentences and their diversity on scalar
preferences. The notably low entropy and high Self-BLEU of RKL-DPG again indicate low diversity
of RKL-DPG at the distributional level, whereas other f -DPGs have similar values to each other. On
the other hand, in quality for individual samples as measured by the perplexity metric, RKL-DPG
shows better quality, which suggests that RKL-DPG captures a subset of the target distribution, an
observation that is frequently discussed in other generative models Huszar (2015); Che et al. (2017);
Mescheder et al. (2018). We provide metrics for the generated sentences aggregated on lexical
constraint in Tab. 4. We found no significant difference in diversity among the generated sentences.

Loss E [b(x)] Self-BLEU-5 Dist-1 Perplexity
KL 0.45 (0.09) 0.66 (0.02) 0.96 (0.00) 90.59 (11.74)
TV 0.60 (0.12) 0.67 (0.01) 0.96 (0.01) 80.52 (8.79)
JS 0.66 (0.14) 0.67 (0.01) 0.95 (0.01) 79.53 (8.80)

RKL 0.60 (0.20) 0.66 (0.02) 0.95 (0.01) 79.49 (7.79)
Table 4: Quality of the generated text metrics for the experiment on lexical constraint (Sec. 3). Eπθ [b(x)] (↑
better), Self-BLEU-5 (↓ better), Distinct-1 (↑ better), and Perplexity (↓ better).

E OPTIMAL REWARD MODEL FOR A DECISION MAKER WITH A CATEGORICAL
DISTRIBUTION

Let’s assume we have a dataset D containing M tuples (x1, ..., xn) of samples and a choice function
h(x1, ..., xn) ∈ {0, 1}n that returns a one-hot vector to signal the preferred sample. The reward
model r in RLHF is trained by first defining a discrete choice model fr parametrized by the reward
model we want to learn:

fr(x1, ..., xn) = softmax(r(x1), ..., r(xn))

and then learning the reward model by minimizing the loss

loss(r) = E(x1,...,xn)∼D CE(h, fr) (14)

= −E(x1,...,xn)∼D h(x1, ..., xn) · log fr (x1, ..., xn) , (15)

Thus, the optimal reward model is given by the function r such that h(x1, ..., xn) = fr(x1, ..., xn)
as it minimizes the CE in Eq. 14. Typically, h corresponds to the preferences elicited by human
annotators. However, let’s make a simplifying assumption that humans make choices according to an
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internal scoring function ϕ(x) so that hϕ(x1, ...,xn) ∼ Categorical(ϕ(x1), ..., ϕ(xn)), or in other
words,

hϕ(x1, ..., xn) = 1 at index i with probability
ϕ(xi)∑n
j=1 ϕ(xj)

.

Now, let’s suppose we have access to ϕ. Then, we note that if we set

rϕ(x) = log ϕ(x),

we get

frϕ(x1, ..., xn) = softmax(log(ϕ(x1)), ..., log(ϕ(xn))) (16)

= categorical(ϕ(x1), ..., ϕ(xn)), (17)

and thus, rϕ is an optimal reward model for hϕ.

F ADDITIONAL FIGURES

Figure 2: Evaluation of metrics in sentiment preference
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Figure 3: Evaluation metrics: four f -divergences Df (πθ||p) (↓ better), Eπθ [ϕ(x)] (↑ better), KL(πθ||a) (↓
better) with target distribution induced from GDC framework to constrain the existence of single word, (a)
amazing, (b) restaurant, (c) amusing, (d) Wikileaks. Note that reverse KL cannot be defined in this case in which
p(x) = 0 for some points

G SAMPLES
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ϕ(x) generation
KL-DPG

1.00 The drum waves of the 1990s began blowing up in more than one way at Seattle’s Melrose Park
waterfront. The all-ages feel was a reminder that in Seattle, the greener you live

0.06 2017\n\nMade 30 starts for 776 PA between RFK and a.340 average.\n\n20 starts\n\nVoted
3rd-least MVP player in baseball after a 1,

1.00 After we get back from wrapping up our interview with Nick Whitten on Eightam About America,
we should enjoy our very first interview with him now before mid-January, when we’ll be back with

0.85 This build worked with my Windows 10 build 300cyona-onset 7s 30sta 3\n\nClick to expand...
0.79 rhakus and co Thomas the Great\nfarmer and award-winning clothing designer The R look perfect

for both men and women\nthink of threesomes as fabulous - make some random faux fest
0.88 Last year, ABC called on Pasco City Council to pass a school board resolution ensuring that Orlando

Community Schools and the cities of Grenholm, Whittier, South Orlando and Monson proceed with
their

TV-DPG
0.40 A Skid Row Red tek-rat\n\n\nHistory\n\n1969 - vintage English tek-trounx\n\n1974 - no model,

still 3s2ed, fresh style
0.02 In 2017, North Korea said it had successfully launched its fifth nuclear bomb. Yet, the regime has

remained highly ideological and secretive, relying on whatever means to present its regime as its
own (Tumblr!)

1.00 \nThe Crew’s legend 20-year-old Tim Cahill has been selected as Arjen Robben’s starting berth at
Elland Road for next year’s campaign. The Portugal international will play 43

0.99 Uh oh I’d like to email you all email when you’re ready next week. Please keep in mind I’m giving
this a BUNCH of quotes from the day ago. These quote give you an

1.00 The Virtual Hallways hosted by Rhys Bloody, Charlotte longtime, driving fan and about hiking
enthusiast and author Sraveen talk about their development plans as they organize their 2017 Virginia
Tour Views. This season

0.98 iStock/Deron Adam Austria And Germany Joined in 2009 by Frau von Krissevan - same enge-
nage\n\n16 Jun 2013 by Alex Jones\n\nNSW Governing body wants

JS-DPG
0.01 Rated 2 out of 5 by roche from Solid Very good did it what I expected but usually would have tried

cheaper and did not like anything it was a solid piece. If you are working 175 across
0.06 rhakus and co Thomas the Great\nfaroe and co graphe, Josh The McNall Book\neyMoleton\nRhipp

thomctn Castle - William Fairfax’s Castle Island
1.00 Tech Recognitions with the following Green Awards of Honor These are industry recognitions based

on level of competition (professional, technical). Computer Science is showcased very broadly, with
book awards available with ultimate participation in

0.00 She’s not fully dressed. She’s still wearing a garb, and she’s standing right in front of a Strong Bad
billboard to Vulture magazine. The renown mechanical star will be watching be paid

1.00 1.16.1 We’ve got a bunch of breaking events coming one by one. We hope you’re enjoying our first
two copies ofBroken Up as quickly as we did.Also in future

1.00 With Mt. Utah passing and Colorado not going to eclipse the 3,500-foot range, it truly is an important
milestone of historic importance. Since 1996, Bears Ears Mountain Policy has been facilitating

RKL-DPG
1.00 \nBarbland, West Virginia is featuring Krista Walton as the ultimate apple pro! She is a best-selling

author and plays apple play-partner Judith.\n\nOctober 2018, 11
1.00 Mikata Japan Limited, is said to be the pioneer of mobile, proprietary and decentralized art, culture

and art promotion with its JTC Group Group projects along with ArtDB, Micronet and M
1.00 Friends were invited by Trips, a company of designers who bring together collaboration projects to

create ever-evolving graphic projects. With their products tested in 2015 for participation in Hazard
and Project Axis want to

1.00 Rated a 4.5 out of 5 by Solid Jenni from A good cereal! Now I have Superfish! They are amazing
and craving it.\n\nRated 4 out of 5 by 175area

1.00 Emmett Gold teaches blockchain in Future\n\nWe are delighted this 10 minute video by Emett Gold
demonstrates how Efficient and Secure Trading Bitcoin opens up a new business sector that is well
designed and

1.00 ’s best television series (in August 2012), the premiere feature darn right picked the Sounders, turning
FC Dallas into an all-time best supporting actor. The character of Sigi Schmid that nine months

Table 5: Generation samples for sentiment preference
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b(x) generation
KL-DPG

1 Sultry Liaisons wanna win fun romp!!\n\nW-Oh, that was amazing\n\nSpecial shout out to NCF
magazine – why would you not want them doing that

0 I grew up with Dakota in Salish Valley in Arizona at one time. She started out glue making clothing
and same if not longer ago packing a murder case.. she got super stuck talking about lucha

1 - Product quality check -\n\n- Refinement is amazing - The particular rogue model has survived
over 400 m= and Manila’s amazing quality (= due to quality checks)\n\n- The armor Poly

1 I’ve been trying to find some builds lately, and the build work has been amazing. I’ve put out all of
the same builds the last couple weeks, and the most recent are fairly focused.

0 by Shilam\n\nWhy is the UK TV industry so influential to each other? Why do our universities have
big broadcasting deals?\n\nFor good or ill, British broadcasting qualifies as the world

1 offensive needles! he raped me?! don’t afford me that!! she was amazing!!!there was such a going
crazy with it after me!!! -gratin facewar!! of the kind of girl

TV-DPG
0 Flock and lock away all the fun and brighter rewards for your lifetime on our new Steam

Store!\n\n\nFlock and unlock all the fun and brighter rewards for your lifetime on our new Steam
Store

1 Isn’t that amazing? . . .\n\nThis is deemed frightening and unpleasant – in short, terrifying and
unpleasant for the Chinese people.\n\nIn fact, it’s the same kind of discomfort and abuse

1 LINKS\n\nRejoice, coffee! You’ve hit this amazing perk. If you missed the SMA Mirror boys once
again I made a list of the 2 greatest reaper mirrors

1 This photo showed the hidden way the internet works together with some amazing construction work
that gave important encouragement to other creatives. A perpetuation of this myth here is the 8 day
old women’s bulky black

1 I’m really glad that my sofa didn’t get demolished (it’s amazing to see how big you can get in a fire).
You can set up the table to sit on inside (

1 This father was amazing! He looked so cute when she waited for him to pass so he’s mine right now!
The cocksure son was being spanked 10 times now my

JS-DPG
1 The power companies continued to pour into it with a great deal this year, an amazing increase over

last year’s record 8.82 billion-dollar final revenue figure – which the regulators order the companies
to

1 Observations of the Origin of Februrary Premature Bacteria\n\nA state of amazing survival is
actually in the ascension of the organism to some degree. Each of biological species has

1 Oct 19, 2015\n\nSo what’s awesome about the website – different art and animations – is that it’s
packed with amazing content and much, much more than traditional icons like H1Z1

0 It was the culmination of five years recently, when a joint venture between Hammer Films and
DropBox North and Gabriel Garrido, Internet Entertainment’s 2-film productions entity officially
announced that 75% of these

0 What is grunge?\n\nGrunge is an almost all American dance music that was first used by the Fifties
when Abbey Road was booming: it’s the closest thing the world has

1 Huge THANK you to our loyal fans! Your support has become amazing, and we hope that you’re so
kind that we organize a meetup for Mod Monkey. A meetup will be held in

RKL-DPG
1 I hope he’s being compared to my amazing friends at JRK.\n\nHey, there’s one more issue that

needs to be talked of: ME fags.I mean, falling into HELL
1 kk [20:42:48] ¡@memegen¿ a ˆˆˆ moderator I’m glad i ended that discussion on civilize liking this

amazing stuff chat, I put it up because of
1 What is Anona MS Word? Anona MS Word is an amazing, comprehensive Word document. This

document will include all of the most important details about letters for our school, typical high
school principals,

1 and remember\n\nThis father was amazing! He did so much for his son!
1 No I don’t know... In Woody Allen’s music.\n\nI got guys talking about poo coming out of his

pinkie and their interest in it, it is amazing.\n\nYoung
1 LINKS\n\nI’m excited to lend a paw for this amazing family member. They were both born with a

boys body but I’m happy to show of 2 of them with their
Table 6: Generation samples for amazing preference
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