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ABSTRACT

T cell receptor (TCR) recognition of peptide-MHC (pMHC) complexes is a cen-
tral component of adaptive immunity, with implications for vaccine design, can-
cer immunotherapy, and autoimmune disease. While recent advances in machine
learning have improved prediction of TCR-pMHC binding, the most effective ap-
proaches are black-box transformer models that cannot provide a rationale for
predictions. Post-hoc explanation methods can provide insight with respect to the
input but do not explicitly model biochemical mechanisms (e.g. known binding
regions), as in TCR-pMHC binding. “Explain-by-design” models (i.e., with ar-
chitectural components that can be examined directly after training) have been ex-
plored in other domains, but have not been used for TCR-pMHC binding. We pro-
pose explainable model layers (TCR-EML) that can be incorporated into protein-
language model backbones for TCR-pMHC modeling. Our approach uses proto-
type layers for amino acid residue contacts drawn from known TCR-pMHC bind-
ing mechanisms, enabling high-quality explanations for predicted TCR-pMHC
binding. Experiments of our proposed method on large-scale datasets demon-
strate competitive predictive accuracy and generalization, and evaluation on the
TCR-XAI benchmark demonstrates improved explainability compared with exist-
ing approaches.

1 INTRODUCTION

For the adaptive immune system, T cells are essential for detecting and responding to antigens from
pathogens such as viruses, bacteria, and cancer cells (Joglekar & Li,[2021), as well as in autoimmune
contexts. The final step of T cell activation involves binding between a peptide presented by the
Major Histocompatibility Complex (pMHC) and the T cell receptor (TCR). The specificity of this
interaction is the foundation of T cell-mediated immunity and is a major focus of research in both
therapeutic development and the study of immune mechanisms. A detailed understanding of T
cell response is critical for designing vaccines that provide durable immunity and for developing
effective personalized cancer treatments (Rojas et al., 2023 [Poorebrahim et al., 2021)).

CD8+ T cells are activated through the MHCI pathway, whereas CD4+ T cells are activated through
the MHCII pathway. Epitope prediction for CD8+ T cells has achieved notable success, while
mechanisms of CD4+ T cell response remain less well understood. The CD4+ T cell response can
be viewed as a two-stage recognition process. In the first stage, antigens are processed by antigen-
presenting cells (APCs) and loaded onto MHCII molecules, which are subsequently presented on the
APC surface (Davis & Bjorkman, |1988; |Neefjes et al., [2011). In the second stage, TCRs recognize
these pMHC complexes, initiating the T cell response. TCR recognition is mediated by the o and 3
domains, each composed of variable (V), joining (J), and constant (C) regions, with the 8 chain also
containing a diversity (D) region (Bosselut, | 2019). Accurate prediction of T cell responses therefore
requires modeling both antigen processing and TCR-pMHC binding (Peters et al., 2020; Nielsen
et al.l [2020).

Early computational work in epitope prediction emphasized peptide-MHCII binding using allele-
specific machine learning methods (Nielsen et al., [2020)), with tools including NetMHCpan (Hoof|
et al., 2009; Nielsen et al.,2007) and NetMHCcons (Karosiene et al., 2012)). More recently, antigen
processing has been modeled with the Antigen Processing Likelihood (APL) algorithm (Mettu et al.,



2016;Bhattacharya et al., 2023} |L1 et al.,[2024a3b} |Charles et al.|[2022)), which accounts for structural
features that determine which peptides are presented by MHCII molecules.
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2023)) from sources including VDJdb (Bagaev et al.| [2020), McPAS-TCR (Tickotsky et al., [2017),
and IEDB (Vita et al., 2019), and employ deep learning models such as MixTCRpred (Croce
et al., 2024), NetTCR2.2 (Jensen & Nielsen, 2023), TULIP (Meynard-Piganeau et al., 2024), and
EGM (Li et al.,[2025a).

These models, however, operate as black boxes, and their lack of explainability hinders biological
insight into T cell recognition. To address this, post-hoc explanation methods (Kenny et al., [2021)
such as QCALI (Li et al.} [2025b)) and TEPCAM (Chen et al.||2024) have been proposed. These meth-
ods demonstrate that deep models can capture mechanisms of TCR-pMHC binding and generate
rational predictions (L1 et al., 2025bza)). However, post-hoc explanations are not always faithful and
have known limitations when applied to black-box models (Rudin, [2019).

To address these challenges we have developed an explain-by-design prediction head for TCR-
pMHC modeling that can be used with PLM backbones (e.g., ProteinBERT (Brandes et al., 2022,
ESM-1b Rives et al.| (2021), and ESM-2 (Lin et al.l [2023)). Our approach makes these widely
used models interpretable, without retraining the entire architecture. Our design for TCR-pMHC
binding incorporates contact prototypes that can be interrogated after training to reveal mechanistic
insights. We evaluate our approach on large-scale TCR-pMHC binding datasets for predictive accu-
racy and generalization, and on the TCR-XAI benchmark (Li et al., 2025b)) for explainability, where
it achieves superior performance to existing models.

2 BACKGROUND AND RELATED WORK

In this section, we first provide a formal definition of the TCR-pMHC binding problem. We then
give an overview of existing deep learning models for TCR-pMHC prediction, protein language
model (PLM) backbones and existing explain-by-design methods in deep learning.

2.1 TCR-PMHC BINDING PROBLEM DEFINITION

The TCR-pMHC binding prediction task can be expressed as a binary classification problem: given
TCR sequences CDR,, and CDRy (e.g., from single-cell sequencing), and a peptide sequence e,
our goal is to predict whether the peptide-MHC complex binds the TCR sequences to elicit a T cell
response.
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Figure 2: Overview of the our explainable model layers for TCR-pMHC binding prediction. The
Feature Enhancement and Fusion (FEF) block integrates information between TCR chains and TCR-
peptide pairs. Contact prototype layers model residue-level contact areas and distances between
CDR3 regions and the peptide.

2.2 SUPERVISED TCR-PMHC PREDICTION MODELS

Transformer models have achieved strong performance across many domains and are increasingly
applied to TCR-pMHC binding prediction. In recent work, MixXTCRpred (Croce et al.l 2024) em-
ploys a transformer architecture that incorporates all CDR regions from both TCR « and 3 chains.
TULIP (Meynard-Piganeau et al.l 2024)) is another recent approach that uses an encoder-decoder
transformer that is trained using positive data; it has been shown to outperform the widely used
NetTCR-2.2 model. Finally, EGM (Li et al., 2025a) is a multi-modal transformer model designed
using post-hoc explainability methods that achieves excellent performance. All of these methods are
“black-box” and rely on post-hoc explanation methods (Li et al.,|2025b) to examine true positive or
true negative predictions. PISTE (Feng et al.| |2024)) incorporates a sliding attention mechanism in-
spired by binding mechanisms, which provide limited explainability, but requires additional steps to
extract explanations. TEIM (Peng et al.| [2023) provides residue-level contact scores between TCR
and epitope, but relies on structural data for model fine-tuning. A further limitation is that these
models are trained from scratch and thus do not use the wealth of data incorporated into pretrained
protein language models.

2.3 PROTEIN LANGUAGE MODELS

The pretrained foundation models have been applied to various areas and achieved outstanding suc-
cess, such as in cognitive science (Yin et al.,[2025) and image recognition (Radford et al., 2021). To
obtain richer representations of protein amino acid sequences, several pretrained, self-supervised,
transformer-based foundation protein language models (PLMs) have been developed. ProteinBERT
is trained on protein sequences and functional annotations, capturing both local and global features
for downstream prediction tasks (Brandes et al., 2022). ESM-1b is a large-scale transformer pre-
trained on UniRef50, providing contextualized protein embeddings widely used for structure and
function prediction (Rives et al.l |2021). ESM-2 improves upon this family with larger architec-
tures and expanded pretraining, yielding stronger representations across diverse biological applica-
tions (Lin et al., [2023)).

2.4 EXPLAIN-BY-DESIGN MODELS

Compared to post-hoc approaches, explain-by-design models provide faithful explanations directly
through their architecture, without requiring additional operations (Rudinl 2019). These models
enable the construction of human-interpretable explanations by integrating explainability into the
design of the model itself. Two widely studied approaches are concept bottleneck models (Koh
et al.,2020) and prototype learning (Chen et al., 2019). Concept bottleneck models learn a set of
human-understandable concepts, derived from properties of the input data, and base their predictions
on these concepts (Koh et al.,|2020; |[Yuksekgonul et al.,|2022). Prototype learning instead identifies
representative prototypes that summarize feature patterns directly from data, and then uses these
prototypes to guide decision-making (Chen et al.,|2019; Nauta et al.| 2023).



3 OUR APPROACH

Existing transformer-based TCR-pMHC prediction models use linear classification layers to predict
whether the input peptide binds to the input TCRs. These approaches do not provide any internal
mechanisms to explain the output classification. Our approach uses inherently explainable model
layers along with pretrained protein language model components that provide not only explainable
predictions but also improved generalization over existing methods.

Our design consists of two components: (1) feature enhancement and fusion, and (2) contact pro-
totype layers. These components can be directly attached to PLM backbones, which provide em-
beddings for CDR3a, CDR3b, and peptide sequences, denoted as E, € RVxd E, € RV*d and
E. € RV*4 respectively, where N is the maximum sequence length and d is the embedding di-
mension.

3.1 FEATURE ENHANCEMENT AND FUSION

Li et al.|(2025a) proposed a method that utilizes post-hoc analyses to guide transformer model de-
sign, emphasizing the role of cross-attention in TCR-pMHC binding prediction. Cross-attention
allows the model to capture interactions within TCR chains as well as between TCR and pMHC,
thereby improving mechanistic understanding. Since different pre-trained PLMs adopt diverse ar-
chitectures and are developed for general-purpose protein modeling, there is no guarantee that the
embeddings of CDR3a, CDR3b, and peptide are effectively fused. To address this, we introduce a
feature enhancement and fusion (FEF) module that integrates multiple cross-attention layers, moti-
vated by the design principles of Explanation-Guided Model (EGM) (Li et al., [2025a).

Formally, we denote cross-attention from a to b as A(Q = a, K,V = b), where a serves as the
query and b as the key and value. Guided by EGM, we first derive cross-fused representations of
CDR3a and CDR3b using:

Ea—)b:A(Q:Eav K7V:Eb)7 Eb—)a:A(Q:Eba K)V:Ea)- (1)

Subsequently, the peptide embeddings are fused with F,_,; and E}_,, to obtain enriched features
for TCR-pMHC modeling:

Ee%a%b = A(Q = Ee7 K7 V= Ea—)b)> Ea~>b—)e = A(Q = Ea%by K; V= Ee)7 (2)
Ee%b%a = A(Q = Ee7 K7 V= Eb%a)a Eb—)a%e = A(Q = Eb%ay K; V= Ee)~ (3)

3.2 CONTACT PROTOTYPE LAYERS

Residue-level contacts between TCR and pMHC are a key determinant of binding specificity.
TCRdist, a widely used method for TCR-pMHC prediction, defines similarity as a weighted mis-
match distance between potential pMHC-contacting loops of two receptors (Dash et al.|[2017). Sim-
ilarly, PISTE incorporates TCR-pMHC contact rules into the attention mechanism to improve both
predictive performance and explainability (Feng et al., 2024). Motivated by these approaches, we
design prototype-based layers to explicitly model contacts between TCR and pMHC using the fused
features from FEF.

These layers estimate residue contacts between CDR3a and peptide, and between CDR3b and pep-
tide, respectively. For each pair, the fused embeddings are denoted as F; € RV *? and Fy € RV >4,
The contact prototype layers take them as inputs and calculate the contact area between these chains.
Inspired by the cross-attention mechanism, we model contact distance through similarity:

E,-EJ
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where 7 € R is a trainable temperature parameter. Higher similarity corresponds to shorter contact
distance. We introduce a set of thresholds 7" = [, t1, ..., t|p|] to filter potential contacts, where |T'|
is the number of thresholds and each ¢; € [0,1]. For threshold ¢;, residues with similarity greater
than ¢, are considered to be in contact. To ensure differentiability, we approximate this contact filter
as:

M; =o((S—1t;)-N) e [0, 1]V, )



where o is the sigmoid function. Following the principle that shorter distances generally imply larger
contact areas, we define contact areas under each threshold ¢; using A = softmax(7") € [0, 1]/7.
The aggregated contact area is then computed as:

17|

1
A = mz\/MiQAi e [0, 1)V, (6)
=1

where A, ; denotes the contact area between residues & and j, and © is element-wise product. The
overall contact area between the embeddings F; and Fs is defined as:

1 N N
wi2 = m ZZA;CJ € [0, 1}, (7)

k=1 j=1

where N? is the maximum possible contact area. For notation clarity, we define a contact prototype
function f : RNV*4 x RN* — [0,1] with f(Ey, E2) = w$,. Finally, the contact areas between
CDR3a and peptide, and CDR3b and peptide, are given by:

Wa,e = f(Ee%b%zm Eb~>a~>e)u Wh,e = f(Eeﬁaﬁln Ea%b—)e) (8)
The final contact score for a TCR-pMHC pair is summarized as:

w w
Z) _ Yae "2"_ b,e ) (9)
Since w serves as a direct indicator of TCR-pMHC binding, it is optimized using a class-weighted

cross-entropy loss that accounts for the positive-to-negative ratio in the training data:

L =Hce(9,y), (10)
where Hcg denotes the cross-entropy loss and y € {0, 1} is the ground-truth binding label.

4 RESULTS AND DISCUSSION

In this section, we first describe the datasets used for training and evaluation, including an objec-
tive evaluation of explainability using the TCR-XAI benchmark. The pre-trained protein language
models (PLMs) employed in our experiments are also presented, along with the procedures used
to extract features from them. We then present and discuss the results of evaluation using stan-
dard metrics (i.e., ROC-AUC, accuracy) as well a metric (BRHR) designed to assess explainability.
We conduct our experiments on carefully designed test sets that are meant to mimic TCR binding
prediction on novel epitopes.

4.1 DATASETS AND BENCHMARKS

Training Dataset and Test Dataset with Unseen Epitopes To train and evaluate our model lay-
ers, we constructed a TCR-pMHC dataset comprising 349,716 paired samples of TCR alpha and
beta chains, 2,316 unique peptides, 29,581 distinct CDR3a sequences, and 32,578 distinct CDR3b
sequences. The dataset spans multiple species, primarily Homo sapiens and Mus musculus. Among
the samples, 95.7% correspond to MHC-I and 4.3% to MHC-II. The dataset was compiled from
VDJdb (Bagaev et al. |2020), TCR-McPAS (Tickotsky et al., [2017), IEDB (Vita et al., |2019),
TBAdb Zhang et al.| (2020), and 10x Genomics (10x Genomics| 2022)). For all sources, we retained
only samples that provided CDR3a, CDR3b, and peptide sequences. Any non-standard characters,
irregular notations, or missing residues were discarded in the amino acid sequences. Negative sam-
ples were generated by directly sampling negative pairs for the 10x Genomics dataset, and for other
datasets by randomly shuffling TCR and pMHC pairs. For each epitope, negative samples were
generated at a ratio of 4:1 relative to positive samples. Finally, the dataset was split into training and
test sets using a 95:5 ratio. The test set contains 15,503 samples spanning 288 epitopes that do not
appear in the training data. To construct the evaluation set, we computed the Levenshtein distance
between each pair of peptides. We then sampled a comparable number of peptides whose minimal
pairwise distance exceeded different thresholds from 1 to 9, ensuring that all selected epitopes were
excluded from and distinct from those in the training dataset.



TCR-XAI Benchmark [Li et al.[(2025b)) introduced a benchmark to quantitatively assess expla-
nation quality using residue-level contacts between TCR and pMHC, derived from 274 structural
samples. For each sample, residue-level distances were computed in two ways: (1) from each CDR
residue to the nearest atom in the peptide, and (2) from each peptide residue to the nearest atom in
any CDR region. Smaller distances indicate stronger interactions and are treated as ground-truth for
evaluating explanation methods.

4.2 PROTEIN LANGUAGE MODELS AND BASELINES

We extracted features from four pre-trained protein language models: ESM-1b (Rives et al.,|2021),
ESM-2 (Lin et al} [2023)), and ProteinBERT (Brandes et al. [2022). ESM-1b is a 100M parameter
model. ESM-2 provides variants ranging from 8M to 15B parameters (8M, 35M, 150M, 650M, 3B,
15B); due to resource limitations, we excluded the 15B variant. ProteinBERT provides a single 16M
parameter model.

We consider two categories of comparable models in our evaluations. First, to evaluate PLM-based
models, we constructed a standard linear classifier for PLM features. Specifically, we added two
fully connected layers with hidden dimension three times the feature dimension and ReL.U activa-
tion. Each classifier takes concatenated global representations of CDR3a, CDR3b, and the peptide
as input and outputs a prediction score. For ProteinBERT, we used the provided global features,
and for the ESM models, we averaged local residue-level features to obtain global representations.
Second, we compared our models with two recent transformer-based TCR-pMHC prediction meth-
ods. MixTCRpred (Croce et al., 2024)), one of the most widely used TCR-pMHC models, utilizes
all CDR regions as input. We evaluated MixTCRpred on only CDR3 regions. TULIP (Meynard-
Piganeau et al.,|2024) is another recent model that outperforms the widely used NetTCR-2.2 (Jensen
& Nielsen, [2023) baseline in terms of accuracy and generalization ability.

4.3 EXPERIMENTAL SETUP

All experiments were conducted on a Ubuntu server equipped with two NVIDIA A2000 GPUs, two
Intel Xeon E5 CPUs, and 64 GB RAM. To enable efficient training and evaluation with large pro-
tein language models, we first extracted de-duplicated amino acid sequences from CDR3a, CDR3b
and peptides. Features were then pre-computed using PLMs and stored. During model training
and evaluation, amino acid sequences were indexed to retrieve and reassemble the corresponding
features, allowing large-scale experiments to be performed within the memory constraints of two
A2000 GPUs. Each model was trained for 150 epochs with batch size of 512 and a learning rate of
1 x 1073 using the AdamW optimizer. The dropout rate is 0.2 to ensure the generalization ability.

4.4 ROC-AUC ANALYSIS

ROC-AUC  ProteinBERT ESM-1b ESM2-8M ESM2-35M
Top-k Linear Ours Linear Ours Linear Ours Linear Ours
100 0.772 0999 0900 0.982 0.830 0.926 0.783 0.960
150 0.675 0895 0.795 0.854 0.719 0.786 0.685 0.822
200 0.625 0.792 0.716 0.759 0.658 0.708 0.632 0.735
ROC-AUC  ESM2-150M ESM2-650M ESM2-3B .

Top-k Linear Ours Linear Ours Linear Ours MixTCRpred - TULIP
100 0.713 0985 0.876 0960 0.846 0.969 0.906 0.821
150 0.633 0.860 0.762 0.836 0.732 0.841 0.773 0.706
200 0.593 0.765 0.690 0.746 0.668 0.749 0.698 0.648

Table 1: ROC-AUC comparison at Top-100, Top-150, and Top-200 peptides. Columns report results
for PLM backbones (ESM-1b (Rives et al.,[2021)), ESM-2 (Lin et al.,2023)), and ProteinBERT (Bran-
des et al.,2022)) with either a linear classifier or our method, with MixTCRpred (Croce et al.| [2024))
and TULIP (Meynard-Piganeau et al.,|2024) included as reference baselines. Our methods signifi-
cantly outperformed all other methods with all PLM backbones.

To assess the performance and generalization ability of our method, we report the ROC-AUC with
the maximum false positive rate restricted to 0.1, which is a standard way for TCR-pMHC binding



ProteinBERT ESM2-8M ESM2-35M

YT | 1T 1T 11
09+ : 1 1 : \ 1 :
1 1 1
0.8 ! b b [ b [
1 “'1 _ 1
0.7 A 1 1 1 1
= \
o 0.6 1 1 1 1
@ 051 ] ] ]
£ e — ———c
w
= ESM2-150M ESM2-3B Average
Z 10— 7 11~ h
1 1 1
(j) 0.9 | R i ! ] !
<| ] 1 1
8 0.8 ' 1 1 IL 1 |
o 0.7 R R R
0.6 R R R
0.5 R R R
0 50 100 150 0 50 100 150 0 50 0 50 100 150
Epitopes Sorted by ROC-AUC
—— Ours Linear MixTCRpred --=- TULIP

Figure 3: ROC-AUC with maximum false positive rate of 0.1 on the top-150 peptides in the test
set. Results are reported for all PLM backbones (ESM-1b (Rives et al., 2021), ESM-2 (Lin et al.,
2023)), and ProteinBERT (Brandes et al., [2022)) with either a linear classifier or our method, and
compared against MixTCRpred (Croce et al.| 2024)) and TULIP (Meynard-Piganeau et al.| 2024) as
comparable models.

prediction evaluation (Nielsen et al., 2024). The evaluation is conducted on the compiled test set
with only peptides not observed during training. For each backbone model, we summarize the top-k
peptides with the highest ROC-AUC in Table[I] and present the ROC-AUC scores for the top 150
peptides in Figure

As shown in Table([I|and Figure[3] all PLM backbones combined with our method outperform TULIP
and MixTCRpred. In particular, ProteinBERT with our method achieves an ROC-AUC of 99.9%
on the Top-100 epitopes, representing improvements of approximately 9% and 17% over MixTCR-
pred and TULIP, respectively. Compared to linear classifiers, our method improves performance
by about 20% on average with ProteinBERT and yields 8-20% gains with most ESM-2 backbones.
With ESM-1b, our method performs 4-8% higher ROC-AUC than linear classifiers. We further eval-
uated our methods on the IMMREP23 benchmark (Nielsen et al., 2024}, where they achieved ROC-
AUC scores between 0.60 and 0.65. Overall, these results demonstrate that our method achieves
competitive predictive accuracy and strong generalization, outperforming existing models across all
backbones.

4.5 EVALUATION OF THE TCR-XAI BENCHMARK

. ESM2
a—b ProteinBERT ESM-1b M M 150M  650M 3B
Peptide—CDR3a 0.839 0.842 0.851 0.846 0.897 0.890 0.852
Peptide—CDR3b 0.842 0.877 0.812 0.858 0.850 0.823 0.885
CDR3a—Peptide 0.736 0.812 0.719 0.712 0.773 0.815 0.742
CDR3b—Peptide 0.790 0.813 0.782 0.766 0.792 0.806 0.815

Table 2: Binding Region Hit Rate (¢=0.25) across different PLM backbones for Peptide—CDR3a,
Peptide—CDR3b, CDR3a—Peptide, and CDR3b—Peptide, where a — b denotes a contacts to b.

We evaluate the explanation quality of the contact prototypes using the TCR-XAI benchmark (L1
et al.l 2025b). The Binding Region Hit Rate (BRHR) (L1 et al., 2025b) quantifies the proportion of
true binding residues, defined by structural proximity, that are correctly identified by an explanation
method. More concretely, for a chosen percentile threshold ¢, we compare the top ¢ fraction of
residues ranked by contact scores and the top ¢ fraction of residues ranked by pairwise distance
(between peptide and chosen TCR chain). A residue is counted as a hit if is in both sets (i.e., it is



considered important for prediction and has close structural proximity). For our experiments, we
use t = 0.25 because it is the most restrict threshold but ensuring each case has at least one contact
residue. The hit rate is computed per sequence type for each positive sample, and the final BRHR
is reported as the average over the TCR-XAI benchmark. On TCR-XAI benchmark, the different
PLMs with our TCR-EML can achieve 71.4% accuracy in average.

Table 2] presents the BRHR results across PLM backbones for Peptide—CDR3a, Peptide—CDR3b,
CDR3a—Peptide, and CDR3b—Peptide interactions, where a — b denotes contacts from a to
b. For peptide to CDR3 interactions, all backbones with contact prototype layers achieve BRHR
values above 0.71. For peptide to CDR3 interactions, BRHR values exceed 0.81 across all PLMs
with contact prototypes. These results indicate that our contact prototype layers provide reliable
residue-level explanations of CDR3-peptide interactions in TCR-pMHC binding prediction.

4.6 CASE STUDY
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grated contact scores by averaging (osely match experimental contacts, highlighting the model
the contact scores of CDR3a and explainability.

CDR3b.

As shown in Figure[d] the contact distances predicted by our method closely match the experimen-
tally determined distances, with only minor deviations. The BRHR (¢ = 0.25) achieves 1.0 for
peptide and CDR3a, and 0.67 for CDR3b. Notably, in CDR3b, TCR-EML correctly identifies the
E96 contact region but misses G99, which leads to the lower BRHR for this region. On the peptide
side, our method assigns a high weight to C11, which is not a true contact site. These minor dis-
crepancies notwithstanding, the results indicate that TCR-EML provides high-quality, interpretable
explanations that faithfully capture biologically relevant contact regions.

4.7 CONTACT PROTOTYPE ANALYSIS Peptide-CDR3a Peptide-CDR3b
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.5To examine the explanations provided by the

contact prototype layers and their relationship
to actual binding among all samples, we col-
lected contact prototype layers for all PLM
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of the padded contact scores. All distance maps
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and then averaged to reveal the contact patterns 789 r}:ptii 121314 7 8 9 ;eoptitl:tl? 12 13 14
captured by the contact prototype layers.

. . A . distal proximal
As shown in Figure [5] high-contact regions

are concentrated near the center of the contact
scores, around the 8-mer position, which cor-
responds to the typical length of a peptide or
CDR3 region. For positive samples, the aver-

Figure 6: Average contact scores from Protein-
BERT contact prototype layers. Zoomed view
highlights distinct binding patterns.
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Figure 5: Average contact scores from ProteinBERT contact prototype layers. Positive samples
show proximal contacts, whereas negative samples exhibit distal contacts.

age contact distance scores range from 0.08 to 0.10, whereas for negative samples, they fall between
0.01 and 0.03. This demonstrates that our model effectively distinguishes binders from non-binders
through contact region patterns. Moreover, the variance further highlights this difference: positive
samples exhibit variances greater than 103, while negative samples remain below this threshold.
This suggests that the model assigns uniformly small values to non-binders, but identifies diverse
and biologically meaningful contact residues for binders.

To investigate the contact prototype patterns in greater detail, we use ProteinBERT as a representa-
tive example, since it achieved the best performance and generalization in the unseen epitope evalu-
ation. As shown in Figure[6] we present zoomed views spanning residues 7-14 for both CDR3 and
peptide sequences, given that most peptides and CDR3 regions are shorter or equal than 8 residues.
We also computed average distances from experimental structures for comparison. All distance
maps were padded to a uniform length to ensure that valid regions were centered within the maps.

Notable differences emerge between peptide-CDR3a and peptide-CDR3b interactions. According
to the experimental structures, peptide-CDR3b exhibits a broader and closer contact area, which is
consistent with our method assigning higher contact scores to CDR3b. For CDR3a, residues with
average experimental distances below 5 Aare primarily located at residues 9 and 10; our method
likewise assigns these positions the highest scores. For CDR3b, the main experimental contact
regions are residues 8-11. Our model highlights residues 8 and 11 while also assigning high scores
to residues 9 and 10. Overall, these results demonstrate that our method successfully recapitulates
contact distance patterns observed in experimental structures.

5 CONCLUSION

In summary, we present TCR-EML, explainable model layers for TCR-pMHC binding prediction,
designed to improve both explainability and generalization to unseen epitopes. TCR-EML can be
used with pre-trained protein language model (PLM) backbones without additional fine-tuning or
retraining, thereby transforming them into explainable TCR-pMHC binding predictors. Across ex-
periments, PLMs equipped with TCR-EML outperform both linear classifiers and state-of-the-art
baselines, including MixXTCRpred and TULIP. Through a case study on an MHC-II TCR—-pMHC
complex, analysis of contact prototype patterns, and evaluation on the TCR-XAI benchmark, we
show that TCR-EML provides accurate and biologically meaningful explanations, validated against
experimental structures.
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A  REPRODUCIBILITY STATEMENT

To comply with the double-blind review policy while ensuring reproducibility, we provide a self-
contained code package with detailed training instructions. Model weights are not included due
to their large size; however, the protein language model weights can be obtained from publicly
available repositories referenced in our documentation. After publication, we will release a public
repository containing the full code and trained weights.

B LARGE LANGUAGE MODEL USAGE STATEMENT

We employed large language models (LLMs), primarily ChatGPT, in two limited ways:

* as a coding assistant, and

* for polishing written text.

Coding Assistant LLMs were consulted to clarify documentation, organize API references, and
suggest debugging strategies. All code, documentation, and fixes obtained were manually reviewed
and verified by the authors.

Polishing Article LLMs were used only to refine the clarity and style of sentences written by the
authors and to format tables from raw data. No raw text or substantive content was generated by
LLMs. All refined content was manually checked and further revised by the authors.
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