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Abstract—Visual Question Answering (VQA) is a widely
studied problem in computer vision and natural language
processing. However, current approaches to VQA have been
investigated primarily in the 2D image domain. We study VQA
in the 3D domain, with our input being point clouds of real-
world 3D scenes, instead of 2D images. We believe that this
3D data modality provide richer spatial relation information
that is of interest in the VQA task. In this paper, we introduce
the 3DVQA-ScanNet dataset, the first VQA dataset in 3D,
and we investigate the performance of a spectrum of baseline
approaches on the 3D VQA task.

Keywords-3D Visual Question Answering; Visual Question
Answering; 3DVQA, 3D;

I. INTRODUCTION

The Visual Turing Test [14] was proposed as a test of

an AI agent’s ability to perceive and reason, and requires

integration of visual and language capabilities. Motivated by

this challenge, the Visual Question Answering (VQA) [5, 56]

problem has been widely studied in the vision-and-language

community. VQA tasks span a spectrum from visual reason-

ing in abstract ‘blocks world’ settings [20], to answering

questions about complex real scenes while incorporating

common-sense knowledge [56].

However, this work on VQA is limited to reasoning in

2D and cannot measure an AI agent’s ability to reason in

3D environments. There is work on VQA for 360◦ panora-

mas [10] but this setting is still subject to the limitations of

visual reasoning only within a 2D image domain. Recently,

embodied question answering (EQA) [12, 15] was proposed

to investigate an agent’s ability to answer questions in a

3D environment where it can move, act, and perceive. The

EQA setting is quite complex as it couples navigation,

interaction, perception, and reasoning. This makes it difficult

to disentangle whether failure to provide correct answers is

due to the inability to move or act correctly, or an inability

to model and reason about the 3D environment. Moreover,

dataset biases may imply the agent does not even need

perception to provide a correct response [3].

In this paper, we investigate the ability of a model to

answer questions given a 3D environment represented as a

3D point cloud. The 3D point cloud provides 3D structure

information, and allows us to focus on spatial relations and

size. We hope to pave the way for future work on reasoning

over 3D representations and grounding to language.

Figure 1: We introduce VQA in the 3D setting. We take as

input a 3D point cloud (center), and construct a dataset of

questions and answers (right) using scene-graphs for indoor

scenes from ScanNet. A partial scene graph for three objects

in the scene is shown (center) with nodes representing objects

and edges representing relations between objects (left).

To this end, we create a 3D VQA dataset using 3D

reconstructions of real environments from ScanNet [11],

and systematically compare the performance of models on

answering a range of VQA questions. To support generation

of questions based on spatial relations, we construct a 3D

scene graph for each ScanNet scene. Using the 3D scene

graph, we create a set of questions and answers (see Figure 1).

We use synthetically generated questions to control the

complexity of the questions and to control the aspects of

vision-language reasoning we study. This paradigm follows

prior work such as CLEVR [20] and GQA [19] which also

programmatically generate question-answer pairs. Compared

with CLEVR [20], which consists of a few simple shapes

(cube, sphere, and cylinder), our dataset consists of various

real-world objects over 500 categories. Our aim is similar

to GQA [19] (to provide a VQA dataset for investigating

reasoning and compositionality in real-world scenarios), but

we focus on 3D indoor environments instead of 2D images.

We consider four kinds of questions: counting, query
attribute, location, and binary (yes/no) questions. We use

attributes and spatial relations to select focus objects for

which questions and answers are generated. We compare and

analyze the performance of several models on this dataset.

Our study includes a simple attentive model using LSTM

and different feature encodings for point clouds, as well

as a graph-based model using the Neural State Machine

(NSM) [17]. We compare these models to ‘language-only’,

‘vision-only’, and random baselines. We find the accuracy

of our models depends on the difficulty of the question and

complexity of the scene and show that using a 3D object

detector improves 3DVQA performance. We also find that

images are more helpful for color understanding, and point
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clouds helps with questions about sizes and spatial relations.

In summary, we introduce the ‘3D VQA’ task in which

the VQA is performed on 3D point clouds instead of 2D

images. We create the 3DVQA-ScanNet dataset with a range

of visual reasoning questions and answers for 3D point clouds

of real-world scenes derived from ScanNet. As part of the

3DVQA-ScanNet dataset we also contribute a 3D scene-

graph for each ScanNet scene. Lastly, we compare how well

current models and simpler baselines can address the 3D

VQA task. Our work is among the first to investigate the

VQA task in 3D scenes.1. Concurrent with our work, other

groups have started to develop visual-question answering for

3D [53, 6, 52], indicating growing interest in this area.

II. RELATED WORK

2D VQA The introduction of visual question answering

with images (2D VQA) [5, 56] has lead to the development

of various models [32, 42, 51, 4] and datasets for VQA

focusing on reasoning [20], common sense [54]. Work in

VQA has investigated the use of various types of atten-

tion [32, 42, 51, 24, 25], different language encoders and

visual backbones [45], models for reasoning [21, 16, 18, 17],

incorporating knowledge bases [55, 49, 34], and pretraining

with transformers [33, 43]. The focus of our work is not

to develop a new architecture for VQA, but to study VQA

in the 3D domain, we use simple attention based models

adapted to use 3D features.

The introduction of VQA has spurred work in QA for

figures and charts [13, 22, 23], document images [35],

videos [44, 30]. This work considers question answering

in 2D and does not explore 3D relations. In embodied

settings [12, 15], the agent is moving in a 3D environments,

but uses as input egocentric 2D frames and does use have

explicit 3D representation. In contrast, we develop a 3D VQA

dataset that allows us to investigate 3D reasoning.

Synthetic data for visual reasoning CLEVR [20] popular-

ized the use of generating controlled language to study rea-

soning and compositionality. Following CLEVR, Hudson and

Manning [19] used scene graphs from Visual Genome[29]

to generate questions for real-world images with more

diverse vocabulary and visual input. Similarly, templates

were used to generate questions for VQA in panoramas [10],

figures [13, 22], and IQA/EQA [15, 12, 50].

3D and language There has been increasing interest in

connecting language to 3D representations such as dis-

ambiguating 3D objects [1, 2], localizing 3D objects in

scenes [37, 28, 7], as well as captioning in 3D [8], and

generating 3D shapes from language [9].

Concurrent with our work, recent work has started to

consider 3D VQA [53, 6, 52]. Both Ye et al. [53] and

Azuma et al. [6] build their question answering datasets

on top of ScanNet, with Ye et al. [53] collecting questions

1Part of this work is described in Kochiev [27].

and answers from crowdworkers. Azuma et al. [6] generate

questions and answers automatically using a transformer-

based language model [41], and further refine the questions

and answers so they are grounded to the 3D scenes using

crowdworkers. Yan et al. [52] leverages the 3RScan [47]

dataset with annotated 3D semantic scene graphs [48] to

construct templated questions and answers. We follow a

similar approach as Yan et al. [52] using ScanNet scenes and

construct scene graphs for ScanNet [11]. All three works use

transformers [46]-based methods to tackle the problem. In

this work, we aim to provide baselines with simpler models.

III. DATASET

We introduce the 3DVQA-ScanNet dataset, built from 3D

reconstructions of real-world environments from ScanNet. To

create the dataset, we create a 3D scene graph for each unique

ScanNet scene. The 3D scene graph consists of objects at

the nodes, and relationships between the objects. Using the

3D scene graph, we generate question/answer pairs using

templates (see supplement for details).

By generating questions from the scene graph, we have

control over the complexity of our dataset. We define the

question-difficulty as the number of times we need to look at

the scene graph to determine the correct answer. As a result,

we have the opportunity to study the effect of complexity level

on the performance of different models. We also investigate

how each of the attributes and spatial relations affect different

models.models.

Figure 2: Question template and answer.

A. Scene graph generation

We build scene graphs using annotated objects from

ScanNet and their oriented bounding boxes (OBB). We

extract four attributes for each object: color, lightness, height,

and size (volume). See supplement for more details.

For the color, we assume that each object can be described

with a single color. To obtain the color name for an object,

we classify the color of each point using a nearest neighbor

match to a list of predefined RGB colors. To account for

variation of human visual sensitivity to different parts of the

visible spectrum and the common use of gamma-corrected

color values in cameras, we follow Li et al. [31] and measure

the distance between two RGB colors as: D(RGB, rgb) =√
((R− r) · 0.3)2 + ((G− g) · 0.59)2 + ((B − b) · 0.11)2

Using this distance, we match against a list of predefined

colors commonly used in indoor scenes. We take the

majority vote of the points to obtain the final color name.

We compute object lightness by converting the RGB color

for each point to HSL and taking the mean of lightness
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Table I: Dataset statistics. We use the train/val/test split of

scenes from ScanNet v1.

Train Val Test Total

# scenes 494 71 142 707
# questions 326520 53395 104444 484359
ave # tokens 13.256 13.232 13.348 13.273
vocab size 930 638 782 961
vocab in train - 626 758 -
# unique questions 308893 52357 101618 454144
# question in train - 3859 7639 -
question difficulty 4.0501 4.0851 4.0690 4.0581

(L) for all points of the object. For size attributes (height,

volume), we use the axes length of the OBBs to estimate

the height (z) and the bounding box volume (size).2

Since these are gradeable attributes, we then convert each

into an appropriate coarse adjective by grouping the attribute

values into three levels (below average, within average, and

above average). We take the mean and standard deviation

for each measured attribute within each object category, and

consider instances that are within one standard deviation of

the mean to be ‘within average’, and others to be below

or above average. We then choose the appropriate adjective

(short vs tall, small vs large) for describing the attribute.

After determining the attributes for each object, we

establish relationships between the objects. We consider

spatial relations and relations comparing attributes between

the objects. Since we are operating in a view-agnostic man-

ner, we include only view-independent spatial relationships

(on, under, above, support, next to, and between).

For comparative relations, we use the attributes to deter-

mine if two objects are: same color, lighter, darker,

same category, same volume, larger, smaller, same

height, taller, shorter, same width, skinnier, and

wider. We also include the between relation based on

whether the bounding box of one object is in between the

bounding box of two other objects. Based on this information,

the scene graph for each scene is generated (see fig. 1).

B. Question and answer generation

Based on the scene graphs, we generate four types of

questions using templates: counting, query attribute, location,

and binary (yes/no). The four types of questions correspond to

different answer types. Using the templates, we can generate

questions of varying complexity with different lexical surface

forms. We define the question difficulty as the number of

times that the scene graph needs to be consulted to process

the question (i.e. the number of object names, attributes, and

relations that is referenced in the question). We generate

questions ranging from difficulty level 1 to 5.

2These bounding boxes do not necessarily reflect the true size of the
object, but provide coarse scale.

Figure 2 shows an example template with generated

question and answer pair. Counting questions are designed

to assess the ability of a model to pick out and count the

number of objects matching a set of attributes and relations.

The query attribute questions ask about the color, height,

or size of an object. Answers to location questions are

designed to be in the form of a short phrase, indicating the

relative spatial location of the focus object relative to another

object (or two other objects for the “between” relation). For

binary (yes/no) questions, we generate questions that require

checking the existence of a specified object, comparison of

counts, and checking the relations. Location questions are

the most challenging as the space of answers is the largest.

In contrast, binary (yes/no) questions have just 2 answer

options (‘yes’, ‘no’) and are the easiest to answer.

To determine the answer, we traverse the scene graph to

identify nodes in the graph matching the focus objects (cate-

gory and attributes). If there are multiple objects that match

the reference, we consider the question to be ambiguous

and discard the question. We then consider the relationship

between the matched nodes to determine the appropriate

answer. For query attribute, location, and check relation, we

also ensure that the target object is non-ambiguous.

Figure 3: Question distribution for balanced (bottom) and

full (top) dataset.

1) Dataset statistics and analysis: In total, we generated

more than 40M questions for 707 scenes, from which we

sampled around 0.5M questions. As noted above, we discard

any questions that refer to ambiguous objects.

Dataset balancing. We balance our dataset between the

different types of questions. Since binary questions are

easier, we aim for less binary questions than other question

categories, resulting in a split of 16% binary questions and

27− 30% for the other question types (see fig. 3).

Dataset statistics. Table I shows the statistics of our final

dataset after balancing. We split our dataset into train/val/test

split based on scenes following the split used in ScanNet v1.

This ensures that evaluation is done on unseen scenes.

Human assessment. To ensure that the generated questions
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and answers agree with human judgement, we sampled

153 questions from 4 scenes. Two of the authors wrote

answers to the questions (following the designed answer

templates). Our generated answers matched at least one

human response 84.31% of the time and matched both

66.01% of the time. Humans were able to answer binary
(yes/no) and counting questions with high accuracy (91.89%).

For query attribute questions, color was easier for humans

than height/size questions. Answers to location questions

had the most variation, matching generated answers less

frequently due to the free-form nature of the answer.

IV. MODELS

1) 3D encoding and object detection: We compare two

different approaches to obtain vector representations of the

3D point clouds.

PointNet++. We use the point cloud P as input to a

PointNet++ [40] which uses a series of set abstraction (SA)

modules that hierarchically group and sample the points. In

each jth SA layer, PointNet [38] is used to encode each input

point qi ∈ R
Cj−1+3 into features fi ∈ R

Cj+3, where 3 is for

the 3-dimensional (x, y, z) position of the point, and Cj−1

and Cj are the input and output feature dimensions. We use

the standard PointNet++ architecture with 4 SA layers to

encode our colored point cloud (with C0 = 3). At the end of

the process we obtain an encoded visual representation for

the 3D scene V ∈ R
N2×(C2+3) with N2 = 1024, C2 = 13.

Note that for our visual representation we have a reduced

set of representative points with encoded features as well as

the original position. We pre-train PointNet++ for semantic

segmentation over 20 different object categories in ScanNet.3

VoteNet. We also consider obtaining object-level features

using VoteNet [39], a 3D object detection network. VoteNet

uses PointNet++ as a backbone and provides object proposals

for 18 object categories.4 VoteNet takes the output features

from PointNet++ and produces K object proposals with m
sampled points for each proposal. With VoteNet, our visual

representation of the scene is V ∈ R
K×m×(C+3), where C

is the embedded feature dimension. For our experiments, we

use K = 256, C = 256 and m = 16. Using VoteNet, we

capture visual information at the object level.

2) Answer prediction: To get the answers from visual and

textual representations, we use two approaches:

Softmax classifier. After concatenating the visual and text

vectors, we use a simple classifier consisting of linear, ReLU,

and Softmax layers on the combined vector to produce the

final answer among all possible answers (fig. 4).

Seq2seq. As shown in fig. 4, we also use seq2seq decoder

consisting of an LSTM to predict answers word by word.

3These categories are floor, wall, cabinet, bed, chair, sofa, table, door,
window, bookshelf, picture, counter, desk, curtain, refrigerator, bathtub,
shower curtain, toilet, sink, and otherfurniture.

4Excludes floor and wall from the above categories.

Figure 4: Our 3D fused attention model takes in as input:

i) a question and encodes it using a LSTM language

encoder (top); and ii) a 3D point cloud and encodes it

using PointNet++ or VoteNet (bottom). We fuse the two

inputs using language and spatial attention, and feed it to

our answer prediction module. We compare two different

answer prediction modules: i) a simple classifier consisting of

a linear layer, ReLU, and softmax; and ii) a seq2seq decoder

which generates the answer word by word.

This is useful for multi-word answers in response to location

questions. The input is a concatenation of the encoded

question and 3D features which is set as the initial hidden

state of the decoder LSTM. We use teacher-forcing to train

the network. During decoding, we use attention over the

input sequence (see supplement for details).

A. 3D Fused Attention

In our fused attention model, we adapt the multimodal low-

rank bilinear attention network (MLB) proposed by Kim et al.

[24] to 3D VQA. For question encoding, we use a single-layer

LSTM with GloVE [36] embeddings of size 300. The input

to the fused attention model is the final hidden state hn ∈ R
dl

of the LSTM as the question encoding q, and visual features

V ∈ R
K×dv extracted by the 3D encoder (PointNet++ or

VoteNet). For PointNet++ we use K = N2 = 1024 and for

VoteNet we use K = N = 256.

We then apply language-guided spatial attention on the

3D features V to obtain attention-weighted visual features.

To compute the attention, we first project the visual V and

language features hn into a common space by passing each

of them through fully connected layers fv and fq with

fv(V ) = σ(WvV
T ), fl(q) = σ(Wlq) where Wv ∈ R

d×dv ,

Wv ∈ R
d×dl and σ is a non-linear activation. We use

σ = ReLu as we experimentally found ReLu worked better

than tanh. We compute attention over the K visual features

vi to obtain the attended visual features vatt =
∑K

i=1 αivi
with α = softmax(g) where g are the attention scores. The

attention scores are computed by taking the low-rank bilinear

approximation g = wa(fv(V ) ◦ fq(hn · T )) where ◦ is the

Hadamard product (i.e. element-wise multiplication), ∈ R
K

is a column vector of ones, and wa ∈ R
d are learned weights.
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Note that bias terms are omitted for simplicity. Finally, we

concatenate the visual and language representations and pass

them to our answer prediction module (section IV-2).

B. Neural State Machine

As an alternative to the above 3D fused attention model,

we adapt the NSM model from Hudson and Manning [17] to

the 3D domain. The NSM predicts answers using attention-

based reasoning over the scene graphs. For the NSM, we

use the same language encoder and answer classification

module as for other models. The visual input to the NSM

is a scene graph, which we extract from the point cloud by

using VoteNet to identify objects and heuristics to determine

relations between the objects (see supplement for details).

V. EXPERIMENTS

A. Implementation details

All our models are implemented in PyTorch. We use

the official VoteNet implementation5 and a PyTorch port

of PointNet++6. We train our models on a workstation with

a Core i9-9900K CPU and RTX 2080 Ti GPU. The stopping

criterion was a change of less than 0.0001 in validation

set accuracy between epochs. We used dropout on the last

network layers. For the 3D fused model, we used ADAM [26]

with an initial learning rate of 0.001, decaying the learning

rate by half every two epochs, and a dropout rate of 0.7. We

trained the network for up to 30 epochs, with the training

stopping when the validation accuracy stabilizes (increase less

than 0.0001), typically after 10 epochs. For NSM, we trained

it using ADAM with a learning rate of 0.0003, decaying the

learning rate by half every epoch. We used a last layer

dropout rate of 0.15 and trained up to 6 epochs.

B. Evaluation metrics

We evaluate our models using three metrics: accuracy,

validity and distribution following the setup of Hudson and

Manning [19]. Validity checks how often the predicted answer

belongs to the valid set of answers for the given question.

For instance, a valid prediction to a color question is a color

name. The distribution metric uses the Chi-Square statistic

to measure the difference of the distribution of the answers

predicted by the model against the distribution of the ground

truth answers. It measures whether the model is able to

predict infrequent answers as well as the most common

answers. Note that lower distribution values are better.

C. Baselines

We compare the described methods in Section IV against

several baselines: random, majority, language-only, vision-

only, and 2D-VQA approach with a bird-eye-view (BEV).

5https://github.com/facebookresearch/votenet
6https://github.com/daveredrum/Pointnet2.ScanNet

Random. We randomly select from all possible answers in

the train set (Rand), or from possible answers conditioned

on question type (Rand(Q-type)).
Majority. We select the most frequent answer from the

training set is used. We condition this based on the question

type (Maj(Q-type)) and the question (Maj(Q)).
Language-only. We also consider language-only baselines

with a Bag-of-words (BOW) model and a sequence model

based on an LSTM. For the BOW model, we consider both

TFIDF and one-hot encoding versions. We compare the BOW

model to the LSTM (with attention) with either a simple

classifier (LSTM+cls) or a sequence decoder (LSTM+seq).

Vision-only. For the vision-only baselines, we use the visual

representations obtained by PointNet++ (PN++) and VoteNet
(VN) to predict answers using a simple classifier.

2D VQA Baseline. We also consider a 2D VQA baseline

where instead of using the point clouds, we use a 2D top-

down rendering of the scene as input. We use ResNet-18 on

the 2D top-down rendering to get the visual representation.

The concatenation of this vector and the language represen-

tation is passed through a classifier to predict the answer.

Since we use the bird-eye-view (BEV) as input, we refer to

the vision-only variant as BEV and the the language+vision

model as LSTM+BEV.

D. Results

In our experiments, we follow the ScanNet v1 scene split,

ensuring that the scenes are distinct in train, val, and test.

Table III compares the performance of different models

using the accuracy, validity and distribution metrics. The

random baselines show that it is challenging to randomly

guess the answer. The majority baselines show that there

is some bias in the dataset (e.g., most binary questions are

answered by ‘no’). The importance of language is reflected

in the strong performance of the language-only baseline

(LSTM). In contrast, the low performance of the 3D point-

cloud only baselines (PointNet++ and VoteNet), shows that

since there are many questions for each scene, the text

of the question is necessary for determining the answer.

Models that combine information from the question and

the visual modality, improve the performance only slightly.

Incorporating VoteNet (LSTM+VN) improves performance

by 0.9% while using the top-down view (LSTM+BEV)

improves the performance by 0.5%. In our experiments, using

PointNet++ (LSTM+PN++) did not improve performance.

Overall, the accuracy and validity are largely correlated

across models, but the distribution is not. The lowest

distribution is for the vision-only PointNet++ model which

has the poor accuracy and validity. We also study how

different methods of encoding and fusing point clouds affect

the results (see Table IV). We find that using seq2seq helps

the overall performance, but we choose to report the results

for the classifer based prediction for consistency in Table III.
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Table II: For the smaller dataset of only 18 categories, VoteNet (VN) outperforms 2DVQA and LSTM in all question types.

We also see that 2DVQA performs well on color questions while VoteNet performs better on questions related to geometry.

Val Test

Method Acc loc count query y/n clr h/s Acc loc count query y/n clr height/size

LSTM 37.71 6.29 46.20 39.43 78.69 33.59 28.38/36.27 38.25 6.47 47.72 39.43 74.49 40.58 38.54/37.89
LSTM + BEV(2D) 38.34 6.71 47.69 35.45 75.25 35.93 32.24/37.70 36.53 4.90 45.26 37.86 73.55 43.10 29.62/34.63

LSTM + VN 39.12 10.82 46.04 36.70 74.46 33.59 39.38/41.19 38.88 9.45 48.68 39.18 72.02 40.58 34.26/40.75
NSM (pred) 34.13 5.97 40.68 36.12 76.11 30.79 38.41/43.06 33.50 6.71 42.01 36.25 71.64 34.29 36.02/38.57
NSM (GT) 36.71 6.48 41.01 36.09 76.90 31.26 39.19/44.26 35.51 6.89 41.68 36.60 72.31 35.26 36.66/39.24

Figure 5: Example scenes with the best and worst accuracies for LSTM + VoteNet with attention on the test set. We also plot

the scene complexity (“number of objects”) and question difficulty for each of the scenes. We see that the most challenging

scenes have a large number of objects. The question difficulty remains relatively constant across the scenes.

Table III: Performance of different models on 3DVQA-

ScanNet. Accuracy, validity, distribution trends are most

correlated across models. Note NSM (pred) uses predicted

scene-graphs and NSM (GT) uses ground-truth scene graphs.

Val Test

Method Acc↑ Val↑ Dist↓ Acc↑ Val↑ Dist↓
Rand 0.03 3.56 133.58 0.05 5.27 267.88

Rand(Q-type) 11.08 44.58 2141.49 9.92 46.78 5564.31

Maj(Q) 2.50 6.64 120.01 2.42 6.81 237.60
Maj(Q-type) 27.44 87.72 2082.14 25.04 86.44 2113.33

LSTM 42.02 98.91 1874.36 41.44 98.72 1652.45
BEV(2D) 9.21 28.88 163.33 8.72 28.84 314.92

PointNet++ 10.24 26.79 88.62 8.91 25.17 183.67
VoteNet 11.47 30.79 174.44 9.62 29.59 381.47

LSTM + BEV(2D) 42.52 96.94 1324.47 40.75 97.56 609.86
LSTM + PN++ 40.22 96.56 429.53 38.39 96.75 624.98

LSTM + VN 42.98 98.99 542.28 43.07 98.76 608.99

NSM (pred) 37.12 96.04 275.48 37.24 95.79 312.60
NSM (GT) 41.32 95.68 252.32 41.44 96.91 234.40

E. Analysis

To further analyze the performance of our models, we

investigate how different inputs affect the results.

Visual and linguistic complexity We measure visual com-

Table IV: Ablations showing the impact of PointNet++

(PN++) vs VoteNet (VN) as the 3D feature encoder, use of

attention (att), and answer prediction with a softmax classifier

(cls) vs predicting answer word sequence (seq). We also

compare end-to-end trained vs fixed PointNet++/VoteNet.

Method lang 3D fus ans e2e accuracy

(a) BOW (TFIDF) - cls - 8.31
(b) BOW (One Hot) - cls - 27.03
(c) LSTM - cls - 42.02
(d) LSTM - seq - 42.81

(a) - PN++ cls - 10.23
(b) - VN cls - 11.46

(a) LSTM PN++ cls N 29.43
(b) LSTM PN++ att cls N 40.22
(c) LSTM VN cls N 40.38
(d) LSTM VN att cls N 42.98
(e) LSTM PN++ cls Y 39.70
(f) LSTM PN++ att cls Y 40.32

(a) LSTM PN++ seq N 26.20
(b) LSTM PN++ att seq N 37.25
(c) LSTM VN seq N 38.97
(d) LSTM VN att seq N 44.27

plexity of the scene using the number of objects in the scene

and the linguistic complexity by the length of the question.

As expected, the average accuracy decreases as the visual
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Figure 6: Accuracy for each question type. As expected,

binary questions are relatively simple to answer while

location questions are the most challenging.

Figure 7: Accuracy for relation types. We find vertical spatial

relations (above, under, support) to be the easiest while other

relations are more challenging.

and linguistic complexity increases. We provide more details

on the analysis in the supplement.

What are the easiest and hardest scenes? Figure 5 show 10
scenes for which the LSTM + VoteNet (att) model performed

the best and worst. We see that some scenes are simpler (with

only 5 objects), while other scenes have up to 59 objects).

The question difficulty is mostly constant across the scenes.

Are some question types more challenging? Figure 6 shows

the accuracy for each question type. Some questions are more

challenging than others, with binary (yes/no) questions being

the easiest (with a chance accuracy of 50%) and location
questions being the hardest (with a chance accuracy of

0.018% over 5586 answers). Not surprisingly, random has

low performance on all question types. NSM and LSTM+VN

have a high performance on location questions compared

to other methods. In contrast, there are only two possible

answers for the binary questions, so it much easier for the

Figure 8: Accuracy for attribute types. We find color to be

more challenging than height/size. This is likely due to the

noisy colors of the scan.

model to learn how to answer them.

Are some object categories more challenging? The dis-

tribution of objects follows a long-tail distribution, with

frequently represented objects having stable accuracy across

all methods, and rare object categories displaying high

variance in accuracy (see supplement for detailed analysis).

Are some relations more challenging? Figure 7 shows that

questions with vertical spatial relations have high accuracies

while other relations (shorter, taller, larger, smaller, wider,

skinnier) have the minimum accuracy. This is likely due to

the limitations of the object detection.

Query attribute question accuracy. Figure 8 shows the

accuracy of different methods for different query attributes.

From Figure 8, we see that the 2D-VQA model using the top-

down view is able to answer color questions more accurately,

and that the models using the 3D point cloud are better at

answering questions involving size.

Reduced category analysis. Since VoteNet is trained with a

small set of 18 categories, we conduct an experiment to study

the performance of our models on a reduced dataset of only

18 categories (see supplement - we keep only questions that

refer to objects within the 18 categories and in the question

use the coarse category as the word). Table II indicates that

on the restricted dataset, the 2D method is better at answering

color questions while 3D features help with questions about

height and size, and in the location questions where spatial

information is needed to determine the answer. This reaffirms

our observations from the larger dataset.

VI. CONCLUSION

In this paper, we propose 3DVQA, which extends the

traditional 2D VQA to 3D point clouds. We created a

synthetic question-answer dataset based on real-world scans

from ScanNet and conducted a series of experiments on base-

line models. Currently, our work is limited to synthetically

generated questions and answers, with noisy reconstructions

(e,g, missing surfaces and parts, low resolution, poor lighting,

etc). Nevertheless, we believe our work can be a good starting

point for future researchers who are interested in 3DVQA.
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