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Abstract

This paper presents an innovative adaptation of the Agnostic Label-Only Membership In-
ference Attack (ALOA) specifically designed for two-tower neural network (NN) models
used in recommendation systems. Unlike traditional membership inference attacks that
focus on categorical outputs, our approach targets models that produce continuous vector
embeddings. We propose a comprehensive methodology that employs synthetic datasets,
shadow model training, and a suite of perturbation techniques to evaluate model robustness
using the Maximum Mean Discrepancy (MMD) metric. Experimental results demonstrate
that the attack model achieves exceptionally high accuracy and precision in distinguishing
whether data is part of the original training dataset Dtrain

o , even without direct access to
it. These findings extend the theoretical framework of membership inference attacks to
continuous output spaces and highlight vulnerabilities in modern recommendation systems.

1 Introduction and Related Work

The rapid advancement and refinement of large language models have significantly streamlined the imple-
mentation of deep neural networks (DNNs), facilitating their widespread adoption across diverse domains.
This progress has attracted substantial investments, resulting in an increasing number of companies and
deep learning (DL) applications becoming integral to our daily lives. DL models are now omnipresent, influ-
encing activities from browsing websites and watching videos to online shopping and locating the best local
restaurants. While DL models, often branded as “AI” features, enhance convenience and efficiency, they also
introduce substantial risks related to privacy leakage and potential poisoning attacks that can disrupt model
functionality. Sophisticated attackers can exploit DL models trained on personal data to expose sensitive
information, such as individuals’ relationships and residential locations, to unauthorized parties.

Among the various types of attacks targeting DL models, a few stand out due to their potential impact.
The Label-Only Membership Inference Attack (MIA), introduced by Shokri et al. (2017), is a prominent
example. MIA enables attackers to determine whether specific data points were included in the training
dataset of a target DL model using only the output labels. When combined with Generative Adversarial
Networks (GANs), this method escalates the risk by enabling the reconstruction of sensitive data, particularly
when models are trained on confidential information belonging to individuals or organizations Fredrikson
et al. (2015). Additionally, the industry’s shift toward data trading by some governments and corporations
exacerbates the risk of digital property theft, making attacks like MIA increasingly concerning.

Building upon these foundational attacks, Monreale et al. (2023) introduced the Agnostic Label-Only
Attack (ALOA). ALOA generalizes MIA by removing dependence on the original dataset’s distribution,
thereby broadening the scope and applicability of membership inference attacks. However, existing research
on ALOA predominantly focuses on categorical models with discrete labels, leaving a significant gap in
understanding its implications on more complex models that produce continuous outputs, such as those
generating vector embeddings.

Privacy has consistently been a critical concern across various fields, receiving significant attention due to
the increasing reliance on data-driven technologies. Privacy information leakage can occur through multiple
avenues, including direct data access or indirectly via deep learning (DL) models. Since DL models are
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trained on datasets and subsequently converge into mathematical representations, they inherently encapsu-
late information from the training data. Consequently, if an adversary intentionally queries the model, it
becomes feasible to exploit and extract sensitive information or at least gain substantial knowledge about
the original dataset.

In the realm of data privacy, the initial step involves employing privacy risk assessment methodologies to
evaluate the privacy risks associated with users within a dataset. Based on these assessments, appropriate
privacy protection techniques are developed to safeguard the data or the DL models themselves. Common
privacy protection strategies in DL include randomization, differential privacy, and k-anonymity; see Dwork &
Roth (2014), Sweeney (2002) and Duchi et al. (2018). Additionally, emerging research in data decomposition,
such as the concept of data elements, aims to break down data into smaller components. This decomposition
not only maintains the efficacy of DL models trained on the transformed data but also significantly reduces
the risk of data leakage, sometimes achieving zero risk; see Cummings & Zarsky (2021).

Focusing on privacy risk assessment within DL models, the PRUDEnce framework, proposed by Pratesi et al.,
facilitates a systematic evaluation of empirical privacy risks concerning specific privacy attacks on data; see
Pratesi et al. (2020). PRUDEnce simulates an adversary equipped with the knowledge necessary to maximize
the privacy risk for each individual in the dataset by generating all possible background knowledge that the
adversary might possess and assessing the associated risks under the most adverse conditions.

Over the past few years, several methodologies have been developed to target DL models directly when
datasets have privacy risks. Notable among these are:

• Membership Inference Attack (MIA): Introduced by Shokri et al., MIA aims to determine
whether a particular data point was part of the training dataset of a classification model by leveraging
the model’s outputs to infer membership, posing significant privacy risks, especially for sensitive or
proprietary datasets; see Shokri et al. (2017).

• Reconstruction Attack: Proposed by Fredrikson et al., this attack seeks to reconstruct one or
more training samples along with their corresponding labels by exploiting the model’s parameters
and outputs, thereby undermining data privacy; see Fredrikson et al. (2015).

• Property Inference Attack: This attack extracts unintended and non-specific information learned
by the model, such as the overall distribution of the training dataset. Unlike MIA, which focuses on
individual data points, property inference targets aggregate properties, potentially revealing sensitive
characteristics of the dataset; see Yeom et al. (2018).

Building upon these foundational attacks, Choquette-Choo et al. introduced the LABELONLY attack,
which extends MIA by operating without access to the probability vector outputs of the model. This attack
demonstrates the ability to infer membership using only the final labels, thereby lowering the barrier for
successful attacks in scenarios where full probability information is unavailable; see Choquette-Choo et al.
(2019).

Further advancing this line of research, Anna Monreale et al. proposed the Agnostic Label-Only Mem-
bership Inference Attack (ALOA) in Monreale et al. (2023). ALOA enhances the LABELONLY attack
by eliminating the requirement for knowledge about the training dataset’s distribution, allowing broader
applicability and effectiveness in diverse settings. Monreale et al. demonstrated that ALOA achieves de-
sirable performance metrics in privacy attacks on categorical models, marking a significant step forward in
membership inference methodologies; see Monreale et al. (2023).

1.1 Our contributions

Despite these advancements, existing research on ALOA has predominantly concentrated on categorical
models with discrete labels, leaving a substantial gap in understanding its implications on more complex
models that produce continuous outputs. For instance, in recommendation systems, the models output
embeddings in a continuous vector field, representing users and items, which are then utilized by ranking
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systems to generate personalized recommendations based on relevance and geometric patterns. Existing
research that rely on categorical outputs are not directly applicable in these scenarios.

This paper addresses this gap by pioneering the application of ALOA to two-tower neural network
(NN) models, which generate outputs in continuous vector fields rather than discrete labels. Two-tower
NN models are widely employed in recommendation systems and information retrieval tasks; see Kato et al.
(2019) and He et al. (2017), where they process information from two distinct towers—users and items—and
output embeddings for each. These embeddings are then utilized by ranking systems to generate personalized
recommendations based on relevance and geometric patterns. Unlike previous studies that concentrate on
categorical outputs, our approach tackles the unique challenges posed by continuous output spaces, making
it a novel contribution to the field.

The primary contribution of this research lies in developing and validating an enhanced attack methodol-
ogy that effectively infers membership and reconstructs sensitive information from vector-based embeddings
in two-tower NN models. This advancement is significant because two-tower NN models are prevalent in
recommendation systems, where the integrity and privacy of user and item embeddings are crucial. Fur-
thermore, our research operates under the realistic assumption that the attacker has access only to input
features obtainable from the target model, without prior knowledge of the original dataset’s distribution.
This scenario mirrors real-world conditions more closely than many existing studies, thereby increasing the
practical relevance and applicability of our findings.

By demonstrating that ALOA can be successfully adapted to complex embedding-based models, this paper
not only extends the theoretical framework of membership inference attacks but also provides empirical
evidence of its feasibility in practical settings. This highlights the urgent need for enhanced security measures
to protect sensitive data in sophisticated DL models.

2 Background

Before proceeding with the details of validating ALOA efficiency in complex multilayer neural networks, we
introduce some basic notions that will be used or useful for understanding the approach and modifications
used in our research.

2.1 Classifier

Suppose that x = (a, v) is a feature variable in which a is the feature name and v is the corresponding m-
dimensional feature value. Suppose y is the class label of x. The feature name a may be either continuous or
categorical. For instance, in our real data, a ∈ {id, zip code, occupation, gender, age bucket}. In practice,
we observe n feature variables x1 = (a1, v1), . . . , xn = (an, vn) and their corresponding class labels y1, . . . , yn.

In classic literature, one aims to construct a classifier b : x→ y that sends an input instance x from a feature
space to a class label y. The classifier produces a categorical output y, expressed as y = b(x). The Agnostic
Label-Only Attack (ALOA) assumes that the target classifier b is accessible and can be queried without
restrictions. In practice, the classifier b is trained on a dataset Dtrain

o . However, classifiers are limited to
producing categorical outputs. In more complex scenarios, it is often desirable for the model to generate
continuous scalar or vector outputs. In the following section, we introduce an alternative approach based on
the Two-Tower Neural Network.

2.2 Two-Tower Neural Network Models

Two-Tower Neural Network (TTNN) models Chapelle et al. (2011) are a popular architecture in recommen-
dation systems, especially suited for large-scale retrieval tasks. The core idea behind two-tower models is to
learn separate embedding functions for users and items, such that the resulting embeddings can be efficiently
compared—typically using dot product or cosine similarity—to compute relevance scores.

A TTNN is a black-box model that consists of two parallel subnetworks:

• User Tower fu : U → Rd
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• Item Tower fv : V → Rd

where U and V represent the spaces of user and item features respectively, and d is the dimensionality of the
embedding space.

Each tower processes its respective input feature vector:

• User features u = (u1, u2, . . . , um) ∈ U may include user ID, gender, zip code, bucketized age, and
occupation.

• Item features v = (v1, v2, . . . , vn) ∈ V may include movie ID, genre, title, and release year.

The towers map these raw input vectors u, v to dense vector embeddings:

u = fu(u) ∈ Rd, v = fv(v) ∈ Rd.

The output of TTNN is represented as s(u, v) which is the relevance score between user u and item v that
can be computed as either the dot product

s(u, v) = ⟨u, v⟩ =
d∑

i=1
uivi,

or cosine similarity
s(u, v) = ⟨u, v⟩

∥u∥ ∥v∥ .

During training, both towers are optimized to maximize the score for observed (user, item) pairs and minimize
it for negatives, often via a contrastive loss such as:

L = − log
exp

(
s(u, v+)

)
exp

(
s(u, v+)

)
+

∑
v−∈N exp

(
s(u, v−)

) ,

where v+ is a positive item for user u and N is a set of negative samples.

At inference time, item embeddings can be precomputed and stored. Given a new user embedding u,
similarity scores against the item index allow fast top-k retrieval using approximate nearest neighbor search.
This decoupled design is key to large-scale recommendation efficiency.

2.3 Black-Box Model

In existing literature, a black-box setting refers to an attack scenario where neither the classifier’s architecture
nor the training dataset is known. In our work, we extend this concept to neural networks. Hereafter, the
term “Black-Box model” refers to the target model being attacked without any internal knowledge of its
structure or training data.

2.4 Shadow Model

Shadow models are deep learning models trained to approximate the behavior of a Black-Box model. They
play a crucial role in conducting Membership Inference Attacks (MIA) by generating datasets on which
attack models {A(·)} are trained. A set of shadow models {s(·)} is trained using a synthetic dataset X̃,
which is constructed to resemble the structure of the Black-Box model’s input. The corresponding outputs
predicted by the Black-Box model are denoted as Ỹ = b(X̃). The shadow models are subsequently trained on
the dataset: Dtrain

s = {(x̃1, ỹ1), (x̃2, ỹ2), (x̃3, ỹ3), . . . , (x̃n, ỹn)}, with the objective of replicating the behavior
of b. Notably, Dtrain

s is disjoint from the original training dataset Dtrain
o due to the inherent lack of access

to Dtrain
o . The purpose of training a shadow model is to approximate and ultimately reconstruct Dtrain

o .
Chapelle et al. (2011) has demonstrated that training a single shadow model to mimic the entire output
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space can achieve performance comparable to training separate shadow models for each category. Therefore,
in this study, we employ a single shadow model.

Shadow models serve as a mechanism to infer information about the Black-Box model. As established in
Theorem 1, for any x ∈ X such that b(x) = y, there exists a function si(·) within the set of shadow models
{s1(·), s2(·), s3(·), . . . , sm(·)} such that si(x) = y.
Theorem 1 (Representation Theorem for Shadow Models, adapted from Ye et al. (2022)). For all x ∈ X
such that b(x) = y, there exists a function si(·) in the set of shadow models {s1(·), s2(·), s3(·), . . . , sm(·)}
such that si(x) = y.

As a consequence, the probability vectors predicted by {si(·)} are expected to closely approximate those
produced by b. This similarity can be exploited to infer whether a specific data point belongs to the original
training dataset.

2.5 Membership Inference Attack (MIA)

Shokri et al. (2017) demonstrated that a classifier b trained on a dataset Db
train retains relationships between

its outputs and the original data. To perform an attack on b, a model A(·) is trained to identify whether a
data point was included in Db

train. A synthetic dataset D̄train
s is created and queried through b, generating

outputs Os. The attack model A(·) is a binary classifier that predicts IN if the input data belongs to
Db

train, or OUT otherwise. A(·) is trained on a dataset Dtrain
s = {(xi, yi)}s, where each xi includes the label

predicted by b and the probability vector ȳi of length L. The elements of ȳi are obtained by querying one of
the shadow models {s(·)} trained on D̄train

s ∪ Os to mimic b’s behavior for specific categories. Since {s(·)}
outputs vectors of dimension L, there are L models in {A(·)}, each corresponding to one category. The
model A(·) computes the probability Pr{(x, y) ∈ Dtrain

b } that the input data is part of Db
train based on the

distribution in ȳi.

2.6 Label-Only Membership Inference Attack (LabelOnly)

Choquette-Choo et al. (2019) introduced the LabelOnly attack, which relaxes the requirements of MIA
by operating without access to the probability vector outputs of the model. Unlike MIA, which requires
probability vectors, LabelOnly relies solely on hard labels predicted by b. It utilizes the model’s robustness
to perturbations to infer membership. Since deep learning models often incorporate perturbations during
training to prevent overfitting, their outputs demonstrate higher resilience to minor changes for training
data. The LabelOnly model ALO(·) employs shadow models to infer membership. A shadow model sLO(·)
is trained on Dtrain

s = {(xi, yi)} with a structure and distribution similar to Dtrain
o . The predicted labels

by b are recorded in Dtrain
s . The model ALO(·) is trained by perturbing Dtrain

s to obtain predicted labels
ỹi = s(D̃train

s ), where D̃train
s is the perturbed dataset. The robustness score for each data point xi is computed

as the percentage of labels that remain unchanged after perturbation. An iterative thresholding procedure
classifies records as IN or OUT based on their robustness scores, with higher scores indicating a higher
probability of being in Dtrain

o .

2.7 Agnostic Label-Only Membership Inference Attack (ALOA)

Monreale et al. (2023) advanced the LabelOnly attack by removing the necessity of knowledge about the
original data distribution. Instead, they revised the function for computing the robustness score. The revised
robustness score is defined as:

rScorexi
s
(Nxi

s
) =

{
0 , if s(xi

s) ̸= b(xi
s);

1
|N

xi
s

|
∑

x′∈N
xi

s

F (s(x′), s(xi
s)) , otherwise,

where Nxi
s

denotes the set of entries x′ generated by introducing noise around xi
s. The function F (s(x′), s(xi

s))
returns a value close to 0 if s(x′) ̸= s(xi

s) and close to 1 otherwise. Thus, the robustness score ranges between
0 and 1.
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Instead of requiring knowledge of the original dataset Dtrain
o , ALOA generates a synthetic dataset xtrain

s with
the same structure as the Black-Box model’s input. This dataset is queried through both the shadow model
and the target model. The set

Dtrain
s = {xi

s ∈ xtrain
s | s(xi

s) = b(xi
s)}

is constructed. Noise is then introduced to entries in Dtrain
s to compute robustness scores. Subsequently,

ALOA proceeds similarly to the LabelOnly approach without requiring distribution knowledge.

Mathematically, our approach leverages concepts from the mathematics of deep learning by Vidal (2018) to
analyze the stability and robustness properties of neural network classifiers under perturbations, providing
theoretical support for the ALOA methodology.

3 Proposed Approach

To implement ALOA on Two-Tower NN models, we follow a structured methodology comprising model
setup, shadow model training, perturbation application, robustness scoring, and attack model training. This
section provides a comprehensive overview of each step, illustrating how they collectively contribute to the
successful execution of the ALOA attack.

Given the Black-Box model b, we extracted the input structure required by the model. A synthetic dataset

Xtrain
user ∪Xtrain

movie = Xtrain
s

with an identical structure was generated. Focusing on user data, which is typically more informative and
valuable, we employed two distinct approaches to train the shadow model, thereby influencing the overall
attack accuracy:

1. Complete Approach: Utilizes the entire synthetic dataset Xtrain
s = Xtrain

user ∪Xtrain
movie, where both

user and movie data are synthetically generated to mimic the distribution of the original data.

2. Pseudo Approach: Uses only the user portion Xtrain
s = Xtrain

user , and assigns a fixed pseudo entry
for movie data (e.g., a constant vector of all 1’s) for every record.

Although the input Xtrain
s includes both user and movie features, we apply perturbations exclusively to

the user input for two key reasons. First, our goal is to simulate realistic adversarial scenarios, where
malicious actors are more likely to target user information due to its higher sensitivity and greater privacy
implications. Leaks involving user data—such as age, location, or occupation—pose a more significant threat
than item data, making user-targeted attacks more representative of real-world risks. Second, although we
initially considered investigating leakage from movie features as well, the high accuracy achieved using user
perturbations alone already demonstrates the effectiveness of our method in identifying membership. This
suggests that even partial input manipulation is sufficient to expose vulnerabilities. Lastly, the rationale
behind including both the complete and pseudo approaches is to assess whether the inclusion or exclusion of
movie data in shadow model training affects the performance of the attack. This comparative analysis will
be discussed in detail in later sections following the presentation of experimental results.

For each xi ∈ Xtrain
s , the corresponding labels Y train

s = {yi | yi = b(xi)} were generated by querying the
Black-Box model b. The shadow model s was then trained on the dataset Dtrain

s = Xtrain
s ∪ Y train

s to
accurately replicate b’s prediction behavior.

To systematically compute robustness scores, we introduce a series of perturbations to the user data in Dtrain
s .

These perturbations are designed to emulate real-world noise and inaccuracies commonly encountered in user
data. Based on variations in different input features—such as ID, Gender, Zip Code, Bucketized Age, and
Occupation—we define the following perturbation methods:

1. User ID Perturbation

• Method: Add or subtract a random integer within the range [−10, 10) to the original user ID.
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• Outcome: A new dataset with slightly altered user IDs, maintaining valid values within ac-
ceptable bounds.

2. Gender Flip Perturbation

• Method: Invert the binary gender value; if coded as 0 (e.g., Female), change to 1 (e.g., Male),
and vice versa.

• Outcome: A dataset where each user’s gender has been inverted, with all other attributes
remaining unchanged.

3. Zip Code Perturbation

• Method: Add or subtract a random integer within the range [−50, 50) to each user zip code.
• Outcome: A dataset with slightly varied zip codes that remain valid and within the model’s

expected embedding range.

4. User Bucketized Age Shift Perturbation

• Method: Shift each user’s bucketized age to an adjacent age bucket. For middle buckets,
randomly decide to shift up or down one bucket. For boundary buckets, shift to the only
available adjacent bucket.

• Outcome: A dataset where each user’s age bucket is shifted to a neighboring bucket, simulating
slight age misclassifications or boundary adjustments.

5. Occupation Change Perturbation

• Method: Randomly assign a different occupation label to each user from the set of valid
occupation labels, excluding the current one. Ensure that the new label remains within the
model’s expected range.

• Outcome: A dataset where each user has a randomly altered occupation label within valid
bounds, simulating misclassification or noise in occupation data.

Following the application of perturbations, we ensured data integrity and model compatibility by verifying
that each altered feature remained within the expected value ranges. This validation prevents runtime errors
during model inference, such as out-of-bounds errors in embedding layers. Since only one target feature is
modified at a time while all other features remain unchanged, any observed changes in the model’s behavior
can be solely attributed to the perturbed feature.

Each perturbed dataset was saved in dedicated directories corresponding to the type of perturbation (e.g.,
user_id_perturbation, gender_flip, etc.) to facilitate systematic testing and comparison across different
perturbation types. Identical perturbations were also applied to Dtrain

o for baseline comparisons.

To quantify the impact of each perturbation, we computed the Maximum Mean Discrepancy (MMD) between
the embeddings obtained from the original and perturbed datasets. MMD is a statistical measure used to
compare the difference between two distributions. Given two sets of embeddings, X = {ui}n

i=1 from the
original data and Y = {vj}m

j=1 from the perturbed data, the squared MMD is computed as:

MMD2(X ,Y) = 1
n2

n∑
i=1

n∑
j=1

k(ui, uj) + 1
m2

m∑
i=1

m∑
j=1

k(vi, vj)− 2
nm

n∑
i=1

m∑
j=1

k(ui, vj),

where k(·, ·) is a kernel function (e.g., the Gaussian kernel defined as k(u, v) = exp
(
−∥u−v∥2

2σ2

)
). A larger

MMD value indicates a larger discrepancy between the two distributions, reflecting a greater impact of the
perturbation on the model’s output.

In order to systematically apply these perturbations and facilitate reproducibility, we define a function called
perturbation that performs the specified perturbations on the dataset. Below is Algorithm 1, which outlines
the detailed procedure for generating perturbed datasets.

7



Under review as submission to TMLR

Algorithm 1 Perturbation Function for ALOA
Require: D - Original user dataset
Require: perturb_type - Type of perturbation to apply ({User ID Perturbation, Gender Flip, Zip Code

Perturbation, User Bucketized Age Shift, Occupation Change})
Require: params - Additional parameters required for the perturbation (e.g., range limits)
Ensure: Dperturbed - Perturbed user dataset

1: if perturb_type = "User ID Perturbation" then
2: Convert user_id to numeric values
3: Generate random integers ri ∈ [−10, 10) for each user
4: Update user_id: user_id← user_id + ri

5: Clip user_id within range [0, 6040]
6: else if perturb_type = "Gender Flip" then
7: Confirm that user_gender is binary (0 or 1)
8: Flip user_gender: user_gender ← 1− user_gender
9: else if perturb_type = "Zip Code Perturbation" then

10: Convert user_zip_code to numeric values
11: Generate random integers ri ∈ [−50, 50) for each user
12: Update user_zip_code: user_zip_code← user_zip_code + ri

13: Clip user_zip_code to valid range [30000, 33439]
14: Map clipped user_zip_code to embedding indices: user_zip_code ←

max(0, min(3439, user_zip_code− 30000))
15: else if perturb_type = "User Bucketized Age Shift" then
16: Identify and sort unique user_bucketized_age values
17: Create mapping age_map from age bucket to index
18: for each user in D do
19: Determine current age bucket index idx
20: if idx = 0 then
21: Shift to the next higher bucket
22: else if idx = last index then
23: Shift to the next lower bucket
24: else
25: Randomly choose to shift up or down one bucket
26: end if
27: Update user_bucketized_age
28: end for
29: else if perturb_type = "Occupation Change" then
30: Identify valid occupation labels O = {0, 1, . . . , 20}
31: for each user in D do
32: Current occupation o
33: Define possible new occupations: O′ = O \ {o}
34: Randomly select new occupation o′ ∈ O′

35: Assign o′ to user_occupation_label
36: end for
37: end if
38: return Dperturbed

4 Experiment

This section delineates the experimental setup and results of applying ALOA on Two-Tower NN models.
The experiments assess the effectiveness of ALOA in inferring membership based on perturbations in user
data.
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4.1 Black-Box Model Robustness Testing

We utilized the multi-stage two-tower recommender project from GitHub created by Keivanipchihagh (2023),
which provides a comprehensive dataset for training and evaluating two-tower neural networks in recommen-
dation systems. The dataset comprises:

• User Information: User ID, user zip code, gender, age bracket, and user occupation.

• Movie Information: Movie ID, movie name, movie genre, and release year.

• Rating Information: Records of user-movie interactions along with the ratings provided.

Using PyTorch, we constructed the Two-Tower NN model and exported it to ONNX format to facilitate
efficient querying as a Black-Box model.

We explored two distinct approaches to train the shadow model, addressing the challenge of targeting user
data:

1. Complete Approach: Utilizes the entire synthetic dataset Xtrain
s = Xtrain

user ∪Xtrain
movie, where both

user and movie data are synthetically generated to mimic the distribution of the original data.

2. Pseudo Approach: Uses only the user portion Xtrain
s = Xtrain

user , and assigns a fixed pseudo entry
for movie data (e.g., a constant vector of all 1’s) for every record.

The synthetic data used in shadow model training is constructed by directly querying the ONNX-exported
Black-Box model for its input schema. Once the expected input types and shapes are obtained, we generate
random entries that conform to these specifications. In cases where the synthetic input falls outside the
model’s accepted range, the model raises an error and returns the required bounds—allowing us to auto-
matically adjust the data to satisfy input constraints. This process ensures that all synthetic data remains
compatible with the Black-Box model, and more importantly, it reinforces the agnostic nature of the at-
tack: the adversary constructs training data solely based on the model’s interface, without any access to the
original training distribution.

For each xi ∈ Xtrain
s , the corresponding labels

Y train
s = {yi | yi = b(xi)}

were generated by querying the Black-Box model b. The shadow model s was then trained on the dataset

Dtrain
s = Xtrain

s ∪ Y train
s

to accurately replicate b’s prediction behavior.

We applied the five perturbation methods outlined in Section 3 to the shadow training dataset Dtrain
s .

Each perturbation was applied individually, and the resulting datasets were stored in separate directories
to facilitate systematic evaluation. Following perturbation, we queried the perturbed datasets through the
Black-Box model b to obtain the predicted embeddings.

To assess the model’s robustness to these perturbations, we computed the Maximum Mean Discrepancy
(MMD) between the embeddings of the original and perturbed data:

MMD2(X ,Y) = 1
n2

n∑
i=1

n∑
j=1

k(ui, uj) + 1
m2

m∑
i=1

m∑
j=1

k(vi, vj)− 2
nm

n∑
i=1

m∑
j=1

k(ui, vj)

where X = {ui} represents the embeddings from the original data X, Y = {vi} represents the embeddings
from the perturbed data X̃, and k(·, ·) is a kernel function (e.g., the Gaussian kernel). A larger MMD value
indicates a larger discrepancy between the two distributions, reflecting a greater impact of the perturbation
on the model’s output.
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The robustness scores for different perturbations are presented in Tables 1, 2, 3, 4, and 5.

Table 1: Robustness Scores for User ID Perturbation

Dataset Average Median Min Max
Original data with pseudo movie entries 0.080462 0.063381 0.000000 0.735921
Original data with real movie entries 0.080462 0.063381 0.000000 0.735921
Synthetic data with pseudo movies 0.090371 0.072155 0.000000 0.485888
Synthetic data with real movies 0.090371 0.072155 0.000000 0.485888

Table 2: Robustness Scores for Zip Code Perturbation

Dataset Average Median Min Max
Original data with pseudo movie entries 0.002234 0.000000 0.000000 0.359842
Original data with real movie entries 0.002234 0.000000 0.000000 0.359842
Synthetic data with pseudo movies 0.000000 0.000000 0.000000 0.000000
Synthetic data with real movies 0.000000 0.000000 0.000000 0.000000

Table 3: Robustness Scores for User Occupation Perturbation

Dataset Average Median Min Max
Original data with pseudo movie entries 0.033829 0.025463 0.000000 0.240031
Original data with real movie entries 0.033829 0.025463 0.000000 0.240031
Synthetic data with pseudo movies 0.035301 0.027552 0.002022 0.223600
Synthetic data with real movies 0.035301 0.027552 0.002022 0.223600

Table 4: Robustness Scores for User Gender Perturbation

Dataset Average Median Min Max
Original data with pseudo movie entries 0.063202 0.064812 0.001643 0.128037
Original data with real movie entries 0.063202 0.064812 0.001643 0.128037
Synthetic data with pseudo movies 0.069620 0.068363 0.018424 0.122920
Synthetic data with real movies 0.069620 0.068363 0.018424 0.122920

Table 5: Robustness Scores for User Age Bucketized Shift Perturbation

Dataset Average Median Min Max
Original data with pseudo movie entries 0.415971 0.489709 0.143693 0.987755
Original data with real movie entries 0.415971 0.489709 0.143693 0.987755
Synthetic data with pseudo movies 0.042410 0.000000 0.000000 0.828345
Synthetic data with real movies 0.042410 0.000000 0.000000 0.828345

The robustness scores in Tables 1–5 reveal which user features induce the largest embedding shifts—and
thus provide the strongest signals—for our ALOA attack. A small robustness score indicates that the model
is robust to that perturbation (the embedding changes very little), while a large robustness score indicates
non-robustness (a large embedding shift).

Age buckets Shifting the user’s age bucket yields the highest average robustness score (≈ 0.416) and a
maximum near 1.0 on real data. This demonstrates that the model encodes age as a dominant feature: even a
one-bucket change almost always perturbs the embedding substantially. For ALOA, age-bucket perturbation
therefore provides an exceptionally reliable membership signal.

User ID Perturbing the user ID produces a moderate mean robustness score (≈ 0.08–0.09) with consid-
erable spread (up to 0.74). This shows that the model learns distinct embeddings for different ID slots.
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Although less powerful than age shifts, ID perturbation remains a useful channel for membership inference,
especially when combined with other features.

Occupation and gender Changing occupation yields an average robustness score of ≈ 0.03–0.04, while
flipping gender gives ≈ 0.06–0.07. Both have relatively tight distributions, indicating these are meaning-
ful but secondary signals. They still generate consistent embedding differences, making them viable—but
lower-precision—perturbations for ALOA.

Zip code Zip code perturbation produces near-zero robustness scores on both real and synthetic data,
showing the model is effectively invariant to small ZIP changes. As a result, ZIP code provides almost no
membership signal and is not suitable for ALOA in this context.

Conclusions Overall, the two-tower model is most vulnerable to perturbations in age and user ID, mod-
erately sensitive to occupation and gender, and highly robust to ZIP code.

4.2 ALOA

Given that the Black-Box model exhibits robustness to perturbations in the original dataset Dtrain
o , we

proceed to configure the ALOA attack. The attack encompasses several key components and processes.

First, we define the original training data as Dtrain
o = {(ui, vi, ri)}N

i=1, where ui ∈ U represents user features,
vi ∈ V denotes item features, and ri ∈ R signifies ratings. For shadow model training, we prepare two
distinct datasets: Ds,combined = {(uj , vj , rj)}N

j=1 and Ds,dummy = {(uk, vk, rk)}N
k=1, which correspond to the

complete and pseudo approaches, respectively. These shadow models, scombined and sdummy, are trained on
their respective datasets to emulate the Black-Box model’s behavior.

Next, we generate perturbed data

Dp = {perturbation(u, ϕ) | (u, v, r) ∈ Dtrain
s , ϕ ∈ Φ}

where Φ = {ϕ1, ϕ2, . . . , ϕ5} represents different types of perturbations (User ID, Gender Flip, Zip Code, Age
Bucket Shift, Occupation Change). These perturbations simulate realistic variations and potential noise in
user data, allowing us to assess the model’s robustness and the effectiveness of the ALOA attack.

The ALOA attack procedure involves several sequential steps:

Feature Extraction: For each perturbed user u′ ∈ Dperturbed, we extract feature vectors by passing them
through the shadow models:

f(u′) = s(u′, •) ∈ Rd

where s(u′, •) denotes the concatenated outputs from both towers of the Two-Tower shadow model, and d
is the dimensionality of the feature vector.

Label Assignment: Binary labels are assigned based on membership status:

y(u′) =
{

1 if u′ is a member (from Dtrain
s )

0 if u′ is a non-member (not from Dtrain
s )

Dataset Construction: We construct the attack dataset

Dattack = {(fi, yi)}2M
i=1,

where fi = s(u′, •) and yi ∈ {0, 1}. Here, data labeled as IN corresponds to entries in the shadow model’s
training set Dtrain

s , while OUT corresponds to data outside Dtrain
s .

Model Training: The attack model training involves the following steps:

1. Train-Test Split: Divide Dattack into training and testing subsets:

Dtrain, Dtest = TrainTestSplit(Dattack, test_size = 0.3, random_state = 42)

11
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2. Classifier Selection: Employ a Multi-Layer Perceptron (MLP) classifier C with hyperparameters
θ:

C : Rd → {0, 1}

3. Hyperparameter Optimization: Optimize θ using grid search with cross-validation to maximize
the ROC AUC score:

θ∗ = arg max ROC_AUC(Cθ, Dtrain, y)

4. Training the Classifier: Train the classifier with the optimized hyperparameters:

C∗ = Cθ∗ ← Train(Cθ∗ , Dtrain)

Evaluation Metrics: We evaluate the performance of C∗ on Dtest using the following metrics:

• Accuracy (A):

A = 1
|Dtest|

|Dtest|∑
i=1

I(C∗(fi) = yi)

• Precision (P):

P =
∑|Dtest|

i=1 I(C∗(fi) = 1 ∧ yi = 1)∑|Dtest|
i=1 I(C∗(fi) = 1)

• Recall (R):

R =
∑|Dtest|

i=1 I(C∗(fi) = 1 ∧ yi = 1)∑|Dtest|
i=1 I(yi = 1)

• ROC AUC (U):
U = ROC_AUC({pi}, {yi})

where pi = C∗(fi)1 denotes the predicted probability for class 1 (member).

Threshold Determination: We establish a classification threshold τ using K-Means clustering on the
robustness scores {ri}, where ri = pi:

1. Clustering:
KMeans({ri}, k = 2)

2. Threshold Calculation:

τ = c1 + c2

2 , where c1 and c2 are the cluster centers

Classification Based on Threshold: We classify each instance based on the determined threshold τ :

C∗(fi) =
{

1 if ri ≥ τ

0 otherwise

12
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4.3 Algorithm for ALOA Attack

To provide a clear example of the ALOA attack procedure, we present Algorithm 2, which outlines the steps
involved in executing the attack.

Algorithm 2 Agnostic Label-Only Membership Inference Attack (ALOA)
Require: b - Black-Box model
Require: sdummy, scombined - Shadow models trained on dummy and combined datasets
Require: Dtrain

o - Original training dataset
Require: Φ - Set of perturbation types ({User ID, Gender Flip, Zip Code, Age Bucket Shift, Occupation

Change})
Ensure: C∗ - Trained attack classifier
Ensure: τ - Classification threshold

1: for each shadow model s ∈ {sdummy, scombined} do
2: for each perturbation type ϕ ∈ Φ do
3: Generate perturbed dataset Dp = {perturbation(u, ϕ) | u ∈ Dtrain

s }
4: Extract features f(u′) = s(u′, •) for each u′ ∈ Dp

5: Assign labels y(u′)← 1 if u′ ∈ Dtrain
s , else y(u′)← 0

6: end for
7: end for
8: Construct attack dataset Dattack = {(fi, yi)}2M

i=1
9: Split Dattack into Dtrain, Dtest using TrainTestSplit with test_size = 0.3 and random_state = 42

10: Initialize Multi-Layer Perceptron (MLP) classifier C with hyperparameters θ
11: Optimize θ using grid search with cross-validation to maximize ROC AUC on Dtrain
12: Train classifier C∗ with optimized θ∗ on Dtrain
13: Evaluate C∗ on Dtest to obtain metrics A,P,R,U
14: Perform K-Means clustering on robustness scores {ri} to determine threshold τ
15: Classify each instance in Dtest based on τ
16: return C∗, τ

4.4 Attack Results

The performance of the ALOA attack was evaluated under two scenarios. First, using the shadow models’
training data, the attack performance is summarized in Table 6.

Table 6: Attack Performance Using Shadow Models

Model Type Accuracy Precision Recall ROC AUC Optimal Threshold
Combined 0.9787 0.9789 0.9958 0.9946 0.8451
Dummy 0.9507 1.0000 0.4573 0.9406 0.1273

The results are very promising. Both the accuracy and precision are exceptionally high, demonstrating that
the attack model is highly effective at determining whether data is IN or OUT of the original training
dataset Dtrain

o . Initially, we were concerned about potential overfitting; however, the training data for the
attack model is significantly imbalanced—with an IN :OUT ratio of 4:1 for the complete approach and 1:10
for the pseudo approach. If the attack model were not functioning properly, we would expect an accuracy
near 0.8 and 0.91 (akin to random guessing) or a precision that closely mirrors these imbalanced distributions
(around 0.8 or 0.1, respectively). In light of this, we are confident that the outstanding performance observed
is genuine. For further validation, we applied the attack model to the original training dataset of the Black-
Box model by computing the proportion of instances classified as IN. This proportion serves as an accuracy
measure, and the results are presented in Table 7.
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Table 7: Attack Performance on Original Training Data of the Black-Box Model

Model Type Accuracy (%)
Combined 99.65
Dummy 85.95

Table 7 demonstrates that the attack model retrieves data from the original training dataset Dtrain
o of the

Black-Box model with exceptional efficiency. Remarkably, the attack model was trained solely on data from
the shadow models and had no direct access to Dtrain

o during the attack process, underscoring its practical
applicability. These results confirm that the ALOA method is effective for attacking models that output
in a continuous vector space. Moreover, our investigation reveals that for Two-Tower neural networks—or
indeed any composite deep learning models—if the synthetic dataset used to train the shadow model lacks
sufficient diversity, the attack’s efficiency is reduced. This intriguing outcome highlights the importance of
comprehensive synthetic data generation and warrants further investigation.

5 Conclusion

In this work, we have successfully extended the Agnostic Label-Only Membership Inference Attack (ALOA)
to two-tower neural network models, a class of systems that play a critical role in modern recommendation
engines. By adapting membership inference techniques to continuous vector embeddings, our approach fills
a significant gap in the literature. Using shadow models trained on synthetic datasets and perturbation
strategies evaluated via the Maximum Mean Discrepancy (MMD) metric, we demonstrated that our attack
model can effectively discern between training and non-training data with exceptionally high accuracy and
precision—even when the attacker has no direct access to the original training dataset Dtrain

o .

Beyond the primary technical contributions, our investigation reveals a potentially alarming byproduct of
the attack: a clearer understanding of the recommendation model’s embedding space. This deeper insight
into how content is represented and targeted significantly increases the risk of manipulation. An adversary
armed with such detailed knowledge could strategically mass-produce or tailor content to influence the
recommendations delivered to specific audiences, thereby exerting control over the information these groups
receive. This possibility of orchestrated influence raises serious concerns about the broader societal impact
of vulnerabilities in recommendation systems.

Furthermore, our experiments indicate that the efficiency of the attack is strongly influenced by the diversity
of the synthetic dataset used to train the shadow model. When this dataset lacks sufficient diversity, the
performance of the attack diminishes, emphasizing the need for comprehensive data generation strategies.

Overall, our study underscores the urgent need for robust privacy-preserving mechanisms in recommenda-
tion systems. The demonstrated vulnerability to label-only membership inference attacks—coupled with
the potential for adversaries to exploit an enhanced understanding of model embeddings for content ma-
nipulation—calls for immediate attention from both researchers and practitioners. Future work will focus
on developing effective countermeasures and further exploring the interplay between synthetic training data
diversity and attack efficacy across various deep learning paradigms.
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