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Abstract

It is beyond doubt that intuitive physics exists in human cognition. However, it re-
mains unclear how physical knowledge is learned, used and generalized to novel
situations. Among all the existing approaches to this problem, intuitive physics en-
gine (IPE) is an appealing hypothesis. In this essay, we will discuss main existing
approaches and their feasibility. Then we will take a deeper look at IPE, trying to
show IPE is not a satisfying method.

1 Introduction

Humans excel at understanding environmental dynamics and making predictions about the future.
These skills are essential for cognition, reasoning, task planning, and so on. We do not need to be
physicists to have these abilities. Instead, we rely on our intuition, make approximate predictions,
and still make some mistakes. The knowledge underlying this process is defined as intuitive physics
[6]. It is definitely important to equip AI with such skills.

However, it remains unclear how physical knowledge is learned, used and generalized to novel
situations. Research on intuitive physics has shown surprising results. For example, infants can show
awareness of unexpected events [2]. While again highlighting the importance of intuitive physics,
these results raise questions about the learning process of physical knowledge. Another phenomenon
is that misconceptions widely exist in explicit reasoning [9]. For the question in Fig. 1, even many
adults believe the ball will move in a curved path. However, if researchers provide animated displays,
or even when the situation is replaced by water exiting a curved hose, human errors are greatly
reduced [5].

The general picture that emerges from previous research is that humans understand and learn about
the world rapidly, automatically, with misconceptions, biases, and generalizing ability. To reach
human-level performance in physical reasoning, a method needs to take all these features into ac-
count. Inspired by these phenomena, a variety of frameworks and hypotheses have been proposed.
Next, we will discuss some of them and further analyze the reasonableness of an appealing hypoth-
esis, IPE.

Figure 1: Predict trajectory of the ball. Image credit: Kubricht et al. [6]
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2 Approaches to learn intuitive physics

The complexity of humans’ physical reasoning process has led to two divergent approaches, which
can be broadly categorized into two paths: model-free methods and model-based methods.

2.1 Model-free methods

Heuristic methods: Inspired by our prior knowledge of physics, rule-based models have been
proposed. We can design heuristic rules for a certain problem. For example, to solve the problem
in Fig. 2, we could set up a series of rules, e.g., if ball 1 bounces back, then m2 > m1. Formally,
experts can design a symbol system according to Newtonian mechanics, and each problem can be
calculated via symbolic logic [10]. This method can be extremely fast, which corresponds with the
rapidness of human reasoning. However, this is inconsistent with the fact that humans are born with
core knowledge of physics, as discussed above. Besides, this method relies heavily on hand-crafted
rules, which can hardly be generalized to other tasks. It is also inefficient due to the complexity of
rules needed for a simple problem. Besides, it is impossible to code all the rules like Maxwell’s
demon. Hence, the granularity of rules must be carefully considered.

m1

m2 v2 =?

Figure 2: Which object is heavier?

Learning-based methods: Powered by deep learning and new model architectures like transform-
ers [12], learning-based methods have achieved great success in physics reasoning. A major problem
for both humans and machines is that the physical attributes of objects are mostly unobservable, like
mass, friction, etc. Through learning from data, deep neural networks such as CNNs [7] can take an
image as input and estimate the physical attributes, which are important for further reasoning.

Neural networks can also be directly applied to predict future dynamics. For example, PhysNet by
Lerer et al. [8] has achieved success in predicting trajectories for simplistic block tower scenarios. It
is capable of predicting future trajectories of both artificial and real block towers, yet still struggles to
generalize to unseen situations. It also requires thousands of examples to learn. These disadvantages
contradict the fact that even infants can learn from just a few examples. Other limitations include
the diversity of situations and shortage of high-quality data, which are also faced by current deep
learning methods.

Another direction is to emulate physical principles through learning. The NeuroAnimator model by
Grzeszczuk et al. [4] can learn state transition patterns by viewing transformation examples. This is
a promising step towards a learnable physical engine.

2.2 Model-based methods

Someone proposes that an intuitive physics engine exists in our brain. It builds representations of the
world and its dynamics, predicting the future in a simulating way. This is supported by brain imaging
studies [3] which show some brain regions are more active when making physical inferences than
nonphysical inferences. This engine is supposed to perform a task explicitly, which is different
from deep learning methods. Also, considering the misconceptions and biases in human reasoning,
this physical engine is supposed to be probabilistic and uncertain. In general, this engine has the
following properties [14]: 1) It performs physical judgments by running simulation directly; 2) the
simulation is stochastic and uncertain. Inspired by this hypothesis, probabilistic simulation methods
have been proposed and exceed the performance of model-free methods.
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One successful method is the Noisy Newton model proposed by Sanborn et al. [11] and extended
by many researchers, e.g. Battaglia et al. [1]. It assumes that people integrate noisy inputs with
prior knowledge, and models the simulation with Newtonian mechanics. Predictions are made by
thousands of simulations according to these constraints. The uncertainty from noise as well as unob-
servable variables helps align the model with human behaviors. Besides, uncertainty in the inference
stage can also provide a better fit to human performance. Fig. 3 illustrates the pipeline of IPE. When
predicting the future state of the block tower, the model performs epochs of simulation. In each
simulation, information of perceptual variables sampled according to the data distribution is passed
to the model which integrates physical knowledge and utilizes the Monte Carlo method for uncer-
tainty. Then results from each simulation are aggregated to produce a prediction distribution, which
is consistent with the distribution of results across humans.

It is also worth noticing that this method can be combined with morden deep learning methods. As
we talked above, deep learning methods can be used to infer physical attributes of visual inputs.
Hybrid approaches like [13] have had some success in physical prediction like problems in Fig. 2.

Figure 3: The intuitive physics engine simulation process. Image credit: Battaglia et al. [1]

3 Is IPE satisfying enough?

Though the idea is appealing and has achieved great performance, the disadvantages and limitations
are also obvious. Major limitations include but are not limited to:

• Like heuristic methods, IPE also needs to manually feed physical knowledge into the model,
limiting its generalization ability.

• It is computationally inefficient. The repeated simulation process is inelegant and inconsis-
tent with the rapidness of human reasoning.

• Learning ability still needs to be integrated into the system.

Besides, this pipeline has some critical flaws. The introduction of noise is indeed useful to model
human behaviors, but this only models uncertainty for humans as a whole, not for individuals. The
uncertainty for individuals should be represented in prior knowledge, simulation processes guided
by cognition, and so on.

The hypothesis itself is also questionable. Despite being able to model future trajectories, there
must exist other mechanisms underlying intuitive physics. A good example is a player shooting
a basketball. It is not true that we simulate every situation in which the basketball’s initial angle
and velocity vary. Instead, we do that in an automatic and heuristic way, and use the future state
to choose the current state. And IPE’s prediction ability is not enough for this situation. We need
a kind of "feeling" to hit the basket, which is accumulated through gradual practice. Formally, we
may model a latent variable z from past experience and context, thus directly predicting the future
state using p(s|z). This variable is a high-level representation of the future and dynamics and greatly
reduces computation cost. And we can sample our movement through the Bayesian rule, where sf
represents the desired goal and s is the action we take.

z ∼ p(sf |z)p(z), z ∼ p(z|s)p(s)
We believe a similar procedure exists in our brain, despite the possible "intuitive physical engine."
However, our explanation is too idealistic and needs further investigation.

4 Conclusion

In conclusion, a variety of methods have been proposed to simulate human performance in intuitive
physics. However, the true mechanisms and intuitions underlying our reasoning, predicting, and
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inference abilities still need to be further investigated. More inspirations should be drawn from
human experiments and neuroscience to shed light on how people make physical judgments and
predictions. We believe that a thorough research effort into modeling intuitive physics will greatly
benefit the development of more human-like artificial intelligence.
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