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ABSTRACT

Empirical auditing has emerged as a means of catching some of the flaws in the
implementation of privacy-preserving algorithms. Existing auditing mechanisms,
however, are either computationally inefficient – requiring multiple runs of the
machine learning algorithms —- or suboptimal in calculating an empirical privacy.
In this work, we present a tight and efficient auditing procedure and analysis that
can effectively assess the privacy of mechanisms. Our approach is efficient; similar
to the recent work of Steinke, Nasr, and Jagielski (2023), our auditing procedure
leverages the randomness of examples in the input dataset and requires only a
single (training) run of the target mechanism. And it is more accurate; we provide a
novel analysis that enables us to achieve tight empirical privacy estimates by using
the hypothesized f -DP curve of the mechanism, which provides a more accurate
measure of privacy than the traditional ϵ, δ differential privacy parameters. We use
our auditing procure and analysis to obtain empirical privacy, demonstrating that
our auditing procedure delivers tighter privacy estimates.

1 INTRODUCTION

Differentially private machine learning (Chaudhuri et al., 2011; Abadi et al., 2016) has emerged as a
principled solution to learning models from private data while still preserving privacy. Differential
privacy (Dwork, 2006) is a cryptographically motivated definition, which requires an algorithm
to possess certain properties: specifically, a randomized mechanism is differentially private if it
guarantees that the participation of any single person in the dataset does not impact the probability of
any outcome by much.

Enforcing this guarantee requires the algorithm to be carefully designed and rigorously analyzed. The
process of designing and analyzing such algorithms is prone to errors and imperfections as has been
noted in the literature Tramer et al. (2022). A result of this is that differentially private mechanisms
may not perform as intended, either offering less privacy than expected due to flaws in mathematical
analysis or implementation, or potentially providing stronger privacy guarantees that are not evident
through a loose analysis.

Empirical privacy auditing (Ding et al., 2018; Nasr et al., 2023; Jagielski et al., 2020) has emerged as
a critical tool to bridge this gap. By experimentally assessing the privacy of mechanisms, empirical
auditing allows for the verification of privacy parameters. Specifically, an audit procedure is a
randomized algorithm that takes an implementation of a mechanism M , runs it in a black-box
manner, and attempts to test a privacy hypothesis (such as, a differential privacy parameter). The
procedure outputs 0 if there is sufficient evidence that the mechanism does not satisfy the hypothesized
guarantees and 1 otherwise. The audit mechanism must possess two essential properties: 1) it
must have a provably small false-negative rate, ensuring that it would not erroneously reject a
truly differentially private mechanism, with high probability; 2) it needs to empirically exhibit a
”reasonable” false positive rate, meaning that when applied to a non-differentially private mechanism,
it would frequently reject the privacy hypothesis. The theoretical proof of the false positive rate is
essentially equivalent to privacy accounting (Abadi et al., 2016; Dong et al., 2019; Mironov, 2017),
which is generally thought to be impossible in a black-box manner (Zhu et al., 2022).

The prior literature on empirical audits of privacy consists of two lines of work, each with its own set
of limitations. The first line of work (Ding et al., 2018; Jagielski et al., 2020; Tramer et al., 2022;
Nasr et al., 2023) runs a differentially private algorithm multiple times to determine if the privacy
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guarantees are violated. This is highly computationally inefficient for most private machine learning
use-cases, where running the algorithm a single time involves training a large model.

Recent work (Steinke et al., 2023) remove this limitation by proposing an elegant auditing method that
runs a differentially private training algorithm a single time. In particular, they rely on the randomness
of training data to obtain bounds on the false negative rates of the audit procedure. A key limitation
of the approach in Steinke et al. (2023) is that their audit procedure is sub-optimal in the sense that
there is a relatively large gap between the true privacy parameters of mainstream privacy-preserving
algorithms (e.g., Gaussian mechanism) and those reported by their auditing algorithm.

In this work, we propose a novel auditing procedure that is computationally efficient and accurate. Our
method requires only a single run of the privacy mechanism 1 and leverages the f -DP curve (Dong
et al., 2019), which allows for a more fine-grained accounting of privacy than the traditional reliance
on ϵ, δ parameters. By doing so, we provide a tighter empirical assessment of privacy.

We experiment with our approach on both simple Gaussian mechanisms as well as a model trained
on real data witth DP-SGD. Our experiments show that our auditing procedure can significantly
outperform that of Steinke et al. (2023) (see Figure 1). This implies that better analysis may enable
relatively tight auditing of differentially privacy guarantees in a computationally efficient manner in
the context of large model training.

Technical overview: We briefly summarize the key technical components of our work and compare
it with that of Steinke et al. (2023). Their auditing procedure employed a game similar to a
membership inference process: the auditor selects a set of canaries and, for each canary, decides
whether to inject it into the training set with independent probability 0.5. Once model training is
completed, the auditor performs a membership inference attack to determine whether each canary
was included. The number of correct guesses made by the adversary in this setting forms a random
variable. The key technical contribution of Steinke et al. was to establish a tail bound on this random
variable for mechanisms satisfying (ϵ)-DP. Specifically, they demonstrated that the tail of this random
variable is bounded by that of a binomial distribution, binomial(n, p), where n is the number of
canaries and p = eϵ

eϵ+1 . To extend this analysis to approximate DP mechanisms, they further showed
that the probability of the adversary’s success exceeding this tail bound is at most O(n · δ).
Steinke et al. highlighted a limitation in their approach in auditing specific mechanisms, such as
the Gaussian mechanism. They correctly argue that simplifying the mechanism’s behavior to just
two parameters, (ϵ, δ) , results in sub-optimal auditing of specific mechanisms. In other words, the
effectiveness of membership inference attacks against the Gaussian mechanism differs significantly
from predictions based solely on the (ϵ, δ) parameters. To overcome this limitation, we propose
auditing the entire privacy curve of a mechanism, rather than focusing solely on (ϵ, δ). Our solution
involves three key technical steps:

1. We derive an upper bound on the adversary’s success in correctly guessing a specific canary
for mechanisms satisfying f -DP. This bound is an improved version of the result by Hayes
et al. (2023) for bounding training data reconstruction in DP mechanisms. However, this is
insufficient, as the adversary’s guesses could be dependent, potentially leading to correlated
successes (e.g., correctly or incorrectly guessing all samples).

2. To address the issue of dependency, we refine our analysis by defining pi as the probability
of the adversary making exactly i correct guesses. We derive a recursive relation that bounds
pi based on p1, . . . , pi−1. This recursive bound is the main technical novelty of our work.
To derive this bound, we consider two conditions: the adversary correctly guesses the first
canary or not. In the first case, we use our analysis from Step 1 to bound the probability of
making i− 1 correct guesses given that the first guess was correct. For the incorrect guess
case, we perform a combinatorial analysis to eliminate the condition. This analysis uses
the fact that shuffling of the canaries does not change the probabilities of making i correct
guesses. We note that it is crucial not to use the analysis of Step 1 for both cases. This
is because the analysis of Step 1 cannot be tight for both cases at the same time. Finally,

1In the context of privacy-preserving training of machine learning models, the privacy mechanism refers
to the training algorithm. Therefore, when we mention a single run, we are specifically referring to a single
execution of the training algorithm, not the inference algorithm.
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leveraging the convexity of trade-off functions and applying Jensen’s inequality, we derive
our final recursive relation. To the best of our knowledge, This combination of trade-off
function with shuffling is a new technique and could have broader applications.

3. Finally, we design an algorithm that takes advantage of the recursive relation to numerically
calculate an upper bound on the tail of the distribution. The algorithm is designed carefully
so that we do not need to invoke the result of step 2 for very small events.

We also generalize our analysis to a broader notion of canary injection and membership inference.
Specifically, we utilize a reconstruction game where the auditor can choose among k options for each
canary point, introducing greater entropy for each choice. This generalization allows for auditing
mechanisms with fewer canaries.

In the rest of the paper, we first introduce the notions of f -DP and explain what auditing based
on f -DP entails. We then present our two auditing procedures, which are based on membership
inference and reconstruction attacks (Section 2). In Section 3, we provide a tight analysis of our
audit’s accuracy based on f -DP curves. Finally, in Section 4, we describe the experimental setup
used to compare the bounds.

2 AUDITING f - DIFFERENTIAL PRIVACY

Auditing privacy involves testing a ”privacy hypothesis” about an algorithm M . Different mathemati-
cal forms can be used for a ”privacy hypothesis,” but they all share the common characteristic of being
about an algorithm/mechanism M . For example, one possible hypothesis is that applying SGD with
specific hyperparameters satisfies some notion of privacy. With this in mind, the privacy hypothesis
are often mathematical constraints on the sensitivity of the algorithm’s output to small changes in its
input. The most well-known definition among these is (approximate) differential privacy.
Definition 1. A mechanism M is (ϵ, δ)-DP if for all neighboring datasets S,S ′ with |S∆S ′| = 1
and all measurable sets T , we have Pr[M(S) ∈ T ] ≤ eϵ Pr[M(S ′) ∈ T ] + δ.

In essence, differential privacy ensures that the output distribution of the algorithm does not heavily
depend on a single data point. Based on this definition, one can hypothesize that a particular algorithm
satisfies differential privacy with certain ϵ and δ parameters. Consequently, auditing differential
privacy involves designing a test for this hypothesis. We will later explore the desired properties of
such an auditing procedure. However, at present, we recall a stronger notion of privacy known as
f -differential privacy.

Notation For a function f : X → R we use f̄ to denote the function f̄(x) = 1− f(x).
Definition 2. A mechanism M is f -DP if for all neighboring datasets S,S ′ and all |S∆S ′| = 1
measurable sets T we have

Pr[M(S) ∈ T ] ≤ f̄
(
Pr[M(S ′)] ∈ T ]

)
.

Note that this definition generalizes the notion of approximate differential privacy by allowing a
more complex relation between the probability distributions of M(S) and M(S′). The following
proposition shows how one can express approximate DP as an instantiation of f -DP.
Proposition 3. A mechanism is (ϵ, δ)-DP if it is f -DP with respect to f̄(x) = eϵ · x+ δ.

Although the function f could be an arbitrary function, without loss of generality, we only consider a
specific class of functions in this notion.
Remark 4. Whenever we say that a mechanism satisfies f -DP, we implicitly imply that f is a valid
trade-off function . That is, f is defined on domain [0, 1] and has a range of [0, 1]. Moreover, f is a
decreasing and convex with f(x) ≤ 1− x for all x ∈ [0, 1]. We emphasize that this is without loss of
generality. That is, if a mechanism is f -DP for a an arbitrary function f : [0, 1] → [0, 1], then it is
also f ′-DP for valid trade-off function f ′ with f ′(x) ≤ f(x) for all x ∈ [0, 1] (See Proposition 2.2
in Dong et al. (2019)).

Definition 5 (Order of f -DP curves). For two trade-off functions f1 and f2, we say f1 is more private
than f2 and denote it by f1 ≥ f2 iff f1(x) ≥ f2(x) for all x ∈ [0, 1]. Also, for a family of trade-off
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functions F , we use maximal(F ) to denote the set of maximal elements w.r.t to the privacy relation.
Note that F could be a partial ordered set, and the set of maximal points could have more than a
single element.

Now that we have defined our privacy hypothesis, we can turn our attention to auditing these notions.

Definition 6 (Auditing f -DP). An audit procedure takes the description of a mechanism M, a
trade-off function f , and outputs a bit that determines whether the mechanism satisfies f -DP or not.
We define the audit procedure as a two-step procedure.

• game : M → O, In this step, the auditor runs a potentially randomized experiment/game
using the description of mechanism M ∈M and obtains some observation o ∈ O.

• evaluate : O × F → {0, 1}, In this step, the auditor will output a bit b based on an
observation o and a trade-off function f . This audit operation tries to infer whether the
observation o is “likely” for a mechanism that satisfies f -DP.

The audit procedure is ψ-accurate if for all mechanism M that satisfy f -DP, we have

Pr
o←game(M)

[evaluate(o, f) = 1] ≥ ψ.

Note that we are defining the accuracy only for positive cases. This is the only guarantee we can get
from running attacks. For guarantees in negative cases, we need to perform a proper accounting of
the mechanism (Wang et al., 2023).

Auditing f -DP vs DP: f -DP can be viewed as a collection of DP parameters, where instead of
considering (ϵ, δ) as fixed scalars, we treat ϵ as a function of δ. For any δ ∈ [0, 1], there exists
an ϵ(δ) such that the mechanism satisfies (ϵ(δ), δ)-DP. The f -DP curve effectively represents the
entire privacy curve rather than a single (ϵ, δ) pair. Thus, auditing f -DP can be expected to be more
effective, as there are more constraints that need to be satisfied. A naive approach for auditing f -DP
is to perform an audit for approximate DP at each (ϵ, δ) value along the privacy curve, rejecting if
any of the audits fail. However, this leads to suboptimal auditing performance. First, the auditing
analysis involves several inequalities that bound the probabilities of various events using differential
privacy guarantees. The probability of these events could take any number between [0, 1]. Using
a single (ϵ, δ) value to bound the probability of all these events cannot be tight because the linear
approximation of privacy curve is tight in at most a single point. Hence, the guarantees of (ϵ, δ)-DP
cannot be simultaneously tight for all events. However, with f -DP, we can obtain tight bounds on
the probabilities of all events simultaneously. Second, For each (ϵ, δ) we have a small possibility of
incorrectly rejecting the privacy hypothesis. So if we audit privacy for (ϵ(δ), δ) independently, we
will reject any privacy hypothesis with probability 1.0. This challenge can be potentially resolved by
using correlated randomness, but that requires a new analysis.

Next, we formally define the notion of empirical privacy (Nasr et al., 2021) based on an auditing
procedure. This notion essentially provides the best privacy guarantee that is not violated by auditors’
observation from a game setup.

Definition 7 (Empirical Privacy). Let (game, evaluate) be an audit procedure. We define the
empirical privacy random variable for a mechanism M, w.r.t a family F of trade-off functions, to be
the output of the following process. We first run the game to obtain observation o = game(M). We
then construct

Fo = maximal({f ∈ F ; evaluate(o, f) = 1})

where the maximal set is constructed according to Definition 5. Then, the empirical privacy of the
mechanism at a particular δ is defined as

ϵ(δ) = min
f∈Fo

max
x∈[0,1]

1− f(x)− δ

x
.

Note that the empirical privacy ϵ(δ) is a function of the observation o. Since, o itself is a random
variable, then ϵ(δ) is also a random variable.
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How to choose the family of trade-off functions? The family of trade-off functions should be
chosen based on the expectations of the true privacy curve. For example, if one expects the privacy
curve of a mechanism to be similar to that of a Gaussian mechanism, then they would choose the set
of all trade-off functions imposed by a Gaussian mechanism as the family. For example, many believe
that in the hidden state model of privacy (Ye & Shokri, 2022), the final model would behave like a
Gaussian mechanism with higher noise than what is expected from the accounting in the white-box
model (where we assume we release all the intermediate models). Although we may not be able to
prove this hypothesis , we can use our framework to calculate the empirical privacy, while assuming
that the behavior of the final model would be similar to that of a Gaussian mechanism.

2.1 GUESSING GAMES

Here, we introduce the notion of guessing games which is a generalization of membership inference
attacks (Nasr et al., 2023), and closely resembles the reconstruction setting introduced in Hayes et al.
(2023).
Definition 8. Consider a mechanism M : [k]m → Θ. In a guessing game we first sample an input
dataset u ∈ [k]m from an arbitrary distribution. We run the mechanism to get θ ∼ M(u). Then a
guessing adversary A : Θ → ([k] ∪ {⊥})m tries to guess the input to the mechanism from the output.
We define

• the number of guesses by c′ =
∑m

i=1 I
(
A(θ)i ̸= ⊥

)
• and the number of correct guesses by c =

∑m
i=1 I

(
A(θ)i = ui

)
.

Then we output (c, c′) as the output of the game.

These guessing games are integral to our auditing strategies. We outline two specific ways to
instantiate the guessing game. The first procedure is identical to that described in the work of Steinke
et al. (2023) and resembles membership inference attacks. The second auditing algorithm is based on
the reconstruction approach introduced by Hayes et al. (2023). In Section 3, we present all of our
results in the context of the general notion of guessing games, ensuring that our findings extend to
both the membership inference and reconstruction settings.

Auditing by membership inference: Algorithm 1 describes a game setup based on membership
inference attacks. In this setup, we have a fixed training set T and a set of canaries C. We first sample
a subset S of the canaries using poisson sampling. Then we run the mechanism M on T ∪ S to
get a model θ ∼ M(T ∪ S). Then the adversary A inspects θ and tries to find examples that were
present in S . Observe that this procedure is a guessing game with k = 2 and m = |C|. This is simply
because the adversary is guessing between two choices for each canary, it is either included or not
included. Note that this procedure is modular, we can use any T and C for the training set and canary
set. We can also use any attack algorithm A.

We note that membership inference attacks have received a lot of attention recently (Homer et al.,
2008; Shokri et al., 2017; Leino & Fredrikson, 2020; Bertran et al., 2024; Hu et al., 2022; Matthew
et al., 2023; Duan et al., 2024; Zarifzadeh et al., 2023). These attack had a key difference from our
attack setup and that is the fact that there is only a single example that the adversary is trying to make
the inference for. Starting from the work of (Shokri et al., 2017), researchers have tried to improve
attacks in various settings (Ye et al., 2022; Zarifzadeh et al., 2023). For example, using calibration
techniques has been an effective way to improve membership inference attacks (Watson et al., 2021;
Carlini et al., 2022). Researchers have also changed their focus from average case performance of the
attack to the tails of the distribution and measured the precision at low recall values (Ye et al., 2022;
Nasr et al., 2021).

A substantial body of research has also explored the relationship between membership inference
attacks and differential privacy (Sablayrolles et al., 2019; Mahloujifar et al., 2022; Balle et al., 2022;
Bhowmick et al., 2018; Stock et al., 2022; Balle et al., 2022; Guo et al., 2022; Kaissis et al., 2023;
2024), using this connection to audit differential privacy (Steinke et al., 2024a; Pillutla et al., 2024;
Jagielski et al., 2020; Ding et al., 2018; Bichsel et al., 2018; Nasr et al., 2021; 2023; Steinke et al.,
2024b; Tramer et al., 2022; Bichsel et al., 2021; Lu et al., 2022; Andrew et al., 2023; Cebere et al.,
2024; Chadha et al., 2024). Some studies have investigated empirical methods to prevent membership
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inference attacks that do not rely on differential privacy (Hyland & Tople, 2019; Jia et al., 2019; Chen
& Pattabiraman, 2023; Li et al., 2024; Tang et al., 2022; Nasr et al., 2018). An intriguing avenue
for future research is to use the concept of empirical privacy to compare the performance of these
empirical methods with provable methods, such as DP-SGD.

Algorithm 1 Membership inference in one run game

Input: Oracle access to a mechanism M(·), A training dataset T , An indexed canary set
C = {xi; i ∈ [m]}, An attack algorithm A.

1: Set m = |C|
2: Sample u = (u1, . . . , um) ∼ Bernoulli(0.5)m, a binary vector where ui = 1 with probability

0.5.
3: Let S = {C[ui];ui = 1}i∈[m], the subset of selected elements in C.
4: Run mechanism M on T ∪ S to get output θ.
5: Run membership inference attack A on θ to get set of membership predictions v = (v1, . . . , vm)

which is supported on {0, 1,⊥}m.
6: Count c, the number of correct guesses where ui = vi and c′ the total number of guesses where
vi ̸= ⊥.

7: return (c, c′).

Auditing by reconstruction: We also propose an alternative way to perform auditing by reconstruc-
tion attacks. This setup starts with a training set St, similar to the membership inference setting. Then,
we have a family of m canary sets {Si

c; i ∈ [m]} where each Si
c contains k distinct examples. Before

training, we construct a set Ss of size m by uniformly sampling an example from each Si
c. Then, the

adversary tries to find out which examples were sampled from each canary set Si
c by inspecting the

model. We recognize that this might be different from what one may consider a true “reconstruction
attack”, because the adversary is only performing a selection. However, if you consider the set size to
be arbitrary large, and the distribution on the set to be arbitrary, then this will be general enough to
cover various notions of reconstruction. We also note that Hayes et al. (2023) use the same setup to
measure the performance of the reconstruction attacks.

Algorithm 2 Reconstruction in one run game

Input: Oracle access to a mechanism M(·), A training dataset T , number of canaries m, number
of options for each canary k, a matrix of canaries C = {xij}i∈[m],j∈[k], an attack algorthm A.

1: Let u = (u1, . . . , um) be a vector uniformly sampled from [k]m.
2: Let S = {xiui

}i∈[m].
3: Run mechanism M on S ∪ T to get output θ.
4: Run a reconstruction attack A on θ to get a vector v = (v1, . . . , vm) which is a vector in

([k] ∪ {⊥})m.
5: Count c the number of coordinates where ui = vi and c′ the number of coordinates where
vi ̸= ⊥.

6: return (c, c′).

3 IMPLICATIONS OF f -DP FOR GUESSING GAMES

In this section, we explore the implications of f -DP for guessing games. Specifically, we focus on
bounding the probability of making more than c correct guesses for adversaries that make at most c′
guesses. We begin by stating our main theorem, followed by an explanation of how it can be applied
to audit the privacy of a mechanism.

Theorem 9. [Bounds for adversary with bounded guesses] LetM : [k]m → Θ be a f -DP mechanism.
Let u be a random variable uniformly distributed on [k]m. Let A : Θ → ([k] ∪ {⊥})m be a guessing

6
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adversary which always makes at most c′ guesses, that is

∀θ ∈ Θ,Pr
[( m∑

i=1

I
(
A(θ)i ̸= ⊥

))
> c′

]
= 0,

and let v ≡ A(M(u)). Define pi = Pr
[(∑

j∈[m] I(uj = vj)
)
= i

]
. For all subset of indices

T ⊆ [c′], we have ∑
i∈T

i

m
pi ≤ f̄(

1

k − 1

∑
i∈T

c′ − i+ 1

m
pi−1).

This Theorem, which we consider to be our main technical contribution, provides a nice invariant
that bounds the probability pi (probability of making exactly i correct guesses) based on the value of
other pjs. Imagine Pf to be a set of vectors p = (p1, . . . , pc′) that could be realized for an attack on
a f -DP mechanism. Theorem 9 significantly confines this set. However, this still does not resolve the
auditing task. We are interested in bounding maxp∈Pf

∑c′

i=c pi, the maximum probability that an
adversary can make more than c correct guesses for an f -DP mechanism. Next, we show how we
can algorithmically leverage the limitations imposed by Theorem 9 and calculate an upper bound on
maxp∈Pf

∑c′

i=c pi.

3.1 NUMERICALLY BOUNDING THE TAIL

In this subsection, we specify our procedure for bounding the tail of the distribution and hence
the accuracy of our auditing procedure. Our algorithm needs oracle access to f and f̄ and decides
an upper bound on the probability of an adversary making c correct guesses in a guessing game
with alphabet size k and a mechanism that satisfies f -DP. This algorithm relies on the confinement
imposed by Theorem 9. Note that Algorithm 3 is a decision algorithm, it takes a value τ and decide
if the probability of making more than c correct guesses is less than or equal to τ . We can turn this
algorithm to a estimation algorithm by performing a binary search on the value of τ . However, for
our use cases, we are interested in a fixed τ . This is because we (similar to (Steinke et al., 2023))
want to set the accuracy of our audit to be a fixed value such as 0.95.

Algorithm 3 Numerically deciding an upper bound probability of making more than c correct guesses

Input: Oracle access to f̄ and f̄−1, number of guesses c′, number of correct guesses c, number
of samples m, alphabet size k, probability threshold τ (default is τ = 0.05).

1: ∀0 ≤ i ≤ c set h[i] = 0, and r[i] = 0.
2: set r[c] = τ · c

m .
3: set h[c] = τ · c′−c

m .
4: for i ∈ [c− 1, . . . , 0] do
5: h[i] = (k − 1)f̄−1

(
r[i+ 1]

)
6: r[i] = r[i+ 1] + i

c′−i ·
(
h[i]− h[i+ 1]

)
.

7: end for
8: if r[0] + h[0] ≥ c′

m then
9: Return True; (Probability of c correct guesses (out of c′) is less than τ ).

10: else
11: Return False; (Probability of having c correct guesses (out of c′) could be more than τ ).
12: end if

Theorem 10. If Algorithm 3 returns True on inputs f̄ , k,m, c, c′ and τ , then for any f -DP mechanism
M : [k]m → Θ, any guessing adversary A : Θ → ([k] ∪ {⊥})m with at most c′ guesses, defining u
to be uniform over [k]m, and setting v ≡ A

(
M(u)

)
, we have Pr[

(∑m
i=1 I(ui = vi)

)
≥ c] ≤ τ.

In a nutshell, this algorithm tries to obtain an upper bound on the sum pc + pc+1 + . . . , pc′ . We
assume this probability is greater than τ , and we obtain lower bound on pc−1 + pc + · · ·+ pc′ based
on this assumption. We keep doing this recursively until we have a lower bound on p0 + · · ·+ pc′ .
If this lower bound is greater than 1, then we have a contradiction and we return true. The detailed
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proof of this Theorem is involved and requires careful analysis. We defer the full proof of Theorem
to appendix.

Auditing f -DP with Algorithm 3: When auditing the f -DP for a mechanism, we assume we have
injected m canaries, and ran an adversary that is allowed to make c′ guesses and recorded that the
adversary have made c correct guesses. In such scenario, we will reject the hypothesized privacy of
the mechanism if the probability of this observation is less than a threshold τ , which we by default
set to 0.05. To this end, we just call Algorithm 3 with parameters c, c′, m, τ = 0.05 and f . Then if
the algorithm returns True, we will reject the privacy hypothesis and approve it otherwise.

Empirical privacy: Although auditing in essence is a hypothesis testing, previous work has used
auditing algorithms to calculate empirical privacy as defined in definition 7. In this work, we follow
the same route. For simplicity, we only consider an ordered set of privacy hypotheses h1, . . . , hw as
our family of f -DP curves. These sets are ordered in their strength, meaning that any mechanism
that satisfies hi, would also satisfy hj for all j < i. Then, we would report the strongest privacy
hypothesis that passes the test as the empirical privacy of the mechanism.

4 EXPERIMENTS

Most of our experiments are conducted in an idealized setting, similar to that used in Steinke et al.
(2023), unless otherwise stated. In this setting, the attack success rate is automatically calculated to
simulate the expected number of correct guesses by an optimal adversary (Details of the idealized
setting are provided in Algorithm 4 in Appendix). We then use this expected number as the default
value for the number of correct guesses to derive the empirical ϵ. More specifically, as specified
in Definition 6, we instantiate our auditing with a game and evaluation setup. We use Algorithm 4
in Appendix as our game setup. This algorithm returns the number of guesses and the number of
correct guesses as the observation from the game. Then, we use Algorithm 3 as our evaluation setup
to audit an f -DP curve based on the observation from Algorithm 4. Note that in our comparison with
the auditing of Steinke et al., we always use the same membership inference game setup (k = 2) as
defined in their work. This ensures that our comparison is only on the evaluation part of the audit
procedure.

In all experiments, we use empirical ϵ as the primary metric for evaluating our bounds. As described
in Section 3.1 , we need an ordered set of f -DP curves to obtain empirical privacy. In our experiments,
we use f -DP curves for Gaussian mechanisms with varying standard deviations (this forms an ordered
set because the f -DP curve of a Gaussian mechanism with a higher standard deviation dominates
that of a lower standard deviation). For sub-sampled Gaussian mechanisms, the ordered set consists
of f -DP curves for sub-sampled Gaussian mechanisms with the given sub-sampling rate and number
of steps and different noise standard deviations.

4.1 COMPARISON WITH STEINKE ET AL. (2023)

In this section, we evaluate our auditing method for membership inference in an idealized setting,
using the work of Steinke et al. (2023) as our main baseline. We compare our approach directly to
their work, which operates in the same setting as ours.

Simple Gaussian Mechanism: In the first experiment (Figure 1), we audit a simple Gaussian
mechanism, varying the standard deviations from [0.5, 1.0, 2.0, 4.0], resulting in different theoretical
ϵ values. We vary the number of canaries (m) from 102 to 107 for auditing, set the bucket size to
k = 2, and adjust the number of guesses (c′) for each number of canaries. For each combination of
m, c′, and each standard deviation, we calculate the expected number of correct guesses (c) using
Algorithm 4 (the idealized setting). We then audit all tuples of (m, c, c′) using the f -DP curves of the
Gaussian mechanism, selecting the c that achieves the highest empirical ϵ as the reported empirical ϵ
for m canaries at a given standard deviation.

We also apply the same setup for the auditing procedure of Steinke et al. (2023), differing only in
the way empirical privacy is calculated. Figure 1 demonstrates that our approach outperforms the
empirical privacy results from Steinke et al. Interestingly, while the bound in Steinke et al. (2023)
degrades as the number of canaries increases, our bounds continue to improve.
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Figure 1: Comparison between our empirical privacy lower bounds and that of Steinke et al. (2023)

Figure 2: Comparison with auditing pro-
cedure of Steinke et al. (2023) on audit-
ing CIFAR-10 in white-box setting using
gradient-based membership inference attacks.

Figure 3: Comparison with auditing proce-
dure of Steinke et al. (2023) on auditing
CIFAR-10 in black-box setting.

Experiments on CIFAR-10: We also run experiments on CIFAR-10 on a modified version of the
WRN16-4 (Zagoruyko & Komodakis, 2016) architecture, which substitutes batch normalization with
group normalization. We follow the setting proposed by Sander et al. (2023), which use custom
augmentation multiplicity (i.e., random crop around the center with 20 pixels padding with reflect,
random horizontal flip and jitter) and apply an exponential moving average of the model weights
with a decay parameter of 0.9999. We run white-box membership inference attacks by following
the strongest attack used in the work of Steinke et al. (2023), where the auditor injects multiple
canaries in the training set with crafted gradients. More precisely, each canary gradient is set to zero
except at a single random index (“Dirac canary” Nasr et al. (2023)). Note that in the white-box attack,
the auditor has access to all intermediate iterations of DP-SGD. The attack scores are computed as
the dot product between the gradient update during consecutive model iterates and the aggregated
gradients from dp-sgd. As done in the work of Steinke et al. (2023), we audit CIFAR-10 model with
m = 5, 000 canaries and all training points from CIFAR-10 n = 50, 000 for the attack. We set the
batch size to 4, 096, use augumented multiplicity of K = 16 and train for 2, 500 DP-SGD steps. For
ε = 8.0, δ = 10−5, we achieved 77% accuracy when auditing, compared to 80% without injected
canaries. Figure 2 shows the comparison between the auditing scheme by Steinke et al. (2023) with
ours for different values of theoretical ε. We are able to achieve tighter empirical lower bounds. We
also report the performance of the black-box attack, where the auditor does not control the training
pipeline and can only compute memberships scores (losses) from the final model. Figure 3 shows
how we are able to achieve tighter lower bounds compared to Steinke et al. (2023) where we set
m = 1, 000 and all training samples are used for auditing (m = n). This corresponds to the stronger
setup for the black-box auditor in Steinke et al. (2023).

Finally, we report the results of auditing the robust membership inference attack Zarifzadeh et al.
(2023) (RMIA), which to the best of our knowledge represents the State-of-The-Art (SoTA) black-
box membership inference attack on CIFAR-10 from the literature. We reproduce the results
in Zarifzadeh et al. (2023) with a non-private WideResNet model (with depth 28 and width 2)
for 100 training epochs on half of the dataset chosen at random resulting on a test accuracy of
92.2%. We run the low-cost black-box membership inference attack using 2 reference models

9
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in the offline setting Zarifzadeh et al. (2023). We audit with m = 5, 000 canaries and report
in Figure 4 the comparison between our scheme and Steinke et al. (2023) with different absten-
tion values. Our auditing method clearly outperforms Steinke et al. for all bounded guesses set-
tings, with higher empirical epsilon for larger abstentions values (i.e., smaller number of guesses).

Figure 4: Comparison with auditing procedure
of Steinke et al. (2023) on non-private model
trained on CIFAR-10 against black-box RMIA
method Zarifzadeh et al. (2023).

Why is our bound better better than Steinke
et al. (2023)? The bounds in Steinke et al. au-
dit approximate DP. That is, they take DP pa-
rameters (ϵ, δ) and prove an upper bound on the
probability of any adversary obtaining c′ correct
guesses out of c total guesses, given m canaries
available. For the case of δ = 0, their bound
is tight. For the case of δ > 0, however, they
need to define a set of undesirable events and
bound their collective probability. This incurs
an additional O(m · δ) in the probability. The
reason why their bounds start to degrade when
we increase m is this very fact. The m · δ term
starts to dominate and causes the empirical ep-
silon estimation to become worse. The reason
we do not observe this behavior is that we do
not use (ϵ, δ) to approximate the privacy curve,
we use the exact curve as is. As we know, the
linear approximation of privacy curve is optimal only in a single point for mechanisms that we are
interested in (e.g. the Gaussian mechanism). Namely, there is only a single probability p′ ∈ [0, 1]
where we have

p = Pr[M(D) ∈ E] and eϵ · p+ δ = Pr[M(D′) ∈ E].

Our bound is designed to avoid this issue. We derive a bound that uses the exact f -DP curve, which
ensures that for all probabilities p ∈ [0, 1] the upper bound on the blow-up of events of size p is tight.
Moreover, the way we invoke our Theorem 9 in our numerical estimation 3 is designed to apply the
bound on events that can be simultaneously tight. This way, our bound does not have the problem of
getting worse as the number of samples increases.

Note that this does not mean that there is no way to improve our bound. We still see some gap
between the empirical epsilon and the true epsilon. The reason for this, we believe, is in the way
numerical tail bound in Algorithm 10 is designed. In this algorithm, we make some relaxations that
can be a source of sub-optimality. Specifically, our analysis benefits from the fact that the expectation
of correct guesses, conditioned on the correct guesses being greater than c divided by the expectation
incorrect guesses conditioned on the same event is greater than c/c′. This step is not tight as we
cannot have a mechanism where the adversary makes exactly c correct guesses with probability
greater than 0, while making more than c correct guesses with probability exactly 0. For a more
interested reader, Equations 6 and 7 in the proof of Theorem 10 is a source of sub-optimality that
future work can resolve.

5 CONCLUSIONS AND LIMITATIONS

We introduce a new approach for auditing the privacy of algorithms in a single run using f -DP
curves. This method enables more accurate approximations of the true privacy guarantees, addressing
the risk of a ”false sense of privacy” that may arise from previous approximation techniques. By
leveraging the entire f -DP curve, rather than relying solely on point estimates, our approach provides
a more nuanced understanding of privacy trade-offs. This allows practitioners to make more informed
decisions regarding privacy-utility trade-offs in real-world applications. However, our approach
does not provide a strict upper bound on privacy guarantees but instead offers an estimate of the
privacy parameters that can be expected in practical scenarios. We also recognize that, despite the
improvements over prior work, we still observe a gap between the empirical and theoretical privacy
reported in the “one run” setting. Future work could focus on closing this gap to further enhance the
reliability of empirical privacy estimations.
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A PROOFS

A.1 PROOF OUTLINE FOR THEOREM 9

In this subsection, we outline the main ingredients we need to prove our Theorem 9. We also provide
the full proof for a simplified version of Theorem 9 using these ingredients. First, we have a Lemma
that bounds the probability of any event conditioned on correctly guessing a single canary.

Lemma 11. Let M : [k]m → Θ be a mechanism that satisfies f -DP. Also let A : Θ → ([k]∪ {⊥})m
be a guessing attack. Let u be a random variable uniformly distributed over [k]m and let v ≡
A
(
M(u)

)
. Then for any subset E ⊆ Θ we have

f
′′

k

(
Pr

[
M(u) ∈ E

])
≤ Pr

[
M(u) ∈ E and u1 = v1

]
≤ f

′

k

(
Pr

[
M(u) ∈ E

])
where

f ′k(x) = sup{α;α+ f(
x− α

k − 1
) ≤ 1} and f ′′k (x) = inf{α; (k − 1)f(α) + x− α) ≤ 1}.

This Lemma which is a generalization and an improvement over the main Theorem of (Hayes et al.,
2023), shows that the probability of an event cannot change too much if we condition on the success
of adversary on one of the canaries. Note that this Lemma immediately implies a bound on the
expected number of correct guesses by any guessing adversary (by just using linearity of expectation).
However, here we are not interested in expectations. Rather, we need to derive tail bounds. The proof
of Theorem 9 relies on some key properties of the f ′ and f ′′ functions defined in the statement of
Lemma 11. These properties are specified in the following Proposition and proved in the Appendix.

Proposition 12. The functions f ′k as defined in Lemma 11 is increasing and concave. The function
f ′′k as defined in Lemma 11 is increasing and convex.

Now, we are ready to outline the proof of a simplified variant of our Theorem 9 for adversaries that
make a guess on all canaries. This makes the proof much simpler and enables us to focus more on the
key steps in the proof.

Theorem 13 (Special case of 9). Let M : [k]m → Θ be a f -DP mechanism. Let u be a random
variable uniformly distributed on [k]m. Let A : Θ → [k]m be a guessing adversary and let v ≡
A(M(u)). Define pi = Pr

[
(
∑

j∈[m] I
(
uj = vj)

)
= i

]
. For all subset of indices T ⊆ [m], we have

∑
i∈T

i

m
pi ≤ f̄(

1

k − 1

∑
i∈T

m− i+ 1

m
pi−1)

Proof. Let us define a random variable t = (t1, . . . , tm) which is defined as ti = I(ui = vi) We
have

pc = Pr[

m∑
i=1

ti = c] = Pr[

m∑
i=2

ti = c− 1 and t1 = 1] + Pr[

m∑
i=2

ti = c and t1 = 0]

Now by Lemma 11 we have Pr[
∑m

i=2 ti = c− 1 and t1 = 1] ≤ f ′k(
∑m

i=2 ti = c− 1). This is a nice
invariant that we can use but

∑m
i=2 ti = c− 1 could be really small depending on how large m is. To

strengthen the bound we sum all pc’s for c ∈ T , and then apply the lemma on the aggregate. That is

∑
j∈T

pj =
∑
j∈T

Pr[

m∑
i=1

ti = j] =
∑
j∈T

Pr[

m∑
i=2

ti = j and t1 = 0] +
∑
j∈T

Pr[

m∑
i=2

ti = j − 1 and t1 = 1]

= Pr[

m∑
i=2

ti ∈ T and t1 = 0] + Pr[1 +

m∑
i=2

ti ∈ T and t1 = 1]
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Now we only use the inequality from Lemma 11 for the second quantity above. Using the inequality
for both probabilities is not ideal because they cannot be tight at the same time. So we have,

∑
j∈T

pj ≤ Pr[

m∑
i=2

∈ T and t1 = 0] + f ′k(Pr[1 +

m∑
i=2

ti ∈ T ]).

Now we use a trick to make this cleaner. We use the fact that this inequality is invariant to the order
of indices. So we can permute ti’s and the inequality still holds. We have,

∑
j∈T

pj ≤ E
π∼Π[m]

[Pr[

m∑
i=2

tπ(i) ∈ T and tπ(1) = 0]] + E
π∼Π[m]

[f ′k(Pr[1 +

m∑
i=2

tπ(i) ∈ T ])]

≤ E
π∼Π[m]

[Pr[

m∑
i=2

tπ(i) ∈ T and tπ(1) = 0]] + f ′k( E
π∼Π[m]

[Pr[1 +

m∑
i=2

tπ(i) ∈ T ]]).

Now we perform a double counting argument. Note that when we permute the order
∑m

i=2 tπ(i) =
j and tπ(1) = 0 counts each instance t1, . . . , tm with exactly j non-zero locations, for exactly
(m− j)× (m− 1)! times. Therefore, we have

E
π∼Π[m]

[Pr[

m∑
i=2

tπ(i) ∈ T and tπ(1) = 0]] =
∑
j∈T

m− j

m
pj .

With a similar argument we have,

E
π∼Π[m]

[Pr[1 +

m∑
i=2

tπ(i) ∈ T ]] =
∑
j∈T

m− j + 1

m
pj−1 +

j

m
pj .

Then, we have

∑
j∈T

pj ≤
∑
j∈T

m− j

m
pj + f ′k(

∑
j∈T

j

m
pj +

m− j + 1

m
pj−1).

And this implies

∑
j∈T

j

m
pj ≤ f ′k(

∑
j∈T

j

m
pj +

m− j + 1

m
pj−1).

And this, by definition of f ′k implies

∑
j∈T

j

m
pj ≤ f̄(

1

k − 1

∑
j∈T

m− j + 1

m
pj−1).

A.2 FULL PROOFS

Proof of Lemma 11. Let p = Pr[M(u) ∈ E and u1 = v1] and q = Pr[M(u) ∈ E]. We have

15
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p =
∑
i∈[k]

Pr[M(u) ∈ E and u1 = v1 = i]

=
1

k

∑
i∈[k]

Pr[M(u) ∈ E and v1 = i | u1 = i]

=
1

k

∑
i∈[k]

1

k − 1

( ∑
j∈[k]\{i}

Pr[M(u) ∈ E and v1 = i | u1 = i]
)

(By definition of f -DP) ≤ 1

k

∑
i∈[k]

1

k − 1

( ∑
j∈[k]\{i}

1− f
(
Pr[M(u) ∈ E and v1 = i | u1 = j]

))

(By convexity of f ) ≤ 1− f

1

k

∑
i∈[k]

1

k − 1

( ∑
j∈[k]\{i}

Pr[M(u) ∈ E and v1 = i | u1 = j])
)

= 1− f

 1

k − 1

∑
i∈[k]

( ∑
j∈[k]\{i}

1

k
Pr[M(u) ∈ E and v1 = i | u1 = j])

)
= 1− f

 1

k − 1

∑
i∈[k]

( ∑
j∈[k]\{i}

Pr[M(u) ∈ E and v1 = i and u1 = j])
)

= 1− f(
1

k − 1
Pr[M(u) ∈ E and u1 ̸= v1])

= 1− f(
q − p

k − 1
).

Similarly we have,

p =
∑
i∈[k]

Pr[M(u) ∈ E and u1 = v1 = i]

=
1

k

∑
i∈[k]

Pr[M(u) ∈ E and v1 = i | u1 = i]

=
1

k

∑
i∈[k]

1

k − 1

( ∑
j∈[k]\{i}

Pr[M(u) ∈ E and v1 = i | u1 = i]
)

(By definition of f -DP) ≥ 1

k

∑
i∈[k]

1

k − 1

( ∑
j∈[k]\{i}

f−1
(
1− Pr[M(u) ∈ E and v1 = i | u1 = j]

))

(By convexity of f ) ≥ f−1

1

k

∑
i∈[k]

1

k − 1

( ∑
j∈[k]\{i}

1− Pr[M(u) ∈ E and v1 = i | u1 = j])
)

= f−1

 1

k − 1

∑
i∈[k]

( ∑
j∈[k]\{i}

1

k
(1− Pr[M(u) ∈ E and v1 = i | u1 = j]))

)
= f−1

 1

k − 1

∑
i∈[k]

( ∑
j∈[k]\{i}

Pr[M(u) ∈ E and v1 = i and u1 = j])
)

= f−1(
1

k − 1
(1− Pr[M(u) ∈ E and u1 ̸= v1]))

= f−1(
1− q + p

k − 1
).

This implies that,
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f(p) · (k − 1) + q − p ≤ 1

Proof of Proposition 12. The function is increasing simply because f is decreasing. We now prove
concavity. Let α1 = fk(x1) and α2 = fk(x2). By definition of fk we have

α1 + f(
x1 − α1

k − 1
) ≤ 1

and
α2 + f(

x2 − α2

k − 1
) ≤ 1.

Averaging these two we get,

α1 + α2

2
+
f(x1−α1

k−1 ) + f(x2−α2

k−1 )

2
≤ 1

By convexity of f we have

α1 + α2

2
+ f(

x1+x2

2 − α1+α2

2

k − 1
) ≤ 1

Therefore, by definition of f ′k, we have f ′k(
x1+x2

2 ) ≥ α1+α2

2 . Similarly, f ′′k in increasing just because
f is decreasing. And assuming α1 = fk(x1) and α2 = fk(x2) we have

f ′′k (
x1 + x2

2
) ≤ α1 + α2

2

which implies f ′′k is convex.

Proof of Theorem 9. Instead of working with an adversary with c′ guesses, we assume we have an
adversary that makes a guess on all m inputs, however, it also submits a vector q ∈ {0, 1}m, with
exactly c′ 1s and m − c′ 0s. So the output of this adversary is a vector v ∈ [k]m and a vector
q ∈ {0, 1}m. Then, only correct guesses that are in locations that q is non-zero is counted. That is, if
we define a random variable t = (t1, . . . , tm) as ti = I(ui = vi) then we have

pc = Pr[

m∑
i=1

ti · qi = c]

= Pr[

m∑
i=2

ti = c− 1 and t1 = 1 and q1 = 1] + Pr[

m∑
i=2

ti = c and t1 · q1 = 0]

Now by Lemma 11 we have

Pr[

m∑
i=2

ti = c− 1 and t1 = 1 and q1 = 1] ≤ f ′k(

m∑
i=2

ti = c− 1 and q1 = 1).

This is a nice invariant that we can use but
∑m

i=2 ti = c− 1 could be really small depending on how
large m is. To strengthen the bound we sum all pc’s for c ∈ T , and then apply the lemma on the
aggregate. That is∑

j∈T
pj =

∑
j∈T

Pr[

m∑
i=1

ti = j]

=
∑
j∈T

Pr[

m∑
i=2

ti = j and t1 · q1 = 0] +
∑
j∈T

Pr[
m∑
i=2

ti = j − 1 and t1 = 1 and q1 = 1]

= Pr[

m∑
i=2

ti ∈ T and t1 · q1 = 0] + Pr[1 +

m∑
i=2

ti ∈ T and t1 = 1 and q1 = 1]
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Now we only use the inequality from Lemma 11 for the second quantity above. Using the inequality
for both probabilities is not ideal because they cannot be tight at the same time. So we have,∑

j∈T
pj ≤ Pr[

m∑
i=2

∈ T and t1 · q1 = 0] + f ′k(Pr[1 +

m∑
i=2

ti ∈ T and q1 = 1]).

Now we use a trick to make this cleaner. We use the fact that this inequality is invariant to the order
of indices. So we can permute ti’s and the inequality still holds. We have,∑
j∈T

pj ≤ E
π∼Π[m]

[Pr[

m∑
i=2

tπ(i) ∈ T and tπ(1) · qπ(1) = 0]] + E
π∼Π[m]

[f ′k(Pr[1 +

m∑
i=2

tπ(i) ∈ T ])]

≤ E
π∼Π[m]

[Pr[

m∑
i=2

tπ(i) ∈ T and tπ(1) = 0]] + f ′k( E
π∼Π[m]

[Pr[1 +

m∑
i=2

tπ(i) ∈ T and qπ(1) = 1]]).

Now we perform a double counting argument. Note that when we permute the order
∑m

i=2 tπ(i) =
j and tπ(1) = 0 counts each instance t1, . . . , tm with exactly j non-zero locations, for exactly
(m− j)× (m− 1)! times. Therefore, we have

E
π∼Π[m]

[Pr[

m∑
i=2

tπ(i) · qπ(i) ∈ T and tπ(1) · qπ(i) = 0]] =
∑
j∈T

m− j

m
pj .

With a similar argument we have,

E
π∼Π[m]

[Pr[1 +

m∑
i=2

tπ(i) · qπ(i) ∈ T and qπ(1) = 1]] =
∑
j∈T

c′ − j + 1

m
pj−1 +

j

m
pj .

Then, we have ∑
j∈T

pj ≤
∑
j∈T

m− j

m
pj + f ′k(

∑
j∈T

j

m
pj +

c′ − j + 1

m
pj−1)

=
∑
j∈T

m− j

m
pj + f ′k(

∑
j∈T

j

m
pj +

c′ − j + 1

m
pj−1).

And this implies ∑
j∈T

j

m
pj ≤ f ′k(

∑
j∈T

j

m
pj +

c′ − j + 1

m
pj−1).

And this, by definition of f ′k implies∑
j∈T

j

m
pj ≤ f̄(

1

k − 1

∑
j∈T

c′ − j + 1

m
pj−1).

Proof of Theorem 10. To prove Theorem 10, we first state and prove a lemma which is consequence
of Theorem 9.

Lemma 14. For all c ≤ c′ ∈ [m] let us define

αc =

c′∑
i=c

i

m
pi and βc =

c′∑
i=c

c′ − i

m
pi

We also define a family of functions r = {ri,j : [0, 1] × [0, 1] → [0, 1]}i≤j∈[m] and h = {hi,j :
[0, 1] → [0, 1]} that are defined recursively as follows.
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∀i ∈ [m] : ri,i(α, β) = α and hi,i(α, β) = β and for all i < j we have

hi,j(α, β) = (k − 1)f̄−1
(
ri+1,j(α, β)

)
ri,j(α, β) = ri+1,j(α, β) +

i

c′ − i
(hi,j(α, β)− hi+1,j(α, β))

Then for all i ≤ j we have
αi ≥ ri,j(αj , βj) and βi ≥ hi,j(αj , βj)

Moreover, for i < j, ri,j and hi,j are increasing with respect to their first argument and decreasing
with respect to their second argument.

Proof of Lemma 14. We prove this by induction on j − i. For j − i = 0, the statement is trivially
correct. We have

hi,j(αj , βj) = (k − 1)f̄−1(ri+1,j(αj , βj)).
By induction hypothesis, we have ri+1,j(αj , βj) ≤ αi+1. Therefore we have

hi,j(αj , βj) ≤ (k − 1)f̄−1(αi+1). (1)
Now by invoking Theorem 9, we have

αi+1 ≤ f̄(
βi

k − 1
).

Now since f̄ is increasing, this implies
(k − 1)f̄−1(αi+1) ≤ βi (2)

Now putting, inequalities 1 and 2 together we have hi,j(αj , βj) ≤ βi. This proves the first part of
the induction hypothesis for the function h. Also note that hi,j is increasing in its first component
and decreasing in the second component by invoking induction hypothesis and the fact that f̄−1 is
increasing. Now we focus on function ri,j . First note that there is an alternative form for ri,j by
opening up the recursive relation. Let γz = z

c′−z − z−1
c′−z+1 . We have ,

ri,j(α, β) = rj,j(α, β) +
i

c′ − i
hi,j(α, β)−

j − 1

c′ − j + 1
hj,j(α, β) +

j−1∑
z=i+1

γzhz,j(α, β)

= rj,j(α, β) +
i

c′ − i
hi,j(α, β)−

j

c′ − j
hj,j(α, β) +

j∑
z=i+1

γzhz,j(α, β)

= α− j

c′ − j
β +

i

c′ − i
hi,j(α, β) +

j∑
z=i+1

γzhz,j(α, β). (3)

Now we show that for all i we have

αi =
i

c′ − i
βi +

m∑
z=i+1

γzβz. (4)

This is because we have

αi −
i

c′ − i
βi =

c′∑
z=i+1

(
z

m
− i(c′ − z)

(c′ − i)m
)pz.

On the other hand we have
m∑

z=i+1

γzβz =

m∑
z=i+1

(

z∑
z′=i+1

γz′)
c′ − z

m
pz

=

m∑
z=i+1

(
z

c′ − z
− i

c′ − i
)
c′ − z

m
pz

=

m∑
z=i+1

(
z

m
− i(c′ − z)

(c′ − i)m
)pz
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and this shows that Equation 4 is correct. Therefore for all i < j we have

αi − αj =
i

c′ − i
βi −

j

c′ − j
βj +

j∑
z=i+1

γzβz

Now, using the induction hypothesis for h we have,

αi ≥ αj +
i

c′ − i
hi,j(αj , βj)−

j

c′ − j
βj +

j∑
z=i+1

γzhz,j(αj , βj). (5)

Now verify that the right hand side of Equation 5 is equal to ri,j(αj , βj) by the formulation of
Equation 3

Also, using the induction hypothesis, we can observe that the right hand side of 3 is increasing in αj

and decreasing in βj because all terms there are increasing in αj and decreasing in βj .

This lemma enables us to prove that algorithm 3 is deciding a valid upper bound on the probability
correctly guessing c examples out of c′ guesses. To prove this, assume that the probability of such
event is equal to τ ′, Note that this means αc + βc =

c′

mτ
′. Also note that

αc

βc
≥ c

c′ − c
(6)

therefore, we have

αc ≥
c

m
τ ′ (7)

and βc ≤ c′−c
m τ ′. Therefore, using Lemma 11 we have α0 ≥ r0,c(

c
mτ
′, c

′−c
m τ ′) and β0 ≥

h0,c(
c
mτ
′, c

′−c
m τ ′).

Now we prove a lemma about the function si,j(τ) = hi,j(
c
mτ,

c′−c
m τ) + ri,j(

c
mτ,

c′−c
m τ).

Lemma 15. the function si,j(τ) = hi,j(
c
mτ,

c′−c
m τ) + ri,j(

c
mτ,

c′−c
m τ) is increasing in τ for i <

j ≤ c.

Proof. To prove this, we show that for all i < j ≤ c both ri,j( c
mτ,

c′−c
m τ) and hi,j( c

mτ,
c′−c
m τ) are

increasing in τ . We prove this by induction on j − i. For j − i = 1, we have

hi,i+1(
c

m
τ,
c′ − c

m
τ) = (k − 1)f̄−1(

c

m
τ).

We know that f̄−1 is increasing, therefore hi,i+1(
c
mτ,

c′−c
m τ) is increasing in τ as well. For ri,i+1

we have

ri,i+1(
c

m
τ,
c′ − c

m
τ) =

c

m
τ +

i

c′ − i
(hi,i+1(

c

m
τ,
c′ − c

m
τ)− c′ − c

m
τ)

So we have

ri,i+1(
c

m
τ,
c′ − c

m
τ) =

c(c′ − i)− i(c′ − c)

m(c′ − i)
τ +

i

c′ − i
hi,i+1(

c

m
τ,
c′ − c

m
τ)

=
(c− i)c′

m(c′ − i)
τ +

i

c′ − i
hi,i+1(

c

m
τ,
c′ − c

m
τ).

We already proved that hi,i+1(
c
mτ,

c′−c
m τ) is increasing in τ . We also have (c−i)c′

m(c′−i) > 0, since i < c.
Therefore

ri,i+1(
c

m
τ,
c′ − c

m
τ)

is increasing in τ . So the base of induction is proved. Now we focus on j − i > 1. For hi,j we have

hi,j(
c

m
τ,
c′ − c

m
τ) = (k − 1)f̄−1(ri+1,j(

c

m
τ,
c′ − c

m
τ).
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By the induction hypothesis, we know that ri+1,j(
c
mτ,

c′−c
m τ) is increasing in τ , and we know that

f̄−1 is increasing, therefore, hi,j( c
mτ,

c′−c
m τ) is increasing in τ .

For ri,j , note that we rewrite it as follows

ri,j(α, β) = α− j

c′ − j
β +

j−1∑
z=i

λz · hz,j(α, β)

where λz = ( z+1
c′−z−1 − z

c′−z ) ≥ 0. Therefore, we have

ri,j(
c

m
τ,
c′ − c

m
τ) = τ(

c

m
− (c′ − c)j

m(c′ − j)
) +

j−1∑
z=i

λz · hz,j(
c

m
τ,
c′ − c

m
τ)

= τ
c′(c− j)

m(c′ − j)
+

j−1∑
z=i

λz · hz,j(
c

m
τ,
c′ − c

m
τ).

Now we can verify that all terms in this equation are increasing in τ , following the induction
hypothesis and the fact that λz > 0 and also j ≤ c.

Now using this Lemma, we finish the proof. Note that we have α0 + β0 = c′

m .

So assuming that τ ′ ≥ τ , then we have

c′

m
= α0 + β0 ≥ s0,c(τ

′) ≥ s0,c(τ).

The last step of algorithm checks if s0,c ≥ c′

m and it concludes that τ ′ ≤ τ if that’s the case, because
s0,c is increasing in τ . This means that the probability of having more than c guesses cannot be more
than τ .

B ABLATION EXPERIMENTS

Figure 5: Effect of bucket size on the empirical lower bounds for reconstruction attack (Gaussian
mechanism with standard deviation 0.6). Left: 10,000 canaries with bucket size up-to 5000. Right:
100 canaries with bucket-size up-to 50.

Reconstruction attacks: To show the effect of the bucket size (k) on the auditing performance, in
Figure 5, we change the number of examples in the two different setups. In first setup we use 10,000
canaries and change the bucket size from 50 to 5000. In the other setup we only use 100 canaries and
change the bucket-size from 3 to 50. Note that in these experiments, we do not use abstention and
only consider adversaries that guess all examples.
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Figure 6: Effect of number of guesses (Gaussian
mechanism with standard deviation 1.0)

Figure 7: Effect of number of guesses (Gaussian
mechanism with standard deviation 2.0)

Figure 8: Effect of number of guesses (Gaussian
mechanism with standard deviation 4.0)

Figure 9: Effect of number of guesses (Gaussian
mechanism with standard deviation 0.5)

Figure 10: Idealized setting for different val-
ues of δ and confidence levels for bounds of
Steinke et al. (2023).

Figure 11: Idealized setting for different val-
ues of δ and confidence levels for our bounds.

Effect of number of guesses In Figures 6–9, we compare the theoretical upper bound, our lower
bound and the bound of Steinke et al. lower bound with varying number of guesses. In total, we
have m = 107 canaries. The number of correct guesses is determined by using Algorithm 4 (the
idealized setting). Then we use our and Steinke et al. (2023)’s auditing with the resulting numbers
and report the empirical ϵ. As we can see, both our and Steinke et al’s auditing procedure achieve the
best auditing performance for small number of guesses. This shows the importance of abstention in
auditing.

A curious reader might wonder why the number of guesses has such a big impact on empirical privacy.
Essentially, our analysis involves estimating how many correct guesses an adversary can make when
given a certain number of attempts. We focus on specific percentiles of these distributions. The
accuracy of our empirical privacy estimates can vary significantly based on how much the number
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of correct guesses fluctuates, which is influenced by how many guesses we allow the adversary to
make. To explain further, consider a random variable representing the ratio of correct guesses (c) to
total guesses (c′). If we reduce the number of guesses the variance of this ratio tends to decrease
because the ratio approaches 1 (the adversary can make more correct guesses when we decrease c′).
Conversely, if we increase the number of guesses, the variance can also decrease because having more
guesses generally leads to a more stable average, owing to the law of large numbers. This balance
makes the number of guesses a crucial factor to optimize for the best estimation of empirical privacy.

Varying δ and confidence levels: We also examine the effect of δ on the obtained empirical ϵ.
We fix the number of canaries to 105 and the number of guesses to 1, 500 and the number of correct
guesses are set to 1, 429, suggested by the idealized setting. We use a Gaussian mechanism with
standard deviation 1.0, we vary the value of δ and the confidence level to observe how they affect the
results. Figures 10 and 11 shows the bound of Steinke et al. (2023) and our bound, respectively. Note
that our lower bounds represent the true behavior of δ independent of the confidence level, in contrast
to the bound of Steinke et al. (2023).

C EXPERIMENTAL DETAILS

Idealized setting: In the idealized setting, we work with a toy version of the mechanism to calculate
the expected number of correct guesses for the ideal adversary. For Gaussian mechanism, the ideal
setting for an adversary is when we have a Gaussian mechanism that is used to calculate the sum
of vectors. In this setting, each canary represents a unit vector that is orthogonal to all other canary
vectors. Then, given the noisy sum, the adversary will calculate the likelihood of the canary being
used in the sum, and then decides on the guesses based on these likelihoods. For the setting that
the adversary has more than 2 guesses (k > 2), we use a slightly different idealized setting. In all
settings, we run the attack 100 times and average the result to get the expected number of correct
guesses. Algorithm 4 shows how we calculate the number of correct guesses in the idealized setting.
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Algorithm 4 Simulate the Number of Correct Guesses

import numpy as np
from scipy.special import softmax
from numpy.random import normal, binomial
def idealized_setting(target_noise, n_guesses, n_canaries, k):

n_correct_vec = []
if k==2:

for _ in range(100):
s_vector = binomial(1, 0.5, size=n_canaries) * 2 - 1
noise = normal(0, 2*target_noise, n_canaries)

noisy_s = s_vector + noise

sorted_noisy_s = np.sort(noisy_s)

threshold_c = sorted_noisy_s[-int(n_guesses)//2-1]
n_correct = np.ceil(n_guesses*(s_vector[noisy_s >

threshold_c] == 1).mean())↪→

n_correct_vec.append(n_correct)
else:

for _ in range(100):
s_recon_vec = np.random.randint(0, k, n_canaries)

s_vec_recn_ohe = np.eye(k)[s_recon_vec]
s_recon_noisy_vec_ohe = s_vec_recn_ohe + normal(0,

np.sqrt(2)*target_noise, s_vec_recn_ohe.shape)↪→

idx_max = np.argmax(s_recon_noisy_vec_ohe, axis=1)

buckets =
softmax(s_recon_noisy_vec_ohe/(2*target_noise**2),
axis=1)[np.arange(s_recon_noisy_vec_ohe.shape[0]),
idx_max]

↪→

↪→

↪→

sorted_buckets = np.sort(buckets)
bucket_c_thr = sorted_buckets[-int(n_guesses)]

n_correct_rec = np.ceil(
n_guesses*(s_recon_vec[buckets > bucket_c_thr] ==

s_recon_noisy_vec_ohe[buckets >
bucket_c_thr].argmax(1)).mean()

↪→

↪→

)
n_correct_vec.append(n_correct_rec)

return int(np.array(n_correct_vec).mean(0))
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AUDITING CODE

Here we include the code to compute empirical epsilon.

from scipy.stats import norm
import numpy as np

# Calculate h and r recursively (no abstentions)
def rh(inverse_blow_up_function, alpha, beta, j, m, k=2):

# Initialize lists to store h and r values
h = [0 for _ in range(j + 1)]
r = [0 for _ in range(j + 1)]
# Set initial values for h and r
h[j] = beta
r[j] = alpha
# Iterate from j-1 to 0
for i in range(j - 1, -1, -1):

# Calculate h[i] using the maximum of h[i+1] and a
scaled inverse blow-up function↪→

h[i] = max(h[i + 1], (k - 1) *
inverse_blow_up_function(r[i + 1]))↪→

# Update r[i] based on the difference between h[i] and
h[i+1]↪→

r[i] = r[i + 1] + (i / (m - i)) * (h[i] - h[i + 1])
# Return the lists of h and r values
return (r, h)

# Audit function without abstention
def audit_rh(inverse_blow_up_function, m, c, threshold=0.05,

k=2):↪→

# Calculate alpha and beta values
alpha = threshold * c / m
beta = threshold * (m - c) / m
# Call the rh function to get the lists of h and r values
r, h = rh(inverse_blow_up_function, alpha, beta, c, m, k)
# Check if the differential privacy condition is satisfied
if r[0] + h[0] > 1.0:

return False
else:

return True

# Calculate h and r recursively (with abstentions)
def rh_with_cap(inverse_blow_up_function, alpha, beta, j,

m,c_cap, k=2):↪→

h=[0 for i in range(j+1)]
r=[0 for i in range(j+1)]
h[j]= beta
r[j]= alpha
for i in range(j-1,-1,-1):

h[i]=max(h[i+1],(k-1)*inverse_blow_up_function(r[i+1]))↪→

r[i]= r[i+1] + (i/(c_cap-i))*(h[i] - h[i+1])

return (r,h)

# Audit function with abstentions
def audit_rh_with_cap(inverse_blow_up_function, m, c,c_cap,

threshold=0.05, k=2):↪→

threshold=threshold*c_cap/m
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alpha=(threshold*c/c_cap)
beta=threshold*(c_cap-c)/c_cap
r,h=rh_with_cap(inverse_blow_up_function, alpha, beta, c,

m, c_cap, k)↪→

if r[0]+h[0]>c_cap/m:
return False

else:
return True

# Calculate the blow-up function for Gaussian noise
def gaussianDP_blow_up_function(noise):

def blow_up_function(x):
# Calculate the threshold value
threshold = norm.ppf(x)
# Calculate the blown-up threshold value
blown_up_threshold = threshold + 1 / noise
# Return the CDF of the blown-up threshold value
return norm.cdf(blown_up_threshold)

return blow_up_function

# Calculate the inverse blow-up function for Gaussian noise
def gaussianDP_blow_up_inverse(noise):

def blow_up_inverse_function(x):
# Calculate the threshold value
threshold = norm.ppf(x)
# Calculate the blown-up threshold value
blown_up_threshold = threshold - 1 / noise
# Return the CDF of the blown-up threshold value
return norm.cdf(blown_up_threshold)

return blow_up_inverse_function

# Define a function to calculate delta for Gaussian noise
def calculate_delta_gaussian(noise, epsilon):

# Calculate delta using the formula
delta = norm.cdf(-epsilon * noise + 1 / (2 * noise)) -

np.exp(epsilon) * norm.cdf(-epsilon * noise - 1 / (2 *
noise))

↪→

↪→

return delta

# Define a function to calculate epsilon for Gaussian noise
def calculate_epsilon_gaussian(noise, delta):

# Set initial bounds for epsilon
epsilon_upper = 100
epsilon_lower = 0
# Perform binary search to find epsilon
while epsilon_upper - epsilon_lower > 0.001:

epsilon_middle = (epsilon_upper + epsilon_lower) / 2
if calculate_delta_gaussian(noise, epsilon_middle) >

delta:↪→

epsilon_lower = epsilon_middle
else:

epsilon_upper = epsilon_middle
# Return the upper bound of epsilon
return epsilon_upper

# Get the empirical epsilon value
def get_gaussian_emp_eps_ours(candidate_noises,

inverse_blow_up_functions, m, c, threshold, delta, k=2):↪→
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# Initialize the empirical privacy index
empirical_privacy_index = 0
# Iterate through candidate noises until the privacy

condition fails↪→

while
audit_rh(inverse_blow_up_functions[empirical_privacy_index],
m, c, threshold=0.05, k=k):

↪→

↪→

empirical_privacy_index += 1
# Get the empirical noise and calculate the empirical

epsilon↪→

empirical_noise =
candidate_noises[empirical_privacy_index]↪→

empirical_eps =
calculate_epsilon_gaussian(empirical_noise,
delta=delta)

↪→

↪→

# Return the empirical epsilon
return empirical_eps

# Set target noise and generate candidate noises
target_noise = 0.6

candidate_noises=[target_noise+ i*0.01 for i in range(1000)]
inverse_blow_up_functions=[gaussianDP_blow_up_inverse(noise)

for noise in candidate_noises]↪→
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