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Abstract

Language representation learning has emerged as a promising approach for
sequential recommendation, thanks to its ability to learn generalizable rep-
resentations. However, despite its advantages, this approach still struggles
with data sparsity and a limited understanding of common-sense user pref-
erences. To address these limitations, we propose JEPA4Rec, a framework
that combines Joint Embedding Predictive Architecture with language mod-
eling of item textual descriptions. JEPA4Rec captures semantically rich and
transferable representations, improving recommendation performance and
reducing reliance on large-scale pre-training data. Specifically, JEPA4Rec
represents items as text sentences by flattening descriptive information such
as title, category, and other attributes. To encode these sentences, we utilize a
bidirectional Transformer encoder with modified embedding layers specif-
ically designed to capture item information in recommendation datasets.
We apply masking to text sentences and use them to predict the represen-
tations of the unmasked sentences, helping the model learn generalizable
item embeddings. To further enhance recommendation performance and
language understanding, we employ a two-stage training strategy that
incorporates self-supervised learning losses. Experiments on six real-world
datasets demonstrate that JEPA4Rec consistently outperforms state-of-the-
art methods, particularly in cross-domain, cross-platform, and low-resource
scenarios.

1 Introduction

Sequential recommendation predicts the next item a user is likely to interact with based
on their past behavior. Traditional ID-based methods capture sequential patterns well but
struggle with cold-start items and knowledge transfer across domains (Fang et al., 2020;
Kang & McAuley, 2018; Sun et al., 2019). To address this issue, cross-domain methods
leverage overlapping users or items (Tang et al., 2012; Zhu et al., 2021b), however, their
real-world applicability is limited due to the scarcity of shared data. Another approach
utilizes modalities such as text or images, but the semantic gap between domains remains a
challenge (Yuan et al., 2023). Pretrained language models (PLMs), trained on general data
like Wikipedia (Devlin et al., 2019), often fail to align with item descriptions and generate
embeddings at the sentence level, limiting their ability to effectively model user preferences
(Liu et al., 2023).

Our goal is to leverage language representation learning for sequential recommendation
while utilizing PLM knowledge. This involves three key challenges: (1) Creating a flexible
item text representation beyond simple attribute concatenation (Ding et al., 2021; Wang et al.,
2024). (2) Learning both item sequences and common-sense user preferences for better gen-
eralization. (3) Designing an efficient training strategy to bridge the text-recommendation
semantic gap (Li et al., 2023b) while maintaining effectiveness in sparse data settings.

We leverage Joint Embedding Predictive Architecture (JEPA) (Assran et al., 2023; Abdelfattah
& Alahi, 2024) to address these challenges. JEPA predicts abstract representations rather
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than raw tokens, capturing meaningful semantics while avoiding low-level noise (LeCun,
2022). It consists of an encoder and a predictor: the encoder generates latent representations
from context-target pairs, while the predictor learns to map context to target representations.
Unlike contrastive learning (Jaiswal et al., 2020), JEPA eliminates negative samples and
prevents representation collapse through an asymmetric encoder design (Chen & He, 2021).
Despite its success in vision tasks, JEPA remains unexplored in Natural Language Processing
and recommendation (Gui et al., 2024).

Figure 1: We flatten metadata attributes and
corresponding values to represent items

Building upon this, we propose JEPA4Rec,
a framework that leverages JEPA for lan-
guage representation learning in sequential
recommendation. To enrich the semantic
meaning of item representations, we trans-
form item metadata (e.g., title, category, and
description) into a single text sentence (il-
lustration in Figure 1). Effectively learning
item sentence representations and captur-
ing common sense in user preferences is
crucial for recommendations. Here, common sense refers to the model’s ability to grasp
inherent user behaviors, such as brand loyalty and category preferences, beyond explicit
interaction patterns. This is where JEPA plays a central role, enabling structured and
transferable representation learning. Our main contributions are as follows:

1. We construct a bidirectional Transformer encoder with modified embedding layers
tailored for encoding item sentences, which are then used as both the Context
and Target Encoders. Additionally, we employ a tokens masking strategy that
selectively hides history item information at varying rates. This requires the model
to reconstruct missing details from partial item information, allowing generalizable
item representations and enhancing common-sense preference learning.

2. We adopt a two-stage training approach (pre-training and fine-tuning), leveraging
self-supervised learning objectives tailored for both recommendation and language
understanding tasks.

3. Extensive experiments on real-world datasets demonstrate that JEPA4Rec consis-
tently outperforms state-of-the-art methods, achieving significant improvements in
recommendation performance across all datasets. Notably, JEPA4Rec requires only
a fraction of the pre-training data typically used in previous studies, showcasing its
efficiency in learning transferable, robust, and data-efficient item representations,
particularly in cross-domain, cross-platform, and low-resource settings.

2 Related work

Sequential Recommendation aims to predict users’ next interactions by modeling historical
behaviors. Traditional methods, including RNNs (Hidasi et al., 2015; Li et al., 2017), CNNs
(Tang & Wang, 2018), and Transformers (Sun et al., 2019; Assran et al., 2023), rely on item
IDs, limiting transferability. A key limitation of this research direction is its reliance on
discrete item IDs, which are inherently non-transferable across domains and incapable of
capturing the rich semantic information embedded in item metadata. In contrast, textual
item representations offer a more generalizable and semantically meaningful alternative.
Approaches like (Hou et al., 2022; Geng et al., 2022) use PLMs to embed item descriptions,
allowing knowledge to transfer across platforms and domains. However, these methods of-
ten separate representation learning from user modeling, limiting their flexibility. JEPA4Rec
addresses this gap by jointly learning from item metadata in natural language form, en-
abling rich semantic understanding and transfer learning without reliance on shared item
IDs or overlapping users (Zhu et al., 2021a; Tang et al., 2012). This makes it particularly
suitable for cold-start or low-resource scenarios.

Transfer Learning for Recommendation addresses data sparsity by leveraging shared
knowledge (Singh, 2020). PLMs generate universal item representations (Devlin et al., 2019;
Geng et al., 2022) but require large-scale pre-training (Liu et al., 2023) and tightly couple text

2



Published as a conference paper at COLM 2025

hCLS

Embedding

Bi-directional Encoder
Context

Item Pos Emb D

Token Type Emb C

Token Pos Emb B

Token Emb A Dn hCLS hCLS

MASK in in-1 MASK in+1

Title Airpods 2 Pro Brand [MASK] Title [MASK] [MASK] Brand Apple

History Sequence Emb Item Pos Emb in

Title Airpods 2 Pro Brand Apple

in in-1

in+1

Title iPhone 13  Brand Apple

History Sequence 

Ground-Truth

Embedding

Bi-directional Encoder

Predictor

in in+1

TargetMasking

(a) Model Structure

Masked Language 
Modeling

TargetPredictor

Context

Context

in+1 i-

Groud-truth

Sequence-Item Contrastive Loss

Mixed-domain 
Negatives

MASK in+1 in+1in

hCLS

MASK in in-1

(b) Pre-training Framework

Figure 2: Overview of JEPA4Rec. Left: The items are represented as text sentences. The
model leverages the user’s historical interactions along with partial text information to
predict the full representations of the items. Specifically, the historical item sequence
embedding hCLS is combined with the item position embedding Dn of item in and the
embedding of the next item hn+1,M when they are masked. These representations are then
passed through the predictor to reconstruct the complete representations of in and in+1,
which are obtained from the Target Encoder. Right: JEPA4Rec includes the Context Encoder
( fθ), which encodes masked item sequences; the Target Encoder ( fθ), which processes the
full item information and is updated via Exponential Moving Average (EMA) of the Context
Encoder; and the Predictor (gϕ), which aims to recover the complete item representations
from the partially observed inputs.

and item representations (Hou et al., 2023; 2022). Unlike contrastive loss, which encourages
instance discrimination, or MLM, which focuses on local token-level semantics, JEPA4Rec
introduces a novel L2 Mapping Loss that directly aligns user behavior embeddings with item
embeddings. This predictive alignment enables the model to reason in the embedding space
rather than over discrete tokens, allowing it to capture user preferences more effectively.
Through this architecture, JEPA4Rec can reconstruct complete item semantics from partial
textual cues, such as fragments of product descriptions or missing metadata. Furthermore,
the model can learn representations that generalize across different domains, even when
pre-training data is limited. This embedding-level learning paradigm facilitates better
user intent modeling, improves robustness to sparse input, and enhances cross-domain
performance without requiring overlapping users or shared item identifiers.

3 Methodology

In this section, we introduce JEPA4Rec, a framework designed for efficient language repre-
sentation learning in sequential recommendation. Building upon Li et al. (2023a), which em-
ploys a bidirectional Transformer encoder for encoding item sentences, JEPA4Rec enhances
common-sense learning in user preferences and improves generalizable item embeddings
through the Joint Embedding Predictive Architecture (JEPA). As illustrated in Figure 2,
JEPA4Rec incorporates two key innovations. First, its masking strategy transforms user
history into text sequences and applies Masked Language Modeling (MLM). However,
instead of solely learning at the token level, JEPA4Rec learns item representations in the
embedding space, as detailed in Section 3.3.1. Second, its learning framework trains a
Predictor to reconstruct full item representations using history embeddings and masked
item embeddings. The Target Encoder refines these representations, while self-supervised
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losses further enhance recommendation accuracy and language understanding, as discussed
in Section 3.3.2.

3.1 Problem Formulation

We address sequential recommendation with multi-domain interaction data for training
or pre-training. A user’s history in each domain forms a sequence s = {i1, i2, . . . , in},
where each item i has a unique ID and textual attributes (title, category, description). To
preserve domain-specific semantics Hou et al. (2022), we keep sequences separate rather
than merging them. Instead of item IDs, we represent items using textual metadata by
flattening attributes a (e.g., Title, Brand) and their values v (e.g., iPhone, Apple). Each
item is expressed as a sentence Si = {ai

1, vi
1, . . . , ai

m, vi
m}, where m varies based on available

metadata (Figure 1). The model then learns user preferences from the sentence sequence
s = {S1, . . . , Sn} and predicts the next item sentence Sn+1.

3.2 Item representation

Model Inputs After flattening the text metadata attributes of an item, we obtain its cor-
responding sentence representation Si. In sequential recommendation, the most recently
interacted items carry the most relevant information about a user’s latest preferences (Liu
et al., 2021). Consequently, we represent the interaction history as:

X = {[CLS], Sn, .., S1}

Where [CLS] is a special token used to generalize the sequence information. X is then fed
into the encoders.

Encode Item Mechanism To encode item sentences, we follow previous works (Sun et al.,
2019; Geng et al., 2022) and construct four types of embeddings. First, token embeddings
A ∈ RVw×d represent the meaning of each word token, where Vw is the vocabulary size and
d is the embedding dimension. Unlike ID-based approaches (Hua et al., 2023), JEPA4Rec
uses text tokens, making the representation more flexible and domain-independent. Second,
token position embeddings B ∈ Rd capture the position of each token in a sentence, helping
the model learn word order. Third, token type embeddings CCLS, CAttribute, CValue ∈ Rd

indicate whether a token belongs to the [CLS] token, an attribute key, or an attribute value,
which is crucial for handling repeated structures in item metadata. Finally, item position
embeddings D ∈ Rn×d encode the position of items in a user’s interaction sequence, where
each item Si shares the same vector Di, aligning all tokens within an item and facilitating
sequence modeling. Details about the tokenizer can be found in Appendix B.

The input embedding for each word w in sequence X is obtained by summing four embed-
dings and applying layer normalization (Ba et al., 2016):

Ew = LayerNorm (Aw + Bw + Cw + Dw)

The final input representation EX consists of these embeddings for all tokens in X, including
the special [CLS] token:

EX =
[
E[CLS], Ew1 , . . . , Ewl

]
Where l is the maximum sequence length. To encode EX , we use Longformer (Beltagy et al.,
2020), a bidirectional Transformer optimized for long sequences. Similar to Longformer’s
document processing setup, the special token [CLS] has global attention, while other tokens
rely on local windowed attention. The model generates d-dimensional word representations
as follows: [

hCLS, hw1 , . . . , hwl

]
= Encoder

(
[E[CLS]], Ew1 , . . . , Ewl

)
where each word representation hw ∈ Rd. Following standard language model practices,
we use hCLS as the sequence representation. To encode items, JEPA4Rec treats each item
as a single-item sequence X = {[CLS], Si} and obtains its embedding hi from the sequence
representation. We use the same embedding layer and Longformer encoder for both the
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Context Encoder fθ and Target Encoder fθ , with the latter updated via an exponential
moving average for stable training and to prevent representation collapse (Chen & He,
2021).

3.3 Pre-training Framework

The goal of pre-training is to establish a strong parameter initialization for downstream
tasks. Our approach integrates both language understanding and recommendation learning
and enhances the model’s ability to learn common sense in user preferences, improve item
representation, and create generalizable item embeddings without relying on large-scale
pre-training data. Therefore, JEPA4Rec is pre-trained using three key objectives: Masked
Language Modeling (MLM), Mapping Representation, and Sequence-Item contrastive task.

3.3.1 Masking strategy

User history sequences, represented as sentence sequences {S1, S2, . . . , Sn}, are learned using
the MLM approach, where text tokens are masked and predicted, but unlike traditional
token-level learning, JEPA4Rec learns item embeddings in the representation space and
extends MLM with a structured masking strategy.

Since we want the model to infer in+1 based on the user’s history and partial information
from Sn+1, we mask a significant portion (50%, detailed ablation study is in Appendix
G) of tokens in Sn+1 and train the model to predict the full representation of in+1. For
historical sentences, excessive masking could degrade the History Sequence Embedding
hCLS, leading to information loss. Therefore, we apply a 15% token masking rate, consistent
with pre-trained language model studies. For both history sequences and the next item,
we apply the same masking strategy in BERT: (1) replacing tokens with [MASK] (80%), (2)
replacing with a random token (10%), and (3) keeping the original token unchanged (10%).
Following this principle, after masking tokens in both history item sentences and the next
item, we utilize the history sequence embedding hCLS to predict their full representations.
However, since the number of masked tokens varies across user sequences, the number
of masked items within each sequence also differs. To simplify this process, we sample
one masked item per sequence and introduce a learnable zero vector when no tokens are
masked.

After applying this masking strategy, we obtain the full representation of one masked
item from the user’s history (e.g., the n-th item in Figure 2) and the next item. These
representations are then passed into the Target Encoder fθ , where their embeddings are
computed as:

hn = fθ({[CLS], Sn}), hn+1 = fθ({[CLS], Sn+1})
These encoded representations are then compared with their corresponding predictions
generated by the Predictor to refine the learned item embeddings.

3.3.2 Learning Framework

JEPA4Rec integrates the Mapping Representation task into the training process to enhance
item representation learning. To achieve this, we propose a lightweight MLP-based Pre-
dictor, which utilizes the history sequence embedding hCLS along with the Item Position
Embedding Dn, which corresponds to masked history items. This design enables the model
to predict the full representation of Si, mitigating information loss in hCLS when encoding
long sequences. The predicted representation is computed as:

ĥn = FFN1(hCLS ⊕ Dn)

Furthermore, since hCLS must also infer the next item’s representation based on partial
information, we mask most tokens in Sn+1 to obtain hn+1,M. The combined information
from hCLS and hn+1,M is then used to predict the full representation of Sn+1:

ĥn+1 = FFN2(hCLS ⊕ hn+1,M)
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Here, the concatenation operator (⊕) is used to combine embeddings for simplicity. To help
the model predict item representations accurately, we define the mapping loss and MLM
loss as follows:

Lmap = ∥hn − ĥn∥2 + ∥hn+1 − ĥn+1∥2, LMLM = −
|V|

∑
i=0

yi log (pi)

Where pi represents the predicted probability of the masked token belonging to the i-th
vocabulary word, and yi is the corresponding ground truth label. The mapping loss enhances
item representation learning, while the MLM loss bridges the semantic gap between the
pretrained language model’s knowledge and the textual information in the recommendation
dataset.

Another pre-training objective for JEPA4Rec is the sequence-item contrastive task (S-I),
commonly used for next-item prediction (Hou et al., 2022; 2023). We treat the next items in
the ground truth as positive instances, while negative instances are selected using in-batch
negatives instead of negative sampling or full softmax. In-batch negatives leverage ground-
truth items from other sequences within the same batch, effectively serving as negative
instances from multiple domains when training on large datasets. This approach not only
reduces computational costs since JEPA4Rec generates item embeddings dynamically rather
than maintaining an item embedding table, but also enhances model generalization across
domains.

LS−I = −log
esim(hCLS ,hn+1)/τ

∑i∈B esim(hCLS ,hi)/τ

where sim is the cosine similarity score between 2 vectors; hn+1 is the representation of the
ground truth next item; B is the ground truth item set in one batch; and τ is a temperature
parameter. At the pre-training stage, we use a multi-task training strategy to jointly optimize
JEPA4Rec:

LPT = LS−I + λ1 · LMLM + λ2 · Lmap

Where λ1, λ2 a hyperparameters to control the weight of the MLM and S-I task loss. The
pre-trained model will be fine-tuned for new target domains.

3.4 Finetuning Framework

After pretraining, only the Context Encoder is used for fine-tuning in the target domain, with
the learned user embedding encapsulating rich and transferable user preference information.
We encode all item sentences to construct a dynamic, learnable item matrix I , which enables
probability computation for next-item prediction over the entire dataset:

PI (in+1|hCLS) = Softmax(hCLS · hn+1)

To reduce computational overhead, I is updated per epoch instead of every batch. For
finetuning, we adopt the widely used cross-entropy loss and train the model with a sequence-
item contrastive learning task using fully softmax over the entire dataset based on cosine
similarity between items:

LFT = − log
esim(hCLS ,hn+1)/τ

∑i∈I esim(hCLS ,hi)/τ

3.5 Discussion

We compare JEPA4Rec with prior sequential recommendation methods to highlight its
key innovations and advantages. Traditional models such as SASRec (Kang & McAuley,
2018) and BERT4Rec (Sun et al., 2019) rely on trainable item ID embeddings, which are
non-transferable across domains and struggle with cold-start problems due to data sparsity.
Context-enhanced models like UniSRec (Hou et al., 2022), S3-Rec (Zhou et al., 2020), and
VQ-Rec (Hou et al., 2023) attempt to address this by extracting item features from pretrained
language models and injecting them into standalone sequential architectures. However,
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these approaches typically separate textual understanding from sequential modeling and
rely heavily on contrastive objectives or side information fusion.

JEPA4Rec addresses these limitations by leveraging JEPA to learn item-level representations
directly in the embedding space, rather than at the token level. This enables the model to
produce semantically rich and transferable embeddings that better capture user preferences
and generalize across domains. Central to our approach is an information-rich user repre-
sentation, analogous to the [CLS] token in language models, learned through two auxiliary
objectives: reconstructing historical item embeddings to preserve long-range preference
signals, and recovering full item information from partially masked input to simulate real-
world scenarios with incomplete metadata. As a result, JEPA4Rec is well-suited for settings
with sparse or partial item descriptions, offering improved adaptability to new domains
and cold-start items (see Appendix E for detailed experiments).

4 Experiments

4.1 Experimental Setup

Datasets To evaluate JEPA4Rec’s per-
formance, we conduct pre-training and
fine-tuning using various Amazon re-
view datasets (Hou et al., 2024). The
dataset statistics after preprocessing are
presented in Table 1. For pre-training, we
utilize data from only three categories:
Automotive, Grocery and Gourmet Food, and
Movies and TV, accounting for approxi-
mately 35% of the dataset size used in
prior studies (Li et al., 2023a; Hou et al.,
2022; 2023). These categories serve as the
source domain datasets.

Datasets #Users #Items #Inters. Avg. n Density

Pre-training 115, 778 158, 006 1, 250, 489 10.70 6.8 × 10−5

Scientific 11, 041 5, 327 76, 896 6.96 1.3 × 10−3

Instruments 27, 530 10, 611 231, 312 8.40 7.9 × 10−4

Arts 56, 210 22, 855 492, 492 8.76 3.8 × 10−4

Office 101, 501 27, 932 798, 914 7.87 2.8 × 10−4

Pet 47, 569 37, 970 420, 662 8.84 2.3 × 10−4

Online Retail 4, 181 3, 896 401, 248 9.75 2.5 × 10−2

Table 1: Dataset statistics

For finetuning, we test JEPA4Rec on five Amazon categories (Scientific, Instruments, Crafts,
Office, Pet Supplies) to assess cross-domain generalization. Additionally, we use the On-
line Retail dataset1, a UK e-commerce platform with no shared users, making it a more
challenging cross-setting. Following Hou et al. (2022), we keep five-core datasets, filter out
users/items with fewer than five interactions. Item text representations are built from title,
categories, and brand (Amazon) or Description (Online Retail).

Baselines We compare JEPA4Rec against three categories of baseline models: (1) ID-only
Methods: SASRec (Kang & McAuley, 2018), BERT4Rec (Sun et al., 2019); (2) ID-text Methods:
S3-Rec (Zhou et al., 2020), LlamaRec; (3) Text-only Methods: UniSRec (Hou et al., 2022),
VQ-Rec (Hou et al., 2023), RecFormer (Li et al., 2023a). Detailed descriptions of these models
can be found in the Appendix C.

Evaluation Settings We use NDCG@10, Recall@10, and MRR as metrics, applying a leave-
one-out strategy: the latest interaction for testing, the second latest for validation, and the
rest for training. The ground-truth item is ranked among all items, and average scores
are reported. To ensure a fair comparison with RecFormer, the state-of-the-art method,
we adopt the same experimental settings as RecFormer, detailed in Appendix D. Other
baselines follow prior work settings.

4.2 Overall Performance

Table 2 presents a comparative analysis of JEPA4Rec against baseline methods across
six different datasets. Text-only methods consistently outperform ID-only and ID-text
approaches on Amazon datasets. However, on the highly dense Online Retail dataset, ID-
based methods remain effective. Notably, on Instruments, Arts, and Scientific datasets,

1https://www.kaggle.com/datasets/carrie1/ecommerce-data
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Scenario Dataset Metric SASRec BERT4Rec LlamaRec S3-Rec UniSRec VQ-Rec RecFormer JEPA4Rec Improv

Cross-
Domain

Scientific
R@10 0.1305 0.1061 0.1180 0.0804 0.1255 0.1361 0.1684 0.1761 4.57%
N@10 0.0797 0.0790 0.0947 0.0451 0.0862 0.0843 0.1198 0.1282 7.01%
MRR 0.0696 0.0759 0.0856 0.0392 0.0786 0.0712 0.1071 0.1190 11.11%

Pet
R@10 0.0881 0.0765 0.1019 0.1039 0.0933 0.1002 0.1363 0.1471 7.92%
N@10 0.0569 0.0602 0.0781 0.0742 0.0702 0.0761 0.1086 0.1210 11.41%
MRR 0.0507 0.0585 0.0719 0.0710 0.0650 0.0697 0.0940 0.1157 23.09%

Instruments
R@10 0.0995 0.0972 0.1034 0.1110 0.1119 0.1289 0.1279 0.1347 4.49%
N@10 0.0634 0.0707 0.0767 0.0797 0.0785 0.0812 0.1001 0.1057 5.59%
MRR 0.0577 0.0677 0.0689 0.0755 0.0740 0.0776 0.0958 0.1014 5.84%

Arts
R@10 0.1342 0.1236 0.1337 0.1399 0.1333 0.1298 0.1797 0.1920 6.84%
N@10 0.0848 0.0942 0.0938 0.1026 0.0894 0.0912 0.1249 0.1442 15.45%
MRR 0.0742 0.0899 0.0847 0.1057 0.0798 0.0878 0.1187 0.1341 12.97%

Office
R@10 0.1196 0.1205 0.1201 0.1186 0.1262 0.1336 0.1559 0.1676 7.51%
N@10 0.0832 0.0972 0.0864 0.0911 0.0919 0.1011 0.1151 0.1276 10.86%
MRR 0.0751 0.0932 0.0817 0.0957 0.0848 0.0912 0.1094 0.1185 8.31%

Cross-
Platform

Online
Retail

R@10 0.2275 0.1384 0.2361 0.2218 0.2284 0.2301 0.2355 0.2429 3.14%
N@10 0.0978 0.0478 0.1061 0.0954 0.0912 0.0913 0.1249 0.1266 1.36%
MRR 0.0901 0.0332 0.0941 0.0858 0.0793 0.0865 0.0985 0.0985 -

Table 2: Performance comparison of recommendation methods across different datasets.

Figure 3: Performance (Recall@10) compari-
son w.r.t different pre-training datasets. Full
denotes result pre-training with 3 datasets
and None denotes the training from scratch.

Figure 4: Performance (NDCG@10) compari-
son of three text-only methods under the zero-
shot setting.

text-based models achieve the highest performance, likely due to the rich descriptive
metadata available for items.

JEPA4Rec outperforms all baseline models across datasets, except for the MRR metric on
Online Retail. On average, it improves Recall@10 by 6.22% and NDCG@10 by 10.06%, demon-
strating its effectiveness in recommendation tasks. The results highlight the advantages
of JEPA4Rec’s two-stage training strategy. The pre-training phase facilitates the learning
of generalizable item representations, allowing the model to grasp common user prefer-
ences. The finetuning phase further enhances adaptability to new domains, as all items
are represented through textual descriptions, enabling seamless transfer across different
recommendation scenarios.

4.3 Efficient Learning Representation Performance

Universal Pre-training Figure 3 highlights the efficiency of JEPA4Rec’s pre-training strategy.
This figure demonstrates that JEPA4Rec pre-trained on three datasets outperforms models
pre-trained on a single dataset and finetuned on the Scientific and Online Retail domains.
Additionally, it surpasses the finetuned public checkpoint of RecFormer, which was pre-
trained on seven Amazon datasets. Pre-training on multiple datasets allows the model to
initialize with well-learned weights, leading to improved adaptation during finetuning.
Notably, JEPA4Rec achieves strong results despite utilizing only 35% of the pre-training data
compared to state of the art model RecFormer, demonstrating the robustness and efficiency
of its pre-training approach.
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Figure 5: NDCG@10 comparison between models over different sizes of training data

Variants Scientific Online Retail
NDCG@10 Recall@10 MRR NDCG@10 Recall@10 MRR

(0) JEPA4Rec 0.1282 0.1761 0.1190 0.1266 0.2429 0.0985
(1) w/o MLM loss 0.1170 0.1653 0.1128 0.1118 0.2216 0.0858
(2) w/o pre-training 0.0935 0.1365 0.0855 0.1198 0.2185 0.0965
(3) w/o token type emb. 0.1251 0.1749 0.1072 0.1231 0.1755 0.0915

Table 3: Performance comparison across model variants

Zero-shot To ensure fair zero-shot evaluation, we re-trained RecFormer on the same three
datasets as JEPA4Rec while keeping all hyperparameters identical. Since SASRec is ID-only
and unsuitable for zero-shot settings, we trained it fully supervised on each target domain
for comparison. Figure 4 demonstrates that JEPA4Rec outperforms other text-only models
by 1 − 5% across all five datasets. This shows that JEPA4Rec learns common-sense user
preferences better than RecFormer and UniSRec. Notably, on Scientific, JEPA4Rec surpasses
SASRec’s fully supervised performance in zero-shot settings, highlighting the power of
language-based recommendation.

Low-Resource Training We compare ID-based models (SASRec, LlamaRec) with text-only
models (RecFormer, JEPA4Rec) across varying training data ratios on both the Instruments
and Scientific datasets. As shown in Figure 5, text-only models consistently outperform
ID-based ones, particularly under low-resource conditions (e.g., 1% or 5% of the data). This
performance gap is attributed to the ability of language-based models to utilize semantic
item descriptions during pre-training, enabling better generalization to unseen items. In
contrast, ID-based models assign random embeddings to new items, making it difficult to
generate meaningful recommendations with sparse data. As the training data increases, ID-
based models such as SASRec and LlamaRec show noticeable improvements, reducing the
performance gap. Nevertheless, JEPA4Rec remains the top-performing model across all data
scales, highlighting the robustness of contrastive language modeling for recommendation.

4.4 Ablation Study

4.4.1 Study of JEPA4Rec

We perform an ablation study on Scientific (cross-domain) and Online Retail (cross-platform)
datasets to assess JEPA4Rec’s key components, with detailed results in Table 3. (1) w/o
MLM loss: Removing Masked Language Modeling (MLM) reduces performance across all
metrics, highlighting its role in bridging the semantic gap between Longformer’s pre-trained
knowledge and the recommendation dataset; (2) w/o pre-training: Performance drops
significantly, emphasizing the necessity of pre-training for generalizable item embeddings
and common-sense user preference learning; (3) w/o token type embeddings: While it
has little impact on Scientific, it significantly lowers Recall@10 on Online Retail, showing its
importance in distinguishing patterns within item sentences.
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(a) Scientific (b) Office

Figure 6: Effect of Masking Ratio on Performance

4.4.2 Masking Ratio Analysis

To investigate the effect of varying masking ratios on next-item prediction performance,
we conducted a comprehensive ablation study by masking different proportions of tokens
in next-item sentences during pre-training. Specifically, we trained our JEPA4Rec model
from scratch on both the Scientific dataset (representing small-scale data) and the Office
dataset (representing large-scale data). The results, averaged over five runs, are presented
in Figure 6. We observe a consistent pattern across both datasets: the NDCG@10 score
improves as the masking ratio increases from 10% to 50%, and then degrades when further
increased to 80%. This trend suggests that moderate masking (around 50%) provides the
most effective learning signal for the model, balancing information retention with learning
generalizable representations.

4.4.3 Additional Experimental Results.

Further experiments are included in Appendix G, covering case studies, robustness analysis,
and additional ablation. First, we examine JEPA4Rec’s zero-shot capability and adaptability
to partial item information. Case studies show that JEPA4Rec can accurately rank relevant
items with minimal text cues, significantly outperforming RecFormer. We also provide
extended zero-shot evaluations across six datasets, where JEPA4Rec remains competitive
despite being pre-trained on fewer domains. Lastly, ablation studies on token embedding
components and loss functions demonstrate the importance of MLM loss, token structure
embeddings, and contrastive learning, each contributing significantly to model effectiveness.

5 Conclusion

In this work, we propose JEPA4Rec, a novel framework that integrates Joint Embedding
Predictive Architecture (JEPA) with language modeling to enhance sequential recommen-
dation. By representing items as text sentences and leveraging a bidirectional Transformer
encoder, JEPA4Rec learns semantically rich and transferable item representations while
improving common-sense user preference modeling. Our framework incorporates a novel
masking strategy and a two-stage training approach to enhance recommendation accuracy
and adaptability across domains. Extensive experiments on six real-world datasets demon-
strate that JEPA4Rec outperforms state-of-the-art methods, particularly in cross-domain,
cross-platform, and low-resource scenarios, while requiring significantly less pre-training
data. These results highlight the effectiveness and efficiency of our approach in learning
generalizable and robust item representations for sequential recommendation.
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A Joint Embedding Predictive Architecture

Figure 7: Joint-Embedding Predictive Archi-
tectures aim to estimate the representation of
a target input y based on the representation
of a context input x, leveraging a predictor
network that incorporates auxiliary variable z
to enhance prediction performance.

JEPA’s key advantage lies in predicting ab-
stract representations instead of raw pixel
or token space, allowing the model to fo-
cus on meaningful semantic features rather
than low-level details (LeCun, 2022). As
shown in Figure 7, its architecture con-
sists of an encoder fθ(·) to compute in-
put representations and a predictor gϕ(·)
to estimate the representation of y based
on x and an auxiliary variable z, which
captures transformations between them.
The model minimizes the discrepancy be-
tween predicted and actual embeddings
via D

(
Ey, Pred (Ex, z)

)
, using an asymmet-

ric Context and Target Encoder to prevent
representation collapse (Chen & He, 2021).
By operating in representation space rather
than raw input, JEPA focuses on learning
meaningful, generalizable features and cap-
turing underlying data relationships for robust self-supervised learning.

B Details of the Tokenizer Component
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Figure 8: Tokenizer Component

Figure 8 illustrates the Tokenizer Component in detail. This component is responsible for
transforming item metadata into sequence representations through a masking strategy that
simulates partial observation. Specifically, it flattens item metadata and applies token-level
masking to create a masked input sequence, which is then passed through the Context
Encoder. Simultaneously, the complete (unmasked) input is processed by the Target En-
coder. These parallel encoding paths enable the model to learn robust representations by
contrasting partial and full information.
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In detail, to encode item sentences, we follow previous work in Sun et al. (2019); Geng et al.
(2022) to construct four different types of embeddings:

• Token Embedding represents the corresponding tokens, denoted by A ∈ RVw×d,
where Vw is the number of words in our vocabulary and d is the embedding dimen-
sion. JEPA4Rec represents items using text instead of ID tokens (Hua et al., 2023),
making its size independent of the number of items and ensuring flexibility across
different recommendation scenarios.

• Token position embedding represents the position of a token in a sequence, denoted
by B ∈ Rd. It is designed to help Transformer-based models capture the sequential
structure of words.

• Token type embedding identifies the origin of a token within the input. It consists
of three vectors, CCLS, CAttribute, CValue ∈ Rd, which distinguish whether a token
belongs to [CLS], attribute names, or values. In recommendation datasets where
attribute keys are often repeated across items, token type embedding enables the
model to recognize and differentiate these recurring patterns.

• Item Position Embedding represents the position of items in a sequence, with all
tokens from sentences Si represented as Di ∈ Rd and the entire item position
embedding matrix as D ∈ Rn×d, where n is the maximum length of a user’s
interaction sequence. D facilitates the alignment between word tokens and their
corresponding items.

C Baselines

We compare JEPA4Rec against three categories of baseline models:

• ID-only Methods: SASRec (Kang & McAuley, 2018) utilizes a directional self-
attention mechanism to capture item correlations within a sequence. BERT4Rec
(Sun et al., 2019) applies a bidirectional Transformer with a cloze-style objective for
modeling user behavior.

• ID-text Methods: S3-Rec (Zhou et al., 2020) leverages mutual information maxi-
mization for pre-training sequential models, capturing relationships between at-
tributes, items, subsequences, and full sequences. LlamaRec is a two-stage ranking
framework that leverages LLMs by retrieving candidate items via small-scale rec-
ommenders and ranking them using a verbalizer-based approach.

• Text-only Methods: UniSRec (Hou et al., 2022) employs text-based item represen-
tations from a pre-trained language model, adapting to new domains through an
MoE-enhanced adaptor. VQ-Rec (Hou et al., 2023) mitigates the over-reliance on
textual features in transferable recommenders by mapping item text to discrete
codes, which are then used to retrieve item representations from a code embedding
table (text → code → representation). We initialize them with pre-trained param-
eters provided by the authors and fine-tune them on target domains. RecFormer
(Li et al., 2023a) introduces a framework that formulates items as text sequences
and employs a bidirectional Transformer to learn language representations for
sequential recommendation.

D Experiment Settings

We use a finetuning batch size of 16, a learning rate of 5e-5, token limits of 32 per attribute
and 1024 per sequence, a maximum of 50 items per sequence, a temperature parameter
τ = 0.05, and an MLM loss weight λ1 = 0.1. For pre-training, we use a batch size of 32 and
Mapping Representation loss weight λ2 = 0.1.
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(a) The purchase history of a user in Musical Instruments
dataset. Comparison of the recommended item before
and after revealing information. The revealed informa-
tion consists of two words: ”Musical” and ”Amplifier”.

(b) Testing the zero-shot capability of
JEPA4Rec when revealing different ratios
of words for the target item sentences in
Musical Instruments.

Figure 9: Case study and analysis of revealing information

E Case Study

Firt case study, we analyze how text-only models adapt with partial next-item information
by revealing different word ratios from item sentences in a zero-shot setting on the Instru-
ments dataset, detailed in Figure 9. Both JEPA4Rec and RecFormer improve Recall@10, but
JEPA4Rec shows a larger gain due to its mapping loss pre-training. Notably, JEPA4Rec’s
performance doubles with just 10% of item information, demonstrating its ability to leverage
minimal textual cues. For a user interested in music production and guitar-related items,
JEPA4Rec ranked the ground-truth item 10th initially but moved it to 1st after revealing par-
tial information. This highlights its strong adaptability, making it well-suited for real-world
scenarios where only limited item context is available.

Second case study, to evaluate the robustness of our approach when item information is
incomplete, we conducted a systematic evaluation by randomly dropping 20%, 40%, and
60% of tokens from item sequences at the target domain during the fine-tuning process.
This simulates real-world scenarios where item descriptions may be incomplete or partially
available. The masking is applied to the flattened item sentences containing “Title ... Brand
... Category ...” information.

Masking Ratio Method Scientific (NDCG@10) Instrument (NDCG@10) Office (NDCG@10)

Full info RecFormer 0.1198 0.1001 0.1151
JEPA4Rec 0.1282 0.1057 0.1276

20% masked RecFormer 0.1145 0.0971 0.1207
JEPA4Rec 0.1223 0.0999 0.1242

40% masked RecFormer 0.1114 0.0954 0.1174
JEPA4Rec 0.1204 0.0997 0.1233

60% masked RecFormer 0.1088 0.0905 0.1093
JEPA4Rec 0.1201 0.0979 0.1197

Table 4: Robustness evaluation with different masking ratios

These results demonstrate JEPA4Rec’s superior robustness when making recommendations
based on partial item information. Notably, JEPA4Rec maintains stable performance even
when 60% of item tokens are masked, with only modest performance degradation (e.g.,
from 0.1282 to 0.1201 on the Scientific dataset). In contrast, RecFormer shows a significant
accuracy downgrade as the masking ratio increases, with performance declining more
substantially (e.g., from 0.1198 to 0.1088 on the Scientific dataset). This robustness stems
from JEPA4Rec’s ability to learn item representations in the embedding space through
its mapping loss pre-training, enabling effective inference even with incomplete textual
descriptions. JEPA4Rec consistently outperforms RecFormer by ∼ 3 − 5% on the NDCG
metric across all masking scenarios.
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F More zero-shot Experiments

Datasets JEPA4Rec RecFormer

Scientific
NDCG@10 0.0896 0.0897
Recall@10 0.1319 0.1310
MRR 0.0810 0.0820

Instruments
NDCG@10 0.0360 0.0416
Recall@10 0.0632 0.0699
MRR 0.0316 0.0359

Arts
NDCG@10 0.0610 0.0722
Recall@10 0.1061 0.1090
MRR 0.0592 0.0620

Pet
NDCG@10 0.0568 0.0524
Recall@10 0.0782 0.0698
MRR 0.0525 0.0473

Office
NDCG@10 0.0610 0.0551
Recall@10 0.0840 0.0823
MRR 0.0462 0.0472

Online Retail
NDCG@10 0.0310 0.0310
Recall@10 0.0490 0.0592
MRR 0.0318 0.0310

Table 5: Performance comparison between JEPA4Rec and RecFormer under zero-shot setting

We conducted a comparison of JEPA4Rec’s zero-shot capability when pre-trained on three
Amazon datasets against the official public checkpoint of RecFormer, which was pre-trained
on seven Amazon datasets. We can observe that the recommendation capabilities of the two
models are quite similar, demonstrating JEPA4Rec’s robust training ability that does not
depend on large-scale data.

G More ablation studies

G.1 Token Embedding Component Analysis

We evaluate the importance of different token embedding types:

Experiment 1: Removing MLM Loss We remove the MLM loss component to assess
how much semantic information learning from textual data contributes to JEPA4Rec’s
recommendation performance.

Experiment 2: Removing Token Type Embedding (C) This experiment evaluates the
importance of token type embedding in distinguishing different types of textual information
within item representations.

Experiment 3: Removing Token Position Embedding (B) and MLM Loss Token position
embedding B is crucial for language models to determine token positions. We remove both
B and MLM loss to assess JEPA4Rec’s recommendation capability when losing components
that help learn semantic information from e-commerce text data.

Experiment 4: Removing MLM Loss, Token Position Embedding (B), and Token Type
Embedding (C) This experiment determines JEPA4Rec’s performance when relying solely
on item representation recovery through L2 Mapping loss.

Note on Item Position Embedding (D): We do not remove D as it is essential for determin-
ing item positions in history sequences and enabling JEPA4Rec to recover complete item
representations.

These results demonstrate:

1. MLM loss is crucial for performance as it helps the model learn additional semantic
information from the textual data of items. The performance drop when removing
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Variant Scientific Online Retail
NDCG@10 Recall@10 MRR NDCG@10 Recall@10 MRR

Full JEPA4Rec 0.1282 0.1761 0.1190 0.1266 0.2429 0.0985
w/o MLM loss 0.1170 0.1653 0.1128 0.1118 0.2216 0.0858
w/o Token Type (C) 0.1251 0.1749 0.1072 0.1231 0.1755 0.0915
w/o MLM + Token Pos (B) 0.1102 0.1542 0.1021 0.1094 0.1898 0.0824
w/o MLM + B + Token Type (C) 0.0967 0.1398 0.0889 0.1019 0.1687 0.0792

Table 6: Token embedding component analysis

MLM loss (from 0.1282 to 0.1170 NDCG@10 on the Scientific dataset) shows its
significant contribution to understanding item semantics.

2. All embedding components are important for the model’s effectiveness:
• Token type embedding (C) provides discriminative power for different at-

tribute patterns, with noticeable performance degradation when removed.
• Token position embedding (B) is essential for understanding token sequence

structure.
• The combined removal of multiple components leads to progressively worse

performance, confirming that each embedding type contributes unique and
valuable information to the model.

G.2 Ablation Studies on Loss Components

We conduct ablation studies on different loss components to understand their contributions:

Experiment 1: Pre-training when dropping contrastive loss We evaluate JEPA4Rec’s
ability to learn item representations in the embedding space by using only the Mapping
Loss and MLM during pre-training. This experiment demonstrates how well the item
representation recovery mechanism alone contributes to recommendation performance
without the contrastive learning component.

Experiment 2: Fine-tuning with BPR Loss During fine-tuning, we replace the contrastive
loss with the well-known Bayesian Personalized Ranking (BPR) loss to assess the impact of
different ranking objectives:

LBPR = − ∑
(u,i,j)∈DS

ln σ(r̂ui − r̂uj)

where DS = {(u, i, j)|i ∈ I+u ∧ j ∈ I \ I+u } represents the training data with positive item i
and one sampled negative item j for user u, and r̂ui denotes the predicted preference score.

Variant Scientific Online Retail
NDCG@10 Recall@10 MRR NDCG@10 Recall@10 MRR

Full JEPA4Rec 0.1282 0.1761 0.1190 0.1266 0.2429 0.0985
Pre-training: Drop contrastive loss 0.1216 0.1634 0.1087 0.1064 0.1853 0.0892
Fine-tuning: BPR Loss 0.1245 0.1723 0.1156 0.0934 0.1637 0.0865

Table 7: Ablation studies on loss components

These results demonstrate that contrastive loss with its ability to sample multiple negative
items remains well-suited for JEPA4Rec. The performance degradation when replacing
contrastive loss with BPR loss (which samples only one negative item per positive) shows
that the multi-negative sampling strategy of contrastive learning provides richer training
signals. This is particularly evident in the Online Retail dataset, where BPR loss shows
significant performance drops across all metrics, highlighting the importance of diverse
negative sampling for effective representation learning in our framework.
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