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ABSTRACT

Implicit neural representation and explicit 3D Gaussian Splatting (3D-GS) for novel
view synthesis have achieved remarkable progress with frame-based camera (e.g.
RGB and RGB-D cameras) recently. Compared to frame-based camera, a novel
type of bio-inspired visual sensor, i.e. event camera, has demonstrated advantages
in high temporal resolution, high dynamic range, low power consumption and
low latency. Due to its unique asynchronous and irregular data capturing process,
limited work has been proposed to apply neural representation or 3D Gaussian
splatting for an event camera. In this work, we present IncEventGS, an incremental
3D Gaussian Splatting reconstruction algorithm with a single event camera. To
recover the 3D scene representation incrementally, we exploit the tracking and
mapping paradigm of conventional SLAM pipelines for IncEventGS. Given the
incoming event stream, the tracker firstly estimates an initial camera motion based
on prior reconstructed 3D-GS scene representation. The mapper then jointly refines
both the 3D scene representation and camera motion based on the previously
estimated motion trajectory from the tracker. The experimental results demonstrate
that IncEventGS delivers superior performance compared to prior NeRF-based
methods and other related baselines, even we do not have the ground-truth camera
poses. Furthermore, our method can also deliver better performance compared
to state-of-the-art event visual odometry methods in terms of camera motion
estimation.

1 INTRODUCTION

Acquiring accurate 3D scene representations from 2D images has long been a challenging prob-
lem in computer vision. Serving as a fundamental component in various applications such as
virtual/augmented reality and robotics navigation etc., substantial efforts have been dedicated to
addressing this challenge over the last few decades. Among those pioneering works, Neural Radiance
Fields (NeRF) Mildenhall et al. (2021) and 3D Gaussian Splatting (3D-GS) Kerbl et al. (2023), stand
out for its utilization of differentiable rendering technique, and have garnered significant attention
due to its capability to recover high-quality 3D scene representation from 2D images. Commonly
used sensors for 3D scene reconstruction are usually frame-based cameras, such as the RGB and
RGB-D cameras. They usually capture full-brightness intensity images within a short exposure time
at a regular frequency. Due to the characteristic of the data capturing process, they often suffer
from motion blur or fail to capture accurate and informative intensity information under extreme
brightness or darkness in the environment, which would further affect the performance of downstream
applications.

The event camera, a bio-inspired sensor, has gained significant attention in recent years for its potential
to address the limitations of frame-based cameras under challenging conditions. Unlike conventional
cameras, event cameras record brightness changes asynchronously at each pixel, emitting events
when a predefined threshold is surpassed. This unique operation offers several advantages over con-
ventional cameras, in terms of high temporal resolution, high dynamic range, low latency and power
consumption. Although event cameras have attractive characteristics for challenging environments,
they cannot be directly integrated into existing frame-based 3D reconstruction algorithms that rely on
processing dense 2D brightness intensity images, due to its time continuous, sparse, asynchronous
and irregular data capturing characteristics.
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Several pioneering works have been proposed to exploit event stream Kim et al. (2016); Rebecq
et al. (2017); Gallego et al. (2018) to recover the motion trajectory and scene representation. While
existing methods deliver impressive performance, they usually exploit 2.5D semi-dense depth maps
to represent the 3D scene, and bundle adjustment (BA) is hardly being performed, due to the
asynchronous and sparse characteristics of event data stream. Klenk et al. (2024) recently proposes
to convert event stream into event voxel grids, and then adapt a previous frame-based deep visual
odometry pipeline Teed et al. (2023) for accurate camera motion estimation. As neural radiance fields
(NeRF) exhibits impressive scene representation capability recently, Klenk et al. (2022), Hwang et al.
(2023), Rudnev et al. (2023a), Low & Lee (2023) and Low & Lee (2023) explore to recover the
underlying dense 3D scene NeRF representation from event stream, by assuming ground truth poses
are available.

In contrast to those works, we propose IncEventGS, an incremental dense 3D scene reconstruction
algorithm from a single event camera, by exploiting Gaussian Splatting as the underlying scene
representation. Different from prior event-based NeRF reconstruction methods, IncEventGS does not
require any ground truth camera poses, which is more challenging and provides more flexibility for
real-world application scenarios. To overcome the challenges brought by unknown poses, IncEventGS
adopts the tracking and mapping paradigm of conventional SLAM pipelines Mur-Artal & Tardós
(2017). In particular, IncEventGS exploits prior explored and reconstructed 3D scene for camera
motion estimation of incoming event stream during the tracking stage. Both the 3D-GS scene
representation and camera motions are then jointly optimized (i.e. event-based bundle adjustment)
during the mapping stage, for more accurate scene representation and motion estimation. The 3D
scene is progressively expanded and densified. Both synthetic and real datasets are used to evaluate our
method. The experimental results demonstrate that IncEventGS is able to recover the underlying 3D
scene representation and camera motion trajectory accurately. In particular, IncEventGS outperforms
prior NeRF-based methods and other related baselines in terms of scene representation recovery,
even IncEventGS does not have the ground-truth poses. Furthermore, our method also delivers better
camera motion estimation accuracy than a most recent state-of-the-art visual odometry algorithm, in
terms of both the Absolute Trajectory Error (ATE) metric. The recovered 3D scene representation
can be further used to render novel brightness images. Our main contributions can be summarized as
follows:

• We present an incremental 3D Gaussian Splatting reconstruction algorithm from a single
event camera, without requiring the ground truth camera poses;

• The experimental results on both the synthetic and real datasets demonstrate superior
performance of our method over prior NeRF based methods and related baselines in terms
of novel view synthesis, and better performance over state-of-the-art event-based visual
odometry algorithm in terms of camera motion estimation;

• Compared to prior methods, we are able to efficiently render high-quality brightness images
thanks to the powerful representation capability of 3D Gaussian Splatting.

2 RELATED WORKS

We review two main areas of prior works: event-based neural radiance fields and 3D Gaussian
Splatting, which are the most related to our work.

Event-based neural radiance fields. Prior works from Klenk et al. (2022), Hwang et al. (2023)
and Rudnev et al. (2023a) propose to exploit event stream to recover the neural radiance fields with
known camera motion trajectory. Low & Lee (2023) further improves the reconstruction algorithm to
handle the situation with sparse and noisy events under non-uniform motion. The recovered neural
radiance fields can then be used to render novel view brightness images. The ground truth poses are
usually computed from corresponding brightness images via COLMAP Schonberger & Frahm (2016)
or provided by indoor motion capturing system. Recently, Qu et al. (2024) proposed to integrate event
measurements into an RGB-D implicit neural SLAM framework and achieve robust performance
under the situation with motion blur. Li et al. (2024) also propose to exploit event measurements and
a single blurry image to recover the underlying neural 3D scene representation. In contrast to those
works, IncEventGS conduct incremental 3D scene reconstruction without requiring any prior ground
truth poses, which is more challenging and provides more flexibility for practical application scenarios.
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The method further exploits 3D Gaussian Splatting as the underlying scene representation, which
demonstrates better image rendering quality and efficiency, compared to NeRF-based representation.

3D Gaussian Splatting. With the recent success of NeRF Mildenhall et al. (2021) and its further
developments Fridovich-Keil et al. (2022); Müller et al. (2022), novel view synthesis utilizing 3D
representations like MLPs, voxel grids, or hash tables has advanced significantly. While these
NeRF-inspired models perform admirably, they frequently require long training and rendering times
for individual scenes. The introduction of 3D Gaussian Splatting Kerbl et al. (2023) proposes a novel
explicit 3D representation to further improve both the training and rendering efficiency. Due to its
impressive efficient scene representation capability, several pioneering work have been proposed to
exploit 3D-GS for incremental 3D reconstruction. For example, Keetha et al. propose an RGBD-based
3D-GS SLAM Keetha et al. (2024), employing an online tracking and mapping system tailored to the
underlying Gaussian representation. Yan et al. implement a coarse-to-fine camera tracking approach
based on the sparse selection of Gaussians Yan et al. (2024). Matsuki et al. propose to apply 3D
Gaussian Splatting to do incremental 3D reconstruction using a single moving monocular or RGB-D
camera Matsuki et al. (2024). Huang et al. exploits ORB-SLAM3 to compute accurate camera poses
and feeds it into a 3D-GS algorithm for dense mapping Huang et al. (2024). Fu et al. uses monocular
depth estimation with 3D-GS Fu et al. (2023). Yugay et al. combine DROID-SLAM Teed & Deng
(2021) based camera tracking with active and inactive 3D-GS sub-maps Yugay et al. (2023). Hu et
al. propose a novel depth uncertainty model to ensure the selection of valuable Gaussian primitives
during optimization Hu et al. (2024). While those methods deliver impressive performance in terms
of 3D scene recovery and motion estimation, they usually assume the usage of frame-based images
(i.e. either RGB or RGB-D date). In the contrary, we propose to exploit pure event measurements for
incremental 3D-GS reconstruction. Two concurrent work have also tried to exploit 3D Gaussians
for event-based reconstruction recently, i.e. EvGGS Wang et al. (2024) and Event3DGS Xiong
et al. (2024). However, both of them rely on ground-truth poses for training, and EvGGS further
constrained to object reconstruction from 360-degree surrounding views, while ours assumes the
camera poses are not available and is more challenging.

3 METHOD

The overview of our IncEventGS is shown in Fig. 1. Given only a single event camera, IncEventGS
incrementally performs tracking and dense mapping under the framework of 3D Gaussian Splatting,
to recover both the camera motion trajectory and 3D scene representation simultaneously. The main
insight of IncEventGS is to accumulate incoming event data into chunks and treat each chunk as a
special “image”. We associate each chunk with a continuous time trajectory parameterization in the
se3 space. Two close consecutive timestamps (i.e., tk and tk+∆t, where ∆t is a small time interval)
can be randomly sampled within the chunk and the corresponding event stream can then be integrated
into an image E(x). Based on the parameterized trajectory, the corresponding camera poses (i.e.,
Tk, Tk+∆t) can be computed and the images (i.e., Îk, Îk+∆t) can be further rendered from the
3D Gaussian Splatting. The synthesized image Ê(x) can be computed for event loss computation.
During tracking, we only optimize for the camera motion trajectory of the newly accumulated event
chunk and exploit the recovered trajectory to initialize the dense bundle adjustment (BA) algorithm
for the mapping stage. During mapping stage, we continuously densify 3D Gaussians for newly
explored areas and prune transparent 3D Gaussians. For computational efficiency consideration, we
exploit a sliding window of the latest chunks and perform BA only within this window for both
3D-GS reconstruction and motion trajectory estimation. We will detail each component as follows.

3.1 3D SCENE REPRESENTATION

Following 3D-GS Kerbl et al. (2023), the scene is represented by a set of 3D Gaussian primitives,
each of which contains mean position µ ∈ R3 in the world coordinate, 3D covariance Σ ∈ R3×3,
opacity o ∈ R, and color c ∈ R3. To ensure that the covariance matrix remains positive semi-definite
throughout the gradient descent, the covariance Σ is parameterized using a scale vector s ∈ R3 and
rotation matrix R ∈ R3×3:

Σ = RSSTRT , (1)

where scale matrix S = diag([s]) is derived from the scale vector s ∈ R3.
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Figure 1: The pipeline of IncEventGS. IncEventGS consists of a camera motion tracker and a
sliding window dense mapper based on the 3D-GS scene representation. It divides incoming event
stream data into event chunks and uses a continuous time representation for the corresponding motion
trajectory. During the tracking stage, we optimize the trajectory based on prior recovered 3D-GS
representation and the real event measurements. The event chunk with estimated motion trajectory is
then inserted into the mapper. Both the 3D-GS and the motion trajectory are then jointly optimized by
exploiting the event data formation process. The tracker and the mapper are optimized alternatively
as the event stream is continuously fed into the pipeline.

In order to enable rendering, 3D-GS projects 3D Gaussian primitives to the 2D image plane from a
given camera pose Tc =

{
Rc ∈ R3×3, tc ∈ R3

}
using following equation:

Σ′ = JRcΣRT
c J

T , (2)

where Σ′ ∈ R3×3 is the 2D covariance matrix, J ∈ R2×3 is the Jacobian of the affine approximation
of the projective transformation. After projecting 3D Gaussians onto the image plane, the color
of each pixel is determined by sorting the Gaussians according to their depth and then applying
near-to-far α-blending rendering via the following equation:

I =

N∑
i

ciαi

i−1∏
j

(1− αj) , (3)

where ci is the learnable color of each Gaussian, and αi is the alpha value computed by evaluating
the 2D covariance Σ′ multiplied with the learned Gaussian opacity o:

αi = oi · exp (−σi) , σi =
1

2
∆T

i Σ
′−1∆i, (4)

where ∆i ∈ R2 is the offset between the pixel center and the 2D Gaussian center. Depth is rendered
by:

D =

N∑
i

diαi

i−1∏
j

(1− αj) , (5)

where di denotes the z-depth of the center of the i-th 3D Gaussian to the camera. We also render
alpha map to determine visibility:

V =

N∑
i

αi

i−1∏
j

(1− αj) , (6)
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The derivations presented above demonstrate that the rendered pixel color, denoted as C in (3), is a
function that is differentiable with respect to the learnable attributes of all Gaussians, and the camera
poses Tc. This facilitates our bundle adjustment formulation, accommodating a set of event chunks
and inaccurate camera motion trajectories within the framework of 3D-GS.

3.2 EVENT DATA FORMATION MODEL

An event camera records changes of the brightness as a stream of events asynchronously. Every
time a pixel brightness change reaches a contrast threshold (i.e. |L(x, ti + δt) − L(x, ti)| ≥ C),
the camera will trigger an event ei = (x, ti, pi), where pi ∈ (−1,+1) is the polarity of the event,
L(x, ti) = log(I(x, ti)) is the brightness logarithm of pixel x at timestamp ti, C is the fixed contrast
threshold.

To relate 3D-GS representation with the event stream, we sample two close consecutive timestamps
(i.e., tk and tk+∆t, where ∆t is a small time interval), and accumulate the real measured events
within ∆t to an image E(x). The accumulation is defined as:

E(x) = C{ei(x, ti, pi)}tk<ti<tk+∆t, (7)

where e(x, ti, pi) is the ith event within the defined time interval corresponding to pixel x. The
corresponding camera poses Tk and Tk+∆t can be interpolated from the camera motion trajectory
parameterization, allowing us to render two grayscale images (i.e. Îk and Îk+∆t) from the previously
recovered 3D-GS. The synthesized accumulated event image Ê can then be computed as:

Ê(x) = log(Îk+∆t(x))− log(Îk(x)), (8)

where Ê(x) depends on the parameters of both the motion trajectory parameters and 3D-GS, and is
differentiable with respect to them.

Both in tracking and mapping, inspired by the work of Rudnev et al. (2023b), we segment the current
event chunks into nseg equal segments according to the number of events, obtaining nseg timestamps
that correspond to the end of each segment. We then randomly select one timestamp from these
nseg timestamps to serve as tk+∆t, and we randomly sample an integer nwin between the integer
bounds nlow and nup. The index of tk is equal to the index of tk+∆t subtract nwin. nseg, nlow and
nup are hyperparameters. This sampling strategy enables the model to capture both local and global
information.

3.3 CAMERA MOTION TRAJECTORY MODELING

Since each event chunk usually contains too many events, we sample a portion of them according
to the total number of events during optimization. We formulate the corresponding poses (i.e. Tk

and Tk+∆t) at the beginning and end of the sampled event portion within each chunk, by employing
a camera motion trajectory. The trajectory is represented through linear interpolation between
two camera poses, one at the beginning of the chunk Tstart ∈ SE(3) and the other at the end
Tend ∈ SE(3). The camera pose at time tk can thus be expressed as follows:

Tk = Tstart · exp(
tk − tstart
tend − tstart

· log(T−1
start ·Tend)), (9)

where tstart and tend represent the timestamps corresponding to the boundary of the event chunk. It
follows that Tk is differentiable with respect to both Tstart and Tend. The objective of IncEventGS
is thus to estimate both Tstart and Tend for each event chunk, along with the learnable parameters of
3D Gaussians Gθ.

3.4 INCREMENTAL TRACKING AND MAPPING

For both tracking and mapping, we exploit the previously introduced event data formation model to
compute the loss from the synthesized and real accumulated event images. In particular, we compute
the loss of the latest event chunk only for the tracking stage and minimize the following energy
function:

T∗
start,T

∗
end = argmin

Tstart,Tend

∥∥∥E(x)− Ê(x)
∥∥∥
2
, (10)
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where both E(x) and Ê(x) are the accumulated real and synthesized event images respectively,
corresponding to a randomly sampled event portion within the latest event chunk.

Once the tracking is done, we insert the latest event chunk to mapper and exploit the estimated T∗
start

and T∗
end as the initial value of the chunk to perform dense bundle adjustment. For computational

consideration, we exploit a sliding window BA of the latest nw chunks and nw is a hyperparameter.
In particular, we optimize both the motion trajectories and the 3D-GS jointly by minimizing the
following loss functions:

L = (1− λ)Levent + λLssim, (11)

Levent =
1

nw

nw∑
i=0

∥∥∥Ei(x)− Êi(x)
∥∥∥
2
, (12)

Lssim =
1

nw

nw∑
i=0

SSIM(Ei(x), Êi(x)) (13)

where λ is a hyperparameter, SSIM is the structural dissimilarity loss Wang et al. (2004), both Ei(x)

and Êi(x) are the corresponding accumulated real and synthesized event images of the latest ith event
portion respectively. As the event data streams in, we alternatively perform tracking and mapping.

3D-GS Initialization and System Boot-strapping. We initialize the 3D-GS by sampling point
cloud randomly within a bounding box. The first m event chunks (where m is a hyperparameter) are
selected for initialization, and all corresponding camera poses (e.g., T∗) are randomly initialized
to be near the identity matrix. We then minimize the loss computed by Eq. (11) with respect to the
attributes of 3D-GS and the parameters of camera motion trajectories jointly.

Through experiments, we found that the above initialization procedure consistently produces high-
quality brightness images. However, the 3D structure remains of low quality due to the short baselines
of the event chunks. We further find that it could potentially affect the performance of the whole
pipeline as more event data is received. Therefore, we utilize a monocular depth estimation network
Ke et al. (2024) to predict a dense depth map from the rendered brightness image. This depth map
is then used to re-initialize the centers of the 3D Gaussians by unprojecting the pixel depths, after
which we repeat the minimization of Eq. (11) for system bootstrapping.

3D-GS Incrementally Growing. As the camera moves, new Gaussians is periodically introduced to
cover newly explored regions. After tracking, we obtain an accurate camera pose estimate for each
new event chunk. The center of new Gaussians are determined by:

p = T · π−1(u, du) (14)

where p ∈ R3 is a 3D point, u ∈ R2 is a point in the image plane, du is depth of the 3D point p
projecting on pixel u, which is rendered by equation 6, π−1 denotes camera inverse projection, T is
the camera pose from tracking. To ensure that new Gaussians are only added in previously unmapped
areas, a visibility mask is generated to guide the expansion of the Gaussian splatting process, as
following:

M(p) = V < λV (15)

where V is the rendered alpha map, λV is the hyperparameter.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS.

Implementation Details. All experiments were conducted on a desktop PC equipped with a
5.73GHz AMD Ryzen 9 7900x CPU and an NVIDIA RTX 3090 GPU. The first m = 3 event chunks
were used for initialization. During the mapping stage, a sliding window size of nw = 20 was
employed for the bundle adjustment algorithm. The hyperparameters were set as follows: λ = 0.05,
λV = 0.8, and nseg = 100. For the synthetic dataset, nlow = 400k and nup = 500k, while for
the real dataset, nlow = 60k and nup = 80k. Each event chunk had a time interval of 50 ms. The
learning rate of the camera poses is set to 1e-4 and that for the attributes of 3D-GS are set the same as
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the original 3D-GS work. The number of optimization steps for initialization is 4500, and that for
tracking and mapping are set to 200 and 1500 respectively. The contrast threshold C of the event
camera is set to 0.1 for synthetic datasets and 0.2 for real datasets empirically.

Baselines and Evaluation Metrics. IncEventGS performs incremental dense 3D-GS reconstruction
and motion estimation using only a single event camera. To the best of our knowledge, there are no
existing event-only NeRF or 3D-GS SLAM methods that do not rely on ground-truth poses, making
direct comparisons challenging. Therefore, we conduct a thorough comparison of our method with
several event-based NeRF approaches, including E-NeRF Klenk et al. (2022), EventNeRF Rudnev
et al. (2023a), and Robust e-NeRF Low & Lee (2023), as well as two-stage methods such as E2VID
Rebecq et al. (2019) + COLMAP Schönberger & Frahm (2016) + 3DGS Kerbl et al. (2023), and
E2VID Rebecq et al. (2019) + DEVO Klenk et al. (2024) + 3DGS Kerbl et al. (2023). E-NeRF,
EventNeRF, and Robust e-NeRF leverage implicit neural radiance fields for 3D scene representation,
requiring ground-truth camera poses for accurate NeRF reconstruction. The two-stage methods we
examine include E2VID + COLMAP + 3DGS and E2VID + DEVO + 3DGS. In those approaches,
event data is first converted into grayscale images using E2VID. The subsequent steps differ: in the
E2VID + COLMAP + 3DGS method, camera poses are estimated from these images using COLMAP,
while in the E2VID + DEVO + 3DGS method, poses are estimated using DEVO. Finally, 3D-GS is
trained with the generated images and poses in both methods. Both the quantitative and qualitative
comparisons are performed on the synthetic dataset. Since there are no paired ground truth images
for the real dataset, we only perform qualitative comparisons on the real dataset. In terms of motion
trajectory evaluations, we use the publicly available state-of-the-art event-only visual odometry
method, i.e. DEVO Klenk et al. (2024), for comparison, both quantitatively and qualitatively.

The metrics used for novel view synthesis (NVS) include the commonly employed PSNR, SSIM, and
LPIPS. For motion trajectory evaluations, we utilize Absolute Trajectory Error (ATE). To ensure fair
comparisons, we employ the evaluation code provided by EventNeRF to compute the NVS metrics,
which applies a linear color transformation between predictions and ground truth. Additionally, we
use the public EVO toolbox Grupp (2017) to compute the trajectory metrics.

Benchmark Datasets. To properly evaluate the performance of NVS and motion trajectory esti-
mation, we synthesized event data using the 3D scene models from the Replica dataset Straub et al.
(2019). In particular, we exploit the room0, room2, office0, office2, and office3 scenes. We rendered
high frame rate RGB images at 1000 Hz with a resolution of 768x480 pixels. Those images are then
converted to grayscale and the event data is generated via the events simulator Gehrig et al. (2020).
The contrast threshold is set to 0.1. To simulate real-world camera motions, we exploit the same
motion trajectories as that of NICE-SLAM Zhu et al. (2022) for data generation.

We used the event dataset provided by TUM-VIE Klenk et al. (2021) for real data evaluations, which
is also used by E-NeRF and Robust e-NeRF. TUM-VIE Klenk et al. (2021) captured the event datasets
by a pair of Prophesee Gen4 HD event cameras with a resolution of 1280x720 pixels. We only use
the left-event camera data for our experiment.

4.2 QUANTITATIVE EVALUATIONS.

We conduct quantitative evaluations against event NeRF methods(E-NeRF, EventNeRF, and Robust
e-NeRF) and two-stage methods (E2VID + COLMAP + 3DGS and E2VID + DEVO + 3DGS) in
terms of the quality of NVS and pose estimation performance.

The NVS performance is evaluated on Replica-dataset and the results are presented in Table 1. It is
important to note that the metrics are lower than those typically observed in standard NeRF/3D-GS
methods for RGB images, primarily due to the absence of adequate RGB image supervision. Even
though nerf-based methods use ground truth poses for training, IncEventGS still significantly out-
performs them, highlighting the advantages of our approach utilizing a 3D Gaussian representation.
Additionally, our method greatly surpasses two-stage methods that also employ 3D Gaussian rep-
resentation, demonstrating superior pose estimation and the effectiveness of our bundle adjustment
technique.

We evaluate pose estimation performance using the ATE metric on both synthetic and real datasets,
comparing our method with EVO and E2VID + COLMAP. The results, presented in Table 2, show
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Table 1: NVS performance comparison on Replica dataset. The result demonstrates that our method
outperforms NeRF-based and two-stage methods.

room0 room2 office0 office2 office3

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

E-NeRF 13.99 0.58 0.51 15.56 0.47 0.58 18.91 0.51 0.57 13.05 0.65 0.44 14.01 0.62 0.48
EventNeRF 17.29 0.62 0.39 16.02 0.54 0.64 18.90 0.43 0.62 15.18 0.66 0.45 16.77 0.73 0.33

Robust e-NeRF 17.26 0.84 0.18 16.43 0.50 0.52 18.93 0.52 0.56 16.81 0.81 0.25 19.22 0.84 0.18
E2VID+

COLMAP+3DGS 14.45 0.44 0.52 15.74 0.51 0.55 18.91 0.31 0.68 14.03 0.57 0.48 13.25 0.47 0.53
E2VID+

DEVO+3DGS 14.35 0.42 0.56 15.73 0.49 0.59 18.90 0.28 0.72 13.84 0.56 0.55 13.28 0.46 0.57
Ours 24.31 0.85 0.17 23.75 0.79 0.23 25.64 0.54 0.30 21.74 0.82 0.23 21.18 0.88 0.13

Table 2: Pose accuracy (ATE, cm) on Replica and TUM-VIE datasets. The results demonstrate that
our method delivers better performance in terms of camera motion estimation.

room0 room2 office0 office2 office3 1d 3d 6dof desk desk2

DEVO 0.289 0.266 0.138 0.281 0.156 0.147 0.303 2.93 0.732 0.201
E2VID+COLMAP 17.93 59.96 105.19 18.414 17.28 4.268 16.90 9.88 21.57 10.13

Ours 0.046 0.067 0.045 0.046 0.054 0.115 0.298 0.251 0.231 0.129

that our method outperforms both baselines, validating the effectiveness of our incremental tracking
and mapping technique.

4.3 QUALITATIVE EVALUATIONS.

We evaluate our method against event NeRF methods and two-stage methods qualitatively in terms
of novel view image synthesis, both on synthetic and real data. The results are presented in both
Fig. 2 and Fig. 3. It demonstrates that our method can deliver better novel view images, while
event NeRF methods and two-stage methods render images with additional artifacts. Compared to
NeRF-based methods, our approach demonstrates the advantage of IncEventGS by leveraging 3D
Gaussian Splatting as the underlying scene representation. In contrast to two-stage methods, our
dense bundle adjustment optimizes both 3D Gaussian Splatting and camera pose using event data,
whereas two-stage approaches tend to accumulate errors over time, as confirmed by the experimental
results. We also provide representative visualization of ATE error mapped onto trajectories in Fig. 4,
both on synthetic and real dataset. It demonstrates that IncEventGS is able to recover more accurate
motion trajectories.

4.4 ABLATION STUDY

We conduct ablation studies to confirm our design choices. In particular, we study the effect of a
monocular depth estimation network for system bootstrapping and event slicing hyperparameters
nlow, nup. The experiments are conducted with the Replica dataset and the results are shown in Table
3 and Table 4 respectively.

Table 3: Ablation Study about Depth Initial-
ization. The unit of ATE is cm. The experi-
mental results demonstrate the effectiveness
of the initialization strategy. It not only im-
proves the quality of rendered images, but
also improves the accuracy of the camera mo-
tion estimation significantly.

Setting PSNR↑ SSIM↑ LPIPS↓ ATE

full 21.74 0.82 0.23 0.046
w/o 17.80 0.76 0.26 1.534

Table 4: Ablation Study on Event Slice Win-
dow Size (Hyperparameters nlow and nup).
The unit of ATE is cm.

Setting PSNR↑ SSIM↑ LPIPS↓ ATE

1k-10k 16.07 0.64 0.46 0.167
10k-50k 18.41 0.72 0.33 0.079
80k-200k 20.99 0.79 0.25 0.079
400k-500k 21.74 0.82 0.23 0.046
500k-600k 20.95 0.79 0.23 0.050
600k-700k 18.06 0.75 0.28 0.214
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Figure 2: Qualitative evaluation of novel view image synthesis on the Replica dataset. The experimen-
tal results demonstrate that our method renders higher-quality images with fewer artifacts compared
to event-based NeRF and two-stage approaches.

We found that depth initialization significantly impacts pose estimation, reducing the Average
Trajectory Error (ATE) from 1.534 cm to 0.064 cm. Additionally, this improvement in pose estimation
leads to a slight enhancement in Novel View Synthesis (NVS) performance. These results verify the
importance of using depth initialization.

We compare several combinations of hyperparameters nlow and nup, which refer to the range of event
slicing window sizes. Table 4 demonstrates that both too small and too large window sizes negatively
impact the performance of Novel View Synthesis (NVS) and pose estimation. Consequently, we
select nlow = 400k and nup = 500k for our experiments on the Replica dataset.

5 CONCLUSION

We present the first incremental 3D dense reconstruction algorithm, i.e. IncEventGS, with a single
event camera under the framework of 3D Gaussian Splatting. We adopt the tracking and mapping
paradigm in conventional SLAM pipeline to do incremental motion estimation and 3D scene re-
construction simultaneously. To handle the continuous and asynchronous characteristics of event
stream, we exploit a continuous trajectory model to model the event data formation process. The
experimental results on both synthetic and real datasets demonstrate the superior performance of
IncEventGS over prior state-of-the-art methods in terms of high-quality novel image synthesis and
camera pose estimation.
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Figure 3: Qualitative evaluation for novel view image synthesis on real dataset. It demonstrates
that our method is able to render better images with fewer artifacts than event NeRF methods and
two-stage methods. Note there are no GT images aligned with the event camera, we choose closest
images of RGB camera and crop it to the the size with rendered images for visual comparisons.

DEVO E2VID+COLMAP ours

of
fic

e0
6d

of

Figure 4: Representative visualization of ATE error mapped onto trajectories for the synthetic
(office0) and real (6dof) datasets, generated by the EVO toolbox using the same ground truth poses,
demonstrating the superior performance of our method in pose estimation.
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