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Abstract

Knowledge graph completion (KGC) aims to001
predict missing triples in knowledge graphs002
(KGs) by leveraging existing triples and textual003
information. Recently, generative large lan-004
guage models (LLMs) have been increasingly005
employed for graph tasks. However, current006
approaches typically encode graph context in007
textual form, which fails to fully exploit the po-008
tential of LLMs for perceiving and reasoning009
about graph structures. To address this limita-010
tion, we propose DrKGC (Dynamic Subgraph011
Retrieval-Augmented LLMs for Knowledge012
Graph Completion). DrKGC employs a flexi-013
ble lightweight model training strategy to learn014
structural embeddings and logical rules within015
the KG. It then leverages a novel bottom-up016
graph retrieval method to extract a subgraph017
for each query guided by the learned rules. Fi-018
nally, a graph convolutional network (GCN)019
adapter uses the retrieved subgraph to enhance020
the structural embeddings, which are then inte-021
grated into the prompt for effective LLM fine-022
tuning. Experimental results on two general023
domain benchmark datasets and two biomed-024
ical datasets demonstrate the superior perfor-025
mance of DrKGC. Furthermore, a realistic case026
study in the biomedical domain highlights its027
interpretability and practical utility.028

1 Introduction029

Knowledge graphs (KGs) are structured represen-030

tations of real-world facts, typically formulated031

as a set of triples that consist of entities and their032

relationships (Nickel et al., 2015; Ji et al., 2021).033

Biomedical Knowledge Graphs (BKGs) are spe-034

cialized forms of KGs tailored to the biomedi-035

cal domain. In a BKG, nodes represent biomed-036

ical entities—such as molecules, diseases, and037

genes—while edges capture various relationships038

among these entities, typically through functional039

predicates relevant to the biomedical domain (e.g.,040

“treats,” “inhibits,” and “causes”) (Walsh et al.,041

2020). BKGs have proved instrumental in numer- 042

ous biological tasks, including drug repurposing, 043

side-effect prediction, and drug–drug interaction 044

detection (Himmelstein et al., 2017; Zitnik et al., 045

2018; Lin et al., 2020). 046

BKGs, like other KGs, often suffer from incom- 047

pleteness, typically manifested as missing edges 048

between nodes (Chen et al., 2020) . This incom- 049

pleteness may arise because (1) the facts are absent 050

from the data source, or (2) they remain undis- 051

covered by humans. Such issues are particularly 052

prevalent in BKGs, as their data primarily origi- 053

nates from experimental results, clinical trials, and 054

scientific literature. 055

To address the challenge of predicting missing 056

information in knowledge graphs, a wide range of 057

Knowledge Graph Completion (KGC) models have 058

been developed. These include structure-based 059

models such as TransE (Bordes et al., 2013) and 060

graph neural network (GNN) based models such 061

as R-GCN (Schlichtkrull et al., 2018), rule-based 062

approaches like Neural-LP (Yang et al., 2017), text- 063

based methods such as KG-BERT (Yao et al., 2019). 064

Recently, the advent of generative large language 065

models (LLMs) has given rise to a new class of 066

generation-based KGC approaches. Unlike tradi- 067

tional text-based methods that encode entity and 068

relation descriptions into fixed embeddings, these 069

approaches leverage LLMs to generate missing 070

triples in a sequence-to-sequence manner, often 071

relying on prompting or fine-tuning strategies (e.g., 072

KICGPT (Wei et al., 2024), KoPA (Zhang et al., 073

2024)). Although generation-based methods have 074

shown promise in KGC, they face several key lim- 075

itations: ❶ Structural Information Loss: These 076

methods often fail to preserve the rich structural 077

information inherent in knowledge graphs. While 078

graph paths or subgraphs can be encoded as text 079

prompts, overly long inputs introduce noise and 080

increase computational costs. ❷ Static Embed- 081

ding Limitations: Incorporating structural embed- 082
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dings into LLMs offers a partial solution but re-083

mains limited, as such embeddings are static and084

do not adapt to the query-specific context or dy-085

namic subgraph structure. ❸ Generic Responses086

from LLMs: In the absence of additional con-087

straints, LLMs tend to generate generic predictions088

influenced by pretraining data. This is especially089

problematic in biomedical KGs, where high-degree090

entities and many-to-many relations make multi-091

ple answers plausible—yet not all are contextually092

correct or desirable.093

To tackle these challenges, we propose094

Dynamic Subgraph Retrieval-Augmented LLMs095

for Knowledge Graph Completion (DrKGC). Our096

approach begins by converting incomplete triples097

into natural language questions using an automat-098

ically generated template lexicon. It then em-099

ploys a lightweight model to learn structure em-100

beddings for entities and rank candidate entities101

based on their relevance to the query. This an-102

chors the reasoning process in semantic and struc-103

tural context without requiring long or noisy text104

prompts (❶). To overcome the limitations of static105

embeddings (❷), DrKGC dynamically constructs106

a query-specific subgraph using retrieved candi-107

dates and learned logical rules. This enables the108

model to focus on relevant local structures and in-109

corporate adaptive, context-aware structural cues110

during inference. Finally, to mitigate the risk of111

generic or irrelevant responses (❸), DrKGC re-112

stricts the output space by explicitly defining a can-113

didate entity set. The prompt is enriched with both114

global and local graph signals, guiding the LLM to115

generate contextually grounded and targeted pre-116

dictions—especially in cases involving complex,117

many-to-many biomedical relations.118

The key contributions of our work are as follows:119

• We propose DrKGC, a novel and flexible120

framework for knowledge graph completion121

that effectively supports both general KGs and122

domain BKGs.123

• We develop two critical components of124

DrKGC to effectively integrate graph-125

structural information into the generative126

model. Specifically, we extend the standard127

retrieval-augmented generation to the graph128

scenario where we leverage logical rules to129

obtain a local subgraph that represents entities130

of potential interest. Then, we develop a131

technique that applies graph convolutional132

networks to the retrieved subgraphs to133

further generate local embeddings of entities, 134

effectively supplying structural information 135

for LLM-based prediction. 136

• We perform comprehensive experiments on 137

both benchmark datasets and biomedical use 138

cases to evaluate the performance of DrKGC 139

and show its significant improvement over 140

state-of-the-art baseline approaches. We fur- 141

ther conduct a biomedical case study on drug 142

repurposing to demonstrate the practical ap- 143

plicability of DrKGC. 144

2 Related Work 145

2.1 Structure-based Methods 146

Knowledge graph completion (KGC) can be ap- 147

proached by leveraging the structural informa- 148

tion of nodes and edges in large heterogeneous 149

graphs. Early methods learn low-dimensional em- 150

beddings for entities and relations based on indi- 151

vidual triples—for example, TransE (Bordes et al., 152

2013) views a relation as a translation from the sub- 153

ject to the object, while RotatE (Sun et al., 2019) 154

extends TransE into a complex space to model sym- 155

metric relations. Semantic matching approaches 156

(e.g., ComplEx (Trouillon et al., 2016), DistMult 157

(Yang et al., 2014)) compute the similarity of entity 158

and relation representations. However, these triple- 159

based methods handle each triple independently 160

and ignore higher-order neighborhood information. 161

To address this, GNN-based methods, such as R- 162

GCN (Schlichtkrull et al., 2018) and CompGCN 163

(Vashishth et al., 2019), introduce message passing 164

and neighborhood aggregation. 165

2.2 Rule-based Methods 166

Because two entities in a KG may be linked by a 167

few one-hop paths but numerous multi-hop paths, 168

rule-based methods have emerged to learn prob- 169

abilistic logic rules from these relation paths for 170

inferring missing triples. For example, Neural-LP 171

(Yang et al., 2017) offers an end-to-end differen- 172

tiable framework that jointly learns the parame- 173

ters and structures of first-order logical rules by 174

combining a neural controller with attention and 175

memory, composing differentiable TensorLog op- 176

erations. NCRL (Cheng et al., 2023) learns logical 177

rules by splitting rule bodies into smaller parts, en- 178

coding them via a sliding window, and then merg- 179

ing them recursively with an attention mechanism, 180

achieving efficient and scalable reasoning. 181
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2.3 Text-based Methods182

Knowledge graphs often include extensive textual183

information—such as names and descriptions of en-184

tities and relations—which text-based methods can185

exploit using pre-trained language models (PLMs)186

to predict missing triples. For example, KG-BERT187

(Yao et al., 2019) computes triple scores by feeding188

the text of head entities, relations, and tail entities189

into a BERT model. SimKGC (Wang et al., 2022)190

applies contrastive learning with three types of neg-191

ative samples to build more discriminative KGC192

models. KGLM (Youn and Tagkopoulos, 2022)193

combines learning the structure of the knowledge194

graph with fine-tuning PLM.195

2.4 Generation-based Methods196

With the rise of generative large language models197

(LLMs), generation-based approaches have gained198

attention by transforming KGC into a sequence-to-199

sequence text generation task. These methods still200

rely on textual information from KGs, but they re-201

frame a KGC query as a natural language question,202

prompt the LLM for an answer, and map that output203

back to KG entities. For example, KICGPT (Wei204

et al., 2024) introduces an in-context learning strat-205

egy that uses explicit instructions to guide LLM206

reasoning. KG-LLM (Yao et al., 2025) applies207

LLM to triple classification and relation prediction208

tasks in KGC. KoPA (Zhang et al., 2024) intro-209

duces the Knowledge Prefix Adapter to integrate210

pre-trained structural embeddings into LLMs, en-211

hancing structure-aware reasoning. From a prompt-212

ing perspective, LPNL (Bi et al., 2024) uses a two-213

stage sampling and divide-and-conquer method214

for scalable link prediction via natural language215

prompts. KC-GenRea (Wang et al., 2024) refor-216

mulates KGC as a re-ranking task for LLMs, and217

DIFT (Liu et al., 2024) implements KGC using218

discriminant instructions.219

2.5 Biomedical Knowledge Graph Completion220

BKGs have gained substantial attention for model-221

ing structured knowledge in complex biomedical222

systems. Notable BKGs include Hetionet (Him-223

melstein et al., 2017), unifying 29 databases into224

a single network, PharmKG (Zheng et al., 2021),225

integrating 6 databases plus text-mined knowl-226

edge, and PrimeKG (Chandak et al., 2023), a pre-227

cision medicine–focused graph consolidating 20228

resources. For BKGs, KGC is vital in identifying229

missing triples to generate new hypotheses—for ex-230

ample, ICInet (Zhao et al., 2023) integrates GNNs, 231

biological KGs, and gene expression profiles to 232

predict cancer immunotherapy outcomes, while 233

FuseLinker (Xiao et al., 2024) fuses pre-trained 234

LLM text embeddings with Poincaré graph embed- 235

dings for improved GNN-based link prediction in 236

drug repurposing. 237

3 Methodology 238

In this section, we introduce the proposed DrKGC. 239

We begin with the preliminary and an overview, fol- 240

lowed by a detailed description of each component. 241

3.1 Preliminary 242

Knowledge graph (KG). A KG (or BKG) can 243

be represented as a directed multigraph, G = 244

(E ,R, T ), where E is the set of entities, R is the set 245

of relations and T = {(h, r, t)|h, t ∈ E , t ∈ R} is 246

the set of triples. Each triple (h, r, t), with h and 247

t the head and tail entities, and r representing the 248

relation between them, describes a fact in KG. 249

Knowledge graph Completion (KGC). KGC 250

aims to infer novel or missing triples from 251

those already present in the graph. Let triples 252

{(h′, r′, t′)|h′, t′ ∈ E , t′ ∈ R}, with (h′, r′, t′) /∈ 253

T , represent facts that are not unobserved in the 254

KG. In this work, we cast KGC as the tasks of 255

identifying missing entities in incomplete triples 256

(?, rq, tq) and (hq, rq, ?), which are referred to as 257

head prediction and tail prediction, respectively. 258

Here, we call hq or tq the query entity and rq the 259

the query relation. 260

3.2 Overview 261

For simplicity, we only consider the head predic- 262

tion scenario for illustration. Figure 1 illustrates 263

the overall framework of DrKGC. DrKGC first em- 264

ploys a Question Generator to convert the incom- 265

plete triples (?, rq, tq) into well-formed question Q. 266

Then, a pre-trained lightweight model score each 267

entity {e ∈ E | (e, rq, tq) /∈ T } for (?, rq, tq), and 268

selects the top k entities, where k is a hyperparam- 269

eter, to form a candidates set C = [e1, e2, e3..., ek]. 270

Subsequently, Subgraph Retriever retrieves a sub- 271

graph G based on the query entity tq, all entities in 272

C and the logic rules of rq. A GCN-based adapter 273

then leverages G to refine the embeddings of the 274

tq and the entities in C. Finally, the LLM selects 275

the most plausible entity from the C, using both its 276

own knowledge and the structured embeddings, to 277

answer the question Q. 278
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Input:
1. tq           2. rq
Output:
Candidates

rq

Incomplete Triple

You are an excellent biomedical scientist. The task is
to predict the answer based on the given question,
and you only need to answer one entity. The answer
must be in ('Tretinoin', 'Pindolol', 'Niacin', 'vitamine
E', ....) 

You can refer to: 
'Hypertension': [Placeholder],
'Tretinoin': [Placeholder],
'Pindolol': [Placeholder],
'Niacin': [Placeholder],
'vitamine E': [Placeholder],
 ....

Question: What is treatable for hypertension?

Answer:  

 Embeddings

{
relation 1: question 1, 
relation 2: question 2,
relation 3: question 3,
....
}

Input:
1. Query entity:
2. Rules:

3. Candidates:
     [                 ....  ]
Output:

Input:
1. Text of the relation
2. A few example triples
Output:
Questions template 

Knowledge Graph

GPT

Question-Template 
LexiconQuestion Generator

Training Ranking Model 

Subgraph Retriever

Enhanced embedding 

Prompt Template

Example:  ( _ , treats, Hypertension)

Llama-3-8B
Mistral-7B
MedLlama-3-8B

LLM LoRA
Fine-tuning

LLM Response

Pindolol

Candidates Retriever

GCN
Adapter

Subgraph

Subgraph with
embeddings for query  

Graph Embeddings

Logic Rules 

Lightweight
Model(s)

(_, rq, tq)
?

(_, rq, eq): [entity 1,
entity 2, entity 3, ...,
entity k] 

Candiadtes

Figure 1: Overview of the DrKGC framework. Light-blue arrows denote the dataset-level workflow (run once per
KG); black arrows denote the per-triple workflow (run for each incomplete triple).

3.3 Question Generator279

To more accurately express the relations in the KG280

and convey the specific functional semantics of re-281

lations in BKGs, we reformulate the KGC task into282

a question-answering paradigm that aligns with283

LLMs. To achieve this, we introduce a simple284

yet effective approach comprising two main stages:285

Template Generation and Question Generation.286

Template Generation. For each KG, we conduct287

a one-time process using GPT’s few-shot context288

learning. Specifically, GPT-o1 is provided with a289

relation’s name, its textual description, and a small290

set of sample triples, and is then instructed to gen-291

erate a corresponding question template (with a292

placeholder for the query entity) via pattern induc-293

tion. After processing each relation, we compile294

a question-template lexicon L (distinguishing be-295

tween head and tail predictions) covering the entire296

relations set. The Appendix A.3 provides the com-297

plete lexicon for all four datasets.298

Question Generation. After obtaining the lexi-299

con L, we first map the query relation rq to its300

corresponding question template. Next, we place301

the query entity rq into the placeholder position to302

generate the complete question Q, which can be303

expressed as Q = P (L(rq), tq).304

3.4 Candidates Retriever305

To mitigate the issues of an excessively large search306

space, limited LLM input capacity, and the ten-307

dency of LLMs to produce generic responses, we 308

constrain the LLM’s input and output using can- 309

didate sets. Similar to some previous works (e.g., 310

(Zhang et al., 2024; Wei et al., 2024; Liu et al., 311

2024)), we also employ lightweight KGC methods 312

to obtain entity rankings, which are then used to 313

collect candidate entities. 314

Lightweight Model Training. Unlike previous 315

work, we require more than just entity rankings. 316

Therefore, we train not only lightweight structure- 317

based models to obtain the structural embeddings 318

of entities, but also lightweight rule-based models 319

to learn the logical rules of relations in the KG, 320

which guide the subsequent subgraph retrieval. By 321

“lightweight,” we refer to simpler, more resource- 322

efficient approaches that do not rely on large-scale 323

pretraining. This process is inherently flexible and 324

any state-of-the-art method that can generate struc- 325

tured embeddings and perform rule mining may 326

serve as a substitute. In our implementation, we 327

focus on leveraging open-source methods that have 328

demonstrated strong performance on the KGC task. 329

The best structure-based model, MS , generates em- 330

beddings for all entities, which we denote as the 331

global embeddings Eglobal = {eglobal | e ∈ E}. 332

The best rule-based model, MR extracts logic rules 333

for each relation. For every relation r ∈ R, we 334

denote the corresponding set of rules as Lr. 335

Candidates Collection. The best performing 336

lightweight model is used to rank the candidates. 337

Specifically, for head prediction, we specify the 338
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query relation and query entity, replace the head339

with each entity {e ∈ E | (e, rq, tq) /∈ T } for340

(?, rq, tq), and compute a likelihood score for each341

resulting triple, which reflects its plausibility. The342

replaced entities in top k triples are then selected343

to form the candidate set C = [e1, e2, e3..., ek].344

3.5 Dynamic Subgraph RAG345

Retrieval-augmented generation (RAG) integrates346

retrieval-based methods with generative models to347

enhance the quality and accuracy of generated text348

(Lewis et al., 2020). Inspired by this idea, we pro-349

pose a dynamic subgraph RAG strategy tailored for350

KGC tasks, which comprises two key components:351

Dynamic Subgraph Retrieval and Structure-Aware352

Embedding Enhancement.353

Dynamic Subgraph Retrieval. To enable the354

LLM to select the correct answer from C based355

on the query entity tq and query relation rq, it is356

crucial to augment the graph context by retrieving357

an informative subgraph. To this end, we propose358

a bottom-up dynamic subgraph retrieval scheme,359

which is dynamic in that it does not mechanically360

retrieve the subgraph solely based on the tq and rq,361

but rather adapts to variable candidates sets. Specif-362

ically, we first ensure that both the tq and all candi-363

date entities e ∈ C are included in the subgraph G,364

and then retrieve the shortest paths connecting each365

e ∈ C to the tq to guarantee connectivity. Next, we366

sort the logical rules in Lrq by their assigned confi-367

dence scores and sequentially use them to search368

the paths from the e ∈ C to tq, thereby enriching369

the subgraph. This process continues until the num-370

ber of triples reaches a preset threshold τ , which371

serves to constrain the subgraph’s size. Finally, if372

the number of triples remains below τ after these373

steps, we augment the subgraph with additional374

triples connected to other entities from e ∈ C and375

tq via the rq and its logical rules. Further details376

are provided in Appendix A.4.377

Structure-Aware Embedding Enhancement.378

Unlike traditional RAG, integrating structured379

subgraphs directly into the prompts is challenging.380

Even if described in text, much of the structural381

information is lost, and the text may be excessively382

long due to the richness of the subgraphs. To over-383

come this limitation, we exploit the subgraph’s384

structural information to vectorize the graph con-385

text. We refer to the resulting embeddings as local386

embeddings Elocal = {elocal | e ∈ E}.387

To obtain local embeddings and enhance the388

overall structural representation, we design a graph389

convolutional network (GCN)-based adapter. It 390

comprises a low-dimensional relational GCN and 391

a subsequent adapter that projects the resulting 392

vectors to the LLM input layer’s dimensionality. 393

Specifically, for each query subgraph, the GCN is 394

initialized with the global embeddings of all en- 395

tities and then updates these representations via 396

the neighborhood aggregation mechanism to pro- 397

duce the local embeddings. We concatenate the 398

global and local embeddings to form the final 399

enhanced structural embedding, i.e., eenhance = 400

[eglobal; elocal]. To reduce computational overhead 401

for graph, GCN computations are performed in a 402

low-dimensional space. Consequently, we employ 403

an adapter to map the resulting structural embed- 404

dings to the LLM input dimension for seamless 405

integration. During LoRA fine-tuning, we allow 406

gradients to flow through the entire model, includ- 407

ing the GCN adapter. 408

3.6 Prompt Template 409

Appendix A.2 presents the detailed prompt tem- 410

plate. In summary, for each queried incomplete 411

triple, our prompt comprises the following compo- 412

nents: the instruction I for KGC; the candidates 413

set C; special [Placeholder] tokens for the struc- 414

tured embeddings—they will be replaced by the 415

actual enhanced structural embeddings of tq and 416

each e ∈ C after token vectorization; and the ques- 417

tion Q generated by the Question Generator. 418

4 Experiments 419

4.1 Experiment Setup 420

Dataset. We evaluate our proposed method on two 421

benchmark KG datasets, WN18RR (Dettmers et al., 422

2018) and FB15k-237 (Toutanova et al., 2015), and 423

two widely used BKG datasets, PharmKG (Zheng 424

et al., 2021) and PrimeKG (Chandak et al., 2023). 425

Dataset statistics, detailed descriptions and process- 426

ing procedures are provided in Appendix A.1. 427

Baseline Methods. For the KG and BKG datasets, 428

we selected two sets of baselines. 429

(1) For the WN18RR and FB15k-237, we 430

consider baselines spanning multiple categories: 431

structure-based methods: TransE (Bordes et al., 432

2013), DistMult (Yang et al., 2014), RotatE (Sun 433

et al., 2019) and CompGCN (Vashishth et al., 434

2019); rule-based methods: Neural-LP (Yang et al., 435

2017), RLogic (Cheng et al., 2022), and NCRL 436

(Cheng et al., 2023); text-based methods: KG- 437

BERT (Yao et al., 2019), SimKGC (Wang et al., 438
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Methods WN18RR FB15k-237

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Structure-based

TransE 0.243 0.043 0.441 0.532 0.279 0.198 0.376 0.441
DistMult 0.444 0.412 0.470 0.504 0.281 0.199 0.301 0.446
RotatE 0.476 0.428 0.492 0.571 0.338 0.241 0.375 0.533
CompGCN 0.479 0.443 0.494 0.546 0.355 0.264 0.390 0.535

Rule-based
Neural-LP 0.381 0.368 0.386 0.408 0.237 0.173 0.259 0.361
RLogic 0.470 0.443 – 0.537 0.310 0.203 – 0.501
NCRL 0.670 0.563 – 0.850 0.300 0.209 – 0.473

Text-based
KG-BERT 0.216 0.041 0.302 0.524 – – – 0.420
SimKGC 0.671 0.595 0.719 0.802 0.336 0.249 0.362 0.511
KGLM 0.467 0.330 0.538 0.741 0.298 0.200 0.314 0.468
GHN 0.678 0.596 0.719 0.821 0.339 0.251 0.364 0.518

Generation-based
KICGPT 0.564 0.478 0.612 0.677 0.412 0.327 0.448 0.554
COSIGN 0.641 0.610 0.654 0.715 0.368 0.315 0.434 0.520
DIFT 0.686 0.616 0.730 0.806 0.439 0.364 0.468 0.586

Hybrid StAR 0.551 0.459 0.594 0.732 0.365 0.266 0.404 0.562
CoLE 0.587 0.532 0.608 0.694 0.389 0.294 0.430 0.574

DrKGC (Ours) 0.716 0.654 0.757 0.813 0.472 0.406 0.498 0.599

Methods PharmKG PrimeKG

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Structure-based

TransE 0.091 0.034 0.092 0.198 0.281 0.194 0.315 0.451
RotatE - - - - 0.382 0.285 0.419 0.588
DistMult 0.063 0.024 0.058 0.133 0.212 0.148 0.238 0.341
ComplEx 0.075 0.030 0.071 0.155 0.204 0.141 0.266 0.340
R-GCN 0.067 0.027 0.062 0.139 0.640 0.569 0.680 0.761
HRGAT 0.154 0.075 0.172 0.315 0.443 0.347 0.489 0.637

DrKGC (Ours) 0.266 0.183 0.293 0.436 0.658 0.592 0.705 0.770

Table 1: Comparison of DrKGC (using Llama-3-8B) and baselines on WN18RR, FB15k-237, PharmKG and
PrimeKG. For each metric, the best performance is highlighted in bold, and the second-best is underlined.

2022), KGLM (Youn and Tagkopoulos, 2022) and439

GHN (Qiao et al., 2023); generation-based meth-440

ods: KICGPT (Wei et al., 2024), COSIGN (Li et al.,441

2024) and DIFT (Liu et al., 2024); and hybrid meth-442

ods: StAR (Wang et al., 2021) and CoLE (Liu et al.,443

2022). The baseline comparisons in this paper are444

based on the reported performance values of these445

methods.446

(2) For PharmKG and PrimeKG, we focus on447

structure-based methods well-suited for BKG, in-448

cluding TransE, RotatE, DistMult, ComplEx, R-449

GCN (Schlichtkrull et al., 2018), and HRGAT450

(Liang et al., 2023). The baseline performance451

for PharmKG is taken from the reported values452

reported in the original PharmKG (Zheng et al.,453

2021) paper; while for PrimeKG, the baseline com-454

parisons were conducted by ourselves.455

Implementation Details. In the lightweight model456

training stage, we trained NCRL to mine logical457

rules for the four datasets. For global structural458

embeddings, we employed RotatE for WN18RR459

and FB15k-237, and HRGAT for PharmKG, with460

hyperparameters consistent with the original publi- 461

cations. For PrimeKG, we used R-GCN with our 462

optimal hyperparameter settings to obtain global 463

embeddings. For WN18RR and FB15k-237, we ad- 464

ditionally utilize the ranking results from SimKGC 465

and CoLE, whereas, for PharmKG and PrimeKG, 466

we directly employ HRGAT and R-GCN for rank- 467

ing. The candidates set size is fixed at 20. For 468

the fine-tuning stage, we compared Llama-3-8B 469

(Dubey et al., 2024), Llama-3.2-3B(Dubey et al., 470

2024), MedLlama-3-8B (johnsnowlabs, 2024) and 471

Mistral-7B (Jiang et al., 2023) as our LLMs. We 472

employed LoRA for efficient parameter tuning, 473

with the primary hyperparameters set to r = 64, 474

α = 16, a dropout rate of 0.1 and a learning rate of 475

2× 10−4. Model performance was evaluated using 476

ranking-based metrics, including Mean Reciprocal 477

Rank (MRR) and Hits@1, Hits@3, and Hits@10 478

under the “filtered” setting (Bordes et al., 2013). 479

Additional training details are in Appendix A.5. 480

All experiments were conducted on an AMD 481

EPYC 7763 64-Core CPU, an NVIDIA A100- 482
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SXM4-40GB GPU (CUDA 12.4), and Rocky483

Linux 8.10.484

4.2 Main Results485

Table 1 demonstrates that the proposed DrKGC486

achieves state-of-the-art performance on WN18RR,487

FB15k-237, PharmKG, and PrimeKG across most488

metrics. On WN18RR, although DrKGC trails489

NCRL and GHN in Hits@10, it outperforms all490

generation-based approaches on all evaluated met-491

rics. Notably, both text-based and generation-492

based methods yield lower Hits@10 scores than493

NCRL, and the gap between DrKGC and text-based494

GHN is minimal (only −0.97%). For FB15k-237,495

DrKGC outperformed all baselines across every496

metrics, achieving improvements of 7.5% in MRR497

and 11.4% in Hits@1. Given FB15k-237’s diverse498

set of relations and semantic patterns, these results499

underscore demonstrate the advantage of DrKGC500

in capturing diverse relations and semantic nuances.501

For PharmKG and PrimeKG, DrKGC also out-502

performs all baselines across all metrics. This503

demonstrates that, even though BKGs lack exten-504

sive text information and LLMs have not been pre-505

trained on specialized biomedical corpora, DrKGC506

can still achieve strong performance by leveraging507

LLMs’ understanding of semantics and structural508

embeddings.509

4.3 Ablation Studies510

We conducted ablation studies on all four datasets511

to assess the contribution of each component in512

DrKGC, with the results presented in Table 2. In513

the first ablation study, we removed the rule re-514

strictions during subgraph retrieval. The results515

show that DrKGC’s performance declined across516

all four datasets, with a more pronounced drop in517

KGs than in BKGs. In the second study, we elimi-518

nated local embeddings and relied solely on global519

embeddings as the structural reference for entities.520

This change also led to performance degradation521

on all datasets. In the third study, we removed the522

structural embeddings entirely, forcing the LLM523

to select the correct answer directly from the can-524

didates set without any structural reference. The525

significant performance decline observed for both526

KGs and BKGs confirms the importance of incor-527

porating structural information into LLM predic-528

tions. Finally, we omitted the question template529

and instead directly instructed the LLM to complete530

the incomplete triple. While it resulted in only a531

slight performance drop on KGs, it had a substan-532

tial impact on BKGs. This can be attribute that 533

the relations in BKGs are inherently functional and 534

mechanism; for instance, asking the LLM "What 535

gene causes Parkinson’s disease?" provides clearer 536

instruction than simply prompting it to complete 537

an incomplete triple such as (?, causes, Parkinson’s 538

disease). 539

w/o
WN18RR FB15k-237

MRR (∆%) Hits@1 (∆%) MRR (∆%) Hits@1 (∆%)

rules 0.684 ( -4.47) 0.612 ( -6.42) 0.448 ( -5.08) 0.375 ( -7.64)
local embedding 0.676 ( -5.59) 0.596 ( -8.87) 0.439 ( -6.99) 0.361 ( -11.1)
embedding 0.669 ( -6.56) 0.582 ( -11.0) 0.433 ( -8.26) 0.351 ( -13.5)
question template 0.711 ( -0.70) 0.647 ( -1.07) 0.469 ( -0.64) 0.401 ( -1.23)

DrKGC (raw) 0.716 0.654 0.472 0.406

w/o
PharmKG PrimeKG

MRR (∆%) Hits@1 (∆%) MRR (∆%) Hits@1 (∆%)

rules 0.264 ( -0.75) 0.181 ( -1.09) 0.648 ( -1.52) 0.578 ( -2.36)
local embedding 0.261 ( -0.88) 0.176 ( -3.83) 0.631 ( -4.10) 0.539 ( -8.95)
embedding 0.260 ( -2.26) 0.174 ( -4.92) 0.619 ( -5.93) 0.510 ( -13.9)
question template 0.258 ( -3.01) 0.172 ( -6.01) 0.613 ( -6.83) 0.510 ( -13.9)

DrKGC (raw) 0.266 0.183 0.658 0.592

Table 2: Ablation study results on four datasets.

4.4 DrKGC under Complex Conditions 540

To further verify DrKGC’s robustness, we evalu- 541

ated both its inductive prediction capability and 542

its resilience under noisy conditions on WN18RR. 543

Specifically, for the inductive setting, we extracted 544

all test triples whose entities or relation never ap- 545

pear in the training set and measured DrKGC’s 546

performance on those unseen-entity cases. For the 547

noise experiment, we replaced a fixed proportion 548

of triples in the training set with random negative 549

triples and then assessed the resulting impact on 550

DrKGC’s metrics. The results are summarized in 551

Figure 2. Under the inductive setting, our model 552

experiences only modest performance drops (MRR: 553

−5.4%; Hits@1: −6.7%), and even when injecting 554

noise into 20% of the KG, the reductions in MRR 555

and Hits@1 remain limited to −7.9% and −7.6%, 556

respectively, demonstrating DrKGC’s robustness. 557

MRR Hits@1 Hits@3 Hits@10
Metrics

0.0

0.2

0.4

0.6

0.8

1.0 (a)
Inductive Setting
Overall Test Set

0 5 10 15 20
Noisy Ratio (%)

0.55

0.60

0.65

0.70

0.75

0.80

0.85 (b)
MRR
Hits@1
Hits@3
Hits@10

Figure 2: Robustness evaluation on WN18RR. (a) Com-
parison of evaluation metrics under the inductive setting
versus the overall test set. (b) Impact of proportional
noise addition on model performance.
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4.5 Subgraph Size (τ ) Sensitivity Analysis558

We examine the model performance and efficiency559

under different τ values on WN18RR. The results560

are presented in Figure 3. As τ increases, model561

performance initially improves and then declines,562

with optimal results observed at τ = 100 (our cho-563

sen hyperparameter) or 125; conversely, runtime564

grows linearly with τ . The performance trend is565

reasonable: a smaller τ restricts the information566

available in the subgraph, whereas an excessively567

large τ admits paths from low-confidence rules that568

degrade the quality of the local embeddings.569
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Figure 3: Impact of τ on DrKGC Performance and time
consumption on WN18RR.

4.6 Case Study570

To illustrate the practical utility of our approach,571

we conducted a drug repurposing case study for572

"breast cancer" using the PrimeKG dataset. In this573

study, we defined "Breast Cancer" as the query en-574

tity and "indication" as the query relation for head575

prediction. Recognizing that multiple drugs may576

be effective in treating breast cancer, we employed577

DrKGC to generate the top 10 predictions. This578

process was executed iteratively.579

To validate our results, we conducted a manual580

evaluation by clinical trials and published literature581

(Zheng et al., 2021; Xiao et al., 2024). Specifically,582

if a predicted drug is documented on ClinicalTri-583

als.gov, we record the corresponding NCT ID as584

evidence. If not, we search PubMed for supporting585

literature and record the corresponding PMID. In586

the absence of evidence from either source, "No587

evidence found" is recorded.588

Table 3 shows the results. Figure 4 illustrates589

a portion of the subgraph from the first round590

of predictions, where three drugs—Troglitazone,591

Rosiglitazone, and Cardarine—share mechanism592

paths that are multi-hop connected to the breast593

Predicted Drugs Evidence Source PMID or NCT ID

1 Enzalutamide Clinical Trial NCT02750358
2 Troglitazone Literature 31894283
3 Rosiglitazone Clinical Trial NCT00933309
4 Dichloroacetic Acid Clinical Trial NCT01029925
5 GTI 2040 Clinical Trial NCT00068588
6 Uridine Monophosphate Literature 32382150
7 Nimesulide Clinical Trial NCT01500577
8 Cardarine Literature 15126355
9 Drospirenone Clinical Trial NCT00676065
10 Vitamin A Literature 34579037

Table 3: Top 10 predicted drugs for Breast Cancer.

TARGET

TARGET

TARGET

ASSOCIATED_WITH

PPI

ASSOCIATED_WITH

PPI
ASSOCIATED_WITH

PPI

TARGET

TARGET

TARGET

Troglitazone

PPARD

HDAC7

breast cancer
SLC29A1

SLC39A12

ACSL4

Rosiglitazone

Cardarine

Figure 4: Example of multi-hop mechanism paths from
drugs to Breast Cancer: purple, blue, and orange nodes
represent drugs, diseases, and genes/proteins.

cancer entity. Consider the paths "Trogli- 594

tazone–PPARD–breast cancer" and "Troglita- 595

zone–PPARD–HDAC7–breast cancer": Troglita- 596

zone targets PPARD, a druggable protein and a key 597

molecular target in metastatic cancer (Zuo et al., 598

2017), and PPARD also interacts with HDAC7, 599

which regulates genes critical for tumor growth 600

and the maintenance of cancer stem cells (Caslini 601

et al., 2019). This mechanism insight provided by 602

the DrKGC’s subgraph both supports and explains 603

our predictions in biomedical domain. 604

5 Conclusion 605

In this paper, we propose a novel KGC framework, 606

DrKGC. DrKGC fully exploits graph context in- 607

formation and flexibly integrates mechanisms such 608

as dynamic subgraph information aggregation, em- 609

bedding injection, and RAG, overcoming the lim- 610

itations of previous generation-based methods in 611

structural information loss, static entity representa- 612

tions, and generic LLM responses. Experimental 613

results demonstrate that DrKGC achieves state-of- 614

the-art performance on general KGs and performs 615

exceptionally well on domain-specific KGs such as 616

BKGs. By capturing graph context to generate in- 617

formative subgraphs, DrKGC also enhances model 618

interpretability, which is particularly valuable for 619

biomedical applications. 620
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6 Limitations621

DrKGC relies on fine-tuning large language mod-622

els, a process that is computationally intensive, and623

its performance is inherently constrained by the cur-624

rent capabilities of LLMs and lightweight models.625

Future work will focus on optimizing fine-tuning626

efficiency, enhancing LLM performance, and ex-627

ploring extensions to other graph tasks such as628

reasoning and question answering. Moreover, re-629

trieving more informative subgraphs may present630

additional challenges. In this work, we adopt a631

lightweight heuristic graph retrieval method; how-632

ever, more rigorous rule-based detection and filter-633

ing technique and, alternative subgraph strategies,634

such as learning-driven subgraph retrieval, merit635

further investigation. We plan to explore these636

more sophisticated approaches in future research.637
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A Appendix 849

A.1 Details of the Dataset 850

Table 4 presents the statistical details of the four 851

datasets used in our study. 852

Datasets Entities Relations Training Validation Testing

WN18RR 40,943 11 86,835 3,034 3,134
FB15K-237 14,541 237 272,115 17,535 20,466
PharmKG 7,601 28 400,788 49,536 50,036
PrimeKG 26,509 4 130,535 500 500

Table 4: Statistics of the four datasets.

WN18RR (MIT License), derived from WordNet 853

(Miller, 1995), contains word sense entities and 854

lexical-semantic relations like hypernymy. FB15k- 855

237 (CC BY 4.0), from Freebase (Bollacker et al., 856

2008), consists of entities such as people and or- 857

ganizations with factual relations like affiliation 858

and location. PharmKG (Apache-2.0) focuse on 859

pharmaceutical data, capturing information about 860

genes, diseases, chemicals. PrimeKG (CC0 1.0) 861

is a multimodal BKG that unifies other biological 862

entities like phenotypes and pathways for precision 863

medicine analysis. 864

For WN18RR and FB15k-237, we adopted the 865

node and relation texts provided by KG-BERT 866

(Yao et al., 2019). For PharmKG, we utilized 867

the PharmKG-8k version from the original work 868

(Zheng et al., 2021),which filtered high-quality en- 869

tities based on criteria such as FDA approval and 870

MeSH tree classification and provided a partitioned 871

dataset. 872

The PrimeKG dataset used in our study is a sub- 873

set extracted from the original PrimeKG (Chan- 874

dak et al., 2023) tailored for drug repurposing task. 875

Specifically, we first selected triples from PrimeKG 876

that have a head node of type "drug", a tail node 877

of type "disease", and a relation of "indication". 878

There are 9,388 such triples in total. Next, we 879

randomly split them into 8,388 triples for train- 880

ing, 500 for validation, and 500 for testing, en- 881

suring that the entities in the validation and test 882

sets are also present in the training set. Finally, 883

we enriched the training set by adding additional 884

triples with the following (head, relation, tail) pat- 885

terns: (drug, target, gene/protein), (gene/protein, 886

associated with, disease), and (gene/protein, ppi, 887

gene/protein). First, we added triples linking the ex- 888

isting drug and disease entities to gene/protein enti- 889

ties; then, we added triples connecting gene/protein 890

entities to one another. In addition, to simplify the 891

11



problem, we imposed an upper limit on the degree892

of gene/protein entities to mitigate the influence of893

hub nodes.894

A.2 Prompt Template895

As shown in Table 5, for both the general KG896

(WN18RR and FB15k-237) and the biomedical897

KG (PharmKG and PrimeKG), the prompt tem-898

plate remains consistent generally, comprising a899

simple instruction, a candidates set, correspond-900

ing structural embeddings (initially represented by901

[Placeholder]) for reference, and a question. The902

only difference is the role name assigned to the903

LLM (either linguist or biomedical scientist).904

You are an excellent {linguist, biomedical
scientist}. The task is to predict the answer
based on the given question, and you only need to
answer one entity. The answer must be in
(’candidate1’, ’candidate2’, ’candidate3’,
’candidate4’, ’candidate5’, ’candidate6’,
’candidate7’, ’candidate8’, ’candidate9’,
’candidate10’, ’candidate11’, ’candidate12’,
’candidate13’, ’candidate14’, ’candidate15’,
’candidate16’, ’candidate17’, ’candidate18’,
’candidate19’, ’candidate20’).
You can refer to the entity embeddings: ’query
entity’: [Placeholder], ’candidate1’:
[Placeholder], ’candidate2’: [Placeholder],
’candidate3’: [Placeholder], ’candidate4’:
[Placeholder], ’candidate5’: [Placeholder],
’candidate6’: [Placeholder], ’candidate7’:
[Placeholder], ’candidate8’: [Placeholder],
’candidate9’: [Placeholder], ’candidate10’:
[Placeholder], ’candidate11’: [Placeholder],
’candidate12’: [Placeholder], ’candidate13’:
[Placeholder], ’candidate14’: [Placeholder],
’candidate15’: [Placeholder], ’candidate16’:
[Placeholder], ’candidate17’: [Placeholder],
’candidate18’: [Placeholder], ’candidate19’:
[Placeholder], ’candidate20’: [Placeholder].
Question: (The generated question)

Answer:

Table 5: Prompt template for DrKGC

A.3 Question-Template Lexicon905

For each of the four datasets, two question-template906

lexicons are provided. One lexicon is designed to907

use the head node and relation to predict the tail908

node (corresponding to the tail prediction task),909

while the other is designed to use the tail node and910

relation to query the head node (corresponding to911

the head prediction task). In practice, the appropri-912

ate lexicon is selected based on the dataset and the913

prediction task (head or tail). For each incomplete914

triple, the corresponding question template is re-915

trieved using the query relation, and then the query916

entity is inserted into the "{}" placeholder, gener- 917

ating the final question. Tables 6 and 7 illustrate 918

the two question-template lexicons for WN18RR 919

as examples. 920

# tail_prediction:
"also see":
"What is additionally relevant or similar to
{}?,"
"derivationally related form":
"What is a word or concept that is derivationally
related to {}?,"
"has part":
"What part does {} have?,"
"hypernym":
"What is a more general category or class that
includes {}?,"
"instance hypernym":
"Of what category or class is {} a specific
instance?,"
"member meronym":
"What is included as a member of {}?,"
"member of domain region":
"What is associated with {} in terms of regional
terms or concepts?,"
"member of domain usage":
"What is associated with {} in terms of specific
usage or context?,"
"similar to":
"What is similar to {}?,"
"synset domain topic of":
"What topic or field is {} associated with?,"
"verb group":

"What verb is in the same semantic or functional

group as {}?"

Table 6: Tail prediction question-template lexicon for
WN18RR.

A.4 Rule Mining and Subgraph Retrieval 921

Strategy 922

We first employ the lightweight NCRL model 923

to mine logical rules from the knowledge graph. 924

To further justify the use of NCRL, we evaluate 925

DrKGC by replacing NCRL with RNNLogic and 926

with randomly generated rules. The comparison 927

results are presented in Table 8. 928

The results show that using rules mined by RNN- 929

Logic causes a slight decrease in DrKGC’s perfor- 930

mance, demonstrating that the choice of rule min- 931

ing model can influence overall effectiveness. Em- 932

ploying randomly generated rules leads to a more 933

pronounced degradation and falls behind both the 934

NCRL and RNNLogic, which further validates the 935

appropriateness of NCRL as our rule miner. 936

To further ensure the quality and reliability of 937

the automatically learned rules, we apply a two- 938

stage post-processing pipeline comprising conflict 939

resolution and redundancy elimination. First, for 940
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# head_prediction:
"also see":
"What is related or similar to {}?,"
"derivationally related form":
"What word or concept leads to {}?,"
"has part":
"What includes {} as a part?,"
"hypernym":
"What is a example or specific instance of {}?,"
"instance hypernym":
"What entity is classified under {}?,"
"member meronym":
"What larger group does {} belong to?,"
"member of domain region":
"What is associated with the region of {}?,"
"member of domain usage":
"What is used in the same context as {}?,"
"similar to":
"What is considered similar to {}?,"
"synset domain topic of":
"What is associated with the field or topic of
{}?,"
"verb group":

"What other verb is in the same functional or

semantic group as {}?"

Table 7: Head prediction question-template lexicon for
WN18RR.

Dataset
RNNLogic Random Rules

MRR (∆%) Hits@1 (∆%) MRR (∆%) Hits@1 (∆%)

WN18RR 0.706 (–1.40) 0.640 (–2.14) 0.682 (–4.75) 0.609 (–6.88)
FB15K-237 0.455 (–3.60) 0.384 (–5.42) 0.446 (–5.51) 0.376 (–7.39)
PharmKG 0.265 (–0.36) 0.182 (–0.55) 0.262 (–1.50) 0.180 (–1.63)
PrimeKG 0.652 (–0.91) 0.588 (–0.68) 0.637 (–3.19) 0.569 (–3.89)

Table 8: Performance of DrKGC with RNNLogic and
random rules (∆% values indicate differences from us-
ing NCRL).

conflict resolution, we group rules by identical bod-941

ies and, when a group yields more than one distinct942

head, which indicates potential conflict, we retain943

only the rule with the highest confidence score.944

Next, to eliminate redundancy, we examine pairs of945

rules that share the same head: if the body of rule946

A is a strict subset of the body of rule B and A’s947

confidence exceeds B’s, we remove B as redundant.948

During subgraph retrieval, we constrain the sub-949

graph size by the hyperparameter τ , which lim-950

its the number of triples and is set to 100 af-951

ter comparing the DrKGC performance of tak-952

ing {50, 100, 200}, and control its depth by the953

length of the rule. The maximum rule length is de-954

fined during the training of the logical rule learning955

model; we set this to 3 to match the configuration956

of the original NCRL work.957

A.5 Model Training 958

Inspired by previous work (Wei et al., 2024; Liu 959

et al., 2024), our model training does not strictly 960

follow the traditional paradigm of using fixed train- 961

ing, validation, and test sets. Specifically, we first 962

use the KG dataset’s standard splits for training, 963

validation, and testing to train a lightweight model. 964

We then employ this trained lightweight model to 965

perform head and tail predictions on every triple 966

in the validation set, generating candidate rankings 967

that are used to construct prompts. In the LLM 968

fine-tuning phase, we re-partition the validation set 969

(Liu et al., 2024) and utilize it to fine-tune the LLM. 970

Finally, model performance is evaluated on the test 971

set in the usual manner. For each triple in the test 972

set, both head and tail predictions are conducted to 973

ensure fairness. This approach not only reduces the 974

volume of training data required for fine-tuning but 975

also avoids the issue where the trained lightweight 976

model consistently ranks the correct answer for 977

incomplete triples in the training set first, which 978

could mislead the LLM selection. 979

In lightweight models training phase, for 980

WN18RR, FB15k-237, and PharmKG, we use 981

the hyperparameters consistent with the original 982

publications of their corresponding methods. For 983

PrimeKG, the optimal parameters identified via 984

grid search are provided in Table 9. In the LLM 985

fine-tuning phase, we adjust the learning rate 986

{2 × 10−3, 2 × 10−4}, the number of GCN lay- 987

ers {1, 2} and the size of GCN hidden dimension 988

{128, 256}, and set the epoch size to 15 with early 989

stopping. The time required for LLM fine-tuning 990

is detailed in Table 10. 991

TransE RotatE DistMult ComplEx R-GCN HRGAT

Batch Size 512 512 512 512 256 128
Learning Rate 2e-3 1e-4 1e-4 2e-3 1e-3 1e-3
Negative Sampling 512 512 512 512 512 40
Hidden Dimension 1000 2000 2000 1000 200 200

Table 9: Optimal hyperparameters for lightweight
model on PrimeKG.

WN18RR FB15k-237 PharmKG PrimeKG

Runtime 3:01:31 19:12:11 2:22:27 37:09

Table 10: LLM fine-tuning time statistics.

A.6 Comparison of Alternative LLMs 992

In this section, we compare the performance of 993

DrKGC by replacing different LLMs. 994
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First, we evaluate the impact of the LLM’s size995

by comparing Llama-3-8B with a smaller vari-996

ant, Llama-3.2-3B. The comparison results are pre-997

sented in Table 11. The performance achieved with998

the Llama-3.2-3B LLM is inferior compared to that999

of the Llama-3-8B, which is consistent with our ex-1000

pectations. This difference arises from the reduced1001

number of parameters in the smaller model, inher-1002

ently limiting its expressive power and reasoning1003

capabilities.

Dataset MRR (∆) Hits@1 (∆) Hits@3 (∆) Hits@10 (∆)

WN18RR 0.709 (-0.07) 0.644 (-0.10) 0.754 (-0.03) 0.811 (-0.02)
FB15k237 0.466 (-0.06) 0.397 (-0.09) 0.494 (-0.04) 0.596 (-0.03)
PharmKG 0.260 (-0.06) 0.172 (-0.11) 0.292 (-0.01) 0.436 (-0.00)
PrimeKG 0.656 (-0.02) 0.595 (-0.03) 0.691 (-0.14) 0.762 (-0.08)

Table 11: DrKGC Performance with Llama-3.2-3B (∆
values indicate differences from Llama-3-8B).

1004
Then, we further investigate the impact of em-1005

ploying other different LLMs within DrKGC on1006

prediction performance. In addition to Llama-1007

3-8B, we compare Mistral-7B and a biomedical-1008

focused instruction-tuning variant, MedLlama-3-1009

8B. The results of replacing the LLM component in1010

DrKGC are presented in Figure 5. Overall, Llama-1011

3-8B delivers the best performance, while Mistral-1012

7B underperforms, despite achieving the highest1013

Hits@10 on FB15k-237. Notably, MedLlama-3-1014

8B’s overall performance is slightly inferior to that1015

of Llama-3-8B, even on the two BKGs; it only1016

attained the best result in Hits@1 on PharmKG.1017

It can be found that MedLlama-3 performs worse1018

than Llama-3-8B on biomedical datasets overall.1019

The main reason is that biomedical LLMs are not1020

pre-trained or fine-tuned for knowledge graph gen-1021

eration (KGC) or link prediction tasks. MedLlama-1022

3 is optimized for biomedical question answering1023

and medical text generation. While it does incor-1024

porate some biomedical and clinical knowledge,1025

this does not necessarily mean an improvement in1026

structured relational reasoning capabilities, which1027

are critical for knowledge graph completion.1028
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Figure 5: Comparison of DrKGC performance using
different LLMs across four datasets.
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