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ABSTRACT

Online unsupervised reinforcement learning (URL) can discover diverse skills via
reward-free pre-training and exhibits impressive downstream task adaptation abil-
ities through further fine-tuning. However, online URL methods face challenges
in achieving zero-shot generalization, i.e., directly applying pre-trained policies to
downstream tasks without additional planning or learning. In this paper, we pro-
pose a novel Dual-Value Forward-Backward representation (DVFB) framework
with a contrastive entropy intrinsic reward to achieve both zero-shot generalization
and fine-tuning adaptation in online URL. On the one hand, we demonstrate that
poor exploration in forward-backward representations can lead to limited data di-
versity in online URL, impairing successor measures, and ultimately constraining
generalization ability. To address this issue, the DVFB framework learns succes-
sor measures through a skill value function while promoting data diversity through
an exploration value function, thus enabling zero-shot generalization. On the other
hand, and somewhat surprisingly, by employing a straightforward dual-value fine-
tuning scheme combined with a reward mapping technique, the pre-trained pol-
icy further enhances its performance through fine-tuning on downstream tasks.
Through extensive experiments, DVFB demonstrates both superior zero-shot gen-
eralization (outperforming on all 12 tasks) and fine-tuning adaptation (leading on
10 out of 12 tasks) abilities, surpassing state-of-the-art (SOTA) URL methods.
Our code is available at https://github.com/bofusun/DVFB.

1 INTRODUCTION

In recent years, deep reinforcement learning (DRL) (Sutton & Barto, 1999) has achieved remark-
able success in various fields, including game AI (Tang et al., 2023), autonomous driving (Wu et al.,
2022), robot control (Li et al., 2024). However, most DRL approaches rely on predefined task-
specific rewards for training, which limits the generalizability of the learned policies to new tasks.
Given the varied demands of real-world applications, it is crucial to develop agents capable of ad-
dressing multiple tasks directly, as in zero-shot reinforcement learning (zero-shot RL) (Touati et al.,
2023), or through task adaptation. This need has spurred growing interest in training task-agnostic
policies that can generalize across tasks, a paradigm known as unsupervised reinforcement learning
(URL). In this paper, we aim to achieve downstream task generalization in online URL with both
zero-shot capability and the potential for further improvement through fine-tuning.

Previous research (Eysenbach et al., 2019; Laskin et al., 2022; Park et al., 2024) has explored un-
supervised skill discovery (USD) for task generalization, focusing on developing diverse skills via
reward-free learning to enable task adaptation through fine-tuning. However, USD methods aim to
maximize the divergence between the state distribution of skills and the average state distribution,
posing challenges for zero-shot generalization. Other studies, such as Barreto et al. (2017); Touati
et al. (2023) utilize successor representation (SR) techniques (Dayan, 1993) to facilitate zero-shot
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generalization. SR methods can be categorized into successor features (SF) (Barreto et al., 2017) and
forward-backward representations (FB) (Touati & Ollivier, 2021). They define skill vectors based
on successor representations, enabling them to infer near-optimal skills from minimal demonstra-
tions of downstream tasks. Unfortunately, SR methods rely on pre-collected diverse datasets (Jeen
et al., 2024) and are constrained to offline settings. Our findings further reveal their poor zero-shot
generalization performance in online URL. These insights trigger our further thought: Can the SR
mechanism, such as FB, be extended to online URL to enable zero-shot generalization capability?
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Figure 1: DVFB achieves leading zero-shot
and fine-tuning performances in Walker and
Quadruped Domain.

Extending the zero-shot generalization of forward-
backward representations to online URL presents
several challenges. First, we find that FB mechanism
typically exhibit limited exploration capabilities, re-
sulting in reduced data diversity. This limitation hin-
ders the effectiveness of successor measures and fur-
ther restricts zero-shot generalization in downstream
tasks. Second, FB mechanism rely on implicit re-
wards that have a fixed relationship with skill during
pre-training, which prevents the direct use of intrin-
sic rewards to enhance online exploration, as USD
methods do. Therefore, the key to extending FB to
online URL for zero-shot generalization is develop-
ing a mechanism that enhances policy exploration
for diverse buffer data while maintaining efficient
successor representation and skill learning.

In this paper, we explore the underlying reasons for the failure of the FB mechanism in online URL.
Our findings reveal that insufficient exploration in FB leads to low data diversity, which impedes
the learning of successor measures and results in inaccurate value functions for downstream tasks,
ultimately limiting zero-shot capabilities. To address these challenges, we propose a Dual-Value
Forward-Backward representation (DVFB) framework, which leverages a skill value function to
learn forward-backward representations while incorporating an exploration value function to en-
courage exploration. We introduce a novel intrinsic objective based on contrastive learning, which
enhances exploration while learning distinguishable state transitions, thereby improving zero-shot
generalization across various downstream tasks. Additionally, we introduce a dual-value fine-tuning
scheme with a reward mapping technique that leverages both the pre-trained skill value and the
downstream task value to ensure performance improvement beyond zero-shot capabilities.

In summary, our contributions are as follows:

• We investigate the reasons for FB’s failure in online URL and find that its inadequate ex-
ploration leads to low data diversity. This hinders the learning of successor measures and
the value network, ultimately limiting zero-shot generalization capabilities.

• We propose a novel dual-value forward-backward representation (DVFB) architecture with
an intrinsic reward based on contrastive learning. The pre-trained DVFB agents can zero-
shot generalize to various downstream tasks.

• We introduce a dual-value fine-tuning scheme with a reward mapping technique, enhancing
performance stability during downstream task fine-tuning beyond zero-shot capabilities by
leveraging the pre-trained skill value function with forward-backward representations.

• Our method is comprehensively validated across twelve challenging robot control tasks in
the DeepMind Control Suite, demonstrating superior generalization performance. To the
best of our knowledge, our proposed DVFB is the first method to achieve both zero-shot
generalization and fine-tuning capabilities in online URL, as shown in Figure 1.

2 RELATED WORK

2.1 ZERO-SHOT TASK GENRALIZATION IN RL

Zero-shot task generalization in RL refers to an agent’s ability to apply its knowledge directly to new
tasks after training, without any additional training (Touati et al., 2023; Jeen et al., 2024). Methods
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for addressing task generalization in RL include model-based RL, multi-task RL, unsupervised skill
discovery, and successor representations. Model-based reinforcement learning (RL) (Chua et al.,
2018; Hafner et al., 2021) trains a task-agnostic world model to assist in decision-making; however,
it still requires a reward function to plan for new tasks. Multi-task RL (He et al., 2024; Lan et al.,
2024) enables generalization across predefined related tasks but cannot be applied to unfamiliar
tasks. USD (Eysenbach et al., 2019; Laskin et al., 2022) learns diverse skills in reward-free envi-
ronments, but its objective focuses on maximizing the distance between the skill’s state distribution
and the average state marginal distribution. Consequently, USD is unable to achieve zero-shot gen-
eralization (Eysenbach et al., 2022). None of these methods can achieve zero-shot generalization.

Successor feature (SF) (Dayan, 1993) methods establish successor features using handcrafted or
learned reward-related features ϕ, which can then be zero-shot generalized to downstream tasks
(Barreto et al., 2017; Zhang et al., 2017). To relax the linear assumption of ϕ and reward in SF, suc-
cessor measures directly learn future state distributions and avoid the need for ϕ (Touati & Ollivier,
2021). FB methods (Touati et al., 2023) achieve zero-shot generalization by learning successor mea-
sures from pre-collected diverse data. FRE (Frans et al., 2024) focuses on learning functional rep-
resentations by encoding state-reward samples with a variational auto-encoder to achieve zero-shot
generalization. However, these methods require access to offline datasets for pre-training, which
cannot be expected for most real problems (Jeen et al., 2024). In addition, they show high data sen-
sitivity and limited performance on pre-collected fixed dataset (see detailed analysis in Appendix G).
Extending FB to the online URL setting without the offline dataset collection process is a promising
direction. Unfortunately, we find it fails to achieve zero-shot generalization in online URL. Hence,
this paper proposes a DVFB framework that extends FB methods to online URL for both zero-shot
generalization and efficient task adaptation to downstream tasks.

2.2 UNSUPERVISED PRE-TRAINING IN RL

Unsupervised pre-training methods in reinforcement learning can be divided into two categories:
online and offline. This paper primarily focuses on the former. Online URL typically involves
learning useful representations or skills for downstream tasks through intrinsic rewards. Based on
the modeling of intrinsic rewards, URL can be further divided into unsupervised skill discovery
(USD) methods(Eysenbach et al., 2019; Sharma et al., 2020; Park et al., 2022; Laskin et al., 2022;
Park et al., 2024) and data coverage maximization methods (Liu & Abbeel, 2021b; Yarats et al.,
2021; Lee et al., 2019). Existing USD methods leverage mutual information as an intrinsic reward
to learn diverse skills that can rapidly adapt to downstream tasks(Eysenbach et al., 2019; Sharma
et al., 2020; Liu et al., 2025; Laskin et al., 2022). Some studies(Eysenbach et al., 2022; Yang
et al., 2024) indicate that maximizing mutual information is equivalent to maximizing the difference
between the average state distribution and the most distinct skill state distribution. As a result, al-
though these methods enhance fine-tuning by providing optimal initialization, they lack the capacity
for zero-shot generalization to downstream tasks. Some studies attempt to improve state coverage
with Euclidean distance constraints(Park et al., 2022), Wasserstein distance constraints(Park et al.,
2024), and guided skills(Kim et al., 2024). However, they lack a clear definition of skills and their
connection to downstream task rewards, which hinders zero-shot generalization.

3 PRELIMINARIES

3.1 REWARD-FREE MARKOV DECISION PROCESSES AND GENRALIZATION IN URL

In unsupervised RL, a reward-free Markov Decision Process (MDP) (Sutton & Barto, 1999; Touati
et al., 2023) is defined as the tuple M = ⟨S,A, P, γ⟩, where S is the state space, A is the ac-
tion space, and P (ds′|s, a) is the probability measure of the next state s′ ∈ S, which defines the
stochastic transition from state s to state s′ after taking an action a. γ is the discount factor. Given
state-action pair (s0, a0) ∈ S × A and a policy π : S → Prob(A), we use Pr(· | s0, a0, π) and
E(· | s0, a0, π) to represent the probability and expectation of the state-action sequence (st, at)t≥0

obtained by starting from the initial state (s0, a0) and using the policy π, where states are sampled
as st ∼ P (dst | st−1, at−1) and actions are sampled as at ∼ π(dat | st). The state transition
probability under the policy π is defined as Pπ(ds′ | s) =

∫
P (ds′ | s, a)π(da | s). Given a re-

ward function r : S → R, the Q-function of a policy π with respect to the reward r is defined as
Qπ

r (s0, a0) :=
∑

t≥0 γ
tE[r(st) | s0, a0, π].
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During the pre-training phase in URL, the agent interacts with a reward-free environment and learns
skills using data collected by periodically updating the skills. At the testing time, the policy aims to
maximize the expected discounted return for the task, given by Et≥0[γ

treval(st+1) | s0, a0, π]. For
zero-shot generalization, the agent must infer skills from a small dataset Dinfer = {(st, r(st))}kt=1,
where k < 10000, obtained through limited interactions with the downstream task environment.

3.2 THE FORWARD-BACKWARD REPRESENTATIONS

Following (Touati & Ollivier, 2021), the successor measure Mπ(s0, a0, ·) represents the cumulative
discounted time spent in each state st+1, starting from a state-action pair (s0, a0) and following the
policy π, namely:

Mπ(s0, a0, X) :=
∑
t≥0

γt Pr(st+1 ∈ X | s0, a0, π), ∀X ⊆ S (1)

The FB framework provides an approximately optimal policy for any reward by learning a tractable
representation of the successor measure. Let Rd be a representation space, and let ρ be an arbitrary
distribution over states. The FB framework estimates the successor measure Mπz by learning a
forward representation F : S × A ×Rd → Rd, a backward representation B : S → Rd, and a set
of skill policies (πz)z∈Rd , such that:

Mπz (s0, a0, X) ≈
∫
X

F (s0, a0, z)
⊤B(s)ρ(ds), ∀s0 ∈ S, a0 ∈ A, X ⊆ S, z ∈ Rd,

πz(s) ≈ argmax
a

F (s, a, z)⊤z, ∀(s, a) ∈ S ×A, z ∈ Rd.
(2)

If the approximation(2) holds, for any reward function r, the policy πzr is optimal for r, with the
optimal Q-function given by: Q∗

r = F (s, a, zr)
⊤zr. The near-optimal skill is represented as zr =

B(s′)r. However, FB’s limited exploration capability makes it challenging to sample diverse data
in online URL setting, hindering the validity of the approximation in (2) for all states. Therefore, it
struggles to maintain zero-shot generalization ability in the online setting.

4 WHAT HINDERS THE APPLICATION OF FB TO ONLINE URL?

Does FB’s exploration affects zero-shot performance in online URL? Unlike offline URL, where
the agent learns skills from pre-collected diverse data, in online URL the agent is trained using self-
generated trajectories through online exploration. Consequently, whether FB’s exploration ability
impacts its zero-shot performance in online URL remains a question. To explore this impact, we
first evaluate FB’s online exploration performance. Specifically, we compare the motion trajectories
generated by FB with those produced by random network distillation (RND), a pure exploration
method, within the Walker domain. The trajectories for FB are generated by randomly sampling
20 skills after 1 million steps of pre-training, with each skill repeated four times, whereas RND
generates trajectories 80 times. The walking distances for the different trajectories of the RND
and FB agents are presented in Figure 2(a) and (b), respectively. In the figure, lines of the same
color represent trajectories corresponding to the same skill. Compared to RND, FB explores only

(a) Trajectories of RND agent                  (b) Trajectories of FB-online agent            (c) Trajectories of FB-offline agents

Figure 2: The trajectories of the RND, FB-online, and FB-offline agents in the Walker walk
task. The FB-online agent learns short-range trajectories, in contrast to the RND agent’s diverse
exploration and the FB-offline agent’s ability to master long-range locomotion skills.
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short-distance trajectories, resulting in less diverse exploration outcomes. Thus, we infer that insuf-
ficient exploration in FB leads to limited data diversity, which impacts its zero-shot generalization.
To verify this conjecture, we trained the FB using the diverse dataset generated by a well-trained
RND agent, as described in (Touati et al., 2023), which we refer to as FB-offline. Figure 2(c) illus-
trates the trajectories of different skills from FB-offline, some of which exhibit significant positional
changes. Furthermore, we conduct an additional experiment on a specific downstream task: Walker
Walk, with the training curves shown in Figure 3(a). The zero-shot generalization performance of
FB-offline improves with training, while FB-online, lacking any prior data, consistently performs
poorly. Therefore, we conclude that the impact of exploration on data diversity limits FB’s zero-shot
generalization ability.

How do exploration and data diversity affect FB’s zero-shot performance? FB achieves
zero-shot generalization by ensuring that the successor representation satisfies Equation 2 for all
states. However, in the online URL, only the states that are explored meet this requirement.

(a) Generalization performance curve

(b) Value function properties

Figure 3: Generalization curve and
value function properties. (a) presents
the agents’ performance during pre-
training, while (b) illustrates the nor-
malized skill value and the Spearman
correlation between skill value and re-
turn across different return ranges.

If high-reward states related to downstream tasks re-
main unexplored, it may result in inaccurate succes-
sor measures and value estimates, ultimately affecting
the capability for zero-shot generalization. To vali-
date this hypothesis, we compare the accuracy of the
value functions composed of successor measures for FB-
online and FB-offline in the Walker walk task after pre-
training. As shown at the top of Figure 3(b), we ana-
lyze the normalized values of trajectories across differ-
ent ranges of episode rewards. The value function of
FB-online estimates higher values for low-return trajec-
tories, while FB-offline assigns a higher value for high-
return trajectories. This suggests that FB-offline, trained
on diverse data, possesses accurate successor measures
and value functions for downstream tasks, whereas FB-
online, trained on self-generated data, does not. Addi-
tionally, we introduce Spearman correlation (Spearman,
1987) to reflect the correlation between the prior skill
value

(
QM = F (s, a, z)⊤z

)
and the episode rewards of

trajectories. Spearman correlation measures the strength
and direction of a monotonic relationship between two
ranked variables. A higher Spearman correlation sug-
gests that the inferred value function of the policy aligns
more closely with the rewards of the downstream tasks.
As shown at the bottom of Figure 3(b), FB-offline ex-
hibits improved Spearman correlation across all trajecto-
ries, while FB-online displays a poor correlation with the
episode rewards of high-return trajectories. This finding
indicates that FB-online’s successor measures for down-
stream tasks are inaccurate. Therefore, we conclude that
exploration hinders FB’s zero-shot ability by impacting
its successor measure of high-reward states.

5 METHODOLOGY

5.1 DUAL-VALUE FORWARD-BACKWARD REPRESENTATION PRE-TRAINING FRAMEWORK

To enhance the exploration capability of forward-backward representations, a straightforward idea is
to incorporate exploration-based intrinsic rewards. The forward-backward representation achieves
zero-shot generalization by learning the successor measure Mπ that satisfies a Bellman-like equa-
tion: Mπ = P + γPπM

π . To satisfy Bellman’s equation, the value function for skill z is associated
with a fixed implicit reward, given by: rimplicit = B⊤(EρBB⊤)−1z(Touati et al., 2023). There-
fore, directly training the value function QM using intrinsic rewards for exploration, which are in
conflict with rimplicit for FB representations, would impede the skill learning.
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Figure 4: The overall framework of DVFB. During the pre-training, the exploration Critic QP and
skill Critic QM are trained and utilized to train the actor. During the fine-tuning, skills z are inferred,
and the downstream task Critic QF is trained with mapped extrinsic reward rf . Finally, the policy
π is fine-tuned with the downstream task Critic QF and the prior skill Critic QM .

Dual-Value Pre-training Architecture. To address this reward conflict problem, we propose a
dual-value network architecture including the exploration value and skill value. The pseudocode
for pre-training is presented in Appendix A. Specifically, we train an additional exploration value
function QP to promote policy exploration. The training objective for QP is defined as:

L(QP ) = E(st,at,z)∼D[(QP (st, at, z)− (rintr + γQP (st+1, at+1, z)))
2], (3)

where rintr represents the intrinsic reward that encourages exploration,D refers to the replay buffer,
and QP denotes the target networks of QP . In parallel, we train the forward-backward representa-
tions to learn the skill value QM = F (st, at, z)

⊤z. The training objective for forward-backward
representations is given by:

L(F,B) = E(st,at,st+1,z)∼D,s′∼D

[(
F (st, at, z)

⊤B(s′)− γF (st+1, π(st+1, z)
⊤B(s′)

)2]
− 2E(st,at,st+1,z)∼D

[
F (st, at, z)

⊤B(st+1)
]
,

(4)

where s′ represents the future state of st, F and B are the target networks for the forward and
backward representations, respectively. We update the policy network by utilizing the exploration
value function QP and skill value function QM . The training objective for the policy network π is:

L(π) = Eat∼πζ(·|st,z)[−F (st, at, z)
⊤z − αQP (st, at, z)], (5)

where α is a coefficient. This dual-value architecture encourages the policy π to explore diverse data
in online URL guided by exploration value QP without impairing its skill learning capabilities. Con-
sequently, the DVFB agent learns successor measures for various states using diverse buffer data,
thereby enabling zero-shot generalization for downstream tasks with different reward functions.

Contrastive Entropy Intrinsic Reward. Although pure exploration rewards such as RND improve
policy exploration by focusing exclusively on unseen states, they overlook the discriminability of
learned skills during exploration, which is helpful for FB-based skill learning. We introduce a novel
contrastive entropy reward to encourage skill discrimination during exploration. First, we utilize the
intrinsic reward rrnd from RND as a pure exploration reward:

rrnd = ||f(st+1)− f(st+1)||2, (6)
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where f is the representation network of states, and f is the target network of f with frozen parame-
ters. Then, we train the encoders φ and ϕ for state transitions and skills using contrastive learning to
enhance skill discriminability. This approach improves the similarity between state transitions and
their corresponding skills by updating the encoders with NCE loss (Gutmann & Hyvärinen, 2010)
within a contrastive learning framework (Chen et al., 2020). Since skills derived from historical
samples may not satisfy Equation 2 due to disturbances caused by exploration, our method leverages
skills inferred from the next state to train a skill discriminator that aligns with the forward-backward
representation. The training objective of the encoders is:

L(φ, ϕ) =
φ(τi)

⊤ϕ(B(st+1)i)

∥φ(τi)∥∥ϕ(B(st+1)i)∥T
− log

1

N

N∑
j=1

exp

(
φ(τj)

⊤ϕ(B(st+1)i)

∥φ(τj)∥∥ϕ(B(st+1)i)∥T

)
, (7)

where φ and ϕ are the encoders for the transition τ and skill z = B(st+1), T is the temperature
parameter, τ denotes a state transition (st, st+1), N is the number of contrastive pairs, and i and j
are their indices. We leverage the trained encoders to compute similarities in contrastive entropy,
enhancing skill discernibility by using particle estimates of dissimilarity entropy for each state tran-
sition as discriminative intrinsic rewards. The contrastive entropy intrinsic reward rce is:

rce ∝
1

Nk

∑
z∗∈Nk

log

(
2− φ(τi)

⊤ϕ(z∗)

∥φ(τi)∥∥ϕ(z∗)∥T

)
, (8)

where z∗ is a kNN skill, Nk is the number of kNNs. The total intrinsic reward rintr is:

rintr = rrnd + βrce, (9)

where β is a coefficient. We combine the pure exploration reward and contrastive entropy reward as
intrinsic rewards, enhancing exploration while keeping the skill learning ability of FB. Furthermore,
we offer a theoretical analysis to support the zero-shot generalization of DVFB in Appendix H.

5.2 DUAL-VALUE FORWARD-BACKWARD REPRESENTATION FINE-TUNING SCHEME

Dual-Value Fine-tuning Scheme. Furthermore, we propose a dual-value fine-tuning scheme that
leverages prior skill value function and zero-shot generalized policy to achieve improved perfor-
mance through fine-tuning. During fine-tuning, we use environmental rewards from downstream
tasks to train a task value function QF , guiding the agent to learn policies with improved task-
specific performances. The training objective for the downstream task value function is as follows:

L(QF ) = E(st,at,z)∼D[
(
QF (st, at, z)− (rf + γQF (st+1, at+1, z))

)2
], (10)

where rf is the downstream task reward used to fine-tune. Since the downstream task value function
is trained from scratch, its inaccuracy during the early stages of fine-tuning can disrupt the zero-shot
initial policy, hindering fine-tuning efficiency. To address this issue, we incorporate prior knowledge
from the pre-training phase to mitigate this impact. Specifically, We fine-tune the policy network
using both the downstream task value function QF and the prior skill value function QM (s, a, z) =
F (s, a, z)⊤z. The training objective of the policy network during fine-tuning is as follows:

L(π) = Eat∼πζ(·|st,z)[−ηF (st, at, z)
⊤z −QF (st, at, z)], (11)

where z is the skill inferred from minimal demonstrations in the downstream task, η is a coefficient.
In the early fine-tuning stage, the downstream task value function, trained from scratch, holds min-
imal values. In contrast, the prior skill value function maintains stable values, thereby assuming
a more significant role and encouraging the policy to preserve effective zero-shot performance. In
the later fine-tuning phase, the downstream task value function also exhibits stable values, fostering
further improvements in the agent’s zero-shot performance. Thus, the dual-value fine-tuning scheme
ensures stable performance improvements over the zero-shot baseline.

Reward Mapping Technique. After pre-training, the forward-backward representation selects dif-
ferent skills for zero-shot generalization across multiple downstream tasks, resulting in task-specific
variations in the prior implicit rewards rimplicit = B⊤(EρBB⊤)−1z. The range of prior implicit re-
wards relative to downstream task rewards significantly impacts multi-task fine-tuning performance.
Excessively high prior implicit rewards can restrict the policy’s ability to surpass its zero-shot per-
formance, whereas overly low implicit rewards may undermine the zero-shot policy, leading to
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a relearning process from scratch. To mitigate the impact of the prior implicit reward range on
fine-tuning performance, we propose a reward mapping technique that balances the importance of
rewards by mapping downstream task rewards into the range of prior implicit rewards. During fine-
tuning, we dynamically track the means of both prior implicit rewards and downstream task rewards,
adjusting the downstream task rewards to align with the range of prior implicit rewards as follows:

rf = rt
µ(rimplicit)

µ(rt)
, (12)

where rf represents the mapped downstream task reward for fine-tuning, rt refers to downstream
task environmental reward, and µ denotes the dynamically computed mean of the reward. Through
the reward mapping, the agent achieves stable performance improvements during fine-tuning.

6 EXPERIMENTS

In this section, we conduct experiments to address these questions: (1) Does DVFB exhibit zero-shot
generalization in online URL? (2) Can DVFB build upon zero-shot generalization for efficient and
stable fine-tuning? (3) What is the impact of various modules on generalization performance?

6.1 DMC CONTINUOUS CONTROL TASKS

Environment Setup. Following the latest advancements (Yang et al., 2023; Bai et al., 2024), we
evaluate task generalization performance using 12 downstream tasks across 3 domains in URLB
(Laskin et al., 2021) and DeepMind Control Suite (DMC) (Tassa et al., 2018). Details of tasks can
be found in Appendix C.1.

Baselines. We compare DVFB with several strong baselines for unsupervised task generalization.
In zero-shot generalization, we evaluate DVFB against (i) successor feature methods, including SF-
CL (Balestriero & LeCun, 2022), SF-LRA-SR (Touati et al., 2023), SF-LRA-P (Ren et al., 2023),
SF-Lap (Wu et al., 2018), and FB (Touati et al., 2023), and (ii) skill discovery methods, including
CIC (Laskin et al., 2022), BeCL (Yang et al., 2023), ComSD (Liu et al., 2025), and CeSD (Bai
et al., 2024). For fine-tuning, we compare DVFB with (i) pure exploration methods, including
RND (Burda et al., 2019) and Disagreement (Pathak et al., 2019), and (ii) skill discovery methods,
including SMM (Lee et al., 2019), DIAYN (Eysenbach et al., 2019), APS (Liu & Abbeel, 2021a),
CIC, BeCL, ComSD, and CeSD. details and clear classification are given in Appendix C.2.

Does DVFB exhibit zero-shot generalization in online URL? We evaluate the zero-shot perfor-
mance of DVFB across 12 tasks in the DMC. During pre-training, each method is trained for 2
million steps without rewards. Subsequently, each agent interactes with environment for 1e4 steps
to infer the skills most suitable for downstream tasks. As shown in Table 1, our method exhibits
significantly improved zero-shot performance across all tasks and domains. In the challenging Hop-
per domain, DVFB exhibits enhanced zero-shot generalization performance, while all other baseline
methods struggle to acquire valuable skills. Notably, the zero-shot performance of DVFB remains
competitive, even when compared to the fine-tuning performance of USD methods in Table 2. The

Table 1: DMC Zero-shot Performance

Domain Task CL Lap LRA-P LRA-SR FB CIC BeCL ComSD CeSD Ours

Walker

Stand 170± 82 497± 84 425± 83 212± 127 303± 55 357± 26 152± 34 297± 9 217± 71 905± 27
Walk 45± 19 118± 25 82± 20 53± 27 48± 14 179± 8 29± 2 124± 13 64± 34 900± 53
Flip 53± 18 112± 35 75± 23 56± 25 49± 8 213± 14 27± 6 162± 7 105± 65 515± 67
Run 34± 17 88± 14 80± 11 38± 21 55± 14 78± 3 28± 1 60± 3 65± 13 423± 53

Average 76 204 166 90 114 207 59 161 113 686

Quadruped

Stand 539± 304 438± 64 352± 9 335± 206 897± 76 469± 87 154± 85 526± 60 516± 11 953± 15
Walk 272± 153 184± 47 185± 63 166± 131 453± 42 241± 36 67± 44 312± 99 268± 34 624± 53
Jump 409± 218 289± 58 251± 80 261± 162 716± 58 359± 51 115± 63 438± 56 452± 16 816± 19
Run 288± 154 217± 38 179± 61 170± 102 450± 43 231± 33 77± 42 283± 50 264± 9 467± 18

Average 377 282 242 233 638 325 103 390 375 715

Hopper

Hop 0± 0 0± 0 0± 0 0± 0 2± 2 4± 1 0± 0 1± 0 2± 2 73± 18
Flip 0± 0 1± 1 0± 0 0± 0 1± 1 7± 2 1± 0 1± 0 1± 1 110± 18

Hop backward 0± 0 1± 1 0± 0 2± 5 2± 1 16± 3 1± 0 5± 1 3± 2 125± 24
Flip backward 0± 0 1± 1 0± 0 0± 0 8± 8 15± 3 1± 0 4± 1 4± 4 96± 8

Average 0 1 0 1 3 11 1 3 3 101
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Table 2: DMC Fine-tune Performance

Domain Task Disagreement RND SMM DIAYN APS CIC BeCL ComSD CeSD Ours

Walker

Stand 753± 87 901± 19 886± 18 789± 48 702± 67 959± 2 952± 2 962± 9 960± 3 972± 5
Walk 516± 142 783± 35 792± 42 450± 37 547± 38 903± 21 883± 34 918± 32 834± 34 961± 5
Flip 335± 22 506± 29 500± 28 361± 10 448± 36 641± 26 611± 18 630± 41 541± 17 927± 12
Run 213± 32 403± 16 395± 18 184± 23 176± 18 450± 19 387± 22 447± 64 337± 19 548± 29

Average 454 648 643 446 468 738 708 739 668 852(+15%)

Quadruped

Stand 512± 115 839± 25 266± 48 718± 81 435± 68 700± 55 875± 33 824± 86 919± 11 965± 7
Walk 358± 49 517± 41 154± 36 506± 55 385± 76 621± 69 743± 68 735± 140 889± 23 908± 21
Jump 403± 86 626± 23 167± 30 498± 45 389± 72 565± 44 727± 15 686± 66 755± 14 831± 20
Run 346± 32 439± 7 142± 28 347± 47 201± 40 445± 36 535± 13 500± 103 586± 25 536± 27

Average 405 605 182 517 353 583 720 686 787 804(+2%)

Hopper

Hop 74± 19 67± 12 5± 7 3± 4 1± 1 59± 60 5± 7 40± 35 10± 15 74± 17
Flip 108± 26 97± 38 29± 16 7± 8 3± 4 96± 64 13± 15 61± 47 48± 49 116± 18

Hop backward 231± 69 239± 35 29± 57 9± 28 2± 0 172± 64 40± 72 92± 105 117± 124 273± 33
Flip backward 173± 7 203± 16 19± 34 2± 1 10± 23 154± 70 22± 36 59± 63 74± 71 189± 11

Average 147 152 21 5 4 120 20 63 62 163(+7%)

experimental results demonstrate that DVFB exhibits excellent zero-shot generalization capabilities
in online URL. Further comparison with offline zero-shot methods is provided in Appendix G.

Can DVFB build upon zero-shot generalization for efficient and stable fine-tuning? We evaluate
the fine-tuning performance of DVFB across 12 tasks with the same pre-training setup as zero-shot
generalization. As shown in Table 2, DVFB demonstrates superior performance across all three
domains compared to current SOTA methods. Specifically, DVFB surpasses baseline methods by
15%, 2%, and 7% in the Walker, Quadruped, and Hopper domains, respectively. Unlike previous
URL methods, DVFB possesses outstanding zero-shot performance and pre-trained prior knowl-
edge. We further explore whether DVFB can utilize these advantages to improve performance in
downstream tasks fine-tuning. We compare the performance variations of DVFB with 8 SOTA
URL methods during fine-tuning on the Walker and Quadruped domains. As shown in Figure 5,
DVFB exhibits outstanding initial performance across most environments compared to SOTA meth-
ods. Through fine-tuning, its performance further improves upon the initial performance with lower
variance, demonstrating more stable and efficient fine-tuning compared to SOTA methods.
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Figure 5: Finetuning Curve on the Walker and Quadruped Domains. DVFB begins with out-
standing zero-shot performance and further enhances performance efficiently through fine-tuning.

6.2 WHAT IS THE IMPACT OF VARIOUS MODULES ON GENERALIZATION PERFORMANCE?

Ablation study on the dual-value pre-training framework. We evaluate the zero-shot generaliza-
tion performance across 12 tasks using 5 seeds for pre-training and analyze the Spearman correla-
tion and value accuracy of the skill value function to evaluate its capability in learning the successor
measure. As shown in Figure 6 (a), DVFB w/o CE represents DVFB with only RND rewards as the
intrinsic reward. The task names in the figure left are abbreviations of domain and task. Compared
to FB’s failure in most tasks, both DVFB w/o CE and DVFB achieve zero-shot generalization across
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Figure 6: Results of dual-value pre-training framework ablation study.
all tasks. As illustrated in (b), the absence of the dual-value framework results in the skill value
function exhibiting poor Spearman correlation and value accuracy with the downstream episode
rewards. The experiments show that the proposed dual-value pre-training framework is essential
for effectively learning the successor measure and facilitates zero-shot generalization. Compared to
DVFB w/o CE, DVFB exhibits improved learning of successor measure and achieves higher episode
rewards across all tasks. Thus, the proposed contrastive entropy intrinsic reward encourages explo-
ration while ensuring the skill learning capability of FB, further enhancing zero-shot generalization.

Ablation study on the dual-value fine-tuning scheme. To evaluate the contributions of various
components within the dual-value fine-tuning scheme, we compare the performance curves of DVFB
using various fine-tuning methods across 4 tasks in 3 domains. As shown in Figure 7, DVFB w/o
SVF employs a task value function without the prior skill value function for fine-tuning, while DVFB
w/o MAP refers to DVFB without reward mapping. The figure shows that the performance of DVFB
w/o SVF declines during the early stage of fine-tuning. In contrast, DVFB and DVFB w/o MAP
maintain their initial performance while achieving further improvements. It shows that the dual-
value fine-tuning scheme ensures stable performance improvements over the zero-shot baseline.
DVFB w/o MAP improves slowly because the downstream reward values are lower than those of
the implicit reward. In contrast, DVFB rapidly enhances its zero-shot performance through fine-
tuning, since the reward mapping technique enables stable and rapid improvements by aligning the
range of downstream and implicit rewards. More ablation results are given in Appendix F.
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Figure 7: Results of dual-value fine-tuning scheme ablation study.

7 CONCLUSION
This paper introduces a general framework for achieving both zero-shot generalization and task
adaptation in online URL. We first demonstrate that insufficient exploration in FB restricts the zero-
shot generalization capability of the FB mechanism in online URL. To address this issue, we propose
a dual-value forward-backward framework (DVFB) that encourages exploration while preserving
the learning of successor measures, enabling zero-shot generalization to downstream tasks. Surpris-
ingly, within the dual-value scheme, DVFB can further enhance performance with a reward-mapping
technique by building upon its zero-shot capabilities. Notably, to the best of our knowledge, the pro-
posed DVFB approach is the first method to simultaneously achieve zero-shot generalization and
fine-tuning capabilities in online URL. The method is evaluated on 12 robot control tasks, demon-
strating superior performance in both zero-shot generalization and fine-tuning compared to current
SOTA methods. Although DVFB has demonstrated remarkable zero-shot generalization and fine-
tuning abilities, this study mainly focuses on the URL problem within state space. Exploring the
extension of the forward-backward approach to visual URL offers a promising direction.
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A PSEUDO-CODE

We provide the complete pseudocode for DVFB, with the unsupervised pre-training phase described
in Algorithm 1 and the downstream task fine-tuning phase described in Algorithm 2.

A.1 PRE-TRAIN PSEUDO-CODE

Algorithm 1 DVFB Algorithm: Unsupervised Pre-training Phase

1: Inputs: replay buffer D, randomly initialized networks Fθ, Bω , RND representation network
fκ, transition representation network φν , skill representation network φξ, exploration value
function QP,σ, actor network πζ , learning rate η, mini-batch size b, number of episodes E,
number of gradient updates N , skill update period T , temperature τ , and regularization coeffi-
cient λ.

2: for m = 1 do
3: /* Collect E episodes
4: for e = 1 to E do
5: Sample z ∼ p(z)
6: Observe an initial state s0
7: for t = 1 to T do
8: if t mod T = 0 then
9: Sample z ∼ p(z)

10: end if
11: Select action at = πζ(st, at, z)
12: Observe next state st+1

13: Store transition (st, at, st+1) in the replay buffer D
14: end for
15: end for
16: /* Perform N stochastic gradient descent updates
17: for n = 1 to N do
18: Sample a mini-batch of transitions {(si, ai, si+1, z)}i∈I ⊂ D of size |I| = b.
19: Sample a mini-batch of target state-action pairs {(s′i, a′i)}i∈I ⊂ D of size |I| = b.
20: Sample a mini-batch of {zi}i∈I ∼ p(z) of size |I| = b.
21: Compute RND loss function L(κ) = ||fκ(st+1)− f(st+1)||22.
22: Update κ← κ− η∇L(κ).
23: Compute contrastive loss function L(ν, ξ) with equation 7.
24: Update ν, ξ ← ν, ξ − η∇L(ν, ξ).
25: Compute intrinsic reward rintr with equation 9.
26: Compute exploration value loss function L(σ) with equation 3.
27: Update σ ← σ − η∇L(σ).
28: Compute skill value loss function L(θ) with equation 4.
29: Compute regularization loss Lreg(θ) =

1
b2

∑
i,j∈I2 Bω(si, ai).

30: Update θ ← θ − α∇L(θ).
31: Compute actor loss function L(ζ) with equation 5.
32: Update ζ ← ζ − η∇L(ζ).
33: end for
34: /* Update target network parameters */
35: θ− ← τθ + (1− τ)θ−

36: ω− ← τω + (1− τ)ω−

37: κ− ← τκ+ (1− τ)κ−

38: end for=0
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A.2 FINE-TUNE PSEUDO-CODE

Algorithm 2 DVFB Algorithm: Downstream Fine-tuning Phase

1: Inputs: replay buffer D, initialized networks Fθ, Bω , actor network πζ , downstream task value
function QF,µ, learning rate η, mini-batch size b, number of episodes E, number of gradient
updates N , number of inference step M .

2: /* Inference skill
3: for t = 1 to M do
4: Sample z ∼ p(z)
5: Select action at = πζ(st, at, z)
6: Observe next state st+1

7: Store transition (st, at, st+1, r) in the replay buffer D
8: end for
9: Inference skill: z = B(st)r.

10: /* Fine-tune
11: for m = 1 do
12: /* Collect E episodes
13: for e = 1 to E do
14: Observe an initial state s0
15: for t = 1 to T do
16: Select action at = πζ(st, at, z)
17: Observe next state st+1

18: Store transition (st, at, st+1) in the replay buffer D
19: end for
20: end for
21: /* Perform N stochastic gradient descent updates
22: for n = 1 to N do
23: Sample a mini-batch of transitions {(si, ai, si+1, z)}i∈I ⊂ D of size |I| = b.
24: Compute downstream task value loss function L(µ) with equation 10.
25: Update µ← µ− η∇L(µ).
26: Compute actor loss function L(ζ) with equation 11.
27: Update ζ ← ζ − η∇L(ζ).
28: end for
29: end for=0
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B EXTENDED BACKGROUND

In the presence of extrinsic rewards, Reinforcement Learning (RL) has demonstrated its efficacy
in learning powerful task-specific skills (Li et al., 2019; Wu et al., 2022; Tu et al., 2025; Sun et al.,
2025). The success of unsupervised learning in computer vision (CV) (Chen et al., 2020) and natural
language processing (NLP) (Devlin et al., 2019) inspires researchers and benefits task-specific RL
with complex visual input by enhancing representation learning in a target manner. Nevertheless, the
task-specific supervision of extrinsic reward makes it difficult for the agents who have been trained
with a significant amount of effort to generalize their knowledge to novel tasks (Stooke et al., 2021).
In order to enhance this generalization, unsupervised RL is proposed, in which the task-agnostic re-
ward is specifically designed for unsupervised pre-training. The pre-trained feature encoders (Liu &
Abbeel, 2021b; Yarats et al., 2021) and exploration policies (Burda et al., 2019; Yarats et al., 2021)
can be subsequently implemented to facilitate efficient RL on a variety of downstream tasks. In ad-
dition to the generalization, intelligent agents should also be capable of exploring environments and
acquiring a variety of useful behaviors without any extrinsic supervision, similar to human beings.
For the reasons above, unsupervised skill discovery (Eysenbach et al., 2019; Laskin et al., 2021;
Lee et al., 2019) is proposed and becomes a novel research hotspot. As a branch of unsupervised
RL, unsupervised skill discovery approaches also design task-agnostic intrinsic rewards and achieve
pre-training with these rewards through RL, which guarantees multi-task downstream generalization
(Laskin et al., 2022; Liu & Abbeel, 2021a; Liu et al., 2025; Yang et al., 2023; Bai et al., 2024). The
primary distinction is that skill discovery necessitates additional input in the form of skill vectors,
which are conditions. Their objective is to identify task-agnostic policies that are distinguishable by
skill vectors (Park et al., 2024; Liu et al., 2025; Lee et al., 2019). These methodologies demonstrate
promising outcomes in a variety of disciplines, including manipulation, video games (Schrittwieser
et al., 2020; Ye et al., 2021), robot locomotion (Laskin et al., 2021; Tassa et al., 2018), and so on.
However, we observe that existed unsupervised skill discovery methods always lack the ability of
zero-shot policy learning, i.e., their learned skills can’t directly achieve multi-task adaptation with-
out further task-specific adjustment.

Zero-shot RL methods are typically based on successor representations (Dayan, 1993), universal
value function approximators (Schaul et al., 2015), successor features (Barreto et al., 2017), and
successor measures. The state-of-the-art methods achieve these ideas either by using universal suc-
cessor features (USFs) (Schaul et al., 2015) or forward-backward representations (FB) (Touati &
Ollivier, 2021; Touati et al., 2023). Methods based on USFs require learning a representation for suc-
cessor features. Previous approaches have utilized techniques such as Laplacian Eigenfunctions (Wu
et al., 2018), Low-Rank Approximation of Transition Probabilities (Ren et al., 2023), Contrastive
Learning (Balestriero & LeCun, 2022), and Low-Rank Approximation of Successor Representa-
tions (Touati et al., 2023) to learn representations. FB methods directly learn successor measures
using forward and backward representations, avoiding the need to learn representations. However,
these successor feature-based methods rely on diverse offline datasets, and in online URL, the lack
of exploration capabilities results in poor data diversity, thereby affecting the learning of successor
measures and zero-shot generalization. This paper proposes a dual-value forward-backward repre-
sentation framework (DVFB) that enables zero-shot generalization in online URL by encouraging
exploration while ensuring the learning of successor features.
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C EXPERIMENTAL SETUP

C.1 ENVIRONMENTS

Following recent advancements (Liu et al., 2025; Bai et al., 2024), we evaluate task generalization
performance on 12 downstream tasks across three domains: Walker, Quadruped, and Jaco, using
the URLB (Laskin et al., 2021) and DMC (Tassa et al., 2018) benchmarks. Here are the detailed
domains and corresponding tasks:

• The Walker domain includes walker control tasks with a state space S ∈ R24 and action
space A ∈ R6. This domain includes four tasks: Walker stand, Walker walk, Walker flip,
and Walker run.

• The Quadruped domain involves quadruped control tasks with a higher-dimensional state
space S ∈ R78 and action space A ∈ R16. It includes the tasks of Quadruped stand,
Quadruped walk, Quadruped jump, and Quadruped run.

• The Hopper domain consists of one-legged hopper control tasks, which present a more
challenging exploration of rewards, with a state space S ∈ R14 and action space A ∈ R4.
It includes the tasks of Hopper hop, Hopper flip, Hopper hop backward, and Hopper flip
backward.

In the experiments, each method is pre-trained in the aforementioned environments without rewards
for 2e6 steps and adapts to downstream tasks through zero-shot for generalization and fine-tuning.

Hopper

hop flip

hop backward flip backwardhop backward

Quadruped

stand walk

jump run

Figure 8: Illustration of domains and downstream tasks in DMC, Each domain has four downstream
tasks.

C.2 DETAILED BASELINES

In zero-shot generalization, we compared DVFB with (i) successor feature methods that per-
form well in offline settings and (ii) skill discovery methods, including CIC(Laskin et al., 2022),
BeCL(Yang et al., 2023), ComSD(Liu et al., 2025), and CeSD(Bai et al., 2024). In successor feature
methods, we compared approaches based on contrastive learning (CL)(Balestriero & LeCun, 2022),
Low-Rank Approximation of successor representations (LRA-SR)(Touati et al., 2023), Low-Rank
Approximation of state transition probabilities (LRA-P)(Ren et al., 2023), and Laplacian Eigen-
functions (Lap)(Wu et al., 2018), along with the FB method(Touati et al., 2023). The successor
representation methods learn representations in various ways to compute successor features for gen-
eralization, while the FB method achieves generalization by learning successor metrics. The detailed
baseline methods with successor feature methods are presented below:

• Successor Feature with Laplacian Eigenfunctions (Lap): Lap focuses on learning the eigen-
functions of the symmetrized MDP graph Laplacian, which is defined through an ex-
ploratory policy. It seeks to minimize the difference between feature representations of
consecutive states while ensuring that the features constitute an orthonormal basis. Lap
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encourages feature clustering among states and their neighbors while effectively separating
distant states.

• Low-Rank Approximation of Transition Probabilities (LRA-P): LRA-P approximates the
transition probability densities using low-rank models. It learns state-action features by
minimizing a contrastive loss that compares samples of consecutive states with independent
samples drawn from a stationary distribution. The method produces optimal policies if the
model perfectly matches the transition probabilities.

• Contrastive Learning (CL): CL uses a SimCLR-like objective to learn representations by
contrasting positive pairs with negative pairs.CL necessitates full trajectory data and is
closely related to the spectral decomposition of the successor measure associated with the
behavior policy.

• Low-Rank Approximation of Successor Representations (LRA-SR): LRA-SR builds on
CL but reduces variance by learning successor measures via temporal difference learning,
rather than through Monte Carlo sampling. It normalizes feature representations to form
an identity matrix, ensuring low-rank approximation of the successor measure.

• Forward-backward Representations (FB): FB learns successor measure with forward rep-
resentation and backward representation. It avoids reliance on features, demonstrating out-
standing performance in successor feature methods.

In the fine-tuning task adaptation, we compared DVFB with (i) pure exploration methods, including
RND(Burda et al., 2019) and Disagreement(Pathak et al., 2019), and (ii) skill discovery methods,
including SMM(Lee et al., 2019), DIAYN(Eysenbach et al., 2019), APS(Liu & Abbeel, 2021a),
CIC(Laskin et al., 2022), BeCL(Yang et al., 2023), ComSD(Liu et al., 2025), and CeSD(Bai et al.,
2024). The detailed baseline methods in task adaptation are as follows:

• Disagreement: Disagreement enhances exploration by training an ensemble of dynamics
models, encouraging the agent to maximize the disagreement between them.

• RND: RND is a pure exploration method that encourages the agent to explore unseen states
by using a randomly generated network.

• DIAYN: DIAYN maximizes the mutual information (MI) between skills and states by em-
ploying a discrete uniform prior to enhance skill entropy. A trainable discriminator is used
to estimate state-conditioned entropy, allowing for the computation of intrinsic rewards.

• SMM: SMM aligns the state marginal distribution with a target distribution by formulating
a zero-sum game between a state density model and a parametric policy, explicitly maxi-
mizing state entropy through intrinsic rewards.

• APS: APS employs another MI decomposition for improved mutual information estimation
and utilizes particle-based entropy estimation to enhance exploration.

• CIC: CIC is the first to incorporate contrastive learning into skill discovery, maximizing
implicit skill-conditioned entropy by comparing state transitions with skill vectors.

• BeCL: It introduces a novel MI objective to mitigate exploitation issues in CIC, providing
theoretical upper bounds.

• ComSD: ComSD employs a contrastive learning-based diversity reward to help agents
identify existing skills, combined with a particle-based exploration reward to facilitate the
discovery of new behaviors.

• CeSD: CeSD introduces a URL framework that uses an ensemble of skills for partitioned
exploration based on state prototypes, enabling local exploration within clusters while max-
imizing overall state coverage.

While URL methods enable rapid adaptation to downstream tasks through fine-tuning, achieving
zero-shot generalization remains difficult due to the absence of a direct link between the learned
skills or policies and the downstream tasks. We further demonstrate the properties of baseline
method in Table 3.
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Table 3: Properties of Baseline Methods

Method Zero-shot Online Offline Exploration Skill Discovery
Successor Representation Methods

CL ✓ × ✓ × ✓
Lap ✓ × ✓ × ✓
LRA-P ✓ × ✓ × ✓
LRA-SR ✓ × ✓ × ✓
FB ✓ × ✓ × ✓

Pure Exploration Methods
Disagreement × ✓ × ✓ ×
RND × ✓ × ✓ ×

Unsupervised Skill Learning Methods
DIAYN × ✓ × ✓ ✓
SMM × ✓ × ✓ ✓
APS × ✓ × ✓ ✓
CIC × ✓ × ✓ ✓
BeCL × ✓ × ✓ ✓
ComSD × ✓ × ✓ ✓
CeSD × ✓ × ✓ ✓
DVFB(ours) ✓ ✓ × ✓ ✓

C.3 DETAILED ZERO-SHOT GENRALIZATION SETUP

We evaluated the zero-shot performance of DVFB across 12 continuous control tasks in the Deep-
Mind Control Suite. During the pre-training phase, each method trained for 2 million steps using
self-generated data without rewards. Subsequently, each agent interacted for 10,000 steps in the
downstream tasks to collect demonstration data, allowing them to acquire the skills most suitable
for those tasks. In SR methods, skills zr are inferred using the formula r(s) = ϕ(s)⊤zr , while the
FB method infers skills through zr = B(s′)r . The USD methods acquire demonstration data by
switching skills in each episode and selects the skill with the highest episode reward as the down-
stream task skill. During testing, the chosen skills are fixed to evaluate the zero-shot performance
of different methods in downstream tasks. Each method was run with 6 random seeds to assess its
performance.

During the adaptation to downstream tasks, DVFB and USD methods identify the skills that best
match these tasks through skill inference and the selection of the highest-performing skills, respec-
tively. During the fine-tuning phase, USD methods fix the skill vector and trains a new value function
using the rewards from downstream tasks, subsequently fine-tuning the skill policy with this updated
value function.
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D HYPER-PARAMETER SETTINGS

In this section, we provide the detailed hyper-parameter settings of our proposed method, as shown
in Table 4.

Table 4: Hyper-parameter settings.

Hyper-parameter Setting
Pre-training frames 2e6

Finetuning frames 1e5
Zero-shot selection frames 1e4

RL replay buffer size 1e6
Frame stack 1
Action repeat 1
Seed frames 4000
z vector dimensions 50
z vector space continuous
z update frequency 300
RL backbone algorithm DDPG
Return discount 0.99
Discounted steps for return 3
Batch size 1024
Optimizer Adam
Learning rate 1e− 4
Actor network (MLP) dim(s) + 64→ 1024

→ 1024→ dim(a)
Actor activation layernorm(Tanh)→ ReLU

→ Tanh
Critic network (MLP) dim(s) + 64 + dim(a)

→ 1024→ 1024→ 1
Actor activation layernorm(Tanh)→ ReLU
Agent update frequency 2
Target critic network EMA 0.01
Exploration stddev clip 0.3
Exploration stddev value 0.2
coefficient α 5
coefficient β 0.5
coefficient η 0.5
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E FULL EXPERIMENTS RESULT

As shown in Figure 9, we present the fine-tuning curves of our method compared to eight baselines
across all twelve tasks in three domains. Our method demonstrates strong initial performance and
achieves further improvements through fine-tuning with greater efficiency.
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Figure 9: Finetuning Curve on the Walker and Quadruped Domains. DVFB begins with out-
standing zero-shot performance and further enhances performance efficiently through fine-tuning.
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F FULL ABLATION STUDY

Figure 10 presents the ablation study results of DVFB’s fine-tuning technique across 12 tasks in
three domains. The results demonstrate that the proposed dual-value fine-tuning technique ensures
efficient and stable fine-tuning.
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Figure 10: Ablation study results for the dual-value fine-tuning scheme. We present the fine-
tuning curves for DVFB, DVFB w/o SVF, and DVFB w/o MAP across all 12 downstream tasks.
DVFB w/o SVF denotes DVFB fine-tuning with a downstream task value function trained from
scratch, while DVFB w/o MAP refers to DVFB fine-tuning without the reward mapping technique
in the dual-value scheme.
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G COMPARISON WITH OFFLINE ZERO-SHOT METHODS

In this section, we compare DVFB against the offline zero-shot methods LAP, LRA-SR, LRA-P
and FB in Walker, Quadruped and Cheetah domains. The performances of offline methods are
from (Touati et al., 2023), where offline datasets are collected by APS, Proto, and RND exploration
methods. The results, summarized in Table 2, highlight the following key differences between offline
and online methods:

High Data Sensitivity for Offline Methods: Offline methods exhibit significant performance vari-
ation depending on the quality of exploration data. On the one hand, the same algorithm requires
different exploration datasets in different domains. For example, FB trained with Proto data in the
Walker domain achieves best performance (666), while in the Quadruped domain using Proto data
yields a huge performance drop (222). On the other hand, different algorithms require different
exploration datasets. For example, LRA-P performs best with RND data, while FB performs best
with APS data. When designing a novel algorithm, how to make sure what kind of exploration
dataset is most suitable? The intuitive idea is to train the models on different exploration datasets,
and compare to find the best performance models. Obviously, it will lead to high computational
costs. In contrast, DVFB does not depend on offline datasets, and requires only a single agent pre-
training phase to achieve strong zero-shot capability, significantly reducing time and computational
overhead. It is simpler and easier to deploy than offline zero-shot methods.

Performance Limitation on Pre-collected Fixed Dataset: Offline methods rely on the diversity
and quality of fixed pre-collected datasets, which limits their generalization performance. In con-
trast, DVFB balances the exploration and exploitation online with an intrinsic reward based on con-
trastive learning, leading to enhanced skill learning and better zero-shot performance. Experimental
results across twelve tasks in Mujoco domains demonstrate that DVFB consistently outperforms
zero-shot offline methods.

In summary, the results demonstrate that DVFB offers superior performance and efficiency com-
pared to both offline and online methods, establishing its significance in zero-shot online URL.

Table 5: Zero-shot Generalization Performance Comparison

Domain task LAP* LRA-P* LRA-SR* Offline FB* DVFB
(APS) (Proto) (RND) (APS) (Proto) (RND) (APS) (Proto) (RND) (APS) (Proto) (RND)

Walker

Stand 895 937 853 643 687 904 591 874 828 822 902 890 905
Walk 386 883 607 159 300 818 671 867 853 817 917 760 900
Flip 454 548 569 340 281 512 186 551 454 413 507 578 515
Run 289 280 299 115 183 325 204 391 350 346 336 388 423

Average 506 662 582 314 363 640 413 671 621 600 666 654 686

Quadruped

Stand 963 231 720 497 264 552 872 99 944 924 287 815 953
Walk 524 135 410 228 172 310 463 215 516 712 280 528 624
Jump 718 177 490 309 184 447 632 134 731 649 183 651 816
Run 491 125 399 238 166 301 448 113 461 476 137 429 467

Average 674 167 505 318 197 403 604 140 663 690 222 606 715

Cheetah

run 198 142 50 8 149 6 247 209 138 276 267 247 271
run backward 221 146 90 1 133 2 261 230 82 238 238 185 319

walk 900 722 330 75 770 29 918 860 446 844 844 827 906
walk backward 937 798 499 8 629 14 983 979 352 981 981 793 978

Average 564 452 242 23 420 13 602 570 255 585 583 513 619
All average 581 427 443 218 326.5 352 540 460 513 625 490 591 673

Average of best 633 487 645 647 673
Results marked with * are sourced from FB(ICLR 23).
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H THEORETICAL ANALYSIS FOR IMPROVEMENTS OF DVFB

In this section, we offer a theoretical guarantee for zero-shot generalization and a detailed analysis
of how the DVFB framework improves FB’s zero-shot generalization in online URL.

Theorem 1. (Touati et al., 2023) Let F : S ×A× Z → Z and B : S ×A→ Z be successor state
approximation functions, and define policy πz(s) = argmaxa F (s, a, z) for each z ∈ Z.

Given a positive probability distribution ρ on S×A, let mπ be the density of successor state measure
Mπ under policy π with respect to ρ. Define the model estimates:

m̂π(s, a, s′, a′) := F (s, a, z)⊤B(s′, a′)

M̂π(s, a, ds′, da′) := m̂π(s, a, s′, a′)ρ(ds′, da′)

For any bounded reward function r : S ×A→ R, let V ∗ be the optimal value function, V̄ πz be the
value function of policy πz , and zR = E(s,a)∼ρ[r(s, a)B(s, a)]. Then:

1. Under bounded density estimation error: If E(s′,a′)∼ρ|m̂zR(s, a, s′, a′) −
mπz (s, a, s′, a′)| ≤ ε for all (s, a) ∈ S ×A, then

∥V̄ πz − V ∗∥∞ ≤
3ε∥r∥∞
1− γ

2. For Lipschitz continuous rewards: If ∥M̂zR(s, a, ·)−Mπz (s, a, ·)∥KR ≤ ε for all (s, a) ∈
S ×A, then

∥V̄ πz − V ∗∥∞ ≤
3εmax(∥r∥∞, ∥r∥Lip)

1− γ

3. For general norm pairs: Given norms ∥ · ∥A on functions and ∥ · ∥B on measures satisfying∫
fdµ ≤ ∥f∥A∥µ∥B , for any reward function with ∥r∥A <∞,

∥V̄ πz − V ∗∥∞ ≤
3∥r∥A
1− γ

sup
s,a
∥M̂zR(s, a, ·)−Mπz (s, a, ·)∥B

Furthermore, the Q-function approximation satisfies:

sup
s,a
|F (s, a, zR)

⊤zR −Q∗(s, a)| ≤ 2∥r∥A
1− γ

sup
s,a
∥M̂zR(s, a, ·)−Mπz (s, a, ·)∥B

The Theorem 1 establishes that for any reward function r, the error in value estimation is bounded
as follows:

sup
S×A
|QπzR −Q∗| ≤ 3|r|A

1− γ
sup
S×A
|εzR(s, a, ·)|B, (13)

where εzR(s, a, ·) = Mπz (s, a, ds′, da′)−F (s, a, z)⊤B(s′, a′)ρ(ds′, da′) represents the difference
between the true successor measure and the estimated successor measure. This bound ensures that
the zero-shot generalization error depends on the accuracy of the successor measure estimation.

Theoretical Analysis for Improvements of DVFB. In online URL, the performance of the
Forward-Backward (FB) method is hindered by insufficient exploration, leading to inaccurate es-
timation of successor measures. Our empirical analysis in Section 4 highlights this limitation by
showing the poor correlation between the value function and returns on downstream tasks under
FB. To address this, we propose the Dual-Value Forward-Backward (DVFB) framework, which in-
troduces a dual-value structure to enhance exploration and improve successor measure estimation.
Specifically, let εDV FB

zR and εFB
zR represent the successor measure errors under DVFB and FB, re-

spectively. DVFB reduces these errors, such that:

|εDV FB
zR |B ≤ |εFB

zR |B.
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As a result, for any unseen reward function rnew, the zero-shot generalization error of DVFB is
bounded by:

|QπDVFB
rnew

−Q∗
rnew
| ≤ 3|rnew|A

1− γ
|εDV FB

zR |B ≤ 3|rnew|A
1− γ

|εFB
zR |B.

This tighter bound demonstrates that DVFB achieves superior zero-shot generalization by reducing
successor measure estimation errors via enhanced exploration.

Our experimental results validate this theoretical analysis, with the DVFB framework consistently
outperforming FB across a range of unseen tasks. These findings confirm that DVFB offers improved
zero-shot generalization in online URL.
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I FURTHER EXPERIMENTAL RESULTS ON NAVIGATION AND ROBOTIC
MANIPULATION DOMAIN

we have conducted additional experiments on two distinct domains: a Point-Mass Maze navigation
environment and a Meta-World robotic manipulation environment. Although the offline methods
FB-offline(Touati et al., 2023) and MCFB-offline [2] rely on offline data and offline settings (in
contrast to online URL, which requires multi-stage training and more expensive computation), we
provide a comparison with these offline reinforcement learning methods for a more comprehensive
evaluation of our approach. As they didn’t do the Meta-World experiment, we summarize the results
of FB-offline and MCFB-offline with RND offline data in Point-Mass Maze domain. As shown
in Table 6, DVFB demonstrates better performance across both domains. The additional results
demonstrate that DVFB is not only effective in robotic control tasks but also generalizes well to
other domains, such as navigation and robotic manipulation.

Table 6: Performance comparison across different domains. For Point-Mass Maze, results show
mean ± standard deviation across three seeds. For Meta-World, results show success rates.

Domain Task FB CIC CeSD FB-offline* MCFB-offline* DVFB

Point-Mass

Reach Top-left 69 ± 6 18 ± 6 12 ± 8 612 773 932 ± 10
Reach Top-right 77 ± 95 5 ± 2 5 ± 4 0 270 203 ± 81
Reach Bottom-left 3 ± 3 7 ± 4 18 ± 21 268 1 94 ± 45
Reach Bottom-right 0 ± 0 2 ± 2 2 ± 2 0 0 4 ± 3
Average 37.3 8.0 9.3 219 261 308.3

Meta-World Faucet Open 0.18 0.04 0.00 — — 0.60
Faucet Close 0.10 0.18 0.00 — — 0.52

Results marked with * are sourced from MCFB(Jeen et al., 2024).
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J IMPORTANCE OF CONTRASTIVE ENTROPY REWARD

In this section, we discuss the importance of the contrastive entropy reward. The contrastive en-
tropy reward is designed to promote skill discrimination during exploration, thereby preserving the
skills learned through the FB mechanism. To assess the role of the contrastive entropy reward, we
conducted two sets of comprehensive experiments.

Ablation Study. We perform an ablation study on the coefficient β of the contrastive entropy reward,
as shown in Table 7. The results demonstrate that increasing β from 0.1 to 0.7 consistently improves
performance, validating that the contrastive entropy reward enhances generalization by promoting
skill separability.

Table 7: Ablation study on contrastive entropy coefficient β on Walker tasks. Results show mean ±
standard deviation across three seeds.

Task β=0.1 β=0.3 β=0.5 β=0.7 β=0.9

Stand 819±32 862±9 905 898±62 919±9
Walk 819±38 861±18 900 926±17 873±32
Flip 428±10 501±18 515 616±129 453±30
Run 344±28 397±40 423 434±54 342±35

Average 603 655 686 719 647

Comparison Experiment. We compare DVFB with variants that use alternative intrinsic rewards
(ICM-APT, Proto, and CIC), as shown in Table 8.

Table 8: Comparison with alternative intrinsic rewards on Walker tasks. Results show mean ±
standard deviation across three seeds.

Task DVFB(ICM-APT) DVFB(Proto) DVFB(CIC) DVFB

Stand 883±106 844±101 846±74 905±27
Walk 840±85 821±27 825±24 900±53
Flip 436±68 454±51 436±140 515±67
Run 354±15 358±17 342±14 423±53
Average 628 619 612 686

The results reveal several key insights: (1) The scalability of DVFB. All variants achieve reasonable
zero-shot generalization performance, demonstrating DVFB’s compatibility with different intrinsic
rewards. (2) The advantage of the CE reward. DVFB with contrastive entropy consistently out-
performs the other variants, achieving the highest average performance.

These experiments provide strong evidence for the effectiveness of our contrastive entropy design
and demonstrate DVFB’s flexibility in incorporating different intrinsic rewards.
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K IMPORTANCE OF REWARD MAPPING TECHNIQUE

In this section, we provide a detailed justification and explore potential alternatives for reward map-
ping technique during our experiments.

Reward Mapping Implementation. The reward mapping process involves three key steps: (1)
Compute the implicit reward using the backward network (backward net) and a latent variable (z).
(2) Normalize both implicit and extrinsic rewards using running mean and standard deviation track-
ers. (3) Rescale the extrinsic reward to align with the scale of the implicit reward.

The detailed implementation is shown in the following pseudocode:

Algorithm 3 Reward Mapping Mechanism

1: Input: downstream reward rt, next state snext, backward representation network Bnet, skill z,
implicit reward normalization function rfb rms, downstream reward normalization function
rt rms.

1: procedure REWARD MAPPING
2: /* Compute features from backward network
2: B ← Bnet(snext)
3: /* Compute Covariance matrix
3: Σ← 1

mB⊤B

3: Σ−1 ← inverse(Σ)
4: /* Compute Implicit reward
4: rimplicit ←

∑m
i=1

(
Bi · Σ−1 · z

)
5: /* Update normalization functions
5: (µfb, σ

2
fb)← fb rms.update(rimplicit)

5: (µt, σ
2
t )← t rms.update(rt)

6: /* Rescale reward
6: rrescaled ← rt · µfb

µt+ϵ
6: return rrescaled
6: end procedure=0

Potential Fine-tuning Techniques. The goal of fine-tuning is to ensure stable policy improvements,
guided by both the prior skill value QM and the downstream task value QF . The reward mapping
technique is designed to balance the influence of these two values. A straightforward alternative is
to directly use the downstream task rewards rt for the task value, adjusting the coefficient η in Eq.
11 to balance the importance of QM and QF . We refer to this as DVFB w/o MAP, which employs
a dual-value fine-tuning scheme based on downstream task rewards rt rather than rf . Additionally,
we explore an adaptive approach where the η parameter is dynamically adjusted as η = Q

MQ , which
we call DVFB w/o MAP adaptive.

Table 9: Performance comparison of different fine-tuning approaches on the quadruped domain.
Results show mean±std over three runs.

Task DVFB w/o MAP DVFB
η = 0.02 η = 0.1 η = 0.5 adaptive η

Stand 954± 5 951± 10 961± 8 960± 5 965± 7
Walk 753± 32 765± 18 752± 31 820± 77 908± 21
Jump 819± 28 811± 16 784± 59 830± 12 831± 20
Run 496± 23 491± 4 490± 14 496± 48 536± 27
Average 756 755 747 777 804

Experimental Results. We perform comparative experiments in the quadruped domain, with re-
sults presented in Figure 11 and Table 9. Our findings show that DVFB w/o MAP provides stable
but limited improvements with higher coefficients, while performance becomes unstable with lower
coefficients, ultimately limiting overall performance. Moreover, DVFB w/o MAP adaptive strug-
gles to achieve superior improvements due to the nonlinear relationship between skill value and
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downstream value. In contrast, DVFB with the reward mapping scheme, which uses all coefficients,
consistently delivers stable and superior improvements across all tasks. These results strongly vali-
date the effectiveness of our chosen approach.
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Figure 11: Finetuning Curve on the Quadruped Domains for DVFB with different fine-tuning
approaches.
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L THE SENSITIVITY OF DVFB TO HYPERPARAMETERS

In this section, we conduct a series of ablation studies to evaluate the impact of the key hyperparam-
eters α, β and η on DVFB’s performance. Below, we present the experimental results.

Ablation Study on α. Table 10 shows the results for varying α in Walker domain. The experiments
indicate that while changes in α affect performance slightly, the overall generalization performance
of DVFB remains stable, with the best results observed at α = 5.

Table 10: Performance of DVFB with different α values on the Walker domain. Results show mean
± standard deviation across three seeds.

Task α = 1 α = 3 α = 5 α = 7 α = 9
Stand 911± 5 912± 3 905± 27 888± 5 807± 33
Walk 835± 71 895± 41 900± 53 862± 7 707± 49
Flip 464± 76 522± 92 515± 67 489± 18 423± 19
Run 350± 69 444± 13 423± 53 345± 5 266± 45
Average 640 693 686 646 551

Ablation Study on β. Similarly, Table 11 reports the performance for different β values in Walker
domain. The results reveal that DVFB achieves optimal performance at β = 0.7, with only minor
deviations observed across other values. This demonstrates the robustness of our framework to
changes in β.

Table 11: Performance of DVFB with different β values on the Walker domain. Results show mean
± standard deviation across three seeds.

Task β = 0.1 β = 0.3 β = 0.5 β = 0.7 β = 0.9
Stand 819± 32 862± 9 905± 27 898± 62 919± 9
Walk 819± 38 861± 18 900± 53 926± 17 873± 32
Flip 428± 10 501± 18 515± 67 616± 129 453± 30
Run 344± 28 397± 40 423± 53 434± 54 342± 35
Average 603 655 686 719 647

Ablation Study on η. We conduct an ablation study in Quadruped domain to evaluate the sensitivity
of the DVFB framework to the hyperparameter η during the fine-tuning phase. As shown in Table
12, the overall average performance across all tasks remains consistent, indicating that DVFB is
relatively resilient to changes in η.

Table 12: Performance of DVFB with different η values on the Quadruped domain. Results show
mean ± standard deviation across three seeds.

Task η = 0.02 η = 0.1 η = 0.5 η = 1.0
Stand 957±4 964±6 965±7 954±10
Walk 891±32 908±30 908±21 886±8
Jump 830±18 838±11 831±20 835±8
Run 557±15 530±15 536±27 543±26
Average 809 810 810 804

The results of our sensitivity analysis demonstrate that DVFB is resilient to variations in key hyper-
parameters α, β and η. While some fluctuations in performance occur, the overall generalization
ability remains largely unaffected, indicating the robustness of our framework across different pa-
rameter settings. Furthermore, for all other neural network hyperparameters (e.g., learning rate), we
adopt the default settings of URL with DDPG, ensuring consistency with prior work.
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