
Language Models Implement Simple Word2Vec-style

Vector Arithmetic

Anonymous Author(s)

Affiliation
Address
email

Abstract

A primary criticism towards language models (LMs) is their inscrutability. This1

paper presents evidence that, despite their size and complexity, LMs sometimes2

exploit a computational mechanism familiar from traditional word embeddings:3

the use of simple vector arithmetic in order to encode abstract relations (e.g.,4

Poland:Warsaw::China:Beijing). We investigate a range of language model sizes5

(from 124M parameters to 176B parameters) in an in-context learning setting, and6

find that for a variety of tasks (involving capital cities, upper-casing, and past-7

tensing), a key part of the mechanism reduces to a simple linear update applied8

by the feedforward networks. We further show that this mechanism is specific9

to tasks that require retrieval from pretraining memory, rather than retrieval from10

local context. Our results contribute to a growing body of work on the mechanistic11

interpretability of LLMs, and offer reason to be optimistic that, despite the massive12

and non-linear nature of the models, the strategies they ultimately use to solve tasks13

can sometimes reduce to familiar and even intuitive algorithms.14

1 Intro15

The growing capabilities of large language models (LLMs) have led to an equally growing interest in16

understanding how such models work under the hood. Such understanding is critical for ensuring that17

LLMs are reliable and trustworthy once deployed. Recent work (often now referred to as “mechanistic18

interpretability”) has contributed to this understanding by reverse-engineering the data structures and19

algorithms that are implicitly encoded in the model’s weights, e.g., by identifying detailed circuits20

[Wang et al., 2022, Elhage et al., 2021, Olsson et al., 2022] or by identifying mechanisms for factual21

storage and retrieval which support intervention and editing [Geva et al., 2021b, Li et al., 2022, Meng22

et al., 2022a,c, Dai et al., 2022].23

Here, we contribute to this growing body of work by analyzing how LLMs recall information during24

in-context learning. Specifically, we observe that the mechanism that LLMs use in order to retrieve25

certain facts (e.g., mapping a country to its capital city) bears a striking resemblance to the type of26

vector arithmetic operations associated with LLMs’ simpler, static word-embedding predecessors.27

That is, early word embeddings such as word2vec [Mikolov et al., 2013] famously supported factual28

recall via linear vector arithmetic–e.g., there existed some vector that, when added to the vector29

for any country would produce the vector for its capital. Modern LLMs are based on a complex30

transformer architecture [Vaswani et al., 2017] which produces contextualized word embeddings31

[Peters et al., 2018, Devlin et al., 2019] connected via multiple non-linearities. Despite this, we find32

that LLMs implement a very similar vector-addition mechanism which plays an important role in a33

number of in-context-learning tasks.34

We study this phenomenon in three tasks–involving recalling capital cities, uppercasing tokens, and35

past-tensing verbs. Our key findings are:36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

• We find evidence of a distinct processing signature in the forward pass which characterizes37

this mechanism. That is, if models need to perform the get_capital(x) function, which38

takes an argument x and yields an answer y, they must first surface the argument x in earlier39

layers which enables them to apply the function and yield y as the final output (Figure 2).40

This signature generalizes across models and tasks, but appears to become sharper as models41

increase in size.42

• We take a closer look at GPT2-Medium, and find that the vector arithmetic mechanism is43

implemented by mid-to-late layer feedforward networks (FFNs) in a way that is modular44

and supports intervention. That is, FFNs construct a vector that is not specific to context45

or argument, such that the same vector which produces Warsaw given Poland in one context46

can be dropped into an unrelated context to produce Beijing given China.47

• We demonstrate that this mechanism is specific to recalling information from pretraining48

memory. For settings in which the correct answer can be retrieved from the prompt, this49

mechanism does not appear to play any role, and FFNs can be ablated entirely with relatively50

minimal performance degradation. Thus, we present new evidence supporting the claim that51

FFNs and attention specialize for different roles, with FFNs supporting factual recall and52

attention copying and pasting from local context.53

Taken together, our results offer new insights about one component of the complex algorithms54

that underlie in-context learning. The simplicity of the mechanism, in itself surprising, raises the55

possibility that other apparently complicated behaviors may be supported by a sequence of simple56

operations under the hood. Moreover, our results suggest a distinct processing signature and hint57

at a method for intervention. These ideas could support future work on detecting and preventing58

unwanted behavior by LLMs at runtime.59

2 Methods60

In decoder-only transformer language models [Vaswani et al., 2017], a sentence is processed one61

word at a time, from left to right. The token at the current timestep is passed into the input of the62

model in order to predict the next, and so on. In this paper, we focus on the transformations that the63

next-token prediction undergoes in order to predict the next word. At each layer, an attention module64

and feed-forward network (FFN) module apply subsequent updates to this representation. Consider65

the FFN update at layer i, where xi is the current next-token representation. The update applied by66

the FFN here is calculated as FFN(~xi) = ~oi, ~xi+1 = ~xi + ~oi where ~xi+1 is the updated token for67

the next layer. Note that due to the residual conncetion, the output vector ~oi is added to the input. ~x68

is updated this way by the attention and FFNs until the end of the model, where the token is decoded69

into the vocab space with the language modeling head E: softmax(E~x). From start to end, x is only70

updated by additive updates, and because of this, is said to form a residual stream [Elhage et al.,71

2021]. Thus, the token representation xi represents all of the additions made into the residual stream72

up to layer i.73

The unembedding  
matrix projects into

the vocabulary space.

Attention FFN

LM
HeadEmbed

Because of the residual connection, Attention and FFN blocks
can be viewed as reading from the residual stream and adding

their outputs back into it

FFN

LM
Head

+a18 +ofunc+o18
Attention

+a19

…

LM
Head

LM
Head

LM
Head

…

Selected by example

Figure 1: When decoding the next word, additive updates are made through the residual connections
of each attention/FFN sub-layer. To decode the running prediction at every layer, the pre-trained
language modeling head is applied at various points in each layer as in Geva et al. [2022a], nostalge-
braist [2020]. The ~o vector interventions we make (§4.1) are illustrated by removing one or more
FFN sub-layers, and replacing their updates with pre-defined vectors extracted from other examples.

2

2.1 Early Decoding74

A key insight from the residual stream perspective is that we can decode the next token prediction75

with the LM head before it reaches the final layer. This effectively allows for “print statements”76

throughout the model’s processing. The intuition behind this technique is that LMs incrementally77

update the token representation ~x to build and refine an encoding of the vocabulary distribution.78

This technique was initially introduced in nostalgebraist [2020] as the logit lens, and Geva et al.79

[2022b] show that LMs do in fact refine the output distribution over the course of the model. Figure 180

illustrates the process we use to decode hidden states into the vocabulary space, in which the hidden81

state at each layer is decoded with the pre-trained language modeling head E. After decoding into82

the vocabulary space, we apply a softmax to get a probability distribution over all tokens. When we83

decode at some layer, we say that the most likely token in the resulting vocab distribution is currently84

being represented in the residual stream. We examine several in-context learning tasks to understand85

how the answers to these problems are discovered by a model over the course of the forward pass.86

2.2 Tasks87

Can we understand the subprocesses underlying how LMs solve simple problems? We apply early88

decoding to suite of in-context learning tasks to explore the transformations the next token prediction89

undergoes in order to predict the answer.90

World Capitals Our World Capitals task requires the model to retrieve the capital city for various91

states and countries in a few-shot setting. The dataset we use contains 248 countries and territories.92

A one-shot example is shown below:93

“Q: What is the capital of France?
A: Paris
Q: What is the capital of Poland?
A:___" Expected Answer: “ Warsaw"

94

Reasoning about Colored Objects We focus on a subset of 200 of the reasoning about95

colored objects dataset prompts (henceforth, the colored objects dataset) from BIG-Bench96

[Srivastava et al., 2022], which gives the model a list of colored common objects and require97

to simply state the color of a query object. For the purposes of this paper, we focus only98

on one aspect of this task–the model’s ability to output the final answer in the correct format.199

“Q: On the floor, I see a silver keychain, a red pair of sunglasses, a gold sheet of paper, a black dog
leash, and a blue cat toy. What color is the keychain?
A: Silver
Q: On the table, you see a brown sheet of paper, a red fidget spinner, a blue pair of sunglasses, a teal
dog leash, and a gold cup. What color is the sheet of paper?
A:___" Expected answer: “ Brown"

100

Past Tense Verb Mapping Lastly, we examine whether a language model can accurately recognize101

a pattern and predict the past tense form of a verb given its present tense. The dataset used is the102

combination of the regular and irregular partitions of the past tense linguistic mapping task in103

BIG-Bench [Srivastava et al., 2022]. After filtering verbs in which the present and past tense forms104

start with the same token, we have a total of 1,567 verbs. An example one-shot example is given below:105

“Today I abandon. Yesterday I abandoned. Today I abolish. Yesterday I___" Expected answer: “
abolished"106

2.3 Models107

We experiment exclusively on decoder-only transformer LMs across various sizes and pre-training108

corpora. When not specified, results in figures are from GPT2-medium. We also include results109

portraying the stages of processing signatures in the residual streams of the small, large, and extra110

large variants [Radford et al.], the 6B parameter GPT-J model [Wang and Komatsuzaki, 2021], and111

the 176B BLOOM model [Scao et al., 2022], either in the main paper or in the Appendix.112

1The reason for this is that most of the results in this paper were originally observed as incidental findings
while studying the Reasoning about Colored Objects task more generally. We thus zoom in on this one component
for the purposes of the mechanism studied here, acknowledging that the full task involves many other steps that
will no doubt involve other types of mechanisms.

3

3 Stages of Processing in Predicting the Next Token113

Layer Top Token
0 (
1 A
2 A
3 A
4 A
5 A
6 No
7 C
8 A
9 A
10 A
11 A
12 Unknown
13 C
14 St
15 Poland
16 Poland
17 Poland
18 Poland
19 Warsaw
20 Warsaw
21 Warsaw
22 Warsaw
23 Warsaw

Layer Top Token
0 The
1 The
2 The
3 [
4 [
5 M
6 M
7 No
8 The
9 No
10 No
11 None
12 None
13 None
14 None
15 None
16 None
17 white
18 white
19 Brown
20 Brown
21 Brown
22 Brown
23 Brown

Layer Top Token
0 (
1 A
2 A
3 A
4 A
5 A
6 A
7 A
8 A
9 The
10 The
11 The
12 The
13 The
14 The
15 The
16 The
17 The
18 Poland
19 Poland
20 Poland
21 Poland
22 Poland
23 The

Table 1: These are the top tokens per layer in GPT2-
Medium on the example zero-shot Poland example

10

A

B

C

Figure 2: We can decode the running next-token predic-
tion in an in-context learning task to reveal functionally
distinct stages of processing. The blue box (A) shows
where the model prepares an argument for transforma-
tion, the red box (B) shows the function application
phase during which the argument is transformed (here
with the capital_of function, and the yellow box
(C) shows a saturation event, in which the model has
found the answer, and stops updating the prediction.

First, we use the early decoding method114

in order to investigate how the processing115

proceeds over the course of a forward pass116

to the model. Each task requires the model117

to infer some relation to recall some fact,118

e.g., retrieving the capital of Poland. In119

these experiments, we see several discrete120

stages of processing that the next token un-121

dergoes before reaching the final answer.122

These states together provide evidence that123

the models "apply" the relevant functions124

(e.g., get_capital) abruptly at some125

mid-late layer to retrieve the answer. More-126

over, in these cases, the model prepares the127

argument to this function in the layers prior128

to that in which the function is applied.129

In Figure 2 we illustrate an example of the130

stages we observe across models. For the131

first several layers, we see no movement132

on the words of interest. Then, during Ar-133

gument Formation, the model first repre-134

sents the argument to the desired relation135

in the residual stream. This means that the136

top token in the vocabulary distribution at137

some intermediate layer(s) is the subject138

the question inquires about (e.g., the x, in get_capital(x)). During Function Application139

we find that the model abruptly switches from the argument to the output of the function (the y, in140

get_capital(x) = y). We find that function application is typically applied by the FFN update141

at that layer to the residual stream. This is done by adding the output vector ~o of the FFN to the142

residual stream representation, thus transforming it with an additive update. We study these ~o vectors143

in detail in Section 4. Finally, the model enters Saturation
2, where the model recognizes it has solved144

the next token, and ceases updating the token representation for the remaining layers.145

The trend can be characterized by an X-shaped pattern of the argument and final output tokens146

when plotting the ranks of the argument(x) and output (y) tokens. We refer to this behavior as147

argument-function processing. Figure 3 shows that this same processing signature can be observed148

consistently across tasks and models. Moreover, it appears to become more prominent as the models149

increase in size. Interestingly, despite large differences in number of layers and overall size, models150

tend to undergo this process at similar points proportionally in the model.151

4 Implementation of Context-Independent Functions in FFN Updates152

The above results on processing signature suggest that the models “apply” a function about 2/3rds of153

the way through the network with the addition of an FFN update. Here, we investigate the mechanism154

via which that function is applied more closely. Specifically, focusing on GPT2-Medium3, we show155

that we can force the encoded function to be applied to new arguments in new contexts by isolating156

the responsible FFN output vector and then dropping into a forward pass on a new input.157

2Saturation events are described in Geva et al. [2022a] where detection of such events is used to “early-exit”
out of the forward pass

3We focus on one model because manual analysis was required in order to determine how to perform the
intervention. See Appendix for results on GPT-J and Section 7 for discussion.

4

Figure 3: Argument formation and function application is characterized by a promotion of the
argument (red) followed by it being replaced with the answer token (blue), forming an X when
plotting reciprocal ranks. Across the three tasks we evaluate, we see that most of the models exhibit
these traces, and despite the major differences in model depths, the stages occur at similar points in
the models. Data shown is filtered by examples in which the models got the correct answer.

4.1 ~o Vector Interventions158

Consider the example in Figure 2. At layer 18, the residual stream (~x18) is in159

argument formation, and represents the “ Poland" token. At the end of layer160

19, a function is applied, transforming ~x19 into the answer token “ Warsaw.161

Figure 4: The gray area indicates layers where FFN
intervention was performed. We find that even if
the input context is nonsense (repeating pattern of
“table mug free China"), if we can use “China" as
an argument in the residual stream, the ~ocity vector
has the effect of promoting the correct capital city.

As discussed in the previous section, we can162

isolate the function application in this case to163

FFN 19; let x̃19 represent the residual stream164

after the attention update, but before the FFN165

update at layer 19 (which still represents Poland).166

Recall that the update made by FFN 19 is writ-167

ten FFN19(x̃19) = ~o19 and ~x19 = x̃19 + ~o19.168

We find that ~o19 will apply the get_capital169

function regardless of the content of x̃19. For170

example, if we add ~o19 to some x̃ which repre-171

sents the “ China" token, it will transform into172

“ Beijing". Thus we refer to ~o19 as ~ocity since173

it retrieves the capital cities of locations stored174

in the residual stream. We locate such ~o vectors175

in the uppercasing and past tense mapping tasks176

in the examples given in Section 2.2, which we177

refer to as ~oupper and ~opast, respectively.4178

We test whether these updates have the same179

effect, and thus implement the same function, as180

they do in the original contexts from which they181

were extracted, which would imply a systematic182

structure in the internal embedding space the183

LM leverages. To do so, we replace entire FFN184

layers with these vectors and run new inputs through the intervened model.5185

4In Appendix A, we extend these results to GPT-J, for which the same procedure leads to strong effects on
uppercasing, but smaller overall positive effects on capital cities and past tensing (see Section 7).

5Which FFNs to replace is a hyperparameter; we find that replacing layers 18-23 in GPT2-Medium leads
to good results. It also appears necessary to replace multiple FFNs at a time. See additional experiments in
Appendix D. In summary, it is likely that the ~o vectors are added over the course of several layers, consistent

5

Figure 5: We intervene on GPT2-Medium’s forward pass while it is predicting the completion of a
pattern. The control indicates normal model execution, while the gray boxes indicate which FFNs are
replaced with our selected ~o vectors. We can see a significant increase in the reciprocal rank of the
output of the function implemented by the ~o vector used even though the context is completely absent
of any indication of the original task.

Data: We are interested in whether the captured o vectors can be applied in a novel context,186

in particular, to a context that is otherwise devoid of cues as to the function of interest. Thus,187

we synthesize a new dataset where each entry is a string of three random tokens (with leading188

spaces) followed by a token x which represents a potential argument to the function of interest.189

For example, in experiments involving ocity, we might include a sequence such as table mug190

free China table mug free China table mug free. This input primes the model191

to produce “China” at the top of the residual stream, but provides no cues that the capital city is192

relevant, and thus allows us to isolate the effect of ocity in promoting “Beijing” in the residual stream.193

In addition to the original categories, we also include an “out-of-domain” dataset for each task: US194

states and capitals, 100 non-color words, and 128 irregular verbs. These additional data test the195

sensitivity of the ~o vectors to different types of arguments.196

Results: Figure 4 shows results for a single example. Here, we see that “Beijing” is promoted all the197

way to the top of the distribution solely due to the injection of ~ocity into the forward pass. Figure198

5 shows that this pattern holds in aggregate. In all settings, we see that the outputs of the intended199

functions are strongly promoted by adding the corresponding ~o vectors. By the last layer, for world200

and state capitals, the mean reciprocal rank of the target city name across all examples improves from201

roughly the 10th to the 4th-highest ranked word and 20th and 3rd-ranked words respectively.202

We also see the promotion of the proper past tense verbs by ~opast. The reciprocal ranks improve203

similarly for both regular (approx. 7th to 3rd rank) and irregular verbs (approx. 6th to 3rd), indicating204

that the relationship between tenses is encoded similarly by the model for these two types. ~oupper205

promotes the capitalized version of the test token almost every time, although the target word starts at206

a higher rank (on average, rank 5). These results together show that regardless of the surrounding207

context, and regardless of the argument to which it is applied, ~o vectors consistently apply the208

expected functions. Since each vector was originally extracted from the model’s processing of209

a single naturalistic input, this generalizability suggests significant structure and cross-context210

abstraction within the learned embedding-space.211

Common Errors: While the above trend clearly holds on the aggregate, the intervention is not212

perfect for individual cases. The most common error is that the intervention has no real effect. In213

the in-domain (out-domain) settings, this occurred in about 37% (20%) of capital cities, 4% (5%)214

on uppercasing, and 19% (22%) for past tensing. We believe the rate is so much higher for world215

capitals because the model did not have a strong association between certain country-capital pairs216

from pretraining, e.g, for less frequently mentioned countries. Typically, in these cases, the top token217

remains the argument, but sometimes becomes some random other city, for example, predicting the218

capital of Armenia is Vienna. We also find that the way tokenization splits the argument and target219

with the idea that residual connections encourage each layer to move gradually towards a point of lower loss
[Jastrzebski et al., 2017].

6

words affects the ability of the ~o vector to work and is another source of errors. This is discussed220

further in Appendix E.221

5 The Role of FFNs in Out-of-Context Retrieval222

So far, we have shown that FFN output vectors can encode functions that transfer across contexts.223

Here we investigate whether the mechanism we identify applies in general to associations of this224

type, or rather if such functionality can be implemented by the attention mechanism instead. Shared225

among the tasks we study is the requirement to recall a token that does not appear in the given context226

(abstractive tasks). In this section we show that mid-higher layer FFNs are crucial for this process.227

When the answer to the question does appear in context (extractive tasks), we find that ablating a228

subset of FFNs has a comparatively minor effect on performance, indicating that they are relatively229

modular and there is a learned division of labor within the model. This observation holds across the230

decoder-only LMs tested in this paper, but is particularly salient in the larger/deeper networks. This231

breakdown is consistent with previous work finding that FFNs store facts learned from pre-training232

[Geva et al., 2021a, Meng et al., 2022b,c] and attention heads copy from the previous context [Wang233

et al., Olsson et al., 2022].234

5.1 Abstractive vs. Extractive Tasks235

Extractive Tasks: Extractive tasks are those in which the exact tokens required to answer a prompt236

can be found in the input context. These tasks can thus be solved by parsing the local context alone,237

and thus do not necessarily require the model to apply a function of the type we have focused on in238

this paper (e.g., a function like get_capital).239

Abstractive Tasks: Are those in which the answer to a prompt is not given in the input context240

and must be retrieved from pretraining memory. Our results suggest this is done primarily through241

argument-function processing, requiring function application through (typically) FFN updates as242

described in Section 3.243

We provide examples with their associated GPT2-Medium layerwise decodings in Figure 6. We244

expect that the argument formation and function application stages of processing occur primarily in245

abstractive tasks. Indeed, in Appendix A, we show that the characteristic argument-answer X pattern246

disappears on extractive inputs. We hypothesize that applying out-of-context transformations to the247

predicted token representation is one of the primary functions of FFNs in the mid-to-late layers, and248

that removing them should only have a major effect on tasks that require out-of-context retrieval.249

Top Tokens per Layer
Abstractive Task Extractive Task

Layer

Q: What is the capital
of Somalia?
A: Mogadishu
Q: What is the capital
of Poland?
A:

The capital of
Somalia is Mogadishu.
The capital of Poland
is Warsaw.
Q: What is the capital
of Somalia?
A: Mogadishu
Q: What is the capital
of Poland?
A:

...
14 St St
15 Poland St
16 Poland Warsaw
17 Poland Warsaw
18 Poland Warsaw
19 Warsaw Warsaw
20 Warsaw Warsaw
21 Warsaw Warsaw
22 Warsaw Warsaw
23 Warsaw Warsaw

28

Figure 6: The abstractive task undergoes ar-
gument formation (blue) and function appli-
cation (red), while the extractive task imme-
diately saturates (yellow).

250

5.2 Effect of Ablating FFNs251

Data: Consider the example shown in Section 2.2252

demonstrating the ~oupper function. By providing the253

answer to the in-context example as “ Silver", we254

make the task abstractive by requiring the in-context255

token “ brown" to be transformed to “ Brown" in the256

test example. However, if we provide the in-context257

label as “ silver", the task becomes extractive, as the258

expected answer becomes “ brown". We create an259

extractive version of this dataset by lowercasing the260

example answer. All data is presented to the model261

with a single example (one-shot). Notice that the262

abstractive and extractive examples only differ by a263

single character and are thus minimally different.264

We repeat this experiment on the world capitals task265

by adding the prefix “The capital of A is B. The266

capital of C is D" to each input. Notice, however,267

that since the answer is provided explicitly, the task268

is much easier for the models in the extractive case.269

7

Figure 7: Removing FFNs negatively affects performance when the task is abstractive: the in-context
label is an out-of-context transformation of the in-context prompt (e.g., “ silver” in context, answer
given as “ Silver”). In comparison, on the extractive dataset, performance is robust to a large
proportion of FFNs being removed. Other models tested are shown in Appendix B

Procedure: We run the one-shot extractive and abstractive datasets on the full models, and then270

repeatedly remove an additional 1/6th of all FFNs from the top down (e.g., in 24 layer GPT2-Medium:271

removing the 20-24th FFNs, then the 15-24th, etc.).272

Results: Our results are shown in Figure 7. Despite the fact that the inputs in the abstractive273

and extractive datasets only slightly differ (by a single character in the colored objects case) we274

find that performance plummets on the abstractive task as FFNs are ablated, while accuracy on the275

extractive task drops much more slowly. For example, even after 24 FFN sublayers are removed from276

Bloom (totaling 39B parameters) extractive task accuracy for the colored objects dataset drops 17%277

from the full model’s performance, while abstractive accuracy drops 73% (down to 1% accuracy).278

The case is similar across model sizes and pretraining corpora; we include results on additional279

models in Appendix B. This indicates that we can isolate the effect of locating and retrieving out of280

context tokens in this setting to the FFNs. Additionally, because the model retains reasonably strong281

performance compared to using the full model, we do not find convincing evidence that the later layer282

FFNs are contributing to the extractive task performance, supporting the idea of modularity within283

the network.284

6 Related Work285

Recent work has contributed to understanding language models by studying the role of different286

modules in the transformer architecture in language modeling. In particular, the attention layers287

[Olsson et al., 2022, Kobayashi et al., 2020, Wang et al.] and more notably for this work, the FFN288

modules, which are frequently associated with factual recall and knowledge storage [Geva et al.,289

2021a, Meng et al., 2022a,c]. Although how language models store and use knowledge has been290

studied more generally as well [Petroni et al., 2019, Cao et al., 2021, Dai et al., 2022, Bouraoui et al.,291

2019, Burns et al., 2022, Dalvi et al., 2022, Da et al., 2021] as well as in static embeddings [Dufter292

et al., 2021]. Recent work in mechanistic interpretability aims to fully reverse engineer how LMs293

perform some behaviors. Our work builds on the finding that FFN layers promote concepts in the294

vocabulary space [Geva et al., 2022a] by breaking down the process the model uses to do this in295

context. Bansal et al. [2022] perform ablation studies to test the importance of attention and FFN296

layers on in-context learning tasks, here we offer an explanation for their role in some cases. Other297

work analyze information flow within an LM to study how representations are built through the layers298

[Voita et al., 2019, Tenney et al., 2019] and show distinct points of processing in the model. We also299

follow this approach, but our analysis focuses on interpreting how models use individual updates300

8

within the forward pass, rather than probing for what information is encoded and potentially used to301

make predictions. Ilharco et al. [2023] show that vector arithmetic can be performed with the weights302

of finetuned models to compose tasks, similar to how ~o vectors can induce functions in the activation303

space of the model.304

7 Discussion305

In this work, we describe a mechanism that is partially responsible for LMs ability to recall306

factual associations. We conceptualize these recalls as the application of some function (e.g.,307

get_capital(x) = y and find that the next-token prediction goes through several discrete308

stages of processing in which the prediction first represents the argument x (e.g., Poland) before309

applying that function with an additive update to get the final answer y (Warsaw). A core challenge310

in interpreting neural networks is determining whether the information attributed to certain model311

components is actually used for that purpose during inference [Hase and Bansal, 2022, Leavitt and312

Morcos, 2020]. While previous work has implicated FFNs in recalling factual associations [Geva313

et al., 2022a, Meng et al., 2022a], we show through intervention experiments that we can manipulate314

the information flowing through the model during these stages. Specifically, we show that it is315

possible to capture the output vector of an FFN from a single forward pass on a single in-context316

learning example, and that the captured vector can be used to apply the same function to new argu-317

ments (e.g., other countries) in totally different contexts. This process provides a surprisingly simple318

explanation for the internal subprocesses used by LMs to recall factual associations and resembles319

vector arithmetic observed in static word embeddings. Our findings invite future work aimed at320

understanding why, and under what conditions, LMs learn to use this mechanism when they are321

capable of solving such tasks using, e.g., adhoc memorization.322

A limitation that we observe is that the process for carrying out the ~o intervention depends on323

hyperparameters which are often model-specific (i.e., the exact stimuli used to extract the intervention,324

and the layer(s) at which to perform the intervention). We provide our most detailed investigation on325

GPT2-Medium, which clearly illustrates the phenomenon. Our experiments on stages of processing326

with GPT-J suggest that the same phenomena is in play, although (as discussed in Section 4 and327

Appendix A), the procedures we derive for interventions on GPT2-Medium do not transfer perfectly.328

Specifically, we can strongly reproduce the intervention results on uppercasing for GPT-J; results on329

the other two tasks are positive but with overall weaker effects. This requirement of model-specific330

customization is common in similar mechanistic interpretability work, e.g., [Meng et al., 2022a, Wang331

et al., 2022, Geva et al., 2022b], and a prioritiy in future work must be to identify common patterns332

across these individual studies which reduce the need to repeat such effort on each new model. That333

said, in this work and other similar efforts, a single positive example as a proof of concept is often334

sufficient to advance understanding and spur future work that improves robustness across models.335

In the long term, findings like those presented here have implications for improving the trustworthiness336

of LMs in production. If we can understand how models break down complex problems into simple337

and predictable subprocesses, we can help more readily audit their behavior. Interpreting the338

processing signatures of model behaviors might offer an avenue via which to audit and intervene339

at runtime in order to prevent unwanted behavior. Moreover, understanding which relations FFNs340

encode could aid work in fact location and editing. Contemporaneous work [Geva et al., 2023]341

has studied a different mechanism for factual recall in LMs, but it is unclear how and when these342

mechanisms interact.343

8 Conclusion344

We contribute to a growing body of work on interpreting how the internal processes of language345

models (LMs) produce some behavior. On three in-context learning tasks, we observe that the next-346

token prediction appears to undergo several stages of processing in which LMs represent arguments347

to functions in their residual streams. This process occurs in models ranging in size from 124M to348

176B parameters. On GPT2, We study instances where the additive update is made by the output349

vectors (~o vectors) of feed-forward networks (FFNs). We show that for all tasks we test, ~o vectors350

calculated by the model in the process of solving some task can be extracted and replace the FFN351

updates of the model to solve novel instances of that task, providing evidence that LMs can learn352

self-contained and context-independent functions from pretraining.353

9

References354

Hritik Bansal, Karthik Gopalakrishnan, Saket Dingliwal, Sravan Bodapati, Katrin Kirchhoff, and355

Dan Roth. Rethinking the Role of Scale for In-Context Learning: An Interpretability-based Case356

Study at 66 Billion Scale, December 2022. URL http://arxiv.org/abs/2212.09095.357

arXiv:2212.09095 [cs].358

Zied Bouraoui, Jose Camacho-Collados, and Steven Schockaert. Inducing Relational Knowledge359

from BERT, November 2019. URL https://arxiv.org/abs/1911.12753v1.360

Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering Latent Knowledge in361

Language Models Without Supervision, December 2022. URL http://arxiv.org/abs/362

2212.03827. arXiv:2212.03827 [cs].363

Boxi Cao, Hongyu Lin, Xianpei Han, Le Sun, Lingyong Yan, Meng Liao, Tong Xue, and Jin364

Xu. Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases. In365

Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the366

11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),367

pages 1860–1874, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/368

v1/2021.acl-long.146. URL https://aclanthology.org/2021.acl-long.146.369

Jeff Da, Ronan Le Bras, Ximing Lu, Yejin Choi, and Antoine Bosselut. Analyzing Commonsense370

Emergence in Few-shot Knowledge Models. September 2021. URL https://openreview.371

net/forum?id=StHCELh9PVE.372

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons373

in pretrained transformers. In Proceedings of the 60th Annual Meeting of the Association for374

Computational Linguistics (Volume 1: Long Papers), pages 8493–8502, 2022.375

Fahim Dalvi, Abdul Rafae Khan, Firoj Alam, Nadir Durrani, Jia Xu, and Hassan Sajjad. Discover-376

ing Latent Concepts Learned in BERT, May 2022. URL http://arxiv.org/abs/2205.377

07237. arXiv:2205.07237 [cs].378

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep379

bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of380

the North American Chapter of the Association for Computational Linguistics: Human Language381

Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June382

2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:383

//aclanthology.org/N19-1423.384

Philipp Dufter, Nora Kassner, and Hinrich Schütze. Static Embeddings as Efficient Knowledge385

Bases? In Proceedings of the 2021 Conference of the North American Chapter of the Association386

for Computational Linguistics: Human Language Technologies, pages 2353–2363, Online, June387

2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.186. URL388

https://aclanthology.org/2021.naacl-main.186.389

N Elhage, N Nanda, C Olsson, T Henighan, N Joseph, B Mann, A Askell, Y Bai, A Chen, T Conerly,390

et al. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.391

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are392

key-value memories. In Proceedings of the 2021 Conference on Empirical Methods in Natural393

Language Processing, pages 5484–5495, 2021a.394

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer Feed-Forward Layers Are395

Key-Value Memories. In Proceedings of the 2021 Conference on Empirical Methods in Natural396

Language Processing, pages 5484–5495, Online and Punta Cana, Dominican Republic, November397

2021b. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.446. URL398

https://aclanthology.org/2021.emnlp-main.446.399

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav Goldberg. Transformer feed-forward layers400

build predictions by promoting concepts in the vocabulary space. arXiv preprint arXiv:2203.14680,401

2022a.402

10

http://arxiv.org/abs/2212.09095
https://arxiv.org/abs/1911.12753v1
http://arxiv.org/abs/2212.03827
http://arxiv.org/abs/2212.03827
http://arxiv.org/abs/2212.03827
https://aclanthology.org/2021.acl-long.146
https://openreview.net/forum?id=StHCELh9PVE
https://openreview.net/forum?id=StHCELh9PVE
https://openreview.net/forum?id=StHCELh9PVE
http://arxiv.org/abs/2205.07237
http://arxiv.org/abs/2205.07237
http://arxiv.org/abs/2205.07237
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/2021.naacl-main.186
https://aclanthology.org/2021.emnlp-main.446

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav Goldberg. Transformer Feed-Forward Layers403

Build Predictions by Promoting Concepts in the Vocabulary Space, October 2022b. URL http:404

//arxiv.org/abs/2203.14680. arXiv:2203.14680 [cs].405

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir Globerson. Dissecting recall of factual406

associations in auto-regressive language models, 2023.407

Peter Hase and Mohit Bansal. When can models learn from explanations? a formal framework for408

understanding the roles of explanation data. In Proceedings of the First Workshop on Learning409

with Natural Language Supervision, pages 29–39, Dublin, Ireland, May 2022. Association for410

Computational Linguistics. doi: 10.18653/v1/2022.lnls-1.4. URL https://aclanthology.411

org/2022.lnls-1.4.412

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,413

Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. ICLR, 2023.414

Stanisław Jastrzebski, Devansh Arpit, Nicolas Ballas, Vikas Verma, Tong Che, and Yoshua Bengio.415

Residual connections encourage iterative inference. In International Conference on Learning416

Representations, 2017.417

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and Kentaro Inui. Attention is not only a weight:418

Analyzing transformers with vector norms. In Proceedings of the 2020 Conference on Empirical419

Methods in Natural Language Processing (EMNLP), pages 7057–7075, Online, November 2020.420

Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.574. URL https:421

//aclanthology.org/2020.emnlp-main.574.422

Matthew L Leavitt and Ari Morcos. Towards falsifiable interpretability research. arXiv preprint423

arXiv:2010.12016, 2020.424

Kenneth Li, Aspen K Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin Watten-425

berg. Emergent world representations: Exploring a sequence model trained on a synthetic task.426

arXiv preprint arXiv:2210.13382, 2022.427

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and Editing Fac-428

tual Associations in GPT, October 2022a. URL http://arxiv.org/abs/2202.05262.429

arXiv:2202.05262 [cs] version: 4.430

Kevin Meng, David Bau, Alex J Andonian, and Yonatan Belinkov. Locating and editing factual431

associations in gpt. In Advances in Neural Information Processing Systems, 2022b.432

Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass editing433

memory in a transformer. arXiv preprint arXiv:2210.07229, 2022c.434

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-435

tions in vector space. arXiv preprint arXiv:1301.3781, 2013.436

nostalgebraist. interpreting GPT: the logit lens. 2020. URL https://www.lesswrong.com/437

posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens.438

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,439

Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,440

Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane441

Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,442

and Chris Olah. In-context learning and induction heads. Transformer Circuits Thread, 2022.443

https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html.444

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and445

Luke Zettlemoyer. Deep contextualized word representations. In Proceedings of the 2018 Confer-446

ence of the North American Chapter of the Association for Computational Linguistics: Human447

Language Technologies, Volume 1 (Long Papers), pages 2227–2237, New Orleans, Louisiana,448

June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1202. URL449

https://aclanthology.org/N18-1202.450

11

http://arxiv.org/abs/2203.14680
http://arxiv.org/abs/2203.14680
http://arxiv.org/abs/2203.14680
https://aclanthology.org/2022.lnls-1.4
https://aclanthology.org/2022.lnls-1.4
https://aclanthology.org/2022.lnls-1.4
https://aclanthology.org/2020.emnlp-main.574
https://aclanthology.org/2020.emnlp-main.574
https://aclanthology.org/2020.emnlp-main.574
http://arxiv.org/abs/2202.05262
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://aclanthology.org/N18-1202

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu,451

and Alexander Miller. Language Models as Knowledge Bases? In Proceedings of the 2019452

Conference on Empirical Methods in Natural Language Processing and the 9th International Joint453

Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2463–2473, Hong Kong,454

China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1250.455

URL https://aclanthology.org/D19-1250.456

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language457

models are unsupervised multitask learners.458

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman459

Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-460

parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100, 2022.461

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam462

Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the463

imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint464

arXiv:2206.04615, 2022.465

Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical nlp pipeline. In Pro-466

ceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages467

4593–4601, 2019.468

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz469

Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing470

systems, 30, 2017.471

Elena Voita, Rico Sennrich, and Ivan Titov. The Bottom-up Evolution of Representations in the472

Transformer: A Study with Machine Translation and Language Modeling Objectives. In Pro-473

ceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the474

9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages475

4396–4406, Hong Kong, China, November 2019. Association for Computational Linguistics. doi:476

10.18653/v1/D19-1448. URL https://aclanthology.org/D19-1448.477

Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model.478

https://github.com/kingoflolz/mesh-transformer-jax, May 2021.479

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-480

pretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 small, November 2022.481

arXiv:2211.00593 [cs].482

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.483

Interpretability in the wild: a circuit for indirect object identification in gpt-2 small. In NeurIPS484

ML Safety Workshop.485

12

https://aclanthology.org/D19-1250
https://aclanthology.org/D19-1448
https://github.com/kingoflolz/mesh-transformer-jax

	Intro
	Methods
	Early Decoding
	Tasks
	Models

	Stages of Processing in Predicting the Next Token
	Implementation of Context-Independent Functions in FFN Updates
	 Vector Interventions

	The Role of FFNs in Out-of-Context Retrieval
	Abstractive vs. Extractive Tasks
	Effect of Ablating FFNs

	Related Work
	Discussion
	Conclusion
	Argument-Function Processing in Other Models
	Additional Results on Ablating FFNs
	+/-ocase Intervention on Colors

	Effect on Zero-shot Performance
	Effect of Layer Choice on Intervention Results
	Effect of Tokenization on the Effectiveness of Vectors
	Compute

