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ABSTRACT

Estimating the confidence of deep neural network predictions is crucial for en-
suring safe deployment in high-stakes applications. Softmax probabilities, though
commonly used, are often poorly calibrated, and existing calibration methods have
been shown to be harmful for failure prediction tasks. In this paper, we propose
to use information-theoretic measures to estimate the confidence of predictions
from trained networks in a post-hoc manner, without needing to modify their ar-
chitecture or training process. In particular, we compare three pointwise informa-
tion (PI) measures: pointwise mutual information (PMI), pointwise V-information
(PVI), and the recently proposed pointwise sliced mutual information (PSI). We
show in this paper that these PI measures naturally relate to confidence estima-
tion. We first study the invariance properties of these PI measures with respect to
a broad range of transformations. We then study the sensitivity of the PI measures
to geometric attributes such as margin and intrinsic dimensionality, as well as their
convergence rates. We finally conduct extensive experiments on benchmark com-
puter vision models and datasets and compare the effectiveness of these measures
as tools for confidence estimation. A notable finding is that PVI is better than
PMI and PSI for failure prediction and confidence calibration, outperforming all
existing baselines for post-hoc confidence estimation. This is consistent with our
theoretical findings, which suggest that PVI is the most well-balanced measure in
terms of its invariance properties and sensitivity to geometric feature properties
such as sample-wise margin.

1 INTRODUCTION

With the broader application of deep neural networks (DNNGs), particularly in high-stakes areas like
healthcare and autonomous driving, the focus has shifted from merely achieving good accuracy to
also ensuring trustworthiness for safe deployment (Kaur et al., 2023). One important aspect of a
trustworthy model is uncertainty quantification (Abdar et al., 2021), which evaluates the model’s
uncertainty or confidence in its predictions. It has been shown that softmax probabilities obtained
from the neural networks tend to be overconfident (Guo et al., 2017). Many existing approaches
that address this issue involve modifying the network architecture (Corbiere et al., 2019) or training
procedure (Gal & Ghahramani, 2016), which may not always be feasible in practice. Meanwhile,
popular confidence calibration methods have been shown to be useless or harmful for failure predic-
tion tasks (Zhu et al., 2022). This study addresses both failure prediction and confidence calibration
by analyzing various information-theoretic measures to estimate the confidence of predictions from
trained networks in a post-hoc manner, without altering their architecture or training process.

Mutual Information (MI) is the conventional information measure used to capture statistical depen-
dence between two random variables (Cover & Thomas, 2001). However, accurately estimating
MI in high-dimensional spaces, typically encountered in the context of DNNs, is challenging due
to an exponentially large sample complexity (Battiti, 1994). In recent years, there have been pro-
posals for alternative measures of informativeness that scale well with dimensions. The first is the
V-information (VI) which measures the amount of usable information under computational con-
straints (Xu et al., 2020). The second is sliced mutual information (SMI) which is the average of the
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MI between one-dimensional projections of the random variables (Goldfeld & Greenewald, 2021).
Unlike MI, both VI and SMI can be estimated reliably from data, even in high dimensions.

To apply the three information-theoretic measures (MI, V1, and SMI) for confidence estimation, we
use their pointwise variants: pointwise MI (PMI), pointwise VI (PVI), and pointwise SMI (PSI).
Specifically, we use these pointwise information (PI) measures to quantify the degree of relevance
between feature representation and predicted output of a model for each individual sample. We
analyze their theoretical properties, including invariance, margin, intrinsic dimensionality, and con-
vergence rates, which we argue are relevant to predictive uncertainty. Empirically, we compare their
effectiveness in estimating confidence scores for predictions made by various computer vision ar-
chitectures on benchmark datasets. For a review of related work on confidence estimation and the
three PI measures, please refer to Appendix A.1.

Motivation. We provide four factors that motivate the use of PI measures for confidence estimation:

1. Recent Applications of PI Measures: PI measures have recently found application in diverse
domains of DNNs, showcasing their versatility and effectiveness. For instance, the significant
work by Ethayarajh et al. (2022) showcases the applicability of PVI to the problem of dataset
difficulty, which relates to predictive uncertainty as networks are naturally more uncertain about
their predictions when the datasets are harder. While PI measures are more commonly applied
in natural language, we focus on their potential in computer vision, an area still relatively under-
explored from information-theoretic perspective. More closely aligned with our work is the study
by Wongso et al. (2023b) which proposed PSI for predictive uncertainty and explainability. We
extend their research by comparing the performance of PSI with PMI and PVI, providing deeper
theoretical insights, and conducting additional quality evaluations.

2. Theoretical Foundations: Despite the increasing applications of the PI measures, there has been
a notable lack of research devoted to exploring their theoretical properties. To the best of our
knowledge, only PMI has been theoretically studied (Fano & Hawkins, 1961b), albeit primarily
from a general standpoint. In this work, we derive and compare the theoretical properties of PMI,
PVI, and PSI, which we argue are relevant to predictive uncertainty. These properties include
invariance, margin, intrinsic dimensionality, and convergence rates. We find that these measures
exhibit desirable properties overall that can be relevant in the context of uncertainty estimation.

3. Information Theoretic Connection: Another interpretation of the PI measures comes directly
from the notion of information gain in information theory. Information gain, usually defined in
the aggregate sense, measures the degree of uncertainty reduction about a certain random variable
Y given another variable X, i.e., H(Y') — H(Y|X). PMI, which is defined as log (p(g|z)/p(%)),
essentially measures a pointwise version of information gain, where z is the feature and  is the
predicted output. We note that this measure is rooted in probability, and estimates priors and
posterior probability measures. This is unlike the typical neural network output, which, although
is supposed to model the conditional probabilities of each class p(§|x), often turn out to be not a
good indicator of the true uncertainty. In contrast, pointwise information measures explicitly es-
timate the probability density ratio p(g|x)/p() based on the given data using benchmark density
ratio estimators, and therefore represents an interesting alternative to the softmax operator. By
computing the relative increase in p(y|z) compared to its prior p(¢), PI measures are essentially
estimating the relative increase in confidence for the predicted class, compared to its prior occur-
rence probability. By doing so, can potentially reduce inherent bias in the conditional probability
p(g|x), which can be caused due to underrepresentation of certain classes in the data.

4. Relationship to Probabilistic Causation: We find that PI measures can be also interpreted via
the lens of probabilistic causation. This perspective on causality, as outlined by Hitchcock (1997),
argues that X causes Y if P(Y|X) > P(Y"). The predictive uncertainty problem aims to quantify
the uncertainty that a feature x contains about g as the network should naturally be more uncertain
in its predictions for samples where x has small influence on y. We argue that this problem can
be mathematically formulated by measuring the quantity p(¢g|x)/p(¢) which indicates the degree
to which a certain feature x influences the decision made for a single instance. This directly
connects to PMI which is defined as pmi(x; ) = log(p(4|z)/p(4))-

Contributions. The specific contributions of this paper are as follows:

1. We compare the three PI measures (PMI, PSI, and PVI) across experiments on confidence score
estimation We found that PVI outperforms PMI and PSI as well as benchmark post-hoc methods
for failure prediction and confidence calibration.
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2. We perform an in-depth study of theoretical properties of the three PI measures that are relevant
for predictive uncertainty problems. We analyze their invariance to a range of transformations
and show that PMI and PVI have more invariance properties, which we argue are desirable for
predictive uncertainty problems.

3. We derive theoretical results on the sensitivity of pointwise measures to sample-wise margin.
PMI fails to capture sample-wise margin for non-overlapping class-wise feature distributions,
unlike PVI and PSI. We find that in practice, PSI correlates the most with sample-wise margin.

4. We derive the convergence rates for PMI, PVI and PSI when the densities are estimated using
Kernel Density Estimator. We find that PSI has strictly better convergence than PMI, and PVTI’s
convergence rate is heavily dependent on the complexity of the V-function class.

2 INFORMATION-THEORETIC MEASURES

Notation. We use uppercase letters for random variables (e.g., X), corresponding lowercase letters
for their values/outcomes (e.g., x), and calligraphic letters for their domains (e.g., X). The joint
probability distribution of X, Y is denoted by Pxy = P(X,Y) and their marginal distributions are
denoted by Px = P(X) and Py = P(Y). For specific outcomes x and y, we have p(x,y) =
P(X =2,Y =), p(z) = P(X = z), and p(y) = P(Y = y). Here, we provide the formal
definitions of the three PI measures (more details on their properties and estimators are given in the
Appendix A.2 and Appendix A.3).

MI and Pointwise MI. MI measures the statistical dependence between two random variables
(Cover & Thomas, 2001), while PMI measures the association between specific instances of these
random variables Fano & Hawkins (1961a). They are defined as follows:

Definition 1 (MI and PMI). Let (x,y) ~ Pxy. The MI and PMI are defined as follows:

PXY(X7Y)

p(z,y)
—Exy |log —2X ) DY)
A Px(X)Py(Y) |’

p(@p() M

I(X;Y) pmi(z;y) := log

PMI Estimator: Tsai et al. (2020) proposed three methods to compute the probability density ratio
p(z,y)/p(x)p(y) using neural networks: the probabilistic classifier method, the density-ratio fitting
method and the variational JS bound method. We compare the three methods in the Appendix
D.2.1 and choose the variational JS bound method as the default estimator. This estimator relies
on the variational form of MI, and in particular the Jensen-Shannon divergence between Pxy and
Px Py (Poole et al., 2019). We note that although our method for estimating PMI incorporates
neural networks, we utilize only a shallow 2-layer neural network, which is less likely to result in
overconfidence issues.

SMI and pointwise SMI. SMI was proposed by Goldfeld & Greenewald (2021) as an alternative
measure to MI, which can be hard to estimate in high dimensions. Similarly, its pointwise variant,
PSI, was proposed as an alternative measure to PMI (Wongso et al., 2023b). Both SMI and PSI can
easily scale to high dimensions by taking one-dimensional projections.

Definition 2 (SMI and PSI). Let (z,y) ~ Pyy € P(R% x R%). Let © ~ Unif(S%~1) and
® ~ Unif(S%~1) be independent of each other and (X,Y). The SMI and PSI are defined as
follows:

SI(X;Y) :=Egeo,[I(0T X;67Y)], psi(z;y) = Egeo, [pmi(07z;¢"y)] . )
bed $cd

PSI Estimator. The estimation of PSI for supervised learning tasks requires projecting only the
feature vector x to one dimension, while labels y are typically discrete and therefore not projected.

Using Bayes’ Theorem, it can be re-written as follows: psi(z;y) := Egpco [log %}. To

estimate p(67 z|y), we use a binning method or assume a Gaussian distribution. We compare the
two estimators in the Appendix D.2.2 and use the Gaussian-based estimator (with 500 projections)
in our experiments.

VI and Pointwise V1. VI was introduced to relax the unbounded computation assumption of Shan-
non information, which may not be realistic in practice (Xu et al., 2020). It was later extended to its
pointwise version, PVI, in Ethayarajh et al. (2022), for individual instances.
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Definition 3 (VI and PVI). Ler (z,y) ~ Pxy € P(X x Y) and O represent a null input that
provides no information about Y. We are given predictive family YV C Q= {f: X U@ — P())}
We first define the V-entropy and conditional V-entropy as follows:

Hy(Y) = %Ielf; Ey [ log f[2](Y)], Hy(Y]X) := %Ielf) Ex,y[-log f[X](Y)] 3)

Let g = argmin .y, Ey[—log f[@](Y)] and ¢’ = argmin;c,, Ex y [~ log f[X]|(Y)]. The VI and
PVI are defined as follows:

WX =Y):=Hy(Y) - Hy(Y|X),  pvi(z = y) = —logg[2](y) +logg'[z](y) (4

PVI Estimator. The estimation of PVI requires training two neural networks: f for estimating
Hy(Y) and f’ for estimating the conditional Hy,(Y|X) (Ethayarajh et al., 2022). f’ is trained
with the input-label pairs from the training data (Ziwin, Yirain) While f is trained with the null input-
label pairs from the training data (Znun, Yirain). FOr computer vision tasks, images composed en-
tirely of zeros can be treated as null inputs. The PVI can then be computed as: pvi(z — y) =
—log f[2](y) + log f'[x](y) where (x,y) is an input-label pair from a held-out set. To ensure that
the probabilities for computing PVI are properly calibrated, we consider using temperature scaling.
We consider three different approaches: using the original trained network as f, using the same
network but with different initialization as f and using a one-hidden layer neural network as f with
penultimate features as inputs. We compare the three approaches in the Appendix D.2.3 and use the
second approach (another trained network) as the default estimator for PVI.

3 THEORETICAL PROPERTIES

In this section, we analyze the theoretical properties of the three PI measures, focusing on their
invariance, correlation with margin, and convergence rate (in Appendix B.3). Proofs and additional
remarks are given in the Appendix B.

3.1 INVARIANCE PROPERTIES OF PI MEASURES

Here, we outline some invariance properties of PI measures. In what follows, we consider the case
where X € R% are the features and Y € {0, 1} are the labels, and (z, ) is a feature-label instance
sampled from Pxy. Note that in what follows, other than Theorem 1, all other theoretical results
can be trivially extended to the multi-label setting.

For convenience of notation, when (x,y) ~ Pxy, we denote pmi(x; y), psi(x; y) and pvi(x — y)
by pmip(z,y), psip(z,y) and pvip(x,y) respectively. For estimating pvip(x,y), we assume that
V refers to a fully connected neural network of arbitrary depth and fixed architecture, where each
layer contains both weights and biases. For any transformation 7 : RY — R9, we denote the
probability distribution P(7X,Y) by T P. We then have the following results.

Proposition 1 (Invariance to shift, scale, and rotation). Let Tx = aRx + p, where p € Rz
represents the extent to which the distribution is shifted, and o € R is a scalar that represents how
much the distribution is scaled. Furthermore, R ~ R% *%= is g rotation matrix, such that we have
RR” = I and det(R) = 1, where I is the identity matrix and det represents the determinant
operator. Then, we have: pmip(x,y) = pmitp(aRx + p,y),psip(x,y) = psiTp(aRz + p,y)
and pvip(z,y) = pviTp(aRz + p,y).

Next, we have the following results for more general linear transformations and homeomorphic
(continuous and invertible) transformations.

Proposition 2 (Invariance to general linear transformations). Let Tx = Mux, where M ~
Re=*ds s jnvertible. Then, pvip(x,y) = pviTp(Mz,y) & pmip(x,y) = pmirp(Maz,vy)

Proposition 3 (Invariance to homeomorphic transformations). Let Tz = f(z), where f :
R — R represents any homeomorphism. Then, pmip(x,y) = pmirp(f(z),y).

Remark 1 (Invariance and confidence estimation). We note that it is important to be invariant
to bijective transformations T in the context of confidence estimation, as otherwise the pointwise

measures will confound T in its resulting estimate. Contextualizing this using the terminology in
(1) of (Mukhoti et al., 2023) we can write: H[Y |x,D] = H[Y|Tx, T D], where H[Y|T z,T D]
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denotes the conditional entropy of the output labels given the transformed input datapoint T x and
also the transformed dataset TD = {(Tx1,11), ..., (T ®n, yn)}, which implies that the underlying
distribution has been transformed as well. The ideal scenario is when the above is true for any
invertible, and thus information-preserving transformation T, however, as we cannot ignore the
constraints of the model involved in the decision-making process, we restrict the desirable T to the
set of invertible linear transformations on x. We argue that being invariant to the large class of
homeomorphic transformations may be counter-productive Remark 9 in Appendix B.1).

3.2 GEOMETRIC PROPERTIES

In the following results, we mainly explore whether geometric properties of the feature distribution,
such as the sample-wise margin and the subspace intrinsic dimensionality, can affect the different PI
measures. We define the notion of sample-wise margin as the distance of a datapoint x to the other
class distribution, when it is encapsulated by a sphere.

First, we provide the general idea of sample-wise margin. In the results that follow, we adopt more
specific definitions that are motivated from the general principle in the following definition.

Definition 4 (Sample-Wise Margin). Given xz,y ~ Pxy andY € {0,1} such that P(X|Y =
0) and P(X|Y = 1). The sample-wise margin refers to the distance of the sample x from the
distribution P(X|Y =1 —y), when P(X|Y = 0) and P(X|Y = 1) are non-overlapping. When
P(X|Y =0)and P(X|Y = 1) are overlapping, first we can create non-overlapping probability
masses Q(X|Y = 0) and Q(X|Y = 1) which encapsulate most of P(X|Y = 0) and P(X|Y =1)
(fraction of 1 — €) respectively. Next, we estimate sample-wise margin as the distance of x from the

distribution Q(X|Y =1 —vy).

We have the following result for PMI, in the context of non-overlapping feature distributions.

Proposition 4 (PMI for non-overlapping features). Let x,y ~ Pxy and Y € {0,1} such that
P(X|Y =0)and P(X|Y = 1) are non-overlapping and P(Y = 0) = P(Y = 1) = 0.5. Then, we
have that pmi(z;y) = 1.

Next, we highlight the conditions under which PSI can be related to both the sample-wise margin
and the intrinsic dimensionality (ID) of the data. First, we define the subspace ID:

Definition 5 (Subspace Intrinsic Dimensionality). The subspace intrinsic dimensionality (ID),
denoted by K p, is the dimensionality of the smallest subspace W that contains the support of P(X).

We have the following result for PSI that relates it to sample-wise margin and the intrinsic dimen-
sionality (ID) of the data. Note that for the overlapping case, there is no unique notion of sample-
wise margin, as it depends on how () is constructed, and also depends on the fraction (1 — €) of the
distribution involved in encapsulating the class-wise distributions. For the following result, we use
spheres to construct @, for each class-wise distribution.

Theorem 1 (PSI and sample-wise margin and ID). Given x,y ~ Pxy withY € {0,1}, and
assuming y = 0 without loss of generality, we consider two non-overlapping spheres S1 and Sa
with radii Ry and Ry, and centers Cy and Cy such that x € S,. Here, the sample-wise margin,
denoted by d(x, Ss), refers to the distance between x and the surface of Sa. The subspace intrinsic
dimensionality of P(X) is denoted by K p. Let ¢ = maxg , P(0Tz|y = 1,2 e R— {07z : z € S5}),
where {0Tx : x € So}. Let pmax = max{maxg zes, p(07z|y = 1), maxg zes, p(0Tzly = 0)},
and pyin = ming e s, p(07 x|y = 0). Then, we have the following lower bound:

) Dmi D Kp—-11
psi(z;y) > 1Ogﬁ + <1 + log pmi:“i e) B (d(x,5,).R2) <2> 2) ; S

where Bg(a,b) denotes the regularized incomplete beta function (Oldham et al., 2008), and

Wab) = 3% (2- 2%).
Finally, we have the following result to relate PVI to the sample-wise margin.

Proposition 5 (PVI and sample-wise margin). Given a neural network f : R* — R? for
classifying points X into binary labels Y € {0,1}, we assume that P(Y = 0) = P(Y =
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Table 1: Pearson Correlation Between PMI, PSI, and PVI with Margin (Averaged over 5 Runs with Standard
Deviations Included). Best results are highlighted in bold.

Method MLP, MNIST CNN, F-MNIST VGG16, STL-10 ResNet50, CIFAR-10

PMI 0.398+0.029 0.429+0.034 0.619+0.011 0.637+0.019

PSI 0.657+0.022 0.846+0.006 0.809-+0.006 0.758+0.033

PVI 0.327+£0.025 0.368+0.008 0.604+0.010 0.563+0.011
1) = 0.5 and the final outputs of f are passed through a softmax operator with tempera-
ture T = 1. For an instance (x,y) ~ Pxy, we define the sample-wise margin T as in Ve-
muri (2020), where T = fo)y— @)1y and V is the gradient operator. If M =

Ve (f(@)y)—Va(f(@)1-y)ll2
maxy { ||V (f(@) )], |Va(f(2)1-y)||}, then we have the following upper bound: pvi(z — y) <

1—1log (1 + e_QMT).

Experiment on Correlation to Margin: We perform an experiment to examine whether samples
closer to the decision boundary (smaller margin) are assigned lower confidence scores by the various
measures compared to those located further away (higher margin). We aim to test our hypothesis that
PSI is the most sensitive to sample-wise margin. We approximate the sample-wise margin using the
method provided in Elsayed et al. (2018), which approximates the smallest distance of a datapoint x
to the decision boundary by:

(6)

o~ F(x)i — f(x);
d; ;(x) IV (F(x)i) — Vi(f(2)7)]l2

where we choose f(x); and f(x); to be the highest and second highest logits of the neural net-
work f (also used in Proposition 5) and V represents the gradient operator. Then, we compute the
Pearson correlation between the margin and the confidence estimates returned by the different PI
measures. The results are shown in Table 1. In addition, we use Uniform Manifold Approximation
and Projection (UMAP) to visualize the features of the penultimate layer on the test dataset. We
rank the PMI, PSI, and PVI for each sample and visualize these rankings using color bars in the
UMAP plots. As shown in Table 1, we find that PSI is the most correlated with margin, followed
by PMI and then PVI, supporting the theory. The higher correlation of PMI with margin compared
to PVI could be attributed to the decrease of sensitivity of PVI when M (related to the complexity
of the network) is large. In Figure 1, we find that for all measures, as the samples get closer to the
decision boundary, the values generally decrease. We generally observe that PSI tends to rank highly
misclassified classes lower than those that are often classified correctly. For example, in the Fash-
ion MNIST dataset, clothing categories are typically ranked lower (indicated by predominantly blue
colors), while in the STL-10 dataset, animal categories generally receive lower-ranked confidence
scores overall (showing more blue than pink).

3.3 THEORETICAL TAKEAWAYS

We present a summary of the key takeaways from the theoretical results and their implications
for our subsequent experiments. These takeaways will also be referenced in our discussion of the
experimental results later.

T1 We find that different pointwise metrics have different strengths and weaknesses, i.e., there is
not an optimal choice amidst them that would outperform others across all scenarios.

T2 Invariance: PMI is the most invariant among the three, as it exhibits invariance to any homeo-
morphic transformation, and thus is the most structure preserving. However, we note (in Remark
9) that this may not be a boon in the context of confidence estimation, as the model’s constraints
matter significantly. PSI on the other hand is not invariant to general invertible linear trans-
formations, which can hinder performance as neural networks can preserve output function in
response to invertible linear transformation on the input, and thereby preserve the confidence as
well. Thus, as PVI is indeed invariant to linear invertible transformations, it seems that it is the
most suitable in terms of its invariance properties.

T3 Margin Sensitivity: On margin dependence, although the comparison between PSI and PVI
for instance is not immediately clear, there are outcomes to our results that are absolute. For
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Figure 1: UMAP visualization of the penultimate layer features.

instance, we see PMI be invariant to hard margin, and yet PSI being sensitive to hard margin
(setting e = 0 in Theorem 1 still yields a dependence on margin). Similarly, from Proposition 5,
we also see PVI being dependent on hard margin. So overall, it seems both PSI and PVI exhibit
more desirable behaviour in the context of margin sensitivity.

T4 Convergence Rates: We include convergence rate results for PSI, PMI and PVI estimators in
Appendix B.3. When comparing PMI and PSI, our theoretical results concretely find that PSI
is likely to have better convergence behaviour compared to PMI, following the differences in
the order of the sample complexity n. We find that PVI’s convergence rate depends on the
complexity of the predictive family V), so it disallows us to directly compare its convergence
with PSI and PMI. However, in absolute terms, we also find that the convergence of PMI and
PSI depend on how spread out the distribution P(x) is, and how much overlap the class-wise
distributions P(z|y = 1) and P(z|y = 0) have. This is because of the denominators in (39)
and (40). This is more likely to be the case for complex datasets where the distributions are
less pointed and have more overlap, rather than simpler datasets such as MNIST. Thus, we
hypothesize that from the convergence rate perspective, PSI and PMI may do well for simpler
datasets such as MNIST, whereas it may not fare well for complex datasets. Our results actually
support this observation.

T5 Summary: Therefore, from the perspective of invariance and margin sensitivity, PVI is the most
well-rounded of the three. From the perspective of convergence rates, it seems that for simpler
datasets PMI and PSI may fare well, but not for datasets with more spread out distributions and
more overlap. Furthermore, in most of our experiments we have a sufficient number of training
datapoints, which potentially makes convergence rate behavior less important in our setting.
Thus, from a performance standpoint our theoretical studies predict that PVI may perform the
best overall, and PSI and PMI may suffer in more complex scenarios.

4 EXPERIMENTS

We performed two types of experiments related to confidence estimation: (1) failure prediction
and (2) confidence calibration. In all experiments, the PI measures are trained with true labels
of the training dataset and evaluated with predicted labels of the test dataset. We also normalize
these PI measures using a softmax function, which transforms the PI values of various classes into
probabilities. Note that for all experiments, we perform temperature scaling based calibration for
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Table 2: Comparison of Various Confidence Estimation Methods for Failure Prediction (Averaged over 5 Runs).
Best results (within standard deviation) are highlighted in bold.

Model, Dataset Method AUROC; x 10> 1 AUPR quccess X 10> T AUPRf emor X 102 4+ AURCx10% |
MSP 96.7140.29 99.9340.01 42.50+2.48 0.8140.12
SM 96.80+0.09 99.9340.01 41.5743.97 0.7840.08
ML 95.1740.30 99.9240.01 33.3342.17 0.9540.07
LM 97.18+0.20 99.9540.00 41.23+4.06 0.59+0.04
MLP, MNIST NE 97.18+0.20 99.95+0.00 41.6942.63 0.59+0.04
NG 96.704-0.29 99.9340.01 42.1542.39 0.8140.12
PMI 97.34+0.18 99.95+0.01 40.73+3.02 0.5740.05
PSI 96.83+0.11 99.9540.00 36.7742.53 0.6540.03
PVI 97.53+0.23 99.96+0.00 51.83+3.73 0.54+0.03
MSP 92.5740.32 99.4240.03 43.96+2.14 7.6840.24
SM 92.53+0.28 99.4240.02 42.15+1.67 7.6840.16
ML 87.4241.06 99.0040.06 32.1743.46 11.6540.50
LM 92.5340.20 99.4440.01 41.71£1.50 7.5340.20
CNN, F-MNIST NE 92.6140.20 99.4440.01 43.7541.36 7.4740.20
NG 92.5840.31 99.424-0.03 44.1841.78 7.6740.24
PMI 91.9940.32 99.3840.01 41.9242.24 8.08+0.12
PSI 90.15+0.37 99.2440.03 33.9442.56 9.4140.30
PVI 93.33+0.25 99.49+0.01 51.624+2.36 6.99+0.15
MSP 88.48+0.97 97.97+0.30 50.5242.76 27.39+2.62
SM 88.47+0.88 98.00+0.25 49.41+2.37 27.204+2.24
ML 85.7940.74 97.4740.17 46.67+1.75 31.9241.65
LM 88.47+0.65 98.07+0.13 48.87+2.01 26.56+1.30
VGG16, STL-10 NE 88.54+0.63 98.07+0.12 50.634+2.25 26.53+1.18
NG 88.45+0.94 97.97+0.30 50.67+2.56 27.43+2.58
PMI 87.8840.63 97.9440.13 47.20+2.44 27.78+1.34
PSI 87.9740.57 97.9340.12 48.19+1.97 27.8241.22
PVI 89.35+0.63 98.20+0.11 54.07+2.63 25.3840.94
MSP 85.0610.40 96.70+0.08 47.99+1.87 39.08+1.06
SM 85.14+0.38 96.75+0.07 47.38+1.78 38.63+0.98
ML 79.2241.05 95.0440.35 41.65+2.08 54.0843.33
LM 85.24+0.36 96.80+0.09 47.2241.77 38.28+1.17
ResNet50, CIFAR-10 NE 85.07+0.41 96.7240.10 48.5441.83 39.00+1.21
NG 85.08+0.40 96.70+0.08 48.25+1.83 39.07+1.06
PMI 84.02-+0.52 96.394-0.09 44.9241.98 41.8941.02
PSI 84.3140.45 96.66+0.14 45.81+1.54 39.48+1.57
PVI 86.50+1.02 96.96+0.30 56.07+3.24 36.80+2.66

all methods reported, to ensure a fair comparison. All experiments are conducted using benchmark
datasets and architectures readily available in TensorFlow. More details on the datasets, architectures
and training algorithms used in all experiments are provided in Appendix C.

For PVI, we compute it between the input features and the predicted labels, following the approach
from in (Ethayarajh et al., 2022), which is to estimate the PVI between X and Y by training another
model with the same architecture. It measures how easily we can predict Y from X using V. Thus,
in a way it is capturing the confidence of the model V. While the way PVI is defined is architecture-
dependent, the definitions of PMI and PSI are not. For PMI and PSI, it is more natural to use
the features of the model directly and the layers closest to the output should capture the model’s
confidence about the network the most. For PMI and PSI, we compute them between the output
layer features and the predicted labels. Furthermore, instead of computing the measures with just the
predicted class, we compute them for all classes and apply softmax function along with temperature
scaling. More discussion on this can be found in Appendix D.1. In this way, the PI values are
normalized to a range between 0 and 1.
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4.1 FAILURE PREDICTION

Goal: The goal of this experiment is to compare the effectiveness of different confidence estimates
for failure prediction. Failure prediction typically involves three tasks: misclassification detection,
selective prediction, and out-of-distribution detection (Jaeger et al., 2023). This work focuses on
the first two tasks. In misclassification detection, the objective is to identify incorrect predictions
made by trained networks. Ideally, confidence scores should be high for correct predictions and low
for incorrect ones. In selective prediction, the aim is to evaluate the improvement in classification
performance after excluding a certain percentage of low-confidence predictions.

Methodology: For misclassification detection, we evaluate the effectiveness of confidence estimates
in distinguishing between positive (incorrect predictions) and negative (correct predictions) samples.
We use a threshold-independent metric, AUROC (Area Under the ROC Curve, with f denoting
failure), which is widely adopted in the literature (Hendrycks & Gimpel, 2017; Jaeger et al., 2023).
Since AUROC is less informative when the positive and negative classes have significantly different
base rates, we also consider another metric called AUPR (Area Under the Precision-Recall Curve).
Given that the base rate of the positive class greatly influences AUPR, we examine both scenarios:
treating success classes as positive samples (AUPR ¢, success) and treating error classes as positive
samples (AUPR, error). For selective prediction, we examine the improvement in classification
error rates by filtering out low-confidence samples. In this context, we define risk as the error
rate on the remaining samples, and coverage as the proportion of remaining samples relative to the
total samples. We employ a threshold-independent metric, AURC (Area Under the Risk-Coverage
Curve), as described in the literature (Jaeger et al., 2023). We compare our results against six
benchmark methods: maximum softmax probability (MSP) (Geifman & El-Yaniv, 2017), softmax
margin (SM) (Tagasovska & Lopez-Paz, 2019), max logit (ML) (Hendrycks et al., 2022), logits
margin (LM) (Streeter, 2018), negative entropy (NE) (Belghazi & Lopez-Paz, 2021) and negative
Gini index (NG) (Granese et al., 2021) ((83) - (88) in Appendix C.3.1). Additional details on the
metrics and methods can be found in Appendix C.3.1. We report the results in Table 2.

Results: We observe that PVI generally outperforms the other two PI measures, as well as other
benchmark post-hoc methods, across a range of metrics. After considering the margin of error, while
the performance improvement of PVI is less pronounced for AUROC; and AUPR  gyccess, it remains
notably significant for AUPR ¢ f,ijure and AURC, which are the preferred metrics (Jaeger et al., 2023).
This indicates that PVI is the most suitable in terms of the proportion of prediction errors it detects.
Interestingly, we find that on F-MNIST, PVI has superior performance w..rt every evaluation metric,
even after considering the standard deviation. This superior performance is likely due to PVI being
the most well-rounded metric, particularly in terms of its invariance and margin-sensitivity (see
Section 3.3). On the other hand, PMI and PSI performs relatively well on simpler models and
datasets, such as MLP and MNIST, but struggles with more complex models and datasets. This
agrees with point T4 in Section 3.3, which finds that for datasets with greater degree of overlap and
more spread out distribution, PMI and PSI can have worse convergence behaviour.

4.2 CONFIDENCE CALIBRATION

Goal: The goal of confidence calibration is to determine whether the confidence scores reflect the
true correctness likelihood Guo et al. (2017). Perfect calibration is defined as follows: P(Y =
Y|fD =p) =p, Vp € [0,1], where Y denotes the ground-truth labels, Y denotes the predicted
labels and P is the associated probability.

Methodology: We compute a popular calibration metric, Expected Calibration Error (ECE), which
bins the predictions in [0, 1] under M = 10 equally-spaced intervals, and then averages the ac-
curacy/confidence in each bin. As confidence calibration requires the confidence estimates to be
between 0 and 1, we only compare with MSP and SM. The results are shown in Table 3.

Results: We observe that PVI significantly outperforms the other two PI measures when assessing
the average ECE, as well as other benchmark post-hoc methods (MSP and SM) by a large amount.
In addition, for average ECE, it seems that the improvement for more complex datasets and archi-
tectures is more significant, especially for the VGG16 case where the improvement is substantial.
Given that, it is also notable that for more complex datasets, the standard deviation across different
runs is larger, which allows the metrics with significantly worse averages to be comparable to PVI.
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Table 3: Comparison of Various Confidence Estimation Methods for Confidence Calibration (Measured by
ECE, Averaged over 5 Runs with Standard Deviations Included). Best results are highlighted in bold.

Method MLP, MNIST CNN, F-MNIST VGG16, STL-10 ResNet50, CIFAR-10

MSP 1.05+0.07 3.02£1.56 7.42+3.09 10.79£0.54
SM 1.01+0.04 3.77£0.38 8.33+1.85 9.83£0.52
PMI 1.45+0.07 4.31£0.56 9.20+3.86 12.25+0.49
PSI 1.15+0.39 4.22+1.20 7.75+3.62 10.97+1.45
PVI 0.94-£0.05 2.55+0.66 4.91+2.63 9.59+0.35

In addition, we find that PSI performs better than PMI in all cases. This is supported by the theoreti-
cal results, where we find that overall, PMI’s invariance properties and margin sensitivity could lead
to it being a worse confidence estimator, compared to other measures (Section 3.3). Also, the fact
that PMI’s estimation has worse convergence rates than PSI’s cannot be ignored in the context of
these results, as potentially that also plays a role in this. This is in contrast to the failure prediction
case which focuses more on the ordinal ranking of the confidence estimates.

5 REFLECTIONS

We performed a comparative analysis of using three PI measures, namely PMI, PVI, and PSI, for
confidence estimation in DNNs. We study several theoretical properties which we believe can be
relevant to model uncertainty, including how well a measure behaves in response to data transfor-
mations (invariance properties), how well a measure tracks the geometric difficulty of classifying
a feature point (sample-wise margin), and how well a measure converges with data (convergence
rates). We performed a series of experiments on confidence estimation (failure prediction and con-
fidence calibration) to test and verify our theoretical hypothesis. Our findings demonstrate that PVI
outperforms both PMI, PSI, and benchmark post-hoc methods in failure prediction and confidence
calibration tasks. This highlights PVI’s versatility, especially given that popular confidence calibra-
tion methods have been shown to be ineffective or even detrimental for failure prediction tasks (Zhu
et al., 2022). This is consistent with our theoretical findings which suggest that PVI is the most
well-rounded among the three PI measures considered (as discussed in point TS in Section 3.3).

One of our findings in this work has been that better sensitivity to margin doesn’t necessarily imply
better performance in the confidence prediction problem. We note that for the correlation to margin
experiment, the focus is on whether the model assigns higher confidence to samples with a larger
margin (and vice versa), regardless of whether the prediction is correct. On the other hand, for the
misclassification detection, selective prediction, and calibration analysis, the focus is more on the
correctness of predictions (directly linked to accuracy). The contrast lies in the interpretation of
confidence: margin experiments treat confidence as a measure of sensitivity to decision boundaries,
while the other tasks treat it as a measure of predictive reliability. Therefore, this may be a reason
why it is possible for PSI to perform better in the margin-based task and be more margin sensitive,
while PVI performs better in the accuracy-based tasks.

For future work, one could consider using these PI measures to analyze model uncertainty in other
modalities (e.g., image, audio, tabular, etc.). In addition, one could explore the potential of using
PI measures for other aspects of trustworthy machine learning such as explainability (as we briefly
show in Appendix D.3) and privacy. Furthermore, one could study other scaling/normalization
techniques to improve the performance of the PI measures. We hope that both our theoretical and
empirical findings will motivate more work in the direction of information theoretic approaches for
model uncertainty in the context of DNNs.

Limitations. Our PI measures require training additional models to learn the probability distribu-
tion. Since estimators for PI measures are less common compared to their aggregate counterparts,
our work, which clearly demonstrates their applications in explainability and uncertainty quan-
tification, could motivate further research towards more accurate and efficient estimation of these
measures. In addtion, the PI measures are the optimal choice of explainability if we assume the
probability-raising based causal model for the problem. Exploring other causal models (such as
Judea Pearl’s structural causal models) from an information-theoretic perspective in the context of
explainability is an interesting avenue for future work.

10
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A  RELATED WORK & INFORMATION MEASURES DETAILS

A.1 RELATED WORK

Pointwise Mutual Information (PMI). PMI compares the probability of two outcomes occurring
together to what the probability would be if they are independent. It is commonly in natural language
processing to measure the association between words (Church & Hanks, 1990; Turney, 2001; Su
et al., 2006; Padmakumar & He, 2021). In this setting, p(x) and p(x, y) can be obtained by counting
the occurrences and co-occurrences of words in the corpus. However, PMI can be sensitive to
the size of the corpus and may not perform well with very rare words or when the data is sparse.
Other variants of PMI have also been introduced, including positive PMI measure, which sets all
the negative values to zero (Dagan et al., 1993), and normalized PMI measure, which scales the
values to fall within the range [—1, 1] (Bouma, 2009). PMI has found applications in a wide range
of areas, including sentiment analysis (Ahanin & Ismail, 2022; Bandhakavi et al., 2017; Sintsova &
Pu, 2016), community detection (Luo et al., 2021), response generation (Nandwani et al., 2023; Ren
et al., 2023), truthful data acquisition (Zheng et al., 2024; Chen et al., 2020), and boundary detection
(Isola et al., 2014). In this study, we use PMI to obtain both confidence scores and saliency maps
for image classification tasks.

Pointwise Sliced Mutual Information (PSI). Wongso et al. (2023b) introduced PSI as a measure
for generating confidence scores and saliency maps for deep neural networks. For confidence scores,
they compute the PSI between features of the penultimate layer of a neural network and predicted
label for each sample and refer to this as the sample-wise PSI. For saliency maps, they compute
the PSI between feature fiber of the last convolutional layer of a convolutional neural network and
predicted label for each sample and refer to this as the fiber-wise PSI. In addition, they show that
PSI, in contrast to PMI, exhibits sensitivity to sample-wise margin. Even though their findings
demonstrate that PSI can produce sensible confidence scores and saliency maps the paper lacks a
profound perspective and the essential quality assessment of PSI as a metric for model uncertainty
and explainability. In this work, we provide a more comprehensive evaluation of PSI, comparing
it to the other two pointwise measures, namely PMI and PVI, to determine the relevance between
features and predicted labels. Additionally, we present a set of theoretical results that explore var-
ious properties of pointwise information measures, providing deeper insights into what they may
represent.

Pointwise V-Information (PVI). PVI was introduced to measure sample difficulty with respect to
a given distribution (Ethayarajh et al., 2022). In their research, they investigate natural language
inference tasks and observe that samples with high PVI are often predicted correctly, while those
with low PVI are more likely to be predicted incorrectly. It is important to note that in their paper,
they assess PVI in relation to the true label (also referred to as the gold label), making it a measure
of sample difficulty rather than a measure of the network’s confidence. They also show that PVI can
be used to identify which subsets of each class are more difficult than others. PVI has recently been
employed in a variety of NLP tasks (Lin et al., 2023; Lu et al., 2023; Prasad et al., 2023; Kulmizev
& Nivre, 2023). In this study, we compute PVI to obtain both confidence scores and saliency maps
for image classification tasks.

Predictive Confidence. The idea behind confidence estimation is closely connected to uncertainty
quantification. Simply put, when we are more confident in a prediction made by a model, it means
there is less uncertainty about that prediction. For a comprehensive survey/review on uncertainty
quantification in deep learning, we refer the readers to Gawlikowski et al. (2023); He & Jiang (2023);
Mena et al. (2022); Abdar et al. (2021). There are two common lines of work for evaluating pre-
dictive confidence: confidence ranking and confidence calibration. Works on confidence ranking
focuses on ranking confidence scores such that the lower-ranked samples are more likely to misclas-
sified while the higher-ranked samples are more likely to be correctly classified. Confidence ranking
is useful in applications such as misclassification detection (Hendrycks & Gimpel, 2017; Jiang et al.,
2018; Corbiere et al., 2019; Jaeger et al., 2023), out-of-distribution detection (Hendrycks & Gimpel,
2017; DeVries & Taylor, 2018; Liang et al., 2018) and selective classification (Geifman & El-Yaniv,
2017; Feng et al., 2023; Galil et al., 2023). On the other hand, research on confidence calibration
aims to provide confidence scores that accurately reflect the likelihood of a prediction being correct
(Guo et al., 2017; Nixon et al., 2019; Tao et al., 2024). This requires the confidence scores to be
probabilities within the range of 0 to 1.
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A.2 GENERAL PROPERTIES OF INFORMATION MEASURES AND THEIR POINTWISE
VARIANTS

In this section, we describe some general properties of mutual information (MI), V-information (V1),
and Sliced Mutual Information (SMI), and their pointwise variants.

A.2.1 GENERAL PROPERTIES OF MI AND PMI

We first restate the definition of MI and PMI from the main paper:
Definition 1 (MI and PMI). Let (X,Y) ~ Pxy. The MI between X andY is:

Pxy(X,Y)

Let (z,y) ~ (X,Y). The PMI of an instance (x,y) is:
: p(z,y)
jy) =1 8
P =08 () ®

MI satisfies the following properties:

1. Non-negativity: 7(X;Y) > 0.

2. Independence: [(X;Y) = 0iff X and Y are independent.

3. Entropy decomposition: /(X;Y) = H(X)+ H(Y) - H(X,Y) = H(X) - HX[Y) =
H(Y)— H(Y|X) where H(-) and H(+|-) are the entropy and conditional entropy respectively.

4. Chainrule: I[(X,Y;7) = I(X;Z) + I(Y; Z|X). More generally, for X;,---, X,,, we have
I(Xl, R 7Xn§ Y) = I(Xl; Y) + Z?:Q I(XZ‘; Y|X1, e ,Xifl).

Remark 2 (Data processing inequality). MI also satisfies the data processing inequality which

means that I(X;Y) > I(f(X);Y) for any deterministic function f. This is in contrast to VI and

SMI which can grow with more processing of the random variables.

We list some properties of PMI as follows:

1. Range:
* Continuous X and Y: —oco < pmi(z;y) < oo.
* Discrete Y: —oco < pmi(z;y) < —logp(y).
* Discrete X and Y: —oo < pmi(z;y) < min[— log p(x), — log p(y)].

2. Independence: If X and Y are independent, then pmi(x;y) = 0 V(z,y) € X x ). Note that
pmi(x;y) = 0 for a certain (z,y) ~ Pxy does not imply X and Y are independent.

3. Entropy decomposition: pmi(z;y) = h(z)+h(y) —h(z,y) = h(z) —h(z|y) = h(y) —h(y|z)
where h(-) = —log p(-) is called the self-information.

4. Chain rule: pmi(z,y; z) = pmi(x; z) + pmi(y; z|z).

A.2.2 GENERAL PROPERTIES OF SMI AND PSI

We first restate the definition of SMI and PSI from the main paper:

Definition 3 (SMI and PSI). Let (X,Y) ~ Pxy € P(R% x R%). Let © ~ Unif(S%~1) and
® ~ Unif(S% 1) be independent of each other and of (X,Y). The SMI between X and 'Y is:

SI(X;Y) = Egeo [[(07X;0Y)] ©)
$ED
Let (z,y) ~ X,Y. The PSI of an instance (x,y) is:
psi(z;y) = Egco, [pmi(0"z; 6" y)] (10)
PED

SMI shares many similar properties with MI (Goldfeld & Greenewald, 2021, Proposition 1), includ-
ing:

1. Non-negativity: ST(X;Y) > 0.
2. Independence: SI(X;Y) = 0iff X and Y are independent.
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3. Entropy decomposition: SI(X;Y) = SH(X)+ SH(Y) — SH(X,Y) = SH(X) —
SH(X|Y)=SH(Y)— SH(Y|X) where SH(-) and SH (-|) are the sliced entropy and condi-
tional sliced entropy respectively.

4. Chain rule: SI(X,Y;Z) = SI(X;Z) + SI(Y;Z|X). More generally, for X;,---,X,, we
have ST(X1, -, X,:Y) = SI(X0;Y) + Y, SIX;5Y[X0, -+, X 0).

Remark 3 (SMI can grow with processing). We note that unlike MI and similar to VI, SMI can in-

crease with more processing of the random variables, i.e., we can have SI(f(X);Y) > SI(X;Y)

for any deterministic function f. (Goldfeld & Greenewald, 2021) argued that this property is de-
sirable in the context of machine learning, where it is more intuitive to think that processing input
features yields representations that are more useful for inferring the labels.

We list some properties of PSI as follows:

1. Range:

* Continuous X and Y: —oo < psi(x;y) < oo.
* Discrete Y: —oo < psi(x;y) < —logp(y).

2. Independence: If X and Y are independent, then psi(z;y) = 0, V(z,y) € X x ). Note that
psi(x;y) = 0 for a certain (z,y) ~ Pxy does not imply X and Y are independent.

3. Entropy decomposition: psi(z;y) = sh(z) + sh(y) — sh(x,y) = sh(x) — sh(z|y) = sh(y) —
sh(y|z) where sh(z) := —Egce logp(67x) and sh(z|y) = —Egco co logp(0T z|¢Ty) are
the pointwise sliced entropy and pointwise conditional sliced entropy respectively.

4. Chain rule: psi(z,y; z) = psi(z; z) + psi(y; z|x).

A.2.3 GENERAL PROPERTIES OF VI AND PVI
We first provide more detailed definitions for predictive family and conditional V-entropy, and sub-
sequently restate the definition of VI and PVI from the main paper.
Definition 6 (Predictive Family). Ler Q = {f : X U@ — P())}. The predictive family V C is
defined such that it satisfies:

Vf e V,VP €range(f), 3f €V, st. Voee X, f'lz] =P, f o] =P (11)

Remark 4 (Optional ignorance). In words, a predictive family is a set of predictive models the
agent can use, often limited by computational or statistical constraints. The additional condition
f'[x] = P, f'[@] = P is called the optional ignorance, which gives the agent an option to ignore
the side information x and still be able to predict get P. As shown in Xu et al. (2020), this condition
is necessary to obtain the desirable properties of VI .

Definition 7 (Predictive Conditional V-entropy). Let (X,Y) ~ Pxy € P(X x )). We use & to
represent a null input that provides no information about Y. Given a predictive family V, we can
define the predictive conditional V-entropy as:

Hy(Y|X) = }Ielf)EX,Y[— log fIX](Y)] (12)
Hy(Y|2) = J}fel‘f} Ey [ log f[@](Y)] 13)

Hy,(Y'|@) is also called the V-entropy and denoted as Hv(Y') for simplicity.

Definition 2(VI and PVI). Let V, Hy(Y), Hy(Y | X) and (X,Y') be defined as in Def. 6 and Def.
7. We are given predictive family. Then the VI from X to'Y is:

(X =Y):=Hy(Y)— Hy(Y|X) (14)

Let g = argmingey, Ey[-log f[2](Y)] and g’ = argmin;e), Ex y[—log f[X](Y)]. Given
(,y) ~ (X,Y), the PVI from x to y is:

pvi(z — y) == —log f[@](y) + log f'[z](y) (15)

VI satisfies the following properties:

1. Non-negativity: I,(X — Y) > 0.
2. Independence: [,(X —Y) = I,(Y — X) = 0iff X and Y are independent.
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3. Entropy decomposition: /,(X — Y) = H,(Y) — Hy(Y]X).

Remark 5 (VI can grow with processing). We note that unlike MI and similar to SMI, VI can in-
crease with more processing of the random variables, i.e., we can have I, (f(X) = Y) > In(X —
Y') for any deterministic function f. Xu et al. (2020) argued that this property is desirable in the
context of machine learning, where it is more intuitive to think that processing input features yields
more usable information about the label.

Remark 6 (Asymmetry of VI). We also note that unlike MI and SMI, VI is asymmetric in nature
which is align with the intuition that sometimes, it is easier to predict Y from X than to predict X
fromY.

We list some properties of PVI as follows:

1. Range:
* Continuous X and Y: —oo < pvi(z — y) < 00
* Discrete Y: —oo < pvi(z — y) < —logp(y) when Hy,(Y) = H(Y). Note that this is true
when V represents a function modelled by a neural network with trainable weights and biases.
2. Independence: If X and Y are independent, then we have pvi(z — y) = pvi(y — z) = 0.
Note that pvi(x — y) = 0 for some (z,y) ~ Pxy does not imply that X and Y are independent.
3. Entropy decomposition: pvi(z — y) = hy(y) — hy(y|z), where hy(y) is the pointwise V-
entropy of y and hy (y|x) is the pointwise conditional V-entropy of y.

A.3 POINTWISE INFORMATION ESTIMATORS

In this section, we describe the estimators of PMI, PSI and PVI as well as provide the algorithms for
each pointwise measure. We implemented these estimators in Python and use the Tensorflow library
for neural networks.

A.3.1 PMI ESTIMATORS

In Tsai et al. (2020), the authors proposed three different estimators for PMI: probabilistic classifier,
density ratio fitting and variational Jensen-Shannon (JS) bound. All of these approaches estimate
PMI using neural networks with distinct loss functions described below. We provide the pseudocode
for the PMI estimator in Algorithm 1. Note that we presented the algorithm for any label y but used
predicted labels g in our experiments.

Probabilistic Classifier (PC) Method. In this approach, we assign class 1 to samples drawn from
the joint density (¢ = 1 for (z,y) ~ Pxy) and class 0 to samples drawn from the product of
marginal densities (¢ = 0 for (x,y) ~ Px Py ). Thus, we can rewrite the density ratio as:

p(x.y) _ pla,yle=1) _plc=0)plc=1]z,y)
p()p(y)  plz,ylc=0) p(c=1)p(c=0[z,y)

where we have used Bayes’ Theorem for the second equality. Furthermore, we can approximate the
ratio of class probabilities by the ratio of the sample size:

(16)

Pc=0) _ npypy/MPxpPy +NPyy _ NMPyPy
A = = (17)
p(C = 1) nPXY/nPXPY + Npyy NPxy

To approximate the class-posterior probabilities, we use a neural network f parameterized by 6 with
the following binary cross-entropy loss function:

Lec(0) = —Epy, [log fo(c = 1[(z,y))] — Epypy [log(l — fo(c = 1|(z,y)))] (18)

For b mini-batch samples, we can write the loss function as:

c~\>—l

b
1 ) ) )
- _ (%) () _ _ (3) (%)

Lec(6 ~3 E_ [log fo(c = 1|(z",y*")) E_ [log(1 — fo(c=1|(=',5*)))]  (19)

where (z,y) ~ Pxy and § ~ Py.
Tsai et al. (2020) also showed that when © is large enough, the optimal fy(c|z,y) = p(c|x, y).
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Density Ratio Fitting (DRF) Method. This approach seeks to minimize the expected least-square
difference between the true density ratio and the density ratio estimated using a neural network f
parameterized by 6. By letting r(z,y) = p(x,y)/p(x)p(y), the objective function can be written as:

. 1
glnf ]EPXPY [(’I“("I,‘7 y) - f9 (33, y))Q] < sup ]EPXY [f@ ($7 y)} - 7EPX Py [f62 ($7 yﬂ (20)
€O (USIC) 2
Thus, the loss function is:

Lowe(0) = ~Epy, o, 9)] + 3Eper, [3(2,0) e

For b mini-batch samples, we can write the loss function as:

1< . 1
Lo (6) = —3 Z folx + 5 Z (22)

where (z,y) ~ Pxy and §j ~ Py.

Tsai et al. (2020) also showed that when © is large enough, the optimal fy(x,y) = r(x,y) =

p(w,y)
p(z)p(y)*

Variational Jensen-Shannon (JS) Bound Method. This approach relies on the variational form
of MI, and in particular the Jensen-Shannon divergence between Pxy and Px Py (Poole et al.,
2019). The Jensen-Shannon variational estimator is found to be more stable than the other proposed
variational lower bounds. Similar to the density ratio fitting method, the density ratio is estimated
using a neural network f parameterized by 6. The loss function can be written as:

Lys(0) = Epy, [softplus(— log fo(z,y))] + Epy p, [softplus(log fo(x,y))] (23)
where softplus(z) = log(1 + exp(z)).

For b mini-batch samples, we can write the loss function as:

Lis(0)

@M—\

b b
Z softplus(— log fo (¥, Z softplus(log fo (@, 7)) (24)

where (z,y) ~ Pxy and §j ~ Py.

Tsai et al. (2020) also showed that when © is large enough, the optimal fy(z,y) = pz()f)cz’f@).

Critic Model Architectures. The neural networks used to estimate PMI are also commonly referred
to as critic models. In the literature, there are two common structures for the critic models: separable
and joint. They primarily differ in how x and y are considered in the neural network training. In
separable critic design, « and y are being passed to two separate neural networks: h(x) and g(y).
The final model then computes the dot product between the outputs of the two neural networks:
f(z,y) = h(x)Tg(y). In joint critic design, = and y are concatenated and fed as input to one neural
network. In Appendix D.2.1, we compare the performance of the different critic architectures. We
represent the neural network using a multi-layer perceptron, consisting of one hidden layer with 512
units and ReLU activation function. For separable critic, the outputs of neural network h(z) and
¢(y) have dimensions of 128, while for joint critic, the output has a dimension of 1. They are trained
with Adam optimizer with learning rate of 0.001 for a maximum of 200 epochs. We employ early
stopping if the maximum MI on the validation dataset fails to improve after 10 epochs. For the final
PMI model, we use the one that yields the highest MI on the validation dataset.

Note on Implementation. We followed the implementation by Tsai et al. (2020), adapting their
original PyTorch code to Tensorflow. In their implementation, rather than shuffling samples from
the joint distribution to obtain samples drawn from product of marginal densities, they manipulate
the output of the critic model to have a shape of b x b, where b represents the batch size. To
achieve this for the joint critic, they introduce a new axis and replicate the input b times along that
axis. Consequently, the diagonal elements naturally correspond to samples drawn from the joint
density, while the off-diagonal elements represent the product of marginal densities. In this setup,
there are b mini-batch joint samples and b> — b mini-batch marginal samples. When using the PC
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method, there is an additional term np, p,. /np,, which computes the ratio of samples from the
different distributions. In line with this implementation, given the unequal number of samples from
the different distributions, an additional term of log[(b® — b) /b] = log[b — 1] must be included in the
final PMI estimation.

Algorithm 1 PMI Estimator

Require: (X", Y") ~ Pxy € P(R% xR) where Y € {1, .., k}, a chosen pair of sample (z,y) ~
(X™,Y™), critic model f, and E number of epochs to train the critic model.
0 < initialize parameters of f
e<0
while e < E do:
Draw b mini-batch samples from the joint density: (21, y()) ... (2®) y®)) ~ (X7 Y™)
Draw b mini-batch samples from the marginal density': gV, .-, () ~ Py
Compute the loss function L(#) on the mini-batch samples:
(Eq. (19) for PC, Eq. (22) for DREF, or Eq. (24) for variational JS bound)
Update the critic model parameters 6 based on L(6)
e<—e+1
end while
return pmi(x;y) < f(x,y) for PC and variational JS bound or

pmi(z;y) + log f(x,y) for DRF

For all our experiments, we choose the variational JS bound (with separable critic) as the default
PMI estimator as we show in Appendix D.2.1, it yields the best performance.

A.3.2 PSI ESTIMATORS

We followed the implementation by Wongso et al. (2023b) and considered an additional method:
binning. We provide the pseudocode for the PSI estimator for the binning method in Algorithm 2
and for the Gaussian method in Algorithm 3. Note that we presented the algorithm for any label
y but used predicted labels ¢ in our experiments. For our problems, we only project X since Y is
discrete. For both methods, we clip the probability to a minimum of le-5 to prevent division by
zero. We did not consider kernel density and neural network estimation in this work due to its high
computational cost, which is not practical for MU/MX.

Algorithm 2 PSI Estimator (Binning Method)

Require: (X", Y") ~ Pxy € P(R% x R) where Y € {1,..,c} (c classes), a chosen pair of
sample (z,y) ~ (X™,Y™), a chosen number of slices (projections) m, and a chosen number of
bins Mbpins-

Initialize 6; by sampling uniformly on the sphere S% ! fori =1,...,m.

for i =1tomdo
Compute HZ-TX and discretize it into npyi,s bins using training features X"
Compute joint counts of binned §7 X and Y’
Normalize joint counts to obtain joint probabilities P(01 X,Y")
Compute marginal probabilities P(#7 X) and P(Y')
Find the bin index of ]  in the discretized §7 X for the given sample x
Retrieve p(01 =, y) from P(6T X,Y)
Retrieve p(0! z) from P(67 X)
Retrieve the marginal probability p(y) from P(Y")

p(0] x.y)
p(07 =)p(y)

Compute the term: pmi,(z;y) + log
end for
return psi(z;y) = 3" pmii(z,y)

!This can be done by shuffling the samples from the joint distribution along the batch axis.
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Algorithm 3 PSI Estimator (Gaussian Method)

Require: (X" Y") ~ Pxy € P(R% x R) where Y € {1,...,c} (with c classes), a chosen pair
of sample (x,y) ~ (X™,Y™), a chosen number of slices (projections) m, and a chosen number
of bins Npjns.

Initialize 6; by sampling uniformly on the sphere S% ! fori = 1,...,m.
fori =1tomdo

for j =1tocdo

Find ju;, 0% with P(0T X|Y = j) ~ N (jui5,0%).

end for
end for
fori =1tomdo

Compute 7'z for the given sample x

Retrieve p(6] z|y) from P(6] X|Y = y) ~ N (piy, 07,)

Compute p(6] =) = >=5_, p(0] x|y = 7)p(y = j)

P67 |y)
p(0] )

Compute the term: pmi,;(z,y) + log

end for
return psz(:r y) < =5 pmii(z,y)

Binning. For each projection ¢, we bin HiTX into npins. To compute the PSI, we estimate
P(OFX)Y), P(6TX), and P(Y) from the binned data. For a given sample, we can then find
the p(67 x,y), p(6T x), and p(y). The PSI is then given by:

QT/
psz(x Yy) — — Zlo p(é?;;j;) (25)

Gaussian. We assume that §7 X for each class follows a Gaussian distribution. For each projection
1 and for each class j, we estimate the mean (14;;) and standard deviation (o;;). To compute the PSI,
we estimate P(07 X|Y) and P(01 X) from j;; and o;;. For a given sample, we can then find the
p(07 x|y) and p(0 z). The PSI is then given by:

T
psi(z Z log 0 |y (26)

We choose the Gaussian method (with 500 projections) as the default estimator as we show in
Appendix D.2.2, it consistently yields good performance.

A.3.3 PVI ESTIMATORS

We followed the implementation by Ethayarajh et al. (2022), adapting their original PyTorch code
to Tensorflow. We provide the pseudocode for the PVI estimator in Algorithm 4. Note that we
presented the algorithm for any label y but used predicted labels g in our experiments. To estimate
PVI, we are required to train two neural networks to obtain f (for null inputs) and f’ (for training
inputs). The null inputs can be obtained by setting the values of the input features to zero. Below
we describe several methods we experiment to estimate the PVI.

Algorithm 4 PVI Estimator

Require: (X", Y")i.i.d. sampled according to Pxy € P(R% xR) where Y € {1, .., k}, achosen
pair of sample (z,y) ~ (X™,Y™), and a model V.
f’ + train Von (X", Y™)
& < null input (array of zeros with the same shape as X™)
f<«trainVon (2,Y")

return pvi(z — y) < —log f[2](y) + log f'[2](y)

'A uniform sample from S?~! can be found by sampling a vector Z from a d-dimensional isotropic Gaus-
sian and forming Z/||Z||.
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No Training. To obtain f’, we use the model that has already been trained on the dataset. To obtain
f, we train the (untrained) model on null inputs.

Training from Scratch. To obtain f/, we train another model (with different initialization but same
architecture) on the training data. To obtain f, we train the (untrained) model on null inputs. In
practice, instead of training a new model, we can use the model from the different run.

Training MLP Penultimate. To obtain f’, we use the penultimate layer features as input x rather
than the original inputs. We train a one-hidden-layer MLP with 512 units on x to obtain f’. To obtain
f we train the untrained MLP model on null inputs with the same dimension as the penultimate layer
features.

We choose the Training from Scratch method as the default estimator as we show in Appendix
D.2.3, it consistently yields good performance. In addition, when computing the PVI, we can choose
to first calibrate the probabilities with a simple temperature scaling. As we see in Appendix D.2.3,
this improves the performance.
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B THEORETICAL ANALYSIS & PROOFS

B.1 INVARIANCE PROPERTIES

Proof of Proposition 1

Proposition 1 (Invariance to shift, scale, and rotation). Let 7o = aRx + p, where p € R%
represents the extent to which the distribution is shifted, o € R represents how much the distribution
is scaled, and R ~ R%*%= s q rotation matrix such that RRT = T and det(R) = 1, where I is
the identity matrix and det represents the determinant operator. Then we have:
pmip(z,y) = pmiTp(aRx + p,y)
psip(z,y) = psiTp(aRx + p,y)
pvip(z,y) = pviTp(aRz + p,y)

Proof. For simplicity of notation, we denote the probability distribution in the original domain by
P and the distribution in the transformed domain by Pr.
For PMI, we have:
, Pr(aRz + ply) p(zly)/ det(aR) p(zly) ,
pmirTp(aRr+p,y) =log ———————~ =log ————= =log =pmip(T,y),
VS Rt p) % b/ det(R) % ) 9

where det denotes the determinant operator.

For PSI, we first note that

Pr(6" (R + p>|y)} g, {1 Pr(0" (az) + eTp)y>]
Pr(07(aRx + p)) Pr(07(az) +60Tp)) |’
where 6’ = O R. Notice that 6’ will have a uniform distribution over the sphere, similar to 6, because

R is a rotation matrix. We also apply the fact that Pr(ax + p) = p(x)/« to the numerator and
denominator. This ultimately yields:

psiTp(aRx +p,y) = Ey [log

p(OTD))] p(072)|y)
P(07x) }‘EQ {bg P(07 )

For PVI, we first note that the first term of PVI, —log f[&](y), will remain unchanged as it only
depends on y, and f depends on the distribution of y, both of which do not change with 7 as it is a
one-to-one transformation. Then, for the conditional entropy term, let

' =argminEp[—log f[X](Y)].
fev

psiTp(aRr + p,y) = Eg [log } = psip(z,y).

As f’ is a fully connected neural network with weights and biases, let W and b represent the weights
and biases of the first layer, respectively. When the distribution of = changes in response to T, let

g = argminEp_[—log f[X](Y)].
fev

Note that g’’s first layer weights W’ and biases & will be such that W7 (a Rz +p)+b = WTz+b.
We will simply have W'7aR = W and b’ = b — W'T'p. Therefore, ¢'[Tz](y) = f'[](y). The
search space for the arg min is the same in both cases, as the transformation is linear. We have that
WT(TX) = WTX such that the weights W’ and W have a one-to-one correspondence (as 7 is
invertible). Since log ¢'[Tz](y) = log f’[x](y), we have the result:

pviTp(aRx + p,y) = pvip(z,y).

Proof of Proposition 2

Proposition 2 (Invariance to general linear transformations). Let Tz = Mux, where M ~
R% *d= i an invertible matrix. Then we have,

pmip(x,y) = pmirp(Maz,y)
pvip(z,y) = pviTp(Mz,y)
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Proof. For PMI, as M is invertible, we have:

, log PTMaly) | plaly)/det(M) - p(aly)
pire M) = O Gty Ry dee(ad) )

where det denotes the determinant operator.

= meP (l’, y)

For PVI, we follow the same reasoning as the previous proof. Same as before, let

' =argminEp[—log f[X](Y)] ¢ = argminEp_[—log f[X](Y)].
fev fev

Let W and b be the weights and biases of f’, and let W' and b’ be the weights and biases of ¢’.
Then, we have, W'7 = WM ' and ¥ = b. As M is invertible, this implies that ¢’ [Tz](y) =
f'[z](y),which yields the result:

pviTp(Mz,y) = pvip(z,y).

Proof of Proposition 3

Proposition 3 (Invariance to homeomorphic transformations). Let Tz = f(z), where f :
R% — R% represents any continuous and invertible transformation (i.e. a homeomorphism,).
Then we have,

pmip(z,y) = pmirp(f(r),y)

Proof. For smooth and invertible maps, it is known that the probability density function Py (f(x)) =

P(x)/Jx, where Jx = |%\ is a scalar that only depends on x. The same rule would apply to
conditional distributions p(z|y) as well. Thus we have:
: Pr(f(z)ly) p(zly)/Jx p(zly) :
pmiTp(f(z),y) = log = log = log = pmip(z,y
U9 =108 T () ~ 8 )i~ % i) )

O

Remark 7. Note that the above property for PMI also implies invariance to general linear trans-
formations, which is the extension to Proposition 2. What these results mainly indicate is that out
of the three metrics, PMI has the most structure-preserving property, followed by PVI and then PSI.
This makes sense as PMI is the most general and only depends on the distribution and doesn’t rely
on anything else. Note that Ml is invariant to homeomorphisms as well, but the invariance property
for PMI is stronger as it states that the aggregate invariance for MI can be mirrored at the pointwise
level.

Remark 8. Note that PSI need not be invariant to both general linear transformations and home-
omorphisms. To see why, just consider a simple case where T represents general linear transfor-
mations which scale each dimension of the input separately. Then, a sphere in the original domain
of the distribution P gets transformed into an ellipse in the domain of the distribution T P. As PSI
uses a uniform distribution over all projections over the sphere, we cannot say with certainty that
the PSI in the new domain of T P will be preserved, because it will prefer some directions more over
others. To see this, consider a specific case of T where one of the dimensions is scaled significantly
more than the rest, thereby resulting in a ellipse that is very flat. In that case, most projections will
contain more of that dimension, and we cannot say that PSI will be surely preserved.

Remark 9. The classifier features, after undergoing computation over any number of layers (with
non-linear activations) will indeed not be invertible. However, our result is intended to apply to the
case where the features at a certain layer turn out to be transformed versions of features at that
same layer, from the same network, in another iteration of training. This is likely to happen because
of random weight initializations, and the features at a certain layer T can very well be represented
as WT' where T represents the feature at the same layer after a different initialization and W is an
invertible matrix. As fundamentally, all versions of T' here carry the same information, the pointwise
measures between all versions of T' and the output labels must not change. This observation then
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includes the rotational and random matrix transformations. For more general invertible transforma-
tions, we may or may not want the pointwise measures to be invariant, as although the dependency
between T and Y is unchanged in terms of PMI, the level of “non-linearity” in the relationship
between T and Y will often be indicative of the network’s confidence in estimating the true Y from
T. So, the fact that PMI is invariant to a much larger degree of non-linear homeomorphisms may
not always be advantageous, which we indeed see in our experiments.

B.2 GEOMETRIC PROPERTIES

Proof of Proposition 4

Proposition 4 (PMI and sample-wise margin). Let z,y ~ Pxy and Y € {0,1} such that
P(X|Y = 0) and P(X|Y = 1) are non-overlapping and P(Y = 0) = P(Y = 1) = 0.5.
Then, we have that pmi(z;y) = 1.

Proof. Since P(X|Y = 0) and P(X|Y = 1) are non-overlapping, for a certain sampled y, we will
have p(z|y) = 1 and p(x|y = 1 — y) = 0. Thus, we have:
pely) _ o, p(zly)

p(x) 0.5 (p(xly = 0) + p(aly = 1))

pmi(z;y) = log, =log,2 =1

O

Remark 10 (PMI and sample-wise margin). Note that the above result implies that when the
distributions P(X|Y = 0) and P(X|Y = 1) are non-overlapping, then pmi(x;y) is always 1
irrespective of the distance of x from the decision boundary. Thus, in this case, sample-wise margin
does not affect the PMI at all.

Proof of Theorem 1

Theorem 1 (PSI and sample-wise margin and ID). Given x,y ~ Pxy with Y € {0,1}, and
assuming y = 0 without loss of generality, we consider two non-overlapping spheres S1 and Sa
with radii Ry and R, and centers Cy and Cy such that x € S,. Here, the sample-wise margin,
denoted by d(x, S3), refers to the distance between x and the surface of Sa. The subspace intrinsic
dimensionality of P(X) is denoted by Kp. Let {0Tz|S2} = {07z : © € Sy} represent the set of
points in the real line of the 0 projection of Sa. Let € = maxg , P(0Tzly=1,r e R—{0Tz:z €
So}), where {07z : x € Sy}. We also define the following two quantities:

max — GT =1 QT =0 min — i 0T =0).
p max { afrmlggzp( zly = 1), Jnax p(@ zly=0)p, p ,min p(0" x|y = 0)
Then, we have the following lower bound:
. Pmi P Kp—11
psi(x;y) > log ﬁ + <1 + log pm;mie) B (a(w,52),R2) <2, 2> ; @7

where B.(a,b) denotes the regularized incomplete beta function (Oldham et al., 2008), and

1(0,0) = 5% (2 - 3t3)

Proof. The proof follows from the proof elements of Theorem 1 and 2 of Wongso et al. (2023a),
and Theorem 1 of Wongso et al. (2023b). First, using the proof of Theorem 1 of Wongso et al.
(2023a), it follows that Pr(07z € {07x|S2}z) = By(a(,s5), k) (2572). We arrive at this result
by considering two spheres in the context of Theorem 1 of Wongso et al. (2023a), .S} being a zero-

radius sphere centered at x, and S}, being the same as S5 here.

Given that y = 0, we then can write:

. p(y = 0[6"x)
si(x;y) = Ey |log ————= 28)
psi(z;y) o |log oy = 0) (
_ bl T _ ply = 06" x)
=Pr(0" = € {07 2[S2}|7) - Eg.grre (97|55} [bg =0
= 0|7
+Pr(07x ¢ {07 x|52}|2) - Eg.grog o7 a5y} [105% W] (29)
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When 0Tz ¢ {072|S>}, note that Sa does not play a role in estimating the probabilities. In this
cases, we have:

P(OTz|y = 0) Pmin
—0/§7z) = 2
Py =007) = oy = 0) + p8Taly = 1) = puin + ¢

The € term is a consequence of the fact that only the probability outside the set {67 z|S2} contributes
to p(8Tz|y = 1) in this case.
When 07z € {§T2|S2}, both S; and S, will contribute to estimating the probabilities. In this case,
we have: .
p(9 x‘y = 0) Pmin
ply=00"z) = >
=00 = S @Taly = 0) + 2@ aly = 1)~ 2

This, combined with the fact that p(y = 0) = p(y = 1) = 0.5 and Pr(07x € {07 x|Sy}|x) =
B»y(d(x,SQ),RQ) (%), then yields:

. Pmin d:n - 1)

si(z;y) > | 1+1o B ). Ra 30
psi(z;y) ( gpmin+€) (d(x,55),Rz) ( 5 (30

Pmin d; —1
+ log (1 — By(d(x,82),Rr2) ( )) G

Pmax 2
Pmin Pmax dL -1 1

= log — 1+log—— | B _ = 32
og - + ( + log i +€> (d(2,52),Ra) ( 5 ,2> (32)

Furthermore, given that all of P(X) lies within a subspace of dimensionality K p, we can convert
our analysis into a space of dimensionality K p instead, as implied from Theorem 2 of Wongso et al.
(2023a). Note that in doing so, the distances do not change, and the measures €, pmax, Pmin all stay
the same, because the dimensionality of the null-space within the projections has zero measure. This
yields the final result:

psi(;y) > log Tmn 4 (1 + log pm”) B (d(z,85),R2) < (33)

'max Pmin + €

Kp—-11
2 '2)7

O

Remark 11 (On the lower bound of PSI). Note that when x is further away from Ss, i.e. a
larger sample-wise margin, it leads to a larger lower bound on the PSI. Thus, in this case, PSI will
likely be larger. This generalizes the result in Wongso et al. (2023b), which was only for symmetric
non-overlapping distributions P(X|Y = 0) and P(X|Y = 1). As Theorem I shows, PSI can be
sensitive to both soft and hard margins. Furthermore, in three scenarios we expect the bound to be
tight. (i) For distributions where € is small, and paz >> Dmin. (ii) When the radius Rs is large,
or the distance d(x,S3) is large. (iii) When the intrinsic dimensionality Kp is small. Thus, for
high-dimensional data, if it lies on a low dimensional manifold, we will get a significantly tighter
result. Furthermore, we note that none of the terms Pmin, Pmaz, €, a2, Kp are dependent on the
sample-wise margin d(x, S2). Thus, the only term affected by sample-wise margin is the regularized
incomplete beta function B.(4(z,,),R,) (%, %) Therefore, our hypothesis that the lower bound
of psi(x;y) increases as the sample-wise margin increases is valid.

Remark 12 (On the sample-wise margin definition in Theorem 1). Note that the definition of
sample-wise margin here d(x, So) converges to the classical definition of margin w.r.t a linear deci-
sion boundary when Ry — 0.

Remark 13 (On the choice of S, S2, and €). As mentioned in the main paper, here we provide
some more context to the choice of the spheres S1 and Sa, and the nature of e. Note that the choice
of Sp does not affect the result much, as the only main constraint for Sy is that x must be contained
within it. As such, the radius Ry also does not directly impact the result. However, Sy should be
ideally chosen such that it contains as much of the distribution P(X|Y = 1). To see this, we mainly
look at how the choice of Sy impacts €. Note that if € is very large, such that Pya; < Dmin + €, then
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the dependence on sample-wise margin reverses (less margin leads to more psi). To avoid this, we
can always choose Sa such that € is small. Let So be chosen such that p(x € Saly = 1) = p.
Furthermore, let us assume that there is another bigger sphere Ss such that Ss is contained in Ss,
such that p(x € Ssly = 1) = 1. Let the radius of Ss be R3. Then, we can approximate € as
(1 —p)/(2(Rs — R2)). This is because the projection of Sz will have a length of 2Rs and similarly
for Ss. Thus, if we choose So such that p is made arbitrarily close to 1, we can make € arbitrarily
close to zero. However, do note that although this can be done when the distributions P(X|Y = 0)
and P(X|Y = 1) have less overlap, for the case where P(X|Y = 0) and P(X|Y = 1) are
highly overlapping, this may not be possible. As in most of our experiments x is taken from the
penultimate layer of neural networks which have separable features, the assumption will hold with
high probability.

Remark 14. (Regarding sensitivity to hard margins) When P(X|Y = 0) and P(X|Y = 1) are
clearly separated, one should ideally have maximum confidence estimates everywhere. But the fact
that we do not know the ground truth distribution P(X,Y) implies that even when the estimate
of P, denoted by Q(X,Y), from the training data, is perfectly separated, the separation of the
true unknown P(X,Y") will be most likely smaller with potential overlap. This is because Q(X,Y)
clearly has a significant chance of overfitting the true distributions, as the objective of the classifier is
always to separate the training feature distributions anyway. Due to this potential overestimation of
the real margin, encoding additional geometric information about Q(X,Y), such as the hard margin
involved in the perfect separation, can inform about the probability of P(X|Y = 0) and P(X|Y =
1) being perfectly separated as well. If Q(X,Y") has a very small hard margin, then it is possible
that P(X,Y") ends up with overlapping class-wise feature distributions, and if it has a very large
hard margin, then the opposite is likely. Lastly, correlation between the hard margin between the
class-wise feature distributions and generalization has indeed been observed in literature (Grgnlund
et al., 2020), showcasing the significance of this issue.

Proof of Proposition 5

Proposition 5 (PVI and sample-wise margin). We are given a neural network with function f :
R? — R2 for classifying points X into two labels Y € {0,1}, and we are given that P(Y =
0) = P(Y = 1) = 0.5. We assume that the final outputs of f are passed through a softmax
operator with temperature T = 1, to yield the output softmax(f(X)). We are given an instance
(z,y) ~ P(X,Y). Given x as the input, we define margin T as in Vemuri (2020), where

_ f(x)y — f(l’)l—y
T Ve U @)y) = Valf @)1yl 4

M = max,{[[Va(f@))ILIVa(F@hy)l}. then we have: pui(e — y) < 1 -
log (1 + e’QMT).

T

Proof. As we consider the function outputs before the softmax here, we re-represent the two terms
of PVL The first term of PVI, is now represented as — log softmaz(f)[@](y), which will be equal
to 1, as the neural network can simply learn the biases of the last layer and set them such that
softmax(f)[@](y) = softmax(f)[2](1 — y) = 0.5. Note that, as 7 = ”vw(ff(m)y_f(m)l‘y

@)=V (f@)i—)l2
and M = max, {|Va(f(2)y)], [V (f(2)1-y)
flz)(X = y) = flal(y) <V (2M? + 2M?)7 = 2M 7 (35)

Like before, let f' = argmingcy, E(x y)wpy, [—10gg[X](Y)], denote the trained neural net-
work that estimates conditional V-entropy. Now, the second term for PVI will be represented as
log softmax(f”)[x](y). Then, given z,y ~ Pxy, we have:

}, we can write

Fl=l(y)
, B e
log (softmax(f")[z](y)) = log (e P 1o f,[w](l_y)> (36)
1
=log (ef/[m](l_y)—f’[m](y) n 1) 7)
< —log (14 2M7) (33)
Then, the result direct follows from the expression of PVI. O
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Remark 15 (On PVI and sample-wise margin). As the above result shows, PVI can indeed be
sensitive to the sample-wise margin, and thus datapoints x which are near to the decision boundary
can be expected to have a lower PVI and vice versa. However, the raw PVI values may not be
very sensitive to margin. For T >> 1, we can approximate pvi(z — y) < 1 — 6_4M2T, which
converges to 1 quickly as T increases and the differences become smaller for larger T. Thus, if one
were to replace the PVI values by their relative rank, we could potentially see a higher correlation.
As our experiments use the pointwise measures to rank confidence scores relatively among samples,
samples with larger PVI will likely correspond to the samples with larger sample-wise margins.

B.3 CONVERGENCE RATES

We note that the PMI convergence rates will depend on the choice of probability estimator, as dif-
ferent estimators give different convergence rates. Here, we mainly focus on the Kernel Density
Estimator (KDE) for estimating the densities p(z|y) and p(z). We consider the case of binary clas-
sification, thus, Y € {0, 1}. For the KDE estimator studied in Jiang (2017), we have the following
convergence bound for PMI.

Proposition 6 (PMI convergence rate). Let P(X) be a-Holder continuous and let (x,y) ~ Pxy

where X € R% and Y € {0,1}. Let pmi,, represent the KDE estimate of PMI using n samples.
Assuming min {P(Y = 0), P(Y = 1)} # 0 when the probabilities are estimated on the training
data, for large enough n, we can bound the estimation error as

<o e 39
= (min{p<x>,p<x|y>}> &9

pmi(x;y) — pmi,,

In the following result, we provide convergence rate for PSI, when the KDE approach (Jiang, 2017)
is used to estimate p(#'z) and p(67 x|y).

Proposition 7 (PSI convergence rate). Let P(67 X) be a-Holder continuous for all  and let
(z,y) ~ Pxy where X € R% and Y € {0,1}. Let psi
PSI using n samples and m projections. Furthermore, let ming pmi(0Tz;y) > p. Assuming
min {P(Y =0),P(Y = 1)} # 0 when the probabilities are estimated on the training data, for
large enough n, we can bound the estimation error as

E . 1— p o n_o‘/(2a+1) 40
o <
Y Hpsz(m,y) pSl"’mH - 2ym * (ming min {p(HTx),p(HTazy)}> (40)

For PVI, we have the following bound on the expected deviation of the PVI estimates.

Theorem 2 (PVI convergence rate). Given (x,y) ~ Pxy where X € R% and Y € {0, 1}, we as-
sume that P(Y = 0) = P(Y = 1) = 0.5. Assume V represents the set of all possible functions mod-
elled by a neural network having some fixed architecture. Assume Vf € V, log f[z](y) € [-B, B].
Also, let f* = argmin ¢, Ex y [~ log f[X]|(Y)] represent the ground truth function for estimating

represent the KDE estimate of

n,m

conditional V-entropy, and | represent the trained function given n datapoints (21,Y1), -, (Tn,Yn)
sampled from P%. Let M = max{var(f*[z](y)),var(f[z](y))} where var denotes the vari-

ance. Let pvi,, represent the PVI estimated using this neural network with n samples. Then, for any
0 € (0,0.5), with probability p > 1 — 26, we have

} < 2R, (Gv) + 2VM + 2B 21%(1/5), (41)

Ex.y Hpvi(l’ — y) — pui,,

where the function family Gy, = {glg(z,y) = log f[z](y), f € V} and R, denotes the Rademacher
complexity with n sampled points.

Proof of Proposition 6

Proposition 8 (PMI convergence rate). Let P(X) be a-Holder continuous and let (x,y) ~ Pxy

where X € R% andY € {0,1}. Let p/n?zn represent the KDE estimate of PMI using n samples.
Then for large enough n, we can bound the estimation error as

—a/(2a+dy)
<0 ( " ) (42)

pmi(z;y) — pmi, min {p(z), p(z|y)}
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Proof. For simplicity of notation, we represent all estimated probability terms by 13”, where n rep-
resents the number of samples used to estimate the term. We have:

: — P(zly) Py(zly)
mi(x;y) — pmi,| = |lo - = (43)
pmi(z;y) — p & ) B ()
< ‘log P(z|y) — log Ign(x|y)‘ + ’log P(x) — logﬁn(az)‘ (44)
< sup |log P(z|y) — log ﬁn(x|y)’ + sup |log P(x) — log ﬁn(gc)‘ (45)
rER4 rz€R4

Now, from Jiang (2017), we have the uniform bounds on ]3” () in Theorem 2, which yields:
sup |P(x) — ﬁn(m)| <0 (nﬁ> (46)
R4

Note that we can apply these bounds to P(z|y) as well, and in that case the sample complex-
ity changes from n to min { P(Y = 0), P(Y = 1)} X n, because the number of samples that now
controls the convergence rate is reduced as these are class-wise distributions. In the case when
min {P(Y = 0), P(Y = 1)} # 0, note that this keeps the final convergence order unchanged, as it
adds a fixed multiplicative term. As min {P(Y = 0), P(Y = 1)} # 0 is assumed in the problem,
we can directly apply the results from Jiang (2017) for P(x|y) as well.

With this, we use the expansion of log to write:

log P(z) — log ﬁn(x) = |log ]ID;((;)) = |log (1 + Pn(x])j(—x)P(x)> ‘ 47
[P - P@)| 1|Pw) - P@)| | 1|Bw) - Pla)
- P(x) 2 P(z) 3 P(z)
(48)
o | Pale) = P@)| 1| Pu(e) = Px)| 1| Pu() = P(x)
- P(z) 2 P(x) 3 P(z)
(49)
nfa/(QoHrd) 1 n72a/(2a+d) 1 n73a/(2a+d)
SO( p(@) )20( p(a)? >+3O< p(x)? )
(50)
nfa/(2oz+d)
<o(*5) o

Here we assume that n is large enough, such that the rest of the terms are insignificant compared to
the first term. Combining this with (45), we have the result.

O

Proof of Proposition 7

Proposition 9 (PSI convergence rate). Let P(07X) be a-Holder continuous for all 6 and let
(z,y) ~ Pxy where X € R% andY € {0,1}. Let psi,,,, represent the KDE estimate of PSI

using n samples and m projections. Furthermore, let ming pmi (67 x;y) > p. Then for large
enough n, we can bound the estimation error as

n,m

—a/(2a+1)
“ ) (52)

, —~ 1—p
E ‘ 1Y) — ‘ < —
XY [psz(x Y) = PSinm } - 2y/m +0 (Hllng min {p(67z), p(0Tx|y)}
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Proof. We apply the triangle inequality, similar to Goldfeld & Greenewald (2021) (Appendix A.4),
to obtain:

m

. _ . 1 o m o _
pSZ(fC;y)—pSZn,m‘ < pSZ(w;y)—E;pmzw zy)| + Z;me(G T3Y) = psiy,,|  (53)
1= 1=

(54)

Now, as 0; are i.i.d, and PSI(z;y) is essentially equal to >, PM1(07z;y) as m — oo, we can
use a variance based bound to obtain:

_ 1 & ) var(pmi(0Tz;y))  1—p
E 5 y) — — To; < \/ 2 <
psi(z;y) — — ;pmz(e ) 1 < - NG (55)
Next, we have that
E||> " pmi(0"z;y) - psi, ,, ] <) E Hpmi(OTw; y) — pmi,, (07 z; y) H (56)
1=1 i=1
<supE Hpmi(GTm; y) — pmi,, (0" x;y) H (57)
0
We then apply the previous result (Proposition 6), to obtain:
E o7 o, (67 0 noo/ e 58
Stglp Hpmz( ziy) = pmiy (6 y)H - (ming min {p(GTx),p(QTxy)}) (58)
nfa/(2oz+1)
=0 () (59)
Pmin
This completes the proof. O

Remark 16. The above result provides convergence bounds for the KDE-based PSI estimator, pro-
viding guarantees as a function of the number of projections m and the number of datapoints n. The
result makes use of the uniform convergence bounds for the KDE-based density estimator provided
in Jiang (2017) The convergence rates would be tighter for larger values of o, and larger values of
DPmin. Thus, we note that the convergence can be slower for datapoints x for which P,y is small,
which will be true for datapoints in the edge of the distribution P(X ). More results are provided in
the Appendix that explore these cases.

Remark 17. Note that when oo — o0, we obtain the same rate of convergence as SMI itself, which is
O(m71/2 + n71/2) Goldfeld & Greenewald (2021). Also, note that PSI converges at a much faster
rate than PMI, especially when considering data of large dimensionality d, as the convergence rate
for PMI will be O(n‘a/@a"‘d)), which follows from Theorem 2 and remark 8 in Jiang (2017).

Proof of Theorem 2

Theorem 3 (PVI convergence rate). Given (x,y) ~ Pxy where X € R% andY € {0, 1}, we as-
sume that P(Y = 0) = P(Y = 1) = 0.5. Assume V) represents the set of all possible functions mod-
elled by a neural network having some fixed architecture. Assume Vf € V, log f[z](y) € [-B, B].
Also, let f* = argmin ¢y, Ex y[—log f[X]|(Y')] represent the ground truth function for estimating

conditional V-entropy, and [ represent the trained function given n datapoints (x1,y1), ..., (Tn, Yn)

o~

sampled from P%y.. Let M = max{var(f*[z](y)),var(f|z](y))} where var denotes the vari-

ance. Let pvi,, represent the PVI estimated using this neural network with n samples. Then, for any
d € (0,0.5), with probability p > 1 — 26, we have

Exy [pvi(:z: S y) — poi, ] < 2R, (Gv) + 2V M + 2B 21%(1/6), (60)

where the function family Gy = {g|g(z,y) = log f[z](y), f € V} and R,, denotes the Rademacher
complexity with n sampled points.
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Proof. The result is a consequence of the generalization bound for V-information proposed in Xu
et al. (2020) (Lemma 3 of their Appendix). First, note that we can express PVI(z — y) = In/(X —
Y') + €, where ¢ is a random variable, and similarly for p/v\z(z — y). Also, note that as f* and f are
neural networks, the first term in the estimation of PVI will be fixed to 1, as the network can simply

assign biases to the last layer such that f*[@](y) = 0.5, and similarly for f as the training set is
balanced. In that case, we can write:

Ep,, Hpvi(x Sy) — poi(z — y)H —Ep,, HIV(X S Y) e —D(X 5 Y) e } ©61)
<Ep,, HIV(X SY) fIAV(X%Y)H (62)

+ E[le1|] + E[|e2]
< )IV(X ~Y) —fv(X—>Y)‘ + 2V, 63)

where the last step follows from noting that the absolute difference between the true and estimated
V-information doesn’t depend on the individual instances, and that the L1-norm is bounded using
the variance via the application of the Cauchy-Schwarz inequality. Next, we directly apply Lemma
3 of Xu et al. (2020), after the additional observation that in this case Hy(Y) = Hy(Y). We then
have, with probability p > 1 — 24,

Io(X = V) = (X = V) gmn(gv)wm/m%“/é) (64)

Applying this to (63) yields the result. O

Remark 18. We note that the result provides a bound on the average error w.r.t the PVI estimation
over datapoints, and thus are not uniform convergence bounds. Next, we also note that the result
depends on the upper bound on the variance of the neural networks (M), which is not trivial to
bound. However, overall, the convergence result for PVI still shows us a few important differences
w.r.t the convergence bounds for PSI and PMI. First, we note that here, the convergence depends
heavily on the choice of V. Choosing very deep and complex neural networks for estimating PVI
will lead to a large Rademacher complexity R, (Gy), which will lead to slower convergence. Also,
ideally, we want networks to have a smaller variance over its output logits, which will eventually
also reduce the value of M and make convergence stronger. This can be achieved by regularizing
the outputs of the network to have low variance, and there are approaches in literature which have
studied this kind of regularization Littwin & Wolf (2018).

Remark 19 (Comparison of convergence rates). PSI is likely to have the best convergence rate
in practice given that the V-function class used in most cases are of significant complexity. Similar
to MI, PMI tends to suffer from slower convergence rates especially in high dimensions, due to the
exponentially large (in dimension) sample complexity. Ideally, we would prefer a measure with fast
convergence rate in order to obtain an accurate estimation of model confidence.

Table 4: Convergence Rate of PMI and PSI using KDE estimator (Averaged over 50 Runs with Standard
Deviations Included).

n 100 1,000 10,000 100,000 1,000,000
lpmi(z;y) — pmi,|  6.075+8.881 1.684+1.209 1268+0.714 0.911+0.473 0.809+0.301
n 100 200 1,000 2,000 10,000

Eqyllpsi(a;y) — psi, |] 0.292+£0.037 0.2824+0.036 0.270£0.034 0.270£0.027 0.269+0.028

Experiment on Convergence Rate: We conduct a simple experiment on Gaussian mixture distri-
butions to test the convergence rates of PMI and PSI. Based on the results shown in Table 4, we have
two main observations. First, we find that both the trends of PMI and PSI are within the predicted
convergence trends in Proposition 6 and Theorem 7 (we set « = 1 as our mixtures are Lipschitz
continuous). This re-affirms the convergence bounds being an upper bound on the observed trend
with the number of samples n. Second, we find that the predicted convergence rate for PMI and
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PSI are reflective of the theoretical results. Our theoretical results stated that PMI should converge
slowly compared to PSI, and the difference is amplified with greater dimensionality. After adjust-
ing for scale and bias (error as n goes to very large values), we find that the observed convergence
rate for PSI is indeed greater than that for PMI. Note that for PVI, we found it hard to estimate
Rademacher complexity measures for neural network classifiers, so we cannot directly test our con-
vergence rates.
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C BENCHMARKS & EXPERIMENTAL DETAILS

C.1 BENCHMARK DATASETS & ARCHITECTURES

Below is a list of the benchmark datasets we use in our experiments:

1. MNIST is a dataset comprising of 28 x28 grayscale images of handwritten digits from O to 9.

2. Fashion MINIST is a dataset comprising of 28 x28 grayscale images of fashion products from
10 classes: T-shirt, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, ankle boot.

3. STL-10 is a subset of the ImageNet dataset, consisting of 96x96 color images from 10 classes:
airplane, bird, car, cat, deer, dog, horse, monkey, ship, truck. It was primarily developed for
unsupervised learning, and thus most of the samples are unlabelled.

4. CIFAR-10 is a dataset consisting of 32x32 color images from 10 classes: airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck.

Table 5: Overview of the benchmark datasets. Description: #Class: number of classes, #Train: number of
training samples, #Validation: number of validation samples, #Test: number of test samples, Size: size of
images used.

Dataset #Class #Train #Validation #Test Size

MNIST 10 50,000 9,000 10,000 28x28
Fashion MNIST 10 40,000 9,000 10,000 28x28
STL-10 10 4,250 750 8,000 96x96
CIFAR-10 10 42,500 7,500 10,000 96x96

All of these datasets are publicly accessible through the TensorFlow Datasets catalog at https:
//tensorflow.org/datasets/catalog/overview. More details on the training-
validation-test split are reported in Table 5. For STL-10 and CIFAR-10, we resize the images to
224 x224.

Table 6: The architecture of the basic CNN.

Layer Type Parameters

Convolutional 32 filters, kernel _size=3x 3, strides=1, padding=same, ReLLU
Convolutional 32 filters, kernel size=3 x 3, strides=1, padding=same, ReLU
Max Pooling pool_size=2x2

Dropout rate=0.3

Convolutional 64 filters, kernel _size=3 x 3, strides=1, padding=same, ReLU
Convolutional 64 filters, kernel _size=3 x 3, strides=1, padding=same, ReLU

Max Pooling pool_size=2x2

Dropout rate=0.3

Convolutional 128 filters, kernel_size=3x 3, strides=1, padding=same, ReLU
Convolutional 128 filters, kernel_size=3x 3, strides=1, padding=same, ReLLU
Max Pooling pool_size=2x2

Dropout rate=0.3

Fully-Connected 128 units, ReLU
Fully-Connected K units (where K is the number of classes), softmax

Table 7: The top layers of the benchmark model’s architecture.

Layer Type Parameters

Base Network Weights are pre-trained on ImageNet dataset
Fully-Connected 256 units, ReLU

Dropout rate=0.3

Fully-Connected 128 units, ReLU
Fully-Connected K units (where K is the number of classes), softmax

Below is a list of neural network architectures that we use in our experiments:
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1. Multi-layer Perceptron (MLP): We implemented a simple MLP, consisting of three hidden
layers with 512 units and ReLU activation each.

2. Convolutional Neural Network (CNN): We implemented a simple CNN with a detailed archi-
tecture as illustrated in Table 6. We refer to this as the Basic CNN.

3. VGG16: We loaded the base model of VGG16 from Tensorflow and excluded the three fully-
connected layers at the top of the network.

4. ResNet50: We loaded the base model of ResNet50V2 from Tensorflow and excluded the three
fully-connected layers at the top of the network.

For all the pre-trained networks, we incorporated four new layers on top of the base network, as
detailed in Table 7. All the pre-trained network modules are publicly accessible through the Tensor-
flow Keras Applications catalog at https://tensorflow.org/api_docs/python/tf/
keras/applications. For VGG16 and ResNet50, we train all the parameters.

C.2 HYPERPARAMETERS

We report the hyperparameters for training the network in Table 8. All experiments were performed
using a single NVIDIA A100 (80GB SXM) GPU.

Table 8: Training hyperparameters for the different model-dataset pairs. Additional description: init-lr: initial
learning rate; Ir-decay: whether learning rate decay is used.

MODEL,DATASET optimizer init-Ir batch size epochs pre-trained
MLP, MNIST Adam 0.001 512 100 No
BASIC CNN, FASHION MNIST Adam 0.001 512 300 No
VGG16, STL-10 SGD 0.005 128 100 No
RESNET50, CIFAR-10 SGD 0.005 128 50 Yes

We report the classification errors for the different model-dataset pairs in our experiments in Table
9.

Table 9: Train, Validation and Test Classification Error in Percentage for the Different Model-Dataset Pairs
(Averaged over 5 Runs with Standard Deviations Included)

MODEL,DATASET Train Error  Validation Error Test Error
MLP, MNIST 0.00£0.00 1.5640.04 1.5340.03
BASIC CNN, FASHION MNIST | 0.0140.01 6.21+0.09 6.52+0.19
VGG16, STL-10 0.00 +0.00 10.5340.33 10.21+£0.16
RESNET50, CIFAR-10 0.1240.03 13.494+0.41 13.7240.45

C.3 DETAILS FOR EXPERIMENTS IN MAIN PAPER

Below, we provide more details on the experiments presented in the main paper.

C.3.1 DETAILS FOR EXPERIMENT IN SECTION 4.1 (FAILURE PREDICTION)

In this experiment, the goal is to compare the effectiveness of the three PI measures for misclassi-
fication detection and selective prediction. We formulate the problem as a binary classification task
where we have a binary failure label:

yr =1y #9) (65)

In other words, we assign label 1 for misclassified samples and O for correctly classified samples.
Let c be the confidence scores quantified by different approaches. For a threshold value 7, we can
compute:

TP (7) = Z(l —yfi) - Lle>7) FPj(7) = ny,i 1(c>T) (66)

N
FNs(1) =Y (1—ypi) 1(e<T) TN (7) :ny,i-n(c<r) (67)

M=

i=1
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From these, we can compute the following:

TP
Sensitivity ;(7) = ™,(7) i(lzl)\lf o (68)
TP
Precisiony(7) = () i(?Pf o (69)
_ FP;(7)
FPR,(7) = TN, (7 1 70, () 70
(71)

In misclassification detection, the two commonly used metrics are AUROC (Area under Receiver
Operating Curve) and AUPRC (Area under Precision-Recall Curve) to evaluate performance on a
multi-threshold list {7 }7_, of length 7. The AUROC is defined as:

T . .
Sensitivity (7 ) + Sensitivity , (71—
AUROC; = Z(FPRj'(Tt) — FPRf(7y_1)) - ( Y (7e) : Y4 (Te-1)) (72)
t=1
T N N
-y YimUpi- (Mezm) —ezm)) Y (L—ypa) - (Mezm) +1(c271))
= N N
t=1 Zi:1 Yr,i 2. Zi:l(l - yf,i)
(73)
The AUPRC is defined as:
T
AUPRCf qyccess = Z(Sensitivity f(Tt) + Sensitivity f(Tt_l)) - Precision f(7;) (74)

_ i Y (=) - (Le2m) —Le= 7)) Y (1= ypa) - Le> )

t=1 21:1(1 - yf,i) 21121 I(c > )
(75)

AUPRC is more informative than AUROC when there is a significant difference between the positive
and negative class base rates. However, AUPRC is heavily influenced by the base rate of the positive
class. Therefore, as suggested by (Hendrycks & Gimpel, 2017), we present two types of AUPRC
results: AUPRC  quccess, Where the success class is treated as positive, and AUPRC ¢ o, where the
error class is treated as positive. The error classes can be treated as positive by labeling them positive
and multiplying the confidence scores ¢ by -1. The AUPRC ., is defined as:

T
AUPRC pror = Z(Sensitivity (7¢) + Sensitivity ; (7¢—1)) - Precision (1) (76)
t=1
_y Ty (Me<n) “Me<no) Rty Me< )
- N ' N
t=1 2im1 Yt >z L <)

(77)

In selective prediction, given a threshold 7, we filter out the samples with confidence ¢ < 7, and
compute the performance on the remaining samples ¢ > 7. In this context, the risk is defined as the
error rate of the remaining samples after selection:

N
N oy d(e >

Risk(7) = 1 — Precisions(7) = Z’:kyf’ c27) (78)
Zi:1 ]1(0 > Tt)

Coverage is defined as the proportion of samples remaining after selection:

N
~ 1(c>
Coverage(r) = 2z Mezm) (79)
N
The most common metric used in selective prediction is the AURC (Area under Risk-Coverage

Curve) which evaluates performance on a multi-threshold list {7;}7_, of length 7. The AURC is
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defined as:

(Risk(7¢) + Risk(7—1))

AURC =
2

(80)

B

(Coverage(r;) — Coverage(ri—1)) -

o~
I
-

I
[M]=

N 2'21']\;1 (c>m) i 2'21]-\]:1 I(c > 71—1)
(81)

Zﬁﬂﬂc>ﬁ%—ﬂc>ﬁ1D.<ZZNMr Le>7) | Yiyyri-le>no1)

~
I
—

Next, we provide details on the benchmark methods against which we compare our methods. Let
z represent the logits of the network (output of the last layer before the softmax function). For K
number of classes, the softmax function o is defined as:

e’

op(z) = ——— (82)
Zf:l e’

where o (z) denotes the k-th element of o(z).

We define the maximum softmax probability (MSP), the softmax margin (SM), the max logit (ML),
the logits margin (LM), the negative entropy (NE), and the negative Gini (NG) as follows:

MSP(z) i= o;(2) (83)
SM(z) := oy(z) — ke%l/ak};y o1 (z) (84)
ML(z) := (85)
LM(z) := 25 — R B3X, 2k (86)

=Y on(z)log ok (z) (87)
key

=) on(z)?’ -1 (88)
key

where §j = arg maxyy, 2y, is the predicted label.

Other than ML and LM, we report the results with temperature scaling of the logits.

C.3.2 DETAILS FOR EXPERIMENT IN SECTION 4.2 (CONFIDENCE CALIBRATION)

In this experiment, the goal is to determine to what extent the confidence scores estimated by the
three PI measures reflect the true correctness likelihood (well-calibrated). A commonly used cal-
ibration metric is Expected Calibration Error (ECE) which bins the predictions in [0, 1] under M
equally-spaced intervals (we choose M = 10), and then averages the accuracy/confidence in each
bin. ECE is defined as follows:

o~ |Bo
ECE = Z %|aoc(Bm) — conf(B,,)| (89)
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D ADDITIONAL EXPERIMENTS

D.1 NORMALIZATION: EFFECTS OF SOFTMAX AND TEMPERATURE SCALING

Logits (Without Scaling) Logits (With Softmax Scaling) Logits (With Softmax + Temperature Scaling)
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Figure 2: The distributions of confidence values estimated using logits (figures a-c), PMI (figures
d-f), PSI (figures g-i), and PVI (figures j-1) for incorrect and correct test predictions (model: CNN,
dataset: Fashion MNIST). First column (left figures): raw values; Second column (middle figures):
with softmax scaling; Third column (right figures): with softmax and temperature scaling. The
respective AUROC (scaled by 100, higher is better) and AURC (scaled by 1000, lower is better) are
also reported.

In this section, we analyze the effects of softmax and temperature scaling on the raw (unnormalized)
confidence values. For a given vector of unnormalized confidence values 7 of length K (number of
classes), the softmax function o is given by:

() = Z’i—e (90)
j=1

where o (7) denotes the k-th element of o (7).
The softmax function with temperature scaling is:
ek /T

Zf:l e/t ov

Uk(T,T) =
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where T is the temperature parameter. By adjusting the temperature 7', we can control the sharpness
or smoothness of the resulting probability distribution. When 7' = 1, the temperature-scaled softmax
reduces to the standard softmax function. Since the same 7" is used for all classes, it does not change
the maximum of the softmax function, which means that the predictions of the network remain the
same. To obtain the optimal temperature for a trained network, we select the temperature from the
range 0.01, 0.02, ..., 4.99, 5.00 that maximizes the AURC on the validation dataset.

We compare the effects of softmax and temperature scaling for the four approaches (trained network
logits, PMI, PSI, and PVI). We show the results for CNN model with Fashion MNIST dataset in
Figure 2 The figure shows the violin plots of the confidence scores for wrong and correct predictions.
We also report the AUROC and AURC for each method in the respective figure.

Takeaway. Without any scaling, the raw confidence estimates can span a wide range of values, re-
sulting in a distribution that may be highly skewed or exhibit large variance, with significant overlap
between the distributions of wrong and correct predictions. Applying softmax normalizes the logits
into a probability distribution, which transforms the range of values and adjusts the distribution,
often leading to more concentrated confidence scores for correct predictions at high values, while
wrong predictions tend to have a broader distribution. This can help reduce the overlap between the
two distributions. Temperature scaling further increases this separation by either compressing the
confidence scores of correct predictions or broadening those of wrong predictions.

D.2 COMPARISON OF VARIOUS POINTWISE INFORMATION ESTIMATORS

In this section, we compare the different methods of estimating each PI measure to obtain the best
results. For comparison, we report the results for MLP trained with MNIST dataset as well as CNN
trained with Fashion MNIST dataset for 5 runs. The hyperparameters for the training are reported in
Appendix C.2 and the model classification errors are reported in Table 9. To show the improvement
of these estimators, we also include the results for softmax (without temperature scaling).

D.2.1 COMPARISON OF PMI ESTIMATORS

For this experiment, we consider two different types of critic design: joint critic and separable critic.
We also consider the three estimators: probabilistic classifier, density ratio fitting and variational JS
bound. More details on these critic designs and estimators can be found in Appendix A.3.1. We

first look at the convergence behaviour of these estimators by computing the I(T; )7) where 7T is
the penultimate layer for MLP model trained on MNIST dataset. We train each critic model for
100 epochs with batch size of 512 and Adam optimizer (with learning rate of 0.001). We present
the results (averaged over 5 runs) in Figure 3, with the shaded regions representing the standard
deviations. We observe that the probabilistic classifier estimator converges more slowly and exhibits
higher variance compared to the other two estimators. As a result, we exclude it from subsequent
comparisons.

We then evaluate the performance of confidence estimates returned by both the density ratio fitting
and variational JS bound estimators (using both joint and separable critics) on MLP and MNIST,
as well as CNN and Fashion MNIST. The confidence ranking metrics are AUROC; and AURC,
as discussed in Appendix C.3. In addition, we assess their performance based on whether softmax
scaling is used and whether confidence estimates are derived from the penultimate layer features or
output layer features (before the softmax function). We report the results in Table 10.

Takeaway. We observe that using the output layer features, rather than the penultimate layer fea-
tures, yields significantly better results. Additionally, applying softmax scaling enhances the per-
formance of the variational JS bound estimator but degrades the results for the density ratio fitting
estimator. Among the estimators, the variational JS bound estimator, combined with softmax scal-
ing, surpasses the density ratio fitting estimator. Regarding critic design, the separable critic slightly
outperforms the joint critic. We find that the best configuration includes using output layer features
with a separable critic and the variational JS bound estimator with softmax scaling, which we
adopt for all subsequent experiments.
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Figure 3: Estimation of I(T; Y) where T is the penultimate layer for the MLP model trained on
the MNIST dataset. Three estimators are considered: probabilistic classifier (blue line), density
ratio fitting (orange line), and variational JS bound (green line). Two critic designs are considered:
joint (left) and separable (right). Here, the epochs refer to the training of the critic, not the original
network.The shaded regions represent the standard deviations.

Table 10: Comparison of Different PMI Estimators (Averaged over 5 Runs with Standard Deviations Included).
The best results are highlighted in bold.

AUROC; x 10 1 AURC x 10° |

Critic, Estimator MLP, MNIST  CNN, F-MNIST  MLP, MNIST  CNN, F-MNIST

Without Softmax Scaling, Penultimate Layer
Joint Critic, Density Ratio Fitting 90.47£1.16 89.09+£0.96 2.54+£035 11.81+1.37
Joint Critic, Variational JS Bound 87.30+1.38 7853+ 1.16 3.58 +£0.51 25.89 £+ 3.77
Separable Critic, Density Ratio Fitting 78.51 +2.43 85.09+1.04 824+£1.73 16.94+1.61
Separable Critic, Variational JS Bound 76.45 4+ 3.08 85.56 £0.81 6.27+0.88  16.10+1.18
With Softmax Scaling, Penultimate Layer
Joint Critic, Density Ratio Fitting 89.35+£1.87 79.00£3.38 2.62+£0.66 22.14+3.93
Joint Critic, Variational JS Bound 85.51 £5.38 90.31+0.46 488+244 10.19+0.48
Separable Critic, Density Ratio Fitting 89.02+1.79 87.45+0.82 3.14£0.94 15.11+1.33
Separable Critic, Variational JS Bound 90.12 +1.44 91.67£0.28  2.55 +0.52 8.40 £ 0.16
Without Softmax Scaling, Output Layer
Joint Critic, Density Ratio Fitting 95.36 £0.38 91.49+£0.39 1.01+0.09 8.68 £0.44
Joint Critic, Variational JS Bound 91.63+0.62 87.39+£1.01 219+0.34 13.95+1.82
Separable Critic, Density Ratio Fitting 95.55 +0.59 86.65+0.61  1.03£0.20 14.55+0.93
Separable Critic, Variational JS Bound 92.95+1.94 88.22 £+ 0.62 1.57 £ 0.45 12.00 £ 0.81
With Softmax Scaling, Output Layer
Joint Critic, Density Ratio Fitting 93.32£1.42 87.37+1.25 1.441+£0.377 13.39+1.59
Joint Critic, Variational JS Bound 97.35+£0.36 91.54+0.22 0.57+0.08 8521043
Separable Critic, Density Ratio Fitting 97.13 £0.33 88.44+0.55 0.67+0.12 13.94+0.73
Separable Critic, Variational JS Bound 97.24 +£0.18 91.97+0.35 0.57+0.05 8.11+0.09

Softmax 95.11+£0.48 92.03+£0.23 1.38+0.16 8.75+£0.34

D.2.2 COMPARISON OF PSI ESTIMATORS

For this experiment, we consider the two methods: binning and Gaussian described in Section A.3.2.
First, we validate the accuracy of these estimators by comparing their estimates with those obtained
using the KSG estimator (Kraskov et al., 2004). Note that SMI is the average of PSI over all samples.
We compute the SMI between the penultimate layer and the predicted labels during training (100
epochs) for MLP model and MNIST validation dataset. We use 500 projections for both SMI and
PSI estimation and 20 bins for the binning method. The results are shown in Figure 4. We observed
that the SMI estimates derived from the PSI binning method align more closely with the direct SMI
estimates from the KSG estimator than those from the Gaussian method. However, both methods
exhibit the same overall trend.

We then evaluate the performance of confidence estimates returned by both the binning and Gaussian
estimators (with different number of projections m) on MLP and MNIST, as well as CNN and
Fashion MNIST. The confidence ranking metrics are AUROC; and AURC, as discussed in Appendix
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Figure 4: SMI between penultimate layer and predicted labels during training. The plot shows the
average SMI over 5 runs for three different estimation methods (KSG, PSI Bin, and PSI Gaussian)
across epochs. The shaded regions represent the 95% confidence intervals.

C.3. In addition, we assess their performance based on whether softmax scaling is used and whether
confidence estimates are derived from the penultimate layer features or output layer features (before
the softmax function). We report the results in Table 11.

Takeaway. We observe that using the output layer features, rather than the penultimate layer fea-
tures, yields significantly better results. We observe that the Gaussian method yields poor per-
formance for the CNN with Fashion MNIST case, but this could be remedied by a simple softmax
scaling. We also observe that increasing the number of projections m beyond 500 leads to little or no
improvement in the results. We find that the best configuration includes using output layer features
with the Gaussian estimator and softmax scaling, which we adopt for all subsequent experiments.

D.2.3 COMPARISON OF PVI ESTIMATORS

We evaluate the performance of confidence estimates returned by the various PVI estimation meth-
ods described in Section A.3.3 on MLP and MNIST, as well as CNN and Fashion MNIST. The
confidence ranking metrics are AUROC; and AURC, as discussed in Appendix C.3. In addition,
we also consider calibrating the softmax probabilities used to compute the PVI. Similar to PMI and
PSI, we assess if the performance improves with softmax scaling. We report the results in Table 11.

In addition, we assess their performance based on whether softmax scaling is used and whether the
associated probabilities are calibrated with temperature scaling before computing the PVI.

Takeaway. We find that calibrating the softmax probabilities before computing PVI, along with ap-
plying softmax scaling, significantly improves performance. The best result is achieved by “training
from scratch,” which means using another trained network with a different initialization. We use
this as the default estimator for PVI in all experiments.

D.3 SALIENCY MAPS

Goal: The goal of this experiment is compare the effectiveness of using PMI, PVI, and PSI to
generate saliency maps for the model’s predicted labels.

Methodology: We train VGG16 on CelebA dataset. As described above, we compute the PI mea-
sures between each feature fiber and the predicted label. We use the features of the last convolutional
layer in VGG16 which outputs a feature map of size 14x14. This yields a 2D map of PI values,
which is re-scaled to the original image size (224 x224), as shown in Figure 5. We also include
the saliency maps obtained using Grad-CAM. Similar to Grad-CAM, we apply a ReL.U function to
the raw PI values to retain only the features that positively influence the class of interest. Finally,
we use the average drop percentage in confidence scores as a metric to quantitatively compare the
saliency maps generated by the different measures (Chattopadhay et al. (2018)). To ensure a fair
comparison, we slightly modify the metric by evaluating the model on a masked image that includes
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Table 11: Comparison of Different PSI Estimators (Averaged over 5 Runs with Standard Deviations Included).
The best results are highlighted in bold.

AUROC; x 10% 1 AURC x 10% |

Estimator

MLP, MNIST

CNN, F-MNIST

MLP, MNIST

CNN, F-MNIST

Without Softmax Scaling, Penultimate Layer

Binning (m = 250) 96.85 + 0.25 85.82+0.33 0.63 = 0.06 12.78 £0.25
Binning (m = 500) 96.89 +0.12 86.13 +0.48 0.62 +0.03 12.55 £ 0.34
Binning (m = 750) 96.92 +0.18 86.11 £ 0.51 0.61 £0.04 12.56 £ 0.10
Binning (m = 1000) 96.90 +0.15 86.19 +0.39 0.62 +0.03 12.49 £0.25
Gaussian (m = 250) 96.38 + 0.40 81.74 £ 0.68 0.71 £ 0.09 16.20 £ 0.40
Gaussian (m = 500) 96.46 + 0.32 82.13 £ 0.87 0.69 £+ 0.07 15.90 £ 0.39
Gaussian (m = 750) 96.45 +0.25 82.12 4+ 0.89 0.69 £+ 0.05 15.87 £ 0.40
Gaussian (m = 1000)  96.43 £+ 0.28 82.21+0.72 0.70 £+ 0.06 15.80 £ 0.27
With Softmax Scaling, Penultimate Layer
Binning (m = 250) 96.08 £+ 0.54 88.11 £ 0.12 0.78 £0.14 10.94 £0.33
Binning (m = 500) 96.89 +0.12 88.34 +£0.26 0.73 £0.08 10.76 £ 0.34
Binning (m = 750) 96.28 £+ 0.26 88.35+0.30 0.73 £0.06 10.73 £0.19
Binning (m = 1000) 96.17 + 0.32 88.47+0.19 0.76 £ 0.08 10.65 £ 0.31
Gaussian (m = 250) 96.05 £+ 0.28 88.29 +0.22 0.79 £ 0.06 10.79 £0.34
Gaussian (m = 500) 95.95+0.16 88.23 +0.49 0.81 +£0.04 10.84 £ 0.39
Gaussian (m = 750) 96.00 = 0.21 88.45+0.35 0.81 +0.05 10.66 £ 0.26
Gaussian (m = 1000)  96.07 £ 0.18 88.46 +0.39 0.79 £ 0.03 10.65 £+ 0.34
Without Softmax Scaling, Output Layer
Binning (m = 250) 97.01+£0.11 8588+0.75 0.60£0.03 12.89+0.24
Binning (m = 500) 97.05+0.20 85.77+£0.68 0.59+0.05 13.00£0.25
Binning (m = 750) 97.05+0.13 8596+0.66 0.60+0.03 12.84+0.14
Binning (m = 1000) 97.06 £0.11 85.87+0.75 0.59+0.03 12.91+0.25
Gaussian (m = 250) 96.68 £+ 0.23 80.40 £ 1.02 0.66 £+ 0.05 17.62 £ 0.67
Gaussian (m = 500) 96.73 +0.30 80.38 +0.69 0.65 £+ 0.07 17.63 £ 0.58
Gaussian (m = 750) 96.72 4+ 0.26 80.55 £+ 0.62 0.65 + 0.06 17.46 £ 0.31
Gaussian (m = 1000)  96.71 £ 0.23 80.54 £+ 0.63 0.66 & 0.05 17.47 4+ 0.36
With Softmax Scaling, Output Layer

Binning (m = 250) 96.15 +0.43 85.96 £ 1.06 0.79+£0.11 13.31£0.84
Binning (m = 500) 96.24 + 0.52 85.89 £+ 0.86 0.76 £0.13 13.38 £0.67
Binning (m = 750) 96.31 +0.39 86.23 £ 0.85 0.75+0.10 13.10 £ 0.69
Binning (m = 1000) 96.31 +£0.41 86.12 +0.94 0.75+0.10 13.19 £0.70
Gaussian (m = 250) 96.58 £0.21 89.46+0.46 0.69 +0.05 9.97+0.23
Gaussian (m = 500) 96.61 +0.18 89.42+0.42 0.69+£0.04 10.00+0.25
Gaussian (m = 750) 96.59 £0.17 89.44+0.49 0.69+0.04 10.00+0.25
Gaussian (m = 1000) 96.62+0.22 89.36 £0.50 0.68+0.05 10.05+0.23
Softmax 95.11 +£0.48 92.03 £0.23 1.38+£0.16 8.75+£0.34

only a portion of the most salient pixels, as identified by each method. Specifically, we focus on the
10 most salient pixels out of the 196 pixels in the feature map. The result is shown in Table 13.

Results: We find that, interestingly, PSI outperforms all other measures. As shown in Figure 5,
PMI and PVI tend to overestimate the salient region, often capturing a large part of the face for
localized attributes such as ‘eyeglasses’ (Figure 5a) and ‘wearing_hat’ (Figure 5b). PSI is overall
more localized and captures the relevant attribute more accurately in each case (as shown in Table
13), even when compared to standard approaches such as Grad-CAM. For saliency maps, we reason
that two properties are most relevant: margin sensitivity and convergence. Convergence is crucial
because overestimation of pointwise measures can be particularly detrimental in this context, as
many patches may not relate to any output class - unlike in confidence estimation experiments.
Margin sensitivity is also important because it directly impacts the model’s ability to highlight the
most relevant features for prediction. Considering both aspects, PSI is more likely to perform well,
as observed in our empirical results.
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Table 12: Comparison of Different PVI Estimators (Averaged over 5 Runs with Standard Deviations Included).
The best results are highlighted in bold.

. AUROC; x 10% 1 AURC x 10° |
Estimator
MLP, MNIST CNN, F-MNIST MLP, MNIST CNN, F-MNIST
Uncalibrated, Without Softmax Scaling
No training 75.65 £1.93 83.11 £ 0.77 6.33 £ 0.56 22.16 £0.26
Training from scratch 82.79 £1.20 89.07 £ 0.06 4.52 £0.42 12.07 £ 0.48

Training MLP penultimate ~ 65.45 4+ 1.23 70.53 + 0.61 9.39+0.44  32.45+1.42
Uncalibrated, With Softmax Scaling

No training 95.12 +0.48 92.03 £ 0.23 1.38+0.16 8.75+£0.34

Training from scratch 95.85£0.43 92.75 £ 0.28 1.19+£0.14 8.24 £ 0.37

Training MLP penultimate ~ 88.31 4+ 1.37 85.20 £ 0.38 3.56 £ 0.45 19.51 + 0.44
Calibrated, Without Softmax Scaling

No training 88.13 +£0.79 92.37+£0.19 2.82+0.29 8.10£0.18

Training from scratch 90.76 = 1.06 93.28 £0.26 2.20£0.22 7.10+£0.20

Training MLP penultimate ~ 80.57 £+ 1.73 84.51 £0.31 5.09 £ 0.48 17.13 £0.55

Calibrated, With Softmax Scaling

No training 97.12 +0.23 92.68 +0.22 0.60 £+ 0.04 7.43£0.17
Training from scratch 9753+0.23 93.331+0.25 0.544+003 6.99+0.15
Training MLP penultimate ~ 96.84 4+ 0.27 91.82 £ 0.20 0.72 +0.06 8.29 +0.18
Softmax 95.11 £0.48 92.03 £0.23 1.38+£0.16 8.75+£0.34

Original Image Grad-CAM Saliency Map PMI Saliency Map PVI Saliency Map PSI Saliency Map

(a) Saliency maps for class ‘eyeglasses’

Grad-CAM Saliency Map PMI Saliency Map PVI Saliency Map PSI Saliency Map

(b) Saliency maps for class ‘wearing_hat’

Figure 5: Saliency maps for two classes (‘eyeglasses’ and ‘wearing_hat’) from CelebA dataset.

Table 13: Evaluation of Saliency Map (lower is better)

metric Grad-CAM  PMI PVI PSI
average drop % 81.81 87.44 86.26 76.43

43



	Introduction
	Information-Theoretic Measures
	Theoretical Properties
	Invariance Properties of PI measures
	Geometric Properties
	Theoretical Takeaways

	Experiments
	Failure Prediction
	Confidence Calibration

	Reflections
	Related Work & Information Measures Details
	Related Work
	General Properties of Information Measures and Their Pointwise Variants
	General Properties of MI and PMI
	General Properties of SMI and PSI
	General Properties of VI and PVI

	Pointwise Information Estimators
	PMI Estimators
	PSI Estimators
	PVI Estimators


	Theoretical Analysis & Proofs
	Invariance Properties
	Geometric Properties
	Convergence Rates

	Benchmarks & Experimental Details
	Benchmark Datasets & Architectures
	Hyperparameters
	Details for Experiments in Main Paper
	Details for Experiment in Section 4.1 (Failure Prediction)
	Details for Experiment in Section 4.2 (Confidence Calibration)


	Additional Experiments
	Normalization: Effects of Softmax and Temperature Scaling
	Comparison of Various Pointwise Information Estimators
	Comparison of PMI Estimators
	Comparison of PSI Estimators
	Comparison of PVI Estimators

	Saliency Maps


