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ABSTRACT

In recent years, open-world semi-supervised Learning has received tremendous
attention. This is largely due to the fact that unlabeled real-world data often en-
compasses unseen classes – those that are not represented in labeled datasets. Such
classes can adversely affect the performance of traditional semi-supervised learning
methods. The open-world semi-supervised learning algorithms are designed to
enable models to distinguish between both seen and unseen classes. However,
existing algorithms still suffer from the problem of insufficient classification of
unseen classes and may face the risk of representation collapse. In order to better
address the aforementioned issues, we propose a contrastive learning framework
called CONTROL that integrates three optimization objectives: nearest neighbor
contrastive learning, supervised contrastive learning, and unsupervised contrastive
learning. The significance of the framework is explained by theoretically proving
the optimization of contrastive learning at the feature level benefits unseen clas-
sification, and the uniformity mechanism in contrastive learning further helps to
prevent representation collapse. Serving as a unified and efficient framework, CON-
TROL is compatible with a broad range of existing open-world semi-supervised
learning algorithms. Through empirical studies, we highlight the superiority of
CONTROL over prevailing state-of-the-art open-world semi-supervised learning
algorithms. Remarkably, our method achieves significant improvement in both
unseen class classification and all class classification over previous methods on
both CIFAR and ImageNet datasets.

1 INTRODUCTION

With the development of deep learning (Goodfellow et al., 2016), numerous significant works have
been proposed in various fields such as natural language processing (Otter et al., 2020) and image
recognition (Rawat & Wang, 2017). However, these advancements rely on expensive and hard-to-
obtain labeled data. Therefore, the effective utilization of unlabeled data in semi-supervised learning
has received increasing attention.

Traditional semi-supervised learning assumes that labeled and unlabeled data follow the same
distribution. Nevertheless, maintaining this assumption is challenging in practical applications.
Consequently, open-world semi-supervised learning, which contemplates more realistic scenarios,
is currently gaining popularity. As shown in Figure 1, the major distinction between traditional
and open-world traditional semi-supervised learning is that open-world semi-supervised learning
incorporates unseen classes into consideration and emphasizes the classification of both known (seen)
and unknown (unseen) classes.

In real-world situations, there are often numerous new categories that arise or have not been timely
labeled by humans. As mentioned in (Cao et al., 2022), in the context of social media classification,
we aim to effectively categorize both known customer groups and newly emerging user groups.
Similarly, object recognition tasks in supermarkets encounter thousands of new items every day, and
promptly annotating these is financially taxing (Han et al., 2020). Therefore, the significance of
open-world semi-supervised learning becomes apparent.

The key to solving open world semi-supervised learning problem (Cao et al., 2022) lies in how to
ensure the model achieves satisfactory performance in classifying both seen and unseen classes. Since
seen classes can be learned directly and efficiently from labeled data while unseen classes can not, it
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Figure 1: Open-World SSL: the unseen classes present in unlabeled data (the samples in the red box )
do not appear in the labeled data, and the unlabeled data share the same distribution with the test data.
In the testing phase, both seen classes and unseen classes should be classified.

is important to prevent unseen class samples from being overfitted to seen classes. We feature out
that how to select unlabeled samples to obtain efficient seen and unseen clustering results becomes
the key to solving the problem. A mainstream approaches just like ORCA (Cao et al., 2022) and
NACH (Guo et al., 2022) aim at making the logits vector of each unlabeled sample and its nearest
neighbor as similar as possible, it is easy to see that these methods classify seen and unseen classes
by selecting pairs of plausible samples and we call them BCE-based methods since BCE loss is used
to optimize the logits similarity between chosen sample pairs. There are also other algorithms that
consider the similarity between all unlabeled samples and use all the similarity as a guide for further
optimization, and we call these other methods such as OpenLDN (Rizve et al., 2022a) and TRSSL
(Rizve et al., 2022b).

In open world semi-supervised learning problem, high quality chosen samples are utilized to give
the model the ability to classify both seen and unseen classes. The strategy for selecting the samples
is critical, we figure out that BCE-based methods can choose sample pairs in a more flexible way.
Taking NACH (Guo et al., 2022) as an example, the selection of which sample pairs need to be
pulled closer can be flexibly determined through the use of filter. Conversely, in OpenLDN(Rizve
et al., 2022a), the similarity function is honed by directly computing the MSE loss between feature
similarity of all sample pairs and their logits counterparts. However, not all the similarity of sample
pairs can efficiently guide the subsequent learning process since unseen class samples are prone to
be mislabeled as seen classes in initial training phases. Therefore, BCE-based methods are more
suitable for choosing high quality samples since these methods can choose samples pairs in a more
flexible way.

Figure 2: Ratio of seen-unseen pairs when NACH
combined or not combined with CONTROL.

However, despite the current flexibility demon-
strated by BCE-based methods in selecting sim-
ilar sample pairs, the ratio of seen-unseen pairs
(the most similar sample of an unlabeled unseen
classes data is from seen classes) in the chosen
sample pairs still remains high as shown in Fig-
ure 2. The reason is that current BCE-based
methods focus on pairwise clustering only at the
logits level which could lead to poor classifica-
tion performance of unseen classes. We notice
that whether pairs should be aligned at the logits
level depends on the similarity at the feature level. Therefore, we theoretically demonstrate that
optimizing at the feature level benefits pairwise clustering at the logits level. Additionally, it is
crucial to note that despite the presence of entropy loss regularization in the current open-world
semi-supervised learning algorithms, there still exists a risk of representation collapse for unseen
classes. Thus we introduce contrastive learning as a means to obtain superior representations for
open-world semi-supervised learning and further avoid the collapse of the unseen classes. We also
note that OpenCON (Sun & Li, 2022) proposed a paradigm that only utilizes contrastive learning loss
to address the open-world semi-supervised learning problem. However with this learning paradigm,
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existing losses widely used in semi-supervised learning (such as cross entropy loss, BCE loss) are
difficult to be directly combined with OpenCON since it only focus on the optimization of the
feature-level. In other word, it is incapable of sustaining continuous optimization of representations
during the process of semi-supervised learning. It could be regarded as providing a superior backbone
for existing open-world semi-supervised learning algorithms. Thus, a problem naturally arises:

Can we design a unified contrastive learning framework that can further gain performance
improvement specifically for open-world semi-supervised learning algorithms?

To tackle this challenge, we propose a supervised contrastive learning loss and a nearest neighbor
contrastive learning loss to enhance the classification of BCE loss. We also propose an unsupervised
contrastive learning loss as a consistency regularization to further avoid unseen class collapse. Our
framework is evaluated on various representative datasets. The whole framework achieves 6.4%
improvement in unseen classes classification and 2.1% improvement in all classes classification on
the CIFAR-100 dataset than the state-of-the-art method NACH (Guo et al., 2022).

To sum up, this paper makes the following three contributions:

• We proposed a simple and efficient CONTRastive learning framework for Open World
semi-supervised Learning CONTROL, which can be easily adapted to open-world semi-
supervised learning algorithms.

• We theoretically demonstrate that the proposed CONTROL can not only enhance the
classification of BCE loss but also avoid unseen classes collapse.

• Extensive experiments have demonstrated the effectiveness of the overall framework and its
individual components.

2 RELATED WORK

Traditional Semi-Supervised Learning (SSL). Traditional SSL assumes that labeled, unlabeled,
and test data are drawn from the same distribution. The mainstream of SSL algorithms can be broadly
classified into entropy minimization methods (Lee, 2013; Grandvalet & Bengio, 2004), consistency
regularization methods (Miyato et al., 2019; Sajjadi et al., 2016; Laine & Aila, 2017; Tarvainen &
Valpola, 2017), and hybrid methods (Sohn et al., 2020; Berthelot et al., 2019; 2020; Xu et al., 2021;
Zhang et al., 2021). However, traditional semi-supervised learning algorithms fail to address the open
world problem with numerous unseen classes that we aim to solve.

Open world Semi-Supervised Learning. This paradigm is to address such a problem: in the training
phase, i.e., unseen classes appear in the unlabeled data. While during the testing phase, samples from
unseen classes could also appear. Open world semi-supervised learning algorithms aim at classifying
both seen classes and unseen classes. Existing methods can be generally categorized into two groups:
BCE-based methods, including (Cao et al., 2022) and (Guo et al., 2022); and other methods, such
as (Rizve et al., 2022a) and (Rizve et al., 2022b). As mentioned earlier, optimization at the feature
level is crucial for open world semi-supervised learning algorithms. However, this aspect has not
received sufficient attention, which is also the biggest distinction between our proposed framework
and previous algorithms.

Contrastive Learning for Semi-Supervised Learning. Semi-supervised learning algorithms com-
bined with contrastive learning have also developed rapidly (Li et al., 2021; Yang et al., 2022).
CACSSL (Yang et al., 2022) is a contrastive learning framework as a general confirmation bias allevi-
ation method for pseudo-label-based SSL methods. And Comatch (Li et al., 2021) takes advantage
of graph-based contrastive learning to learn better representations for corresponding classification
tasks. However, none of these methods have focused on the more realistic problem of open world
semi-supervised learning. Although OpenCon (Sun & Li, 2022) considered the open world semi-
supervised learning problem, it is incapable of sustaining continuous optimization of representations
during the process of semi-supervised learning, which is the key differentiation between OpenCon
and CONTROL.
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Figure 3: Model designed for open world semi-supervised learning.

3 PRELIMINARY AND BACKGROUND

In this section, we introduce the open-world semi-supervised learning setting and the existing BCE-
based methods and representative contrastive learning loss which will be used in the next section.

3.1 OPEN-WORLD SEMI-SUPERVISED LEARNING

As shown in Figure 3, we are given a set of labeled data includes n instances and we are also given a
set of unlabeled data from an unknown distribution, which includes m instances Du = {x1, · · · ,xm}.
Here, x ∈ X ∈ RD,y ∈ Y = {1, · · · , CU} where D is the number of input dimension and CU is
the total number of classes in unlabeled data. We use CL to represent the total number of classes in
labeled data. Note that in the Traditional Semi-Supervised Learning, CL = CU while in open-world
semi-supervised learning, total number of seen classes Cseen = CL, and total number of unseen
classes Cunseen = CU \ CL.

3.2 REVISIT OF BCE-BASED METHODS

We now describe how BCE-based methods design optimization objectives for open-world semi-
supervised learning. We use LOWSSL to represent the overall optimization objective for existing
BCE-based methods, we have

LOWSSL = LCE + LBCE + LEntropy + LBalance, (1)

LCE is usually defined as cross-entropy loss for labeled data, and LEntropy aims at regularizing the
predictive distribution of the training data to be close to a prior probability distribution to prevent the
model from classifying all unseen classes into a single class. To enhance model’s ability of unseen
classes classification, LBCE is defined as LBCE = − 1

m+n

∑
xi∈Dl∪Du

log
(
p (xi)

⊤
p (x̃i)

)
, where

x̃i is the most similar sample to xi in this batch. In NACH, a filtering mechanism is proposed to
further avoid seen-unseen pairs. To balance the learning pace of seen classes and unseen classes, a
variety of LBalance are proposed, in Cao et al. (2022) LBalance is a margin cross-entropy to mitigate
the classification pace of seen classes while in Guo et al. (2022), an adaptive threshold based on
pseudo-label selection is proposed to accelerate the learning pace of unseen classes.

3.3 CONTRASTIVE LOSSES

We introduce the generalized contrastive Loss based on the L2-normalized feature embedding
z = ϕ(x; θ). Then the following loss function is calculated for each sample x:

Lϕ(x; τ,P(x),N (x)) = − 1

|P(x)|
∑

z+∈P(x)

log
exp

(
z⊤ · z+/τ

)∑
z−∈N (x) exp (z

⊤ · z−/τ)
, (2)

where P(x) is the positive set of embeddings w.r.t z+, and N (x) is the negative set of embeddings
w.r.t z− and τ > 0 is the adjustable temperature parameter. Such a loss function pulls together the
anchor x and its positive set P(x) and pushes apart samples from its negative set N (x).
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4 PROPOSED CONTROL FRAMEWORK

Despite the success of BCE-based methods, we observe that these methods still encompass two major
challenges. The first is to correctly classify same-class unseen pairs. Note that there are no labeled
samples available for the unseen classes. The second challenge for the BCE-based methods is to
avoid the collapse of the unseen classes.

In this paper, we intend to solve these two major challenges by introducing additional alignment
and uniformity on the feature level. Specifically, in Section 4.1, we show that BCE loss suffers
from incorrect unseen pairs, whereas contrastive loss is able to make correct alignments. Thus, we
introduce the supervised contrastive loss for the seen classes and nearest neighbor contrastive loss
for all classes, which aligns both the seen and unseen pairs on the feature embedding space. Then
in Section 4.2, we demonstrate that the uniformity term in contrastive losses serves as an additional
term to avoid unseen class collapse. In Section 4.3, we show that unsupervised contrastive loss serves
as a consistency regularization on the feature level and also guarantees consistency on the logit level.
Finally, in Section 4.4, we introduce the overall method of our CONTROL framework containing
three contrastive losses.

4.1 CONTRASTIVE LOSS ENHANCES CLASSIFICATION OF BCE LOSS

For BCE-based methods, it is difficult to identify same-class unseen pairs through only logit-level
nearest-neighbor sample selection, since the nearest-neighbor sample may not necessarily belong to
the same class, especially when the model is not yet well trained. Further, when the different-class
unseen pairs are aligned by the BCE loss LBCE, the overall accuracy will be harmed.

Mathematically, given a nearest-neighbor unseen class pair (x, v), we denote their marginal prob-
ability as PX and PV , respectively. We can interpret the aligning procedure of pairs into a binary
classification with label 1 when (x, v) are positive same-class pairs sampled from the joint distribution
PXV , and with label 0 when x and v are independently sampled from the marginal distributions
PX and PV . As the nearest neighbor has some probability of not being the same class sample, we
denote η ∈ (0, 1) as the misclassification rate of the nearest-neighbor sample, and denote the joint
probability of the nearest-neighbor pair (x, v) as

Pη
XV = (1− η)PXV + ηPXPV . (3)

This joint probability can be interpreted as x and v having probability 1 − η to be the same-class
samples and probability η to be different-class ones.

Then for the BCE loss, we show that the different-class unseen pairs harm the classification of
unseen-class samples. Denote g(z; θ′) as the logits of feature embedding z. Then

EPη
XV

LBCE = EPη
XV

− log g(ϕ(x))⊤g(ϕ(v))

= (1− η)E(x,v)∼PXV
− log g(ϕ(x))⊤g(ϕ(v)) + ηEx∼PX

Ev∼PV
− log g(ϕ(x))⊤g(ϕ(v))

:= (1− η)EPXV
LBCE + ηM. (4)

Because x ∼ PX and v ∼ PV are independent, g(ϕ(x)) and g(ϕ(v)) are also independent, and
therefore we have g(ϕ(x))⊤g(ϕ(v)) = 0 and thus M → −∞. This reveals a great gap between the
BCE risk under distributions Pη

XV and PXV , indicating that the different-class nearest-neighbor pairs
could severely harm the classification accuracy when using BCE loss.

On the other hand, contrastive losses are less affected. Specifically, we have

EPη
XV

Lϕ = EPη
XV

− log
exp

(
ϕ(x)⊤ · ϕ(v+)/τ

)∑
ϕ(v−)∈N (ϕ(x)) exp (ϕ(x)

⊤ · ϕ(v−)/τ)

= (1− η)EPXV
Lϕ + η · Ex∼PX

Ev+∼PV
− ϕ(x)⊤ · ϕ(v+)/τ

+ η · Ex∼PX
Ev−∼PV

log
∑

ϕ(v−)∈N (x)

exp
(
ϕ(x)⊤ · ϕ(v−)/τ

)
= (1− η)EPXV

Lϕ + η · log(|N (x)|), (5)
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where the last equation holds because ϕ(x), ϕ(v+), and ϕ(v−) are independent. Note that log(|N (x)|)
is a constant, and therefore EPη

XV
Lϕ and EPXV

Lϕ result in the same optimal classifier, indicating
that contrastive losses are less affected by different-class nearest-neighbor pairs.

This motivates us to incorporate contrastive losses to realize the feature-level alignment and to
enhance the classification of the BCE loss.

Supervised Contrastive Loss. Recall that in the BCE-based methods for open-world semi-supervised
learning, the labels are correct and the labeled examples are aligned through same-class pairs.
Similarly, for the labeled examples, we also align same-class pairs on the feature level by introducing
the supervised contrastive learning loss (Khosla et al., 2020), which is well known for its ability to
improve representation quality by aligning features within the same class. The form of supervised
contrastive loss is

LSupSeen = − 1

|PS(x)|
∑

z+∈PS(x)

log
exp

(
z⊤ · z+/τ

)∑
z−∈N (x) exp (z

⊤ · z−/τ)
, (6)

where the PS(x) denotes the collection of same-class pairs. Note that LSupSeen only applies to labeled
data. After choosing an anchor, the positive set S(x) includes samples with the same label as the
anchor, and the negative set N (x) includes samples from all classes.

Nearest Neighbor Contrastive Loss. Recall that the BCE loss is the key to classifying unseen classes
for the BCE-based algorithms. For the unlabeled samples including both seen- and unseen-class
samples, the pairs are selected as nearest-neighbor samples. As we discussed earlier, the falsely
aligned different-class pairs could harm the classification performance of BCE loss, therefore we turn
to incorporate the lessly affected nearest neighbor contrastive loss LSupNN to achieve feature-level
alignment. The specific form is

LSupNN = − 1

|PN (x)|
∑

z+∈PN (x)

log
exp

(
z⊤ · z+/τ

)∑
z−∈N (x) exp (z

⊤ · z−/τ)
, (7)

where the PN (x) denotes the collection of nearest-neighbor pairs. Note that LSupNN is a feature-level
counterpart for the BCE loss. It applies to both labeled data and unlabeled data. After choosing an
anchor, the positive set PN (x) includes the nearest neighbor of the anchor, and the negative set N (x)
includes all the other samples.

LSupNN allows similar sample pairs to have more similar feature representations, which naturally
facilitates BCE loss to learn more similar logits, and in turn increase the proportion of same-class
pairs in all nearest-neighbor pairs. As a result, LSupNN guides the model for better seen/unseen
classification.

4.2 UNIFORMITY IN CONTRASTIVE LOSS AVOIDS UNSEEN CLASS COLLAPSE

It is easy to see that a trivial solution to the BCE loss on the unseen classes is to classify all samples
into one class, whereas this will severely harm the classification accuracy on the unseen classes too.
Despite the introduction of the entropy loss LEntropy, the distinguishment among unseen classes still
remains to be a great challenge.

Aside from providing feature-level alignment, we demonstrate that contrastive losses naturally avoid
logit collapse of unseen classes. Specifically, by Wang & Isola (2020), the contrastive loss can be
decomposed into an alignment term and a uniformity term, i.e.

lim
|N (x)|→∞

E Lϕ(x; τ,P(x),N (x))− logK = −Ez,z+∈P(x) exp(z
⊤ · z+/τ) (8)

+ Ez∈P(x) logEz−∈N (x) exp(z
⊤ · z−/τ), (9)

where equation 8 represents the alignment term that aligns the feature representations of the positive
pairs, and equation 9 represents the uniformity term which forces the representations to be uniformity
distributed throughout the entire feature embedding space and thus avoids feature collapse.

Naturally, as both logit-level and feature-level alignment is achieved, g(·) maintains the spatial
structure between feature representations and logits. Therefore, by avoiding feature-level collapse,
the contrastive losses also avoid logit-level collapse of the unseen classes.
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4.3 UNSUPERVISED CONTRASTIVE LOSS SERVES AS CONSISTENCY REGULARIZATION

Moreover, recall that for the open-world semi-supervised learning problem, consistency regular-
ization is often used to further boost the classification performance, where logit-level consistency
regularization aligns the logits of two augmented views. Similarly, as data augmentation is widely
used and well-studied in contrastive learning, we naturally introduce unsupervised contrastive loss to
achieve feature-level consistency regularization. The specific form is

LSimAll = − 1

|PA(x)|
∑

z+∈PA(x)

log
exp

(
z⊤ · z+/τ

)∑
z−∈N (x) exp (z

⊤ · z−/τ)
, (10)

where the PA(x) denotes the collection of positive pairs augmented from the same natural sample.
LSimAll applies to both labeled data and unlabeled data which is beneficial to classifying both seen
classes and unseen classes.

4.4 OVERALL
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Anchor
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Anchor
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Figure 4: The framework of our proposed CONTROL.

In conclusion, our proposed CONTROL consists of a replaceable open-world semi-supervised
learning module and a simple but efficient contrastive learning module as shown in Figure 4. For
different open-world semi-supervised learning algorithms, we will all use LOWSSL to represent
the original loss. To strengthen the open-world semi-supervised learning algorithm, our proposed
CONTROL contains supervised contrastive learning part LSupSeen, unsupervised contrastive learning
part LSimAll and nearest neighbor contrastive learning part LSupNN which are iteratively optimized
together with LOWSSL during the training process:

LCONTROL = LOWSSL + λ1LSupSeen + λ2LSimAll + λ3LSupNN, (11)

where λ1, λ2 and λ3 in the formula are trade-off parameters.

5 EXPERIMENTS

5.1 SETUP

Datasets. We evaluate our framework CONTROL combined with representative open-world semi-
supervised learning algorithms on common SSL datasets: CIFAR-10, CIFAR-100 (Krizhevsky &
Hinton, 2009) and ImageNet-100. On CIFAR-10 we choose 5 classes as seen classes and the rest as
unseen classes. On CIFAR-100 and ImageNet-100 we choose 50 classes as seen classes and the rest
as unseen classes. Following the same principles as NACH and ORCA, we select 50% samples of the
seen classes as labeled data, i.e. the unlabeled dataset is a 1:2 mix of samples from seen classes and
unseen classes.

Baselines. We choose NACH and ORCA as our baseline methods and use these baseline methods to
demonstrate the effectiveness of our framework.
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Table 1: Classification accuracy of compared methods on seen, unseen and all classes on CIFAR-10
and CIFAR-100 (Krizhevsky & Hinton, 2009). We use the hungarian algorithm (Kuhn, 1955) to
evaluate unseen classes accuracy and all classes accuracy, and seen classes accuracy is evaluated
directly by whether the labeled data are divided into the right classes. For a fairer comparison, all
experiments use the same backbone ResNet18 (He et al., 2016) as (Cao et al., 2022). Following (Cao
et al., 2022), we also show the results of traditional semi-supervised learning method Fixmatch (Sohn
et al., 2020), the open set semi-supervised algorithms DS3L (Guo et al., 2020), CGDL (Sun et al.,
2020), and the novel class discovering algorithms DTC (Han et al., 2019)and Rankstats (Han et al.,
2020). In particular, we evaluate our proposed framework by combining ORCA (Cao et al., 2022)
and NACH (Guo et al., 2022) with the backbone fully unlocked, denoted as ORCA* and NACH*.

CIFAR-10 CIFAR-100
Method Seen Unseen all Seen Unseen all
Fixmatch 71.5 50.4 49.5 39.6 23.5 20.3
DS3L 77.6 45.3 40.2 55.1 23.7 24.0
CGDL 72.3 44.6 39.7 49.3 22.5 23.5
DTC 53.9 39.5 39.3 31.3 22.9 18.3
Rankstats 86.6 81.0 82.9 36.4 28.4 23.1
OpenCon 87.1 90.7 89.4 70.4 50.2 55.5
ORCA 88.2 90.4 89.7 66.9 43.0 48.1
ORCA + CONTROL 88.4 91.9 90.7 67.6 44.8 49.6
ORCA* 89.0 90.0 89.3 67.0 42.2 48.8
ORCA* + CONTROL 90.6 90.6 90.4 69.5 47.2 53.2
NACH 89.5 92.2 91.3 68.7 47.0 52.1
NACH + CONTROL 89.9 93.4 92.2 70.1 48.5 53.0
NACH* 93.3 94.1 94.1 73.5 50.1 56.8
NACH* + CONTROL 93.5 95.0 94.3 74.1 53.3 58.0

Table 2: Classification results on ImageNet-100 (Russakovsky et al., 2015). All experimental results
are the average of three runs. + denotes the combination of CONTROL. For a fair comparison, all
experiments use the same backbone ResNet50 as (Cao et al., 2022).

Method Fixmatch DS3L Rankstats OpenCon ORCA ORCA+ NACH NACH+
Seen 65.8 71.2 47.3 90.4 88.7 89.4 90.4 90.9
Unseen 36.7 32.5 28.7 80.6 72.3 77.8 75.6 81.8
All 34.9 30.8 40.3 83.2 77.4 81.0 79.6 84.0

5.2 MAIN RESULTS

The classification mean accuracy over three runs on CIFAR-10 and CIFAR-100 is in Table 1. The
results show that our proposed method is an effective framework for open-world semi-supervised
learning algorithms. We take CIFAR100 for example, on seen classes classification, we achieved
3.7% improvement on ORCA and 0.8% improvement on NACH. On unseen class classification,
we achieved 11.8% improvement on ORCA and 6.4% improvement on NACH. On all classes
classification, we also achieved 9% improvement on ORCA and 2.1% improvement on NACH. The
performance improvement for unseen classes mentioned above mainly stems from the enhancement
of BCE loss in our framework, while the performance improvement for all class classifications
primarily comes from the uniformity component in CONTROL, which further mitigates the collapse
of existing methods.

The results also show that compared with OpenCon, we achieved 5.2% improvement on seen classes,
2.2% improvement on unseen classes, and 4.5% improvement on all classes. These performance
improvements show that compared with the contrastive learning method only, the semi-supervised
learning part combined with CONTROL can also achieve the best results. As shown in Table 2, we
also conducted our experiments on a more realistic dataset ImageNet-100 (Russakovsky et al., 2015),
and we achieved consistent performance improvement with CONTROL as mentioned above.
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Table 3: Ablation Studies: Seen, Unseen and All classes classification accuracy for LSupSeen, LSimAll,
LSupNN on CIFAR-100 combined with NACH.

LSupSeen LSimAll LSupNN Seen Unseen All
W.O. W.O. W.O. 73.5 50.1 56.8
W. W.O. W.O. 74.0 50.2 56.9
W.O. W. W.O. 73.6 50.7 57.0
W.O. W.O. W. 74.0 51.4 56.9
W. W. W. 74.1 53.3 58.0

5.3 ABLATION STUDIES

Analysis on LSupSeen and LSimAll. As we analyzed before, LSupSeen can align features within the
same classes which can be regarded as an enhancement of BCE loss and LSimAll can be regarded as a
form of consistency regularization that enables the model to learn a better representation from the
sample level. Therefore, as shown in Table 3, combined with LSupSeen and LSimAll, we achieved 0.2%
improvement on seen classes, 2.7% improvement on unseen classes and 1.1% improvement on all
classes. This demonstrates the effectiveness of our CONTROL framework in both avoiding unseen
class collapse and enhancing classification accuracy through additional consistency regularization.

Analysis on LSupNN. As shown in Table 3, combined with LSupNN, we achieved 0.7% improvement
on seen classes, 2.6% improvement on unseen classes and 0.2% improvement on all classes. The ex-
perimental results are consistent with our previous theoretical analysis. In CONTROL, the utilization
of LSupNN allows similar sample pairs to have more similar representations at the feature level, and
BCE loss will learn more similar logits to better guide the model for unseen classes classification.

5.4 FURTHER ANALYSIS

Based on our theoretical analysis, we will use the following experiments to further illustrate why our
proposed framework is useful for improving the classification accuracy of unseen classes based on
BCE loss. In Table 4, we show the ratio of unseen class prediction and the ratio of unseen-unseen
pairs to figure out why our proposed framework is useful. For the ratio of unseen classes prediction,
we take the sample of unseen classes whose prediction is unseen classes as the numerator, we take the
total number of unseen classes samples as the denominator. A larger ratio means that the algorithm is
better at classifying unseen classes since our goal is to have less confusion between seen classes and
unseen classes. The results show that, after using our framework, we gained 2.77% improvement. For
the ratio of unseen-unseen pairs, we take the sum of unseen class samples whose nearest neighbors
are also unseen class samples as the numerator, we take the total number of unseen class samples as
the denominator. A larger ratio means that the algorithm is better at classifying unseen classes since
the larger it is, the less seen-unseen pairs happen. The results show that, after using our framework,
we gained 2.35% improvement.

Table 4: Ratio of unseen classes prediction and Ratio of unseen-unseen pairs for NACH with or
without CONTROL. All experimental results are the average of three runs on CIFAR-100.

Method Ratio of unseen class prediction Ratio of unseen-unseen pairs
NACH 79.37 87.77
NACH + CONTROL 82.14 90.12

6 CONCLUSION

We propose a simple and efficient contrastive learning framework CONTROL, which can be easily
adapted to open-world semi-supervised learning algorithms. The importance of our framework in
improving the unseen classification performance of open-world semi-supervised learning algorithms
has been validated theoretically. Additionally, our proposed framework can further mitigate the risk
of representation collapse. We have also designed experiments to demonstrate why CONTROL is
effective in classifying unseen classes.
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