
Seeing things or seeing scenes:
Investigating the capabilities of V&L models to align scene descriptions to

images

Anonymous ACL submission

Abstract
Images can be described in terms of the objects001
they contain, or in terms of the types of scene002
or place that they instantiate. In this paper we003
address to what extent pretrained Vision and004
Language models can learn to align descrip-005
tions of both types with images. We com-006
pare 3 state-of-the-art models, VisualBERT,007
LXMERT and CLIP. We find that (i) V&L008
models are susceptible to stylistic biases ac-009
quired during pretraining; (ii) only CLIP per-010
forms consistently well on both object- and011
scene-level descriptions. A follow-up ablation012
study shows that CLIP uses object-level infor-013
mation in the visual modality to align with014
scene-level textual descriptions.015

1 Introduction016

Grounding symbols in perception (Harnad, 1990)017

is a crucial step towards achieving full understand-018

ing of natural language (Bender and Koller, 2020;019

Bisk et al., 2020). This endeavour has received new020

impetus through the development of pretrained Vi-021

sion and Language (V&L) models (e.g. Lu et al.,022

2019; Tan and Bansal, 2019; Li et al., 2019; Chen023

et al., 2020; Li et al., 2020a; Su et al., 2020; Wang024

et al., 2020; Luo et al., 2020; Li et al., 2021; Huang025

et al., 2021; Radford et al., 2021). Similarly to026

unimodal language models such as BERT (Devlin027

et al., 2019), V&L models are intended to be task-028

agnostic and are extensively pretrained on paired029

image-text data, achieving good performance on030

several tasks after finetuning (e.g. Lu et al., 2020;031

Li et al., 2020c; Kim et al., 2021). Pretraining usu-032

ally includes an image-text alignment task to dis-033

cover implicit cross-modal relationships. Although034

the importance of this task is widely recognized035

and adopted during model pretraining, it is unclear036

how the models perform on it, since they are usu-037

ally evaluated on downstream tasks.038

The data used for V&L pretraining usually con-039

tains highly descriptive text which mentions ob-040

jects and their spatial relationships. For instance,041

LN: This is the picture of a stadium. In the foreground there
is a person [. . . ] At the back there are group of people sitting
[. . . ].
COCO: a baseball player getting ready to swing at a baseball
game in a stadium packed with people.
HL1K: the picture is shot in a baseball field

Figure 1: An example of scene with COCO and Localized
Narrative (LN) object-level captions, versus HL1K scene-level
description (Section 3)

the COCO (Chen et al., 2015) and Localized Nar- 042

ratives (LN; Pont-Tuset et al., 2019) captions for 043

Figure 1 are of this type, though they differ stylis- 044

tically. By contrast, the third caption in the figure, 045

from the novel HL1K dataset introduced in Section 046

3 below, is what we refer to as ‘scene-level’, focus- 047

ing on what type of scene or location is depicted. 048

Note that both the object- and scene-level de- 049

scriptions in the Figure describe the picture, albeit 050

in different ways. Indeed, it would be expected 051

that, for a V&L model to display true grounding ca- 052

pabilities, it should be able to match both types of 053

descriptions with the image. For models which do 054

display this cabability, a natural follow-up question 055

is whether their representations capture interesting 056

connections between scenes on the one hand, and 057

the objects within them on the other. 058

Research on human perception suggests that hu- 059

mans do not perceive scenes exclusively in terms of 060

the objects they contain, and that visual salience is 061

not exclusively determined by bottom-up features 062

such as colour and texture. Rather, visual stimuli 063

1



are considered ‘scenes’ because their elements con-064

stitute a meaningful whole, both in terms of their065

contents (e.g. one expects an oven in a kitchen, but066

not in a living room) and in terms of their spatial067

arrangement (e.g. ovens do not typically hang from068

the ceiling) (Malcolm et al., 2016).069

These observations have provided the impetus070

to work showing that violations of scene ‘seman-071

tics’ (content) and ‘syntax’ (spatial arrangement)072

exact a cognitive cost during perception (e.g. Bie-073

derman et al., 1982; Võ and Wolfe, 2013). A re-074

lated strand of modeling research in computer vi-075

sion has also shown that scene-level priors generate076

expectations about objects and their configurations,077

impacting the salience of objects in a way that clas-078

sical, feature-based models of attention (e.g. Itti079

and Koch, 2001) would not predict (Torralba et al.,080

2006; Oliva and Torralba, 2007). Indeed, the prob-081

lem of linking low-level features with high-level082

semantic information is an instance of the problem083

referred to as the ‘semantic gap’ in computer vision084

(Ma et al., 2010).085

In this paper we investigate whether V&L mod-086

els are able to handle object-level and scene-level087

descriptions equally well. A positive answer to088

this question would suggest that such models are089

learning useful associations between the elements090

of a scene and the overall scene type, as captured091

in textual descriptions.092

We perform an analysis in a zero-shot setting on093

three state-of-the-art pretrained V&L models. To094

our knowledge, this is the first systematic compari-095

son of model capabilities on object- versus scene-096

level grounding. The goal of this study is therefore097

not to establish new SOTA results, but to further098

our understanding of what V&L models learn, as099

a function of the data they are pretrained on and100

the model architecture. Therefore we choose three101

models differing in many settings (including train-102

ing set size, architecture, number of parameters103

and model size). All of the models are however104

optimized on the image-sentence alignment task.105

We find that only one of the models under com-106

parison, CLIP (Radford et al., 2021), performs107

consistently well on both object- and scene-level108

image-text matching. We then investigate this109

model’s abilities in depth, using an ablation method110

to identify the elements of a text and/or an image111

which contribute to these abilities.112

Training size Model size Pretraining
(# image-sentence pairs) (# parameters) Objectives

CLIP 400M 151M ISA

VisualBERT 330k 112M ISA, MLM

LXMert 9.18M 228M ISA, MLM
MOP, VQA

Table 1: Comparison of training settings for the three models
(ISA: Image-Sentence Alignment, MLM: Masked Language
Modeling, MOP: Masked Object Prediction, VQA: Visual
Question Answering)

2 Models 113

Current V&L models typically combine textual and 114

visual features in a single or a dual-stream archi- 115

tecture. Though the two architectures have been 116

found to perform roughly at par when trained on 117

the same data in comparable settings Bugliarello 118

et al. (2020), in this paper we include widely-used 119

representatives of both at the time of writing, as we 120

are interested in their zero-shot grounding capabil- 121

ities in their original settings. We also include a 122

third model which differs in structure and is trained 123

on a much larger and more varied dataset. Table 1 124

gives an overview of some of the properties of the 125

models we consider. 126

LXMERT (Tan and Bansal, 2019) is a dual- 127

stream model, which encodes text and visual fea- 128

tures in parallel, combining them using cross- 129

modal layers. LXMERT is trained on COCO cap- 130

tions (Chen et al., 2015) as well as a variety of 131

VQA datasets, with an image-text alignment objec- 132

tive, among others. We use the implementation of 133

LXMERT in the transformers1 library. 134

VisualBERT (Li et al., 2019) is a single-stream, 135

multimodal version of BERT (Devlin et al., 2019), 136

with a Transformer stack to encode image regions 137

and linguistic features and align them via self- 138

attention. It is pretrained on COCO captions (Chen 139

et al., 2015). Image-text alignment is conceived as 140

an extension of the next-sentence prediction task 141

in unimodal BERT. Thus, VisualBERT expects an 142

image i and a correct caption c1, together with a 143

second caption c2, with the goal of determining 144

whether c2 matches 〈i, c1〉. We use the publicly 145

available implementation of the model.2 146

CLIP (Radford et al., 2021) combines a trans- 147

former encoder for text with an image encoder 148

based on Visual Transformer (Dosovitskiy et al., 149

1github.com/huggingface/transformers
2https://github.com/uclanlp/visualbert
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LXMERT VisualBERT
I C I C

COCO 3 3 3 3
LN 3 7 3 7
HL1K 3 7 3 7
ADE20K 7 7 7 7

Table 2: Presence of the (I)mages and (C)aptions of the
dataset used for the experiments in the training data of Vi-
sualBERT and LXMERT. The composition of CLIP’s training
data is not known.

2020), jointly trained using contrastive learning to150

maximise scores for aligned image-text pairs. CLIP151

is trained on around 400m pairs sourced from the152

Internet, a strategy similar to the web-scale training153

approach used for unimodal models such as GPT-3154

(Brown et al., 2020). We note that the visual back-155

bone for this model differs from that of LXMERT156

and VisualBERT, both of which use Faster-RCNN157

(Ren et al., 2015).158

For all experiments, we truncate textual captions159

to a maximum length of 50 tokens, following stan-160

dard practice for such models, including CLIP.161

3 Data162

We use four different datasets for our experiments,163

which overlap to different degrees with the data164

that LXMERT and VisualBERT were trained on.3165

The extent of overlap is shown in Table 2.166

Localized Narratives Localized Narratives167

(LN) Pont-Tuset et al. (2019) is a V&L dataset168

created by transcribing speech from annotators169

who were instructed to give object-by-object170

descriptions as they moved a mouse over image171

regions. LN captions tend to be highly detailed172

and stylistically similar to speech. We use LN as a173

source of object-level captions. The images in LN174

come from pre-existing datasets; this allows us to175

align LN captions with images and captions from176

datasets such as COCO and ADE20K.177

ADE20K ADE20K (Zhou et al., 2017) is a com-178

puter vision dataset containing 20k images compre-179

hensively annotated with objects, parts and scene180

labels. We use ADE20K as a source of scene-level181

captions. For our experiments, we filter out images182

with scenes which in the dataset are labelled as183

unknown. We produce captions for each image184

using a simple template-based generation method,185

3CLIP was trained on a web-harvested dataset.

whereby a scene label is inserted into one of the 186

templates below: 187

• it is a SCENE 188

• this is a SCENE 189

• it is located in SCENE 190

We align the resulting scene-level descriptions and 191

the corresponding ADE20K images to the corre- 192

sponding object-level captions in LN. 193

COCO COCO (Lin et al., 2014a) consists of im- 194

ages paired with captions and object annotations. 195

LN captions are also available for the same images. 196

We use images and captions from the 2017 COCO 197

validation split, as well as the corresponding LN 198

captions. 199

HL1K High Level Scenes - 1k (HL1K) is a new 200

dataset collected for the purposes of the present 201

study. HL1K is composed of 1k images, each de- 202

picting at least one person, sampled from the 2014 203

COCO train split. We crowd-sourced three an- 204

notations per image on Amazon Mechanical Turk, 205

showing crowd workers the image and asking them 206

to write a description in response to the question 207

Where is the picture taken? Crowd workers were 208

asked to respond using full sentences and it was 209

made clear to them that their answer to this ques- 210

tion should bring to bear their knowledge of typical, 211

or common, scenes. Figure 2 shows an image with 212

three different scene descriptions. 213

Where is the picture taken?

• in a bedroom

• the picture is taken in a bedroom

• this is the bedroom

Figure 2: COCO image with three HL1K scene descriptions.

Descriptions were corrected for typos using the 214

Neuspell Toolkit (Jayanthi et al., 2020). Finally, 215
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we paired our scene-level HL1K captions with the216

previously available COCO and LN object-level217

captions. Figure 1 provides an example.218

ADE20k HL1K COCO

images 19733 1000 5000

COCO captions 19733 3000 5000

Localized Narratives 19733 1000 5000

Table 3: Dataset statistics.

Dataset statistics are shown in Table 3. For219

ADE20k, the numbers are for images which are not220

labelled as having an unknown scene. In COCO,221

there are five captions associated with each image.222

For the purposes of the present study, a single cap-223

tion is randomly selected in each case.224

4 Image-sentence alignment experiments225

We first test models in the image-sentence align-226

ment task on both object- and scene-level descrip-227

tions. Since we are interested in the capabilities228

of the pretrained models, and since pretraining in-229

cluded alignment for all models we use (see Ta-230

ble 1), we do not finetune them. Rather, we use231

the models’ pretrained alignment head to predict232

whether a scene-level or object-level caption cor-233

rectly describes an image, or not.4234

Table 4 shows that LXMERT and VisualBERT235

perform adequately on object-level COCO Cap-236

tions, though performance is lower than would be237

expected, given that they were pretrained on this238

dataset. In the case of LXMERT, one possible ex-239

planation is catastrophic forgetting, arising from240

the fact that this model is pretrained for its final ten241

epochs on VQA (similar observations are made by242

Parcabalescu et al., 2021). For both models, per-243

formance drops dramatically on LN captions. This244

is likely due to a stylistic difference: compared245

to COCO captions, LN captions are longer, more246

discursive and contain disfluencies.247

In contrast, CLIP performs close to ceiling on all248

three datasets, possibly reflecting the benefits ac-249

crued from the size and diversity of its pretraining250

data.251

On scene-level captions, performance is some-252

what above chance for LXMERT on ADE20k253

template-based descriptions, and for VisualBERT254

on HL1K. Otherwise, performance is below 50%255

4Note that this setting is the same used by the models is
their pretraining.

LXMERT CLIP VisualBERT

Object
ADE20k + LN 28.4 96.8 39.0
COCO + LN 59.1 98.7 65.2
COCO Cap. 79.3 99.1 64.4

Scene ADE20k 58.0 97.6 17.3
HL1K 45.5 91.5 55.3

Table 4: Image-sentence alignment accuracies on object-level
and scene-level captions. Chance performance is at 50%. (LN
= Localized Narratives)

for both models. Once again, CLIP performs above 256

90%, though there is a drop in performance from 257

the template-based ADE20k descriptions to human- 258

authored HL1K scene-level captions, possibly re- 259

flecting the more predictable nature of the former. 260

5 Ablation experiments on CLIP 261

Since CLIP is the only one of the three models 262

which is successful at matching scene-level and 263

object-level captions to images, we probe its ca- 264

pabilities further, paying particular attention to 265

the question whether CLIP links scene types (e.g. 266

kitchen) to scene contents (e.g. oven, pizza) in 267

image-text matching. 268

Whereas a standard image-text alignment setup 269

compares the model’s success at identifying ac- 270

tual versus random captions, here we directly com- 271

pare the preference of the model for scene- versus 272

object-level descriptions, as a function of (i) the 273

entities mentioned in the object-level caption; (ii) 274

the entities visible in an image. To this end, we use 275

textual and visual ablation on captions and images; 276

an example is shown in Figure 3. 277

5.1 Textual ablation 278

Given an object-level caption, we identify all the 279

NPs in the caption and create new versions by re- 280

moving each possible subset of the set of NPs, with 281

the restriction that the resulting caption must al- 282

ways contain at least one NP. When NP removal 283

results in dangling predicates, we remove them to 284

preserve grammaticality. NPs are detected with 285

Spacy v.3, using the pipeline for English with the 286

en_core_web_md pretrained models. The right 287

panel of Figure 3 shows the original caption and 288

examples of ablated captions. 289

For a given image i with object-level caption o 290

and scene-level caption s, we compare how P (o|i) 291

– CLIP’s estimate of the probability that o matches 292

i – changes as NPs are removed from o, and to 293

what extent this causes CLIP to assign higher prob- 294
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Original Image

Occluded Image

COCO: A man rides a motorcycle on a road through a grassy,
hilly area.

Ablated Captions:

• a grassy, hilly area (A man, a motorcycle, a road)

• a road (A man, a motorcycle, a grassy, hilly area)

• a road through a grassy, hilly area (A man, a motorcycle)

• A man rides a road (a motorcycle, a grassy, hilly area)

• a motorcycle a grassy, hilly area (A man, a road)

• A man rides a grassy, hilly area (a motorcycle, a road)

• A man rides a motorcycle (a road, a grassy, hilly area)

• A man rides a road through a grassy, hilly area (a motor-
cycle)

• a motorcycle on a road (A man, a grassy, hilly area)

• A man rides a motorcycle on a road (a grassy, hilly area)

• A man rides a motorcycle a grassy, hilly area (a road)

• a motorcycle on a road through a grassy, hilly area. (A
man)

Figure 3: Example of visual and textual ablation. Left: Original image and image with occluded object. Right: Original caption
and different ablated captions. NPs removed are shown in parentheses.

ability P (s|i), to s as the match for i. We re-295

port two comparisons, one on LN captions versus296

ADE20K template-based scene descriptions; and297

one on COCO captions against HL1K scene-level298

descriptions.299

To control for possible loss of grammatical-300

ity after ablation, we score ablated captions with301

GRUEN (Zhu and Bhat, 2020), a BERT-based302

model which has been shown to yield scores that303

correlate highly with human judgments.5 CLIP304

probabilities for ablated textual captions yielded a305

significant, but very low correlation with grammati-306

cality (Pearson’s r = 0.1, p < .01) suggesting that307

grammaticality did not affect the scores.308

5.2 Visual ablation309

Given an object-level caption and an image, we310

extract all nouns from the caption and extract the311

embedding vector for each noun using pretrained312

FastText embeddings.6 We pass the image through313

5GRUEN returns a combined score consisting of a linear
combinaton of Grammaticality, Focus and Coherence. Here,
we use only the Grammaticality scores.

6We use the model with 2m word vectors trained
with subword information from common Crawl https://
fasttext.cc/docs/en/english-vectors.html

the Faster-RCNN object detector7 to detect entities. 314

We extract embeddings for each entity label. Then, 315

we identify regions to be masked by comparing em- 316

beddings for entity labels le against embeddings for 317

nouns ne in the caption, considering them a match 318

if cosine(le, ne) ≥ 0.7. Bounding box regions cor- 319

responding to matched entities are occluded with 320

a greyscale mask. The left panel of Figure 3 com- 321

pares the original and masked image. 322

Once again, we are interested in whether CLIP’s 323

estimate of the alignment probability of object- ver- 324

sus scene-level captions, changes as elements of 325

the visual input are masked. 326

ADE20k HL1K

T 205k 10027

V 10788 625

V+T 1078 625

Table 5: Total number of ablations generated per dataset,
across all the ablations experiments using T(extual) ablation,
V(isual) ablation, or both (V+T).

Table 5 provides the number of ablations anal- 327

7Faster R-CNN ResNet-50 FPN pre-trained on COCO,
available from the torchvision module in Pytorch
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ADE20k HL1K

LN Scene COCO Scene

No ablation 55.6 44.4 95.7 4.3

T 22.0 78.0 67.2 32.8

V 74.9 25.1 71.2 28.8

V+T 68.4 31.6 63.3 36.7

Table 6: CLIP preferences for object-level versus scene-level
captions. Results shown are percentages of times the model
assigns higher alignment probability to object-level versus
scene-level captions (sub-columns), when there is no ablation,
T(extual) ablation, V(isual) ablation, or both (V+T) for each
dataset (columns).

ysed in the study. For both ADE20k and HL1k328

we obtain a number of ablated captions which is329

greater than the respective dataset sizes in Table330

3, because for each example we generate all the331

possible combinations of noun phrases. For the332

Visual and Visual+Textual ablations, the number333

of ablated instances is lower than the dataset size,334

because we omit all the images where no object is335

detected.336

5.3 Results337

The results of image-sentence alignment using338

CLIP, after ablation, are shown in Table 6.339

Without ablation, the model assigns higher prob-340

ability to object-level descriptions, suggesting that341

CLIP has higher confidence in aligning an image-342

text pair when the text focuses on objects rather343

than scenes. This preference is far more marked344

for COCO/HL1K, in line with the observation (Ta-345

ble 4) that HL1K scene descriptions are somewhat346

more challenging for this model.347

As entity-level information is removed from the348

object-level caption (row T in Table 6), the model’s349

assigns higher probability to the scene-level cap-350

tion, suggesting that the model leverages the visual351

information to align with the scene description.352

In contrast, visual ablation (row V) results in353

the opposite tendency: when entities are occluded354

in the image, the model assigns higher probability355

to object-level captions compared to scene-level356

descriptions.357

These results suggest that CLIP aligns images358

to scene-level descriptions based on the entities359

visible in the images. As these are masked in the360

image, entity-level captions are aligned with higher361

probability. On the other hand, when both sources362

of information are ablated, CLIP once again assigns363

higher probability to object-level captions.364

5.4 Scenes vs. entities 365

Our findings suggest that CLIP reasons about 366

scenes on the basis of salient objects within them. 367

If this is the case, then the probability assigned by 368

clip to an image-scene caption pair should dimin- 369

ish, as more salient entities are visually ablated in 370

the image. 371

To investigate this further, we use scene labels 372

extracted from the HL1K captions and the object 373

detections produced for the visual ablation (Section 374

5.2). For a scene label s and entity label e, we 375

compute P (s|e) as follows. Let e be an entity 376

detected ne times in the dataset, of which ne,s times 377

in images depicting scene s. We compute: 378

P (s|e) = ne,s

ne
379

Figure 4 shows visualisations for entities de- 380

tected in four example scene types found in the 381

HL1K dataset. 382

For all images with at least three detected en- 383

tities, we consider the image-sentence alignment 384

probability assigned by CLIP to the scene-level 385

description, when the top 1, 2 or 3 most likely enti- 386

ties in the scene are masked. We therefore average 387

over those images containing at least three detected 388

entities (53/174 total scenes). 389

Figure 5 displays the average alignment proba- 390

bility assigned by CLIP to images and scene-level 391

captions, as entities are progressively masked in 392

the image. The figure displays a linear trend, with 393

the probability dropping as more likely entities 394

are removed. A one-way ANOVA comparing the 395

change in log probability as 1, 2 or 3 entities are 396

removed showed that the difference is significant 397

(F (2, 156) = 4.25, p < 0.05). 398

Thus, when CLIP aligns images with scenes, it 399

is relying on object-level information in the visual 400

modality. This explains why the removal of object 401

mentions in text results in higher preference for 402

scene-level descriptions, since the objects are de- 403

tectable in the image. By the same token, masking 404

objects in images causes the model to rely more on 405

the entity-level information in the text. 406

5.5 Effect of length and informativeness 407

So far, our analysis suggests that CLIP reasons 408

about scenes based on object-level information. 409

However, the length of the caption might be 410

a possible confounding factor. Some of our re- 411

sults might simply be due to the model assigning 412

a higher alignment probability to a caption which 413
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(a) Scene: kitchen (b) Scene: road

(c) Scene: room (d) Scene: park

Figure 4: Visualisations of entities (e) in four different scene types (s). Font size is proportional to P (s|e)

Figure 5: CLIP scene-level description probabilities after
masking top 1-3 entities. Error bars represent standard devia-
tions.

is longer or more informative. This could provide414

an alternative explanation for the changes observed415

above in the alignment probabilities after textual416

ablation.417

To account for this, we replicate the alignment418

experiment using single words. Once again, we419

use the scene labels extracted from HL1K scene-420

level descriptions and identify the top three most421

likely entities in a given scene, as in the previous422

experiment (see Figure 5).423

Given an image, we compare image-text align-424

ment probabilities in CLIP for single-word object425

labels (e.g. motorbike) and single-word scene la-426

bels (e.g. road).427

In this setting, CLIP displays a moderate prefer-428

ence for scene labels (63%), suggesting that such429

labels are more informative than object-level labels,430

for the one-word alignment task.431

We performed a qualitative analysis, inspecting432

5 cases where the model has a clear preference for433

resort: 3% person: 96%

resort: 99% snowboard: 1%

Figure 6: Scene vs entity one-to-one comparison. In the top
image, there are many people in the foreground and the entity
person is preferred over the scene label resort. At the bottom,
people are snowboarding in the background and the scene
label is preferred over the the entity label snowboard.

scene label or object label. A representative exam- 434

ple is shown in Figure 6. CLIP assigns higher prob- 435

ability to object labels when images have salient, 436

foregrounded entities. When entities are less salient 437

or in the background, the model prefers scene la- 438

bels. 439

6 Related work 440

V&L models have been extensively evaluated on 441

tasks such as Visual Question Answering (Goyal 442
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et al., 2017) or image retrieval (Lin et al., 2014b).443

More recently, there has been increased interest444

in understanding the nature of the representations445

and capabilities learned by large, pretrained mod-446

els, for example via probe tasks or investigation of447

their attention heads (see Belinkov and Glass, 2019,448

for a survey). This has also been done for V&L449

models. For example, Li et al. (2020b) consider450

VisualBERT’s attention heads in a manner similar451

to Clark et al. (2019), showing that it is able to452

ground entities and syntactic relations (see also Il-453

harco et al., 2020; Dahlgren Lindström et al., 2020).454

Hendricks and Nematzadeh (2021) similarly seek455

to obtain an in-depth understanding of the represen-456

tations learned by V&L models, finding that they457

have difficulty with grounding verbs in visual data,458

compared to other morphosyntactic categories. The459

present work has a similar motivation, but focuses460

on models’ ability to reason in a grounded way461

about the relationship between entities and scenes.462

Our method of ablation in the textual and visual463

modalities was developed concurrently with sim-464

ilar methods by Frank et al. (2021), who use it to465

uncover asymmetries in the extent to which V&L466

models rely on textual or visual modalities.467

More generally, a number of tasks have been de-468

veloped to test the ability of V&L models to reason469

with a combination of linguistic and visual cues, in-470

cluding VCR (Zellers et al., 2019), SWAG (Zellers471

et al., 2018) and NLVR (Suhr et al., 2017, 2019).472

Pezzelle et al. (2020), in work complementary to473

our own, address the relationship between visual474

and textual modalities, exploring a task in which475

the text does not provide an object-level description476

of an image.477

Scene recognition is a central task in computer478

vision, with extensive work on scene categorisation479

systems (e.g. Anderson et al., 2021) and several480

datasets in addition to the ones used in this paper,481

including ImageNET (Deng et al., 2009), Places482

(Zhou et al., 2014) and SUN (Xiao et al., 2010).483

However, there has been little work at the V&L484

interface, exploring the capabilities of models to485

link scene- and object-level representations. Some486

precedent for the concerns addressed in this paper487

are found in the image captioning literature. For ex-488

ample, an influential proposal by (Anderson et al.,489

2018) combines top-down and bottom-up attention490

to combine local and global features. CapWAP491

(Fisch et al., 2020) conditions image captioning492

on questions that determine which information is493

relevant to current communicative needs, going be- 494

yond object-level description. Closer to the scope 495

of the work presented here, a recent pretrained 496

V&L model, SemVLP (Li et al., 2021), combines 497

single- and dual-streams for feature-level and high- 498

level semantic alignment. We plan to investigate 499

this model further in future work. 500

7 Conclusions 501

In order to address the symbol grounding problem, 502

V&L models should be able to capture the relation- 503

ship between an ‘object-level’ view of an image, 504

focusing on objects and their configuration, and 505

the higher-level scene it corresponds to. This pa- 506

per has found that when models do this, they rely 507

on object-level information in the visual modality, 508

to link images to scene descriptions in the textual 509

modality; this is influenced by the probability of 510

entities occurring in particular scene types. 511

Of the models tested, we find that LXMERT 512

and VisualBERT perform poorly on this task, and 513

also suffer when captions deviate stylistically from 514

their pretraining data. For these models, testing 515

on ADE20k, amounts to a full zero-shot setting, 516

whereas for Localized Narratives and HL1K, this 517

only applies to the textual input, as the images are 518

included in their training data. With the excep- 519

tion of HL1K, a new dataset, it is an open ques- 520

tion whether testing for CLIP was zero-shot, since 521

this model was trained on web-scale data, which 522

is often unfathomable (Bender et al., 2021). On 523

the other hand, model size is clearly not the de- 524

termining factor; CLIP has fewer parameters than 525

LXMERT, for example (cf. Table 1). 526

We believe that two additional factors contribute 527

to the success of CLIP. First, its contrastive learning 528

objective may result in greater sensitivity to fine- 529

grained distinctions between captions for image- 530

sentence alignment. A second feature is its visual 531

backbone, which (in the version used in this paper) 532

is based on Visual Transformer (ViT Dosovitskiy 533

et al., 2020). Recently, BERT-inspired architec- 534

tures have achieved notable success on computer 535

vision tasks (see also Bao et al., 2021). Tuli et al. 536

(2021) have shown that ViT is more consistent with 537

characteristics of human vision than a convolu- 538

tional network, extracting image features which 539

are not strictly local. This could partially underlie 540

the model’s ability to use object-level information 541

in an image to align to scene-level captions. 542
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8 Ethical considerations543

For the studies presented here, we used a new544

dataset, HL1K, collected using the Amazon Me-545

chanical Turk crowdsourcing platform. For the546

data collection, participants were shown images547

and asked to answer questions such as Where is548

the picture taken? Answers took the form of short549

statements. Workers were paid at the rate of e0.03550

per item, an amount we consider equitable for the551

work involved, and in line with rates for similar552

tasks. No sensitive or identifying information was553

collected. All other data and models used are pub-554

licly available. The HL1K dataset will be made555

available upon publication.556
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