
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MASKPRO: LINEAR-SPACE PROBABILISTIC LEARNING
FOR STRICT (N:M)-SPARSITY ON LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

The rapid scaling of large language models (LLMs) has made inference efficiency
a primary bottleneck in the practical deployment. To address this, semi-structured
sparsity offers a promising solution by strategically retaining N elements out of
every M weights, thereby enabling hardware-friendly acceleration and reduced
memory. However, existing (N:M)-compatible approaches typically fall into two
categories: rule-based layerwise greedy search, which suffers from considerable
errors, and gradient-driven combinatorial learning, which incurs prohibitive train-
ing costs. To tackle these challenges, we propose a novel linear-space probabilistic
framework named MaskPro, which aims to learn a prior categorical distribution
for every M consecutive weights and subsequently leverages this distribution to
generate the (N:M)-sparsity throughout an N -way sampling without replacement.
Furthermore, to mitigate the training instability induced by the high variance of
policy gradients in the super large combinatorial space, we propose a novel update
method by introducing a moving average tracker of loss residuals instead of vanilla
loss. Finally, we conduct comprehensive theoretical analysis and extensive exper-
iments to validate the superior performance of MaskPro, as well as its excellent
scalability in memory efficiency and exceptional robustness to data samples.

1 INTRODUCTION

Recent studies have witnessed the rapid advancement of LLMs across various domains, establishing
them as a highly promising solution for a wide range of downstream tasks (Hendrycks et al., 2020;
Brown et al., 2020; Achiam et al., 2023). However, the massive parameter size introduces significant
overhead in both training and inference (Touvron et al., 2023; Grattafiori et al., 2024), underscoring
the pressing need for efficient approaches in real-world applications (Shen et al., 2023; Zhou et al.,
2024). In response, semi-structured sparsity has emerged as a technique with considerable practical
potential, as its acceleration can be efficiently harnessed by hardware accelerators (Mishra et al.,
2021; Pool et al., 2021). Specifically, it adopts a designated sparsity pattern, retaining only N out
of every M consecutive weights, a scheme commonly referred to as (N:M)-sparsity. Owing to
its effective support from parallel computing libraries, its inference performance is exceptionally
efficient, offering a viable path toward the practical and scalable local deployment of LLMs.

Although its procedural design is relatively straightforward, effectively implementing (N:M)-sparsity
while preserving model performance still remains a formidable challenge. One major obstacle lies in
its enormous combinatorial scale, making it extremely difficult to identify the optimal mask. Existing
methods can be broadly classified into two main branches. The first category encompasses rule-
based approaches that bypass backpropagation by leveraging a calibration set to greedily minimize
layerwise errors through the objective minm ∥wx− (m⊙w)x∥2 (Frantar & Alistarh, 2023). Based
on this, a series of variants incorporating auxiliary information, e.g., l2-norm of input activations (Sun
et al., 2023) and gradients (Das et al., 2023; Dong et al., 2024) have been further applied, leading to
certain improvements. However, such handcrafted metrics inherently suffer from considerable gaps
with the end-to-end loss, ultimately capping the potential effectiveness of these methods. To address
this, Fang et al. (2024) propose a learning-based method MaskLLM. Specifically, it determines the
optimal solution by directly optimizing the objective minm f(m⊙w) in generation tasks on a large
dataset. MaskLLM achieves remarkable results, but its training costs are prohibitively high, even
exceeding the overhead of finetuning the LLM itself. For instance, training the (N:M)-sparsity on

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Refined Policy Gradient Estimator

Logits Probability Mask Parameters

M elements

1

N-way sampling w/o replacement

1

11

1

00

0 0

0 0

00

00

0 0

X1

X3
X4

X2

Loss

1

Figure 1: Implementation of our proposed MaskPro for learning (2:4)-sparse masks.

d-dimensional weights requires at least additional O
((
M
N

)
d
M

)
memory to save the logits. As N and

M scale up, this memory overhead can even grow exponentially, yielding extremely poor scalability.

Our Motivation. Existing solutions either suffer from inherent biases or incur prohibitively high
training costs, making them difficult to implement. This motivates us to further explore a memory-
efficient learning-based method for this problem. Naturally, probabilistic modeling combined with
efficient policy gradient estimators (PGE) emerges as a promising study. However, due to the vast
combinatorial space and large model size, the variance of policy gradients can become so substantial
that training is nearly impossible. Moreover, the memory overhead required to store the logits remains
excessively large. To enable effective training, these two challenges must be adequately addressed.

To tackle these challenges, we introduce a linear-space probabilistic framework termed as MaskPro.
Compared with the current state-of-the-art MaskLLM (Fang et al., 2024), instead of the probability
distributions for all possible masks of M weights, our proposed MaskPro establishes a categorical
distribution for everyM consecutive elements and then utilizes this distribution to generate the (N:M)-
sparsity through an N -way sampling without replacement. This implies that for any (N:M)-sparsity
pattern, we only require O(d) memory to store the logits. Furthermore, we propose a novel PGE
update to accelerate and stabilize the entire training process, which modifies the independent loss
metric in vanilla PGE by the loss residuals with a moving average tracker. We provide the rigorous
theoretical analysis for our probabilistic modeling and prove the unbiasedness and variance reduction
properties of the proposed PGE. To investigate its effectiveness, we conduct extensive experiments
on several LLMs and report the performance across various downstream tasks. Experiments indicate
that the proposed MaskPro can achieve significant performance improvements while maintaining
memory usage comparable to rule-based methods, with substantially lower training overhead than
MaskLLM. Moreover, the MaskPro method demonstrates remarkable robustness to data samples,
which can achieve stable performance even with only 1 training sample.

We summarize the main contributions of this work as follows:

• We propose a linear-space probabilistic framework MaskPro, formulating the (N:M)-sparsity
as a process of N -way samplings without replacement within a categorical distribution over
M consecutive elements, which reduces the memory for logits from O

((
M
N

)
d
M

)
to O(d).

• We propose an enhanced policy gradient that substitutes the raw loss in standard policy
gradients with per-minibatch loss residuals. To maintain stability, we further incorporate a
moving-average baseline that adaptively tracks the residual dynamics during training.

• We provide the comprehensive theoretical analysis to understand the memory effectiveness
of MaskPro and the variance reduction properties of the proposed policy gradient update.
Extensive experiments validate its significant performance. Moreover, it exhibits outstanding
robustness to data samples, maintaining stable results even with only 1 training sample.

2 RELATED WORK

Model Pruning. Model pruning is an important compression technique that has been adopted in
several domains (Han et al., 2015; Frankle & Carbin, 2018; Liu et al., 2019; Xia et al., 2023b; Sun
et al., 2023; Sreenivas et al., 2024; Luo et al., 2025). It also demonstrates strong practicality in

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

real-world applications of LLMs. A series of structured learning and optimization methods on pruning
and training have been proposed and widely applied, including the depth- and width-based (Ko et al.,
2023), kernel-based (Xia et al., 2023a), LoRA-based (Chen et al., 2023; Zhang et al., 2023; Zhao et al.,
2024), row- and column-based (Ashkboos et al., 2024), channel-based (Gao et al., 2024b; Dery et al.,
2024), layer-based (Yin et al., 2023; Men et al., 2024; Zhang et al., 2024a), attention head-base (Ma
et al., 2023), MoE-based (Chen et al., 2022; Xie et al., 2024). These methods leverage a prune-train
process to effectively reduce the number of effective parameters while maintaining efficient training,
bring a promising solution for the practical application and deployment of LLMs in the real-world
scenarios. However, structured pruning typically considers a specific model structure as the minimal
pruning unit, which can significantly impact the model’s performance. The fundamental unit of a
model is each individual weight, implying that unstructured pruning methods generally have higher
potential on the performance (Frantar & Alistarh, 2023; Jaiswal et al., 2023). Such methods can
typically identify a fine-grained mask that closely approaches the performance of dense models.

Semi-structure Pruning. Due to the inability of GPUs and parallel computing devices to perfectly
support arbitrary element-wise sparse computations, the practical efficiency of sparse models remains
significantly constrained. Semi-structured sparsity offers a promising pathway for practical appli-
cations (Zhou et al., 2021; Zhang et al., 2022; Lu et al., 2023), which is also called (N:M)-sparsity.
A series of methods supporting semi-structured sparsity have been consistently applied, primarily
including rule-based (Han et al., 2015; Frantar & Alistarh, 2023; Sun et al., 2023; Das et al., 2023;
Dong et al., 2024; Zhang et al., 2024b) and learning-based (Holmes et al., 2021; Fang et al., 2024;
Huang et al., 2025) approaches. Our work is the first to adopt policy gradients for learning semi-
structured masks on LLMs. Enormous variance of policy gradients caused by the vast combinatorial
space makes learning (N:M)-sparsity via PGE more challenging than those gradient-based methods.

3 PRELIMINARY

3.1 SEMI-STRUCTURED SPARSITY

The core idea of semi-structured sparsity aims to divide the entire weights w ∈ Rd into groups of M
consecutive elements and then retain N effective weights for each group. More specifically, we can
formulate the semi-structured sparsity as the following combinatorial optimization problem:

m⋆ = argmin
m={mi|mi∈SN:M}

Eξ∼D [f(m⊙w, ξ)] , (1)

where f(·) denotes the corresponding loss function, the symbol ⊙ stands for the element-wise
multiplication, ξ ∼ D represents the minibatch sampled from the underlying distribution D and
SN :M =

{
mi ∈ B1×M : ∥mi∥1 = N

}
(B is the Boolean set and ∥ · ∥1 denotes l1 norm).

Generally speaking, in order to find the optimal mask m⋆ for problem 1, we are confronted with
two significant challenges: i) Huge Search Space: In the context of LLMs, the model parameter
scale d can become extremely large, which will result in the search space for problem 1 reaching

an astounding size of
(
M
N

)d/M
; ii) Non-Differentiability of Mask Selection: The discrete nature of

problem 1 prevents us from utilizing the well-established gradient-based methods such as SGD (Lan,
2020) and conditional gradient algorithm (Braun et al., 2022) to search for the optimal mask m⋆.

To address these aforementioned issues, we will introduce an innovative probabilistic framework
termed as MaskPro for problem 1 in the subsequent sections. Prior to that, we first review the
state-of-the-art learning-based MaskLLM method (Fang et al., 2024).

3.2 RETHINKING THE PROBABILISTIC MODELING IN MASKLLM AND THE MEMORY
INEFFICIENCY

Recent advance provides a learning method to address Problem 1, named MaskLLM (Fang et al.,
2024). Specifically, for each group of M consecutive weights, MaskLLM defines a categorical
distribution with class probability

[
p1, p2, · · · , p|SN:M |

]
where

∑
i pi = 1, and each pi represents the

probability of the corresponding element in SN :M . By random sampling, if a certain mask performs
better, it is reasonable to increase the probability of the sampled mask. Otherwise, the sampling
probability should be decreased. Thus, Problem 1 can be transformed as,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

{p⋆(mi)} = argmin
{p(mi)}

Eξ∼D,m={mi|mi∼p(mi)} [f(m⊙w, ξ)] , (2)

where p(mi) is the categorical distribution of the i-th mask mi over SN :M .

To enable the end-to-end training, MaskLLM further introduces Gumbel-Max(Gumbel, 1954) as
reparameterization to relax the discrete sampling into a continuous form, making it naturally differen-
tiable. This reparameterized loss-driven mask learning method is highly effective on various LLMs,
providing a innovative perspective for addressing this problem.

However, the memory overhead in the MaskLLM training process is extremely large. Firstly, the
backpropagation of gradients typically requires storing a large number of intermediate activation
values and a substantial amount of optimizer states must be maintained during updates. A more
notable issue is the separate probability assigned to each possible selection of mi over SN :M , which
may cause extreme memory explosion. Concretely, when learning (N:M)-sparsity for the weights
w ∈ Rd, MaskLLM requires at least O

((
M
N

)
d
M

)
space to save the logits for learning probabilities,

which approximately reaches O
(

2M

M d
)

at the worst case (N ≈ M/2). This implies that the
computational resources required by MaskLLM can even increase exponentially as M becomes large,
significantly limiting its scalability in practical scenarios, especially with extremely large model size.

4 METHODOLOGY

In this section, we present the details of our proposed MaskPro method. Specifically, in Section 4.1,
we introduce the novel linear-space probabilistic framework to tackle the memory drawback of the
vanilla sampling process in MaskLLM (Fang et al., 2024). Then, in Section 4.2, we propose to adopt
the backpropagation-free policy gradient for training. Moreover, we further refine the logits update
via utilizing the loss residual with a smoothing tracker instead of vanilla loss metric, which enhances
the effectiveness and stability of the learning process.

4.1 MASKPRO: A LINEAR-SPACE PROBABILISTIC RELAXATION FOR SEMI-STRUCTURED
SPARSITY

Before going into the details of our proposed MaskPro probabilistic framework, we first present a
representation theory of the concerned N:M mask set SN :M =

{
mi ∈ B1×M : ∥mi∥1 = N

}
. In

order to better illustrate our results, we need to introduce a new operation ⊕ for the coordinate-
wise probabilistic sum of two vectors. Formally, for any a ∈ R1×M and b ∈ R1×M , we define
a⊕ b = 1M − (1M − a)⊙ (1M − b), where the symbol 1M denotes the M -dimensional vector
whose all coordinates are 1. It is worth noting that this ⊕ is a symmetric associative operator, namely,
a⊕b = b⊕a. Therefore, it also makes sense to apply the operation ⊕ to a set of vectors. Specifically,
given multiple M -dimentional vectors {a1, . . . ,aN}, we can define that

N⊕
i=1

ai = a1 ⊕ a2 ⊕ · · · ⊕ aN =

(
1M −

N⊙
i=1

(1M − ai)

)
. (3)

With this operation ⊕, we then can derive a sparse representation for the N:M mask set SN :M , i.e.,

Theorem 1 (Representation of N:M Sparsity)

SN :M =

{
N⊕
i=1

ai : ai ∈ {e1, . . . , eM},∀i ∈ [N] and a1 ̸= a2 ̸= . . . ̸= aN

}
, (4)

where each ej denotes the j-th basis vector of the space R1×M .

From a high-level viewpoint, Theorem 1 offers a parameter-reduced representation of the mask space
SN :M . Notably, representing N distinct M -dimensional vectors {a1, . . . ,aN} typically requires at
most (NM) unknown parameters. In contrast, the mask set SN :M often has a enormous size of

(
M
N

)
.

Particularly when N is comparable to M , the parameter scale NM of vectors {a1, . . . ,aN} can be
significantly smaller than the space complexity

(
M
N

)
of SN :M .

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Motivated by the results of Theorem 1, if we represent each mask mi ∈ SN :M in problem 1 as a
probabilistic sum of {ai,1, . . . ,ai,N} where ai,j ∈ {e1, . . . , eM},∀j ∈ [N] and ai,ji ̸= ai,j2 ,∀j1 ̸=
j2, then we naturally can reformulate our concerned mask selection problem 1 as a binary optimization
with variables {ai,j}Nj=1,∀i ∈ [dM], that is to say,

min
ai,j∈{e1,...,eM}

Eξ∼D

f
 N⊕
j=1

ai,j ⊙wi, ξ

 , s.t. ai,ji ̸= ai,j2 ,∀j1 ̸= j2 ∈ [N], (5)

where the symbol wi denotes the i-th group of the whole weight vector w ∈ Rd and i ∈ [dM].

Notably, in Eq.5, we only employ NM ∗ d
M = Nd unknown parameters, which is significantly

smaller than the
((
M
N

)
d
M

)
parameters scale used by the MaskLLM method. However, this new

parameter-reduced formulation Eq.equation 5 of problem 1 still remains a discrete combinatorial
optimization problem such that we cannot directly utilize gradient information to search for the
optimal mask. To overcome this hurdle, we further introduce a novel probabilistic relaxation for
problem 5 in the subsequent part of this section.

Note that in Eq.5, we restrict each group of variables {ai,1, . . . ,ai,N} to be N distinct basis vectors
in R1×M , that is, ai,j ∈ {e1, . . . , eM},∀j ∈ [N] and ai,ji ̸= ai,j2 ,∀j1 ̸= j2 ∈ [N]. In other words,
we hope to identify an effective N -size subset from the basis vectors {e1, . . . , eM}, which closely
resembles an N -way sampling-without-replacement process over {e1, . . . , eM}. Inspired by this
finding, we design a novel continuous-relaxation framework named MaskPro for Eq.5, i.e., Firstly, we
allocate a categorical distribution pi = (pi,1, . . . , pi,M) for each group of variables {ai,1, . . . ,ai,N}.
Subsequently, we employ every categorical distribution pi to sequentially generate N different
random basis vectors {ei,1, . . . , ei,N} throughout an N -way sampling-without-replacement trial
where ei,j ∈ {e1, . . . , eM} and ei,j1 ̸= ei,jj ,∀j1 ̸= j2. Finally, we assign these sampled basis
vectors to the variables {ai,1, . . . ,ai,N} by setting ai,j := ei,j ,∀j ∈ [N].

Specifically, under the previously described probabilistic framework, the discrete problem equation 5
can naturally be converted into a continuous optimization task focused on learning the optimal
categorical distributions pi across the basis vectors {e1, . . . , eM}, that is,

min
∥pi∥1=1,∀i∈[dM]

Φ(p) := E{ai,j}Nj=1∼pi,ξ∼D

f
 N⊕
j=1

ai,j ⊙wi, ξ

 , (6)

where {ai,j}Nj=1 ∼ pi represents the N -step sampling-without-replacement process guided by the

categorical distribution pi. Note that representing all d
M different categorical distributions {pi}

d
M
i=1

typically requires d
M ∗M = d unknown parameters. Thus, by introducing randomness, the parameter

scale of problem 6 can be further reduced from the previous Nd of problem 5 to a linear d.

Next, we utilize the re-parameterization trick to eliminate the unit simplex constraint inherent in the
problem 6, namely, {pi ∈ [0, 1]M : ∥pi∥1 = 1}. This step is crucial as it enables us to avoid the
computationally expensive projection operations. Specifically, we reset pi := softmax(πi) where
πi = (πi,1, . . . , πi,M) is the logits of softmax function. With this reformulation, we can transform

the problem 6 as an unconstrained optimization regarding the logits π := {πi}
d
M
i=1, that is,

min
π

Φ(π) := E{ai,j}Nj=1∼softmax(πi),ξ∼D

f
 N⊕
j=1

ai,j ⊙wi, ξ

 . (7)

To avoid repeatedly using the cumbersome notation
⊕

, in the remainder of this paper, we define
mi :=

⊕N
j=1 ai,j for any i ∈ [dM] and also use p(mi|πi) to denote the probability of our MaskPro

generating the mask mi under logits πi. Then, the previous problem 7 can be rewritten as:

min
π

Φ(π) := Eξ∼D,m={mi|mi∼p(mi|πi)} [f (m⊙w, ξ)] =

∫
Eξ [f (m⊙w, ξ)] p(m|π)dm, (8)

where m ∈ B1×d is the concatenation of all mask {m1, . . . ,m d
M
} and p(m|π) :=

∏ d
M
i=1 p(mi|πi).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.2 POLICY GRADIENT ESTIMATOR AND REFINED (N:M)-SPARSITY LEARNING

Thanks to the probabilistic formulation of Eq. 8, we thus can facilitate an efficient optimization via a
policy gradient estimator. Specifically, we have the following equality:

∇Φ(π) = Eξ∼D,m={mi|mi∼p(mi|πi)} [f(m⊙w, ξ)∇ log (p(m|π))] . (9)

As for the proof of Eq.9 and the specific calculation of p(m|π) in our MaskPro, please refer to
Appendix C.2 and B. Note that Eq.9 can be computed purely with forward propagation. Therefore,
we can update the logits variables π via a mini-batch stochastic gradient descent, that is to say,

πt+1 = πt − ηf(mt ⊙w, ξ)∇ log (p(mt|πt)) . (10)

Although Eq.(10) may perform well in elementary tasks, it faces one major challenge in the context
of LLMs, which is caused by the inherent differences in loss values among different minibatch.

Ambiguity on Mask mt and Minibatch ξ. The policy gradient updates logits based on the loss
metric, aiming to encourage the logits to select masks that result in lower loss values. However, when
the loss variation caused by mask sampling is significantly smaller than the loss variation caused by
changing the minibatch, the loss metric alone cannot effectively distinguish whether the current mask
is beneficial or detrimental. For example, we denote ξlow as the minibatch whose loss is inherently low
and ξhigh as the minibatch with high loss. Then we sample two masks and denote one that achieves
lower loss by mgood and the other by mbad. There are typically two scenarios during training.

• f(mgood ⊙w, ξlow) ≤ f(mbad ⊙w, ξlow) and f(mgood ⊙w, ξhigh) ≤ f(mbad ⊙w, ξhigh).
• A bad case: f(mbad ⊙w, ξlow) ≤ f(mgood ⊙w, ξhigh).

2.944 2.948 2.952 2.956
Loss f(m w, i)

0

20

40

60

80

100

120

mbadmgood mbadmgood

random minibatch 1
random minibatch 2

p(m|)f(m w, i)

Figure 2: Loss-related misconceptions.

The first case is likely to hold in most cases, as a good mask
can generally reduce the loss on most minibatches. But
when the bad case occurs, Eq.(10) interprets that the lower-
loss sample as the better one, yielding more erroneous
learning on mbad. To better illustrate this phenomenon,
we randomly select two minibatches during the training
of LLaMA-2-7B and extract the logits at the 500-th it-
eration. We then sample 1000 masks and plot their loss
distributions, as shown in Figure 2. It is clearly observed
that f(mbad ⊙ w, ξ1) ≤ f(mgood ⊙ w, ξ2). Such dis-
parities between minibatches are quite common, causing
Eq.(10) to frequently encounter conflicting information
when learning solely based on loss value f(m⊙w, ξ).

To address this issue, we propose to use the loss residual to update the logits, which can distinguish
the loss variations independently caused by mask changes. By rethinking the first case above, to
accurately evaluate whether a mask is better, we should fix the impact of minibatch. Similarly, we
introduce f(mt ⊙ w, ξ) − f(m0 ⊙ w, ξ) instead of f(mt ⊙ w, ξ) alone to evaluate whether the
current sampled mask mt is better than the baseline of initial m0. Thus, the update is refined as:

πt+1 = πt − η (f(mt ⊙w, ξ)− f(m0 ⊙w, ξ))∇ log (p(mt|πt)) . (11)

In experiments, the effectiveness of Eq.(11) is significantly better than that of Eq.(10). However, it
exhibits poor numerical stability. To further handle the potential numerical explosion during training,
motivated by Zhao et al. (2011), we introduce a moving average tracker to evaluate the averaged loss
residual under the current logits. Specifically, we reformulate Eq.(11) as follows:

πt+1 = πt − η (f(mt ⊙w, ξ)− f(m0 ⊙w, ξ)− δ)∇ log (p(mt|πt)) ,
δ = αδ + (1− α) (f(mt ⊙w, ξ)− f(m0 ⊙w, ξ)) .

(12)

Eq.(12) not only effectively distinguishes the loss variations caused by each sampled mask but also
stabilizes its numerical distribution around zero through the δ term. This prevents aggressive logits
updates caused by large loss variations, ensuring a more stable training process. We also provide a
theoretical intuition and understanding for the δ term in Appendix C.3.3.

We summarize the training procedure in Algorithm 1. At t-th iteration, we first reshape the logits
πt into groups of M consecutive elements and then apply the softmax function to generate the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

corresponding probabilities pt. Based on pt, we perform an N -way sampling without replacement for
each group, resulting in a strict (N:M)-sparse mask. We then calculate the policy gradient to update
the current logits. By calculating the loss residual on the corresponding minibatch ξ, we can obtain
the independent impact of the loss value. With the assistance of a smoothing tracker, we ensure that
the distribution of loss residuals used for the policy gradient remains stable. Then we complete the
policy gradient update of the logits. Finally, we update the smoothing tracker δ. Regarding the final
output, since the output consists of the logits πT of all weights, in our experiments, we directly select
the top-N positions with the highest logits within each group of M elements as the mask. Actually, a
more refined approach is to perform multiple N -way sampling-without-replacement processes and
then evaluate them on a small calibration set to select the optimal mask.

Algorithm 1 Learning (N:M)-Sparsity via MaskPro
Input: frozen weights w, initial logits π0, initial mask m0, learning rate η, smoothing coefficient

α = 0.99, smoothing tracker δ = 0.
Output: learned logits πT

1: for t = 0, 1, 2, · · · , T − 1 do
2: sample a minibatch ξ for training
3: reshape πt into groups of M elements and calculate pt = softmax(πt) for each group
4: perform N -way sampling without replacement by pt to generate the mask mt

5: perform inference and calculate the loss residual f(mt ⊙w, ξ)− f(m0 ⊙w, ξ)
6: update logits πt+1 = πt − η (f(mt ⊙w, ξ)− f(m0 ⊙w, ξ)− δ)∇ log (p(mt|πt))
7: update the smoothing tracker δ = αδ + (1− α) (f(mt ⊙w, ξ)− f(m0 ⊙w, ξ))
8: end for

5 UNBIASEDNESS AND VARIANCE REDUCTION

In this section, we primarily demonstrate the unbiasedness and variance-reduced properties of our
proposed PGE update. For clarity of exposition, we denote these three updates as:

gp = f(m⊙w, ξ)∇ log (p(m|π)) ,
gr = (f(m⊙w, ξ)− f(m0 ⊙w, ξ))∇ log (p(m|π)) ,
gsr = (f(m⊙w, ξ)− f(m0 ⊙w, ξ)− δ)∇ log (p(m|π)) ,

where gp is the vanilla PGE, gr is the update via loss residual and gsr is the update via loss residual
with smoothing tracker δ. Then the following theorem holds (proof is deferred to Appendix C.3).

Theorem 2 The proposed PGEs are all unbiased estimators of the policy gradient, i.e.,

E [gp] = E [gr] = E [gsr] = ∇Φ(π). (13)

Furthermore, when the sampled mask satisfies f(mt ⊙w, ξ) > 1
2f(m0 ⊙w, ξ), we have:

Var [gsr] ≲ Var [gr] < Var [gp] . (14)

In Theorem 2, Eq.13 showes that our proposed updates gr and gsr are both unbiased estimators of the
gradient ∇Φ(π), effectively supporting the training process. Furthermore, when f(mt ⊙w, ξ) >
1
2f(m0 ⊙w, ξ), from Eq.14 of Theorem 2, we know that before the loss of the sampling mask mt

decreases to less than half of the initial one, using the update via loss residual with smoothing tracker
can achieve more efficient training. Once the optimization process has sufficiently progressed such
that the loss is less than half of the initial loss, a new set of m can be selected to replace m0 to
continue efficient training. In practical experiments, this condition is almost easily satisfied, as the
loss rarely drops below half of the initial value when training with an initial mask with simple priors.

6 EXPERIMENTS

In this section, we first introduce the baselines along with details of the dataset and models. Then we
present the main experiments. We also conduct sensitivity studies of α and C on Appendix A.9 and
A.10 to provide proper guidance for the reproducibility and extensibility.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Zero-shot evaluations of (2:4)-sparsity. In the test, we freeze weight updates and directly
apply masks. The results corresponding to each model name reflects the evaluation of dense weights.

Wiki. HellaS. RACE PIQA WinoG. ARC-E ARC-C OBQA Memory

GEMMA-7B 112.39 60.54 40.19 79.71 73.09 81.65 49.91 32.80 —
- MASKLLM — 25.42 20.10 51.52 49.49 25.21 21.59 18.40 467.14 G

- MAGNITUDE — 25.23 21.24 51.85 50.75 26.43 21.84 12.40 16.32 G
- SPARSEGPT — 26.07 22.39 55.11 50.36 30.64 18.43 14.80 34.94 G
- WANDA — 26.80 22.78 56.47 48.86 32.66 17.75 13.60 29.63 G
- GBLM — 26.81 22.49 54.52 51.07 32.38 17.66 14.00 39.38 G
- PRUNER-ZERO — 25.27 21.63 53.21 50.75 24.58 22.70 15.20 39.38 G
- MaskPro — 26.97 23.26 57.88 52.82 32.92 22.65 16.40 48.63 G

VICUNA-1.3-7B 11.86 56.32 41.91 77.37 69.46 74.28 42.41 34.60 —
- MASKLLM 14.91 49.07 39.13 75.24 65.35 65.57 33.57 25.60 331.16 G

- MAGNITUDE 389.92 40.19 28.61 67.03 57.62 54.59 28.75 19.40 12.82 G
- SPARSEGPT 24.93 44.87 37.81 70.62 63.30 62.92 32.42 25.00 22.20 G
- WANDA 25.24 44.28 37.89 70.57 61.56 61.70 32.17 23.00 21.25 G
- GBLM 24.60 44.29 38.37 70.51 61.80 62.84 31.40 24.00 26.87 G
- PRUNER-ZERO 24.02 44.77 37.42 71.22 62.75 62.33 32.76 24.00 26.87 G
- MaskPro 21.10 46.81 38.76 71.60 64.25 64.23 33.19 24.80 35.90 G

LLAMA-2-7B 8.71 57.15 39.62 78.07 68.90 76.35 43.34 31.40 —
- MASKLLM 12.55 51.17 38.56 74.70 65.04 69.57 35.67 26.80 331.16 G

- MAGNITUDE 307.39 45.43 31.48 70.08 60.93 61.87 30.20 21.80 12.82 G
- SPARSEGPT 21.07 43.20 36.56 70.89 64.56 64.52 31.48 24.60 22.20 G
- WANDA 23.44 41.32 35.89 70.46 62.12 62.79 30.20 24.20 21.25 G
- GBLM 21.64 41.79 34.61 70.57 62.75 63.17 29.86 23.20 26.87 G
- PRUNER-ZERO 22.09 41.17 34.64 70.18 62.35 61.32 27.05 22.80 26.87 G
- MaskPro 17.17 46.18 37.13 73.07 65.82 66.12 32.85 26.20 35.90 G

DEEPSEEK-7B 9.70 56.94 39.62 79.27 70.40 75.25 43.60 32.60 —
- MASKLLM 12.90 51.73 39.14 75.95 65.80 68.10 35.32 25.80 339.56 G

- MAGNITUDE 285.06 40.97 28.52 69.75 60.06 54.92 27.56 20.80 13.13 G
- SPARSEGPT 19.12 45.58 37.80 73.94 65.43 66.37 32.94 24.80 22.50 G
- WANDA 19.68 45.38 35.12 73.56 63.14 65.49 32.00 22.80 21.55 G
- GBLM 19.55 45.34 36.17 73.99 62.98 65.82 32.85 23.60 27.98 G
- PRUNER-ZERO 20.71 44.93 35.22 73.23 62.12 64.94 30.89 23.20 27.98 G
- MaskPro 17.97 47.78 37.75 74.72 65.59 66.74 33.49 28.60 36.82 G

Baselines. We select the backpropagation-free methods including Magnitude (Han et al., 2015),
SparseGPT (Frantar & Alistarh, 2023), Wanda (Sun et al., 2023), GBLM-Pruner (Das et al., 2023),
and Pruner-Zero (Dong et al., 2024) as baselines. We also report the results of the backpropagation-
based MaskLLM (Fang et al., 2024). The backpropagation-free methods perform sparsification by
minimizing the layer-wise errors of the output activations caused by sparse weights, while MaskLLM
updates the mask by optimizing masks through the loss function of the text generation task.

Models & Dataset. We evaluate the performance on 4 LLMs, including Vicuna-7B (Chiang et al.,
2023), LLaMA-2-7B (Touvron et al., 2023), Deepseek-7B (DeepSeek-AI, 2024), Gemma-7B (Team
et al., 2024). To ensure a fair comparison, we use the C4 dataset (Raffel et al., 2020) as a unified
calibration or training dataset for each method and adopt the LM-evaluation-harness framework (Gao
et al., 2024a) for zero-shot evaluations. Due to the page limitation, more details of the hyperparameters
and experimental setups for reproducibility can be found in Appendix A.1.

Performance. In Table 1, we report the zero-shot evaluation on several downstream tasks for the
(2:4)-sparsity. We conduct extensive experiments on several 7B models to validate the effectiveness
of our proposed method. MaskPro generally outperforms existing non-backpropagation methods,
achieving an average performance improvement of over 2% over the top-2 accuracy. On certain
models and datasets, it achieves performance nearly comparable to MaskLLM. On the Wikitext
PPL test, the MaskPro method also shows a consistent improvement, about 3 on LLaMA-2-7B and
over 3 on the others. The weights of the Gemma-7B model are not sufficiently sparse, resulting

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000 6000
Iteration

0.200

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.000

0.025

f(m
t

w
,

)
f(m

0
w

,
)

Loss Residual
Vanilla Policy Gradient
Loss Residual with Smoothing Tracker

(a) Training Effectiveness of Three PGE Updates.

1 16 32 64 128 256 512
Dataset Size

16

18

20

22

24

26

28

30

Pe
rp

le
xi

ty
 (

PP
L)

Sparsegpt
Wanda
GBLM

Pruner-Zero
MaskPro

(b) Training Performance of Different Dataset Size.

Figure 3: (a) We show the different loss curves trained with the three PGEs. (b) We report the PPL
on Wikitext of different methods trained with 1, 16, 32, 64, 128, 256, and 512 data samples.

in suboptimal performance of its corresponding sparse model and unstable PPL results. We show
more evaluations in the Appendix A.3. More experiments of (4:8) / (8:16)-Sparsity are stated in
Appendix A.5 and A.7. We also evaluate MaskPro on 13B and 30B models in Appendix A.8.

Optimizers. In Figure 3 (a), we evaluate the training performance of vanilla PGE, loss residual and
loss residual with the smoothing tracker. The metric on the y-axis represents how much the loss value
of the current minibatch is reduced by the mask sampled from the current logits compared to the
initial mask. It can be observed that the vanilla policy gradient update is almost ineffective, with the
loss oscillating around zero without effectively learning any useful information. After applying the
loss residual update, significant improvement is observed as the logits receive effective guidance to
sample better masks. However, its effect is not sufficiently stable — after achieving a certain level
of improvement, large oscillations occur, preventing further learning progress. The update of loss
residual with the smoothing tracker can efficiently and stably train this task, leading to better results.

Size of Training Set. Our proposed MaskPro requires significantly less data samples compared to
other learning-based methods. As shown in Figure 3 (b), we evaluate the PPL of the Wikitext dataset
on LLaMA2-7B after training 10k iterations with training set sizes of 1, 16, 32, 64, 128, 256, 512.
According to the experimental results reported by Fang et al. (2024), MaskLLM requires at least 1280
training samples to achieve the results of SparseGPT, and 520k samples for convergence. In contrast,
our proposed MaskPro can be trained with a minimal number of training samples while maintaining
nearly stable performance even with 1 data sample. We also provide results in Appendix A.12
comparing runs initialized from different masks with 1 sample versus 128 samples. Our experiments
show that training with a single sample remains stable, with only a slight loss in performance.

Training Efficiency. We evaluate efficiency primarily by comparing memory usage, training time,
and the size of the training dataset. Traditional rule-based methods learn masks by evaluating specific
metrics on a small validation set. For example, in the (2:4)-sparsity on LLaMA-2-7B, the Pruner-Zero
requires 26.87 GB of memory and 128 C4-en data samples. And for the learning-based MaskLLM, it
requires 330 GB of memory across 8× A100 GPUs and 520k training samples, taking over 1200
GPU hours. A significant advantage of our proposed MaskPro method is its low computational and
memory overhead during training. More details of training time profile reports on different patterns
and corresponding acceleration techniques of sampling are shown in Appendix A.13 and A.14.

7 SUMMARY

In this paper, we propose a novel memory-efficient framework named MaskPro, which leverages
policy gradient updates to learn semi-structured sparsity. By reformulating the (N:M)-sparsity as a
linear-space probability relaxation, our approach reduces the memory for logits storage from vanilla
O
((
M
N

)
d
M

)
to O(d). Furthermore, we propose a novel PGE that replaces the vanilla loss metric

with loss residuals, refined by a moving average tracker, effectively accelerating training and reducing
variance. Lastly, comprehensive theoretical analysis and extensive experiments demonstrates the
effectiveness of our MaskPro in achieving substantial performance gains with minimal training costs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024.

Gábor Braun, Alejandro Carderera, Cyrille W Combettes, Hamed Hassani, Amin Karbasi, Aryan
Mokhtari, and Sebastian Pokutta. Conditional gradient methods. arXiv preprint arXiv:2211.14103,
2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Tianyi Chen, Tianyu Ding, Badal Yadav, Ilya Zharkov, and Luming Liang. Lorashear: Efficient large
language model structured pruning and knowledge recovery. arXiv preprint arXiv:2310.18356,
2023.

Tianyu Chen, Shaohan Huang, Yuan Xie, Binxing Jiao, Daxin Jiang, Haoyi Zhou, Jianxin Li, and Furu
Wei. Task-specific expert pruning for sparse mixture-of-experts. arXiv preprint arXiv:2206.00277,
2022.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Rocktim Jyoti Das, Mingjie Sun, Liqun Ma, and Zhiqiang Shen. Beyond size: How gradients shape
pruning decisions in large language models. arXiv preprint arXiv:2311.04902, 2023.

DeepSeek-AI. Deepseek llm: Scaling open-source language models with longtermism. arXiv preprint
arXiv:2401.02954, 2024. URL https://github.com/deepseek-ai/DeepSeek-LLM.

Lucio Dery, Steven Kolawole, Jean-François Kagy, Virginia Smith, Graham Neubig, and Ameet
Talwalkar. Everybody prune now: Structured pruning of llms with only forward passes. arXiv
preprint arXiv:2402.05406, 2024.

Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu, Xinglin Pan, Qiang Wang, and Xiaowen Chu.
Pruner-zero: Evolving symbolic pruning metric from scratch for large language models. In
Proceedings of the 41st International Conference on Machine Learning. PMLR, 2024. URL
https://arxiv.org/abs/2406.02924. [arXiv: 2406.02924].

Gongfan Fang, Hongxu Yin, Saurav Muralidharan, Greg Heinrich, Jeff Pool, Jan Kautz, Pavlo
Molchanov, and Xinchao Wang. Maskllm: Learnable semi-structured sparsity for large language
models. arXiv preprint arXiv:2409.17481, 2024.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Elias Frantar and Dan Alistarh. SparseGPT: Massive language models can be accurately pruned in
one-shot. arXiv preprint arXiv:2301.00774, 2023.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 07 2024a. URL https://zenodo.org/records/12608602.

Yuan Gao, Zujing Liu, Weizhong Zhang, Bo Du, and Gui-Song Xia. Bypass back-propagation:
Optimization-based structural pruning for large language models via policy gradient. arXiv preprint
arXiv:2406.10576, 2024b.

10

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://github.com/deepseek-ai/DeepSeek-LLM
https://arxiv.org/abs/2406.02924
https://zenodo.org/records/12608602

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Emil Julius Gumbel. Statistical theory of extreme values and some practical applications: a series of
lectures, volume 33. US Government Printing Office, 1954.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Connor Holmes, Minjia Zhang, Yuxiong He, and Bo Wu. Nxmtransformer: Semi-structured sparsifi-
cation for natural language understanding via admm. Advances in neural information processing
systems, 34:1818–1830, 2021.

Weiyu Huang, Yuezhou Hu, Guohao Jian, Jun Zhu, and Jianfei Chen. Pruning large language models
with semi-structural adaptive sparse training. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pp. 24167–24175, 2025.

Ajay Jaiswal, Shiwei Liu, Tianlong Chen, Zhangyang Wang, et al. The emergence of essential
sparsity in large pre-trained models: The weights that matter. Advances in Neural Information
Processing Systems, 36:38887–38901, 2023.

Jongwoo Ko, Seungjoon Park, Yujin Kim, Sumyeong Ahn, Du-Seong Chang, Euijai Ahn, and
Se-Young Yun. Nash: A simple unified framework of structured pruning for accelerating encoder-
decoder language models. arXiv preprint arXiv:2310.10054, 2023.

Guanghui Lan. First-order and stochastic optimization methods for machine learning, volume 1.
Springer, 2020.

Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Kwang-Ting Cheng, and Jian
Sun. Metapruning: Meta learning for automatic neural network channel pruning. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 3296–3305, 2019.

Yucheng Lu, Shivani Agrawal, Suvinay Subramanian, Oleg Rybakov, Christopher De Sa, and Amir
Yazdanbakhsh. Step: learning n: M structured sparsity masks from scratch with precondition. In
International Conference on Machine Learning, pp. 22812–22824. PMLR, 2023.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning.
arXiv preprint arXiv:2501.12570, 2025.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh,
Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks. arXiv preprint
arXiv:2104.08378, 2021.

Jeff Pool, Abhishek Sawarkar, and Jay Rodge. Accelerating inference with sparsity using the nvidia
ampere architecture and nvidia tensorrt. NVIDIA Developer Technical Blog, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Li Shen, Yan Sun, Zhiyuan Yu, Liang Ding, Xinmei Tian, and Dacheng Tao. On efficient training of
large-scale deep learning models: A literature review. arXiv preprint arXiv:2304.03589, 2023.

Sharath Turuvekere Sreenivas, Saurav Muralidharan, Raviraj Joshi, Marcin Chochowski, Ameya Sunil
Mahabaleshwarkar, Gerald Shen, Jiaqi Zeng, Zijia Chen, Yoshi Suhara, Shizhe Diao, et al. Llm
pruning and distillation in practice: The minitron approach. arXiv preprint arXiv:2408.11796,
2024.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
large language models. arXiv preprint arXiv:2306.11695, 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang, Zhongzhu Zhou, Xiafei Qiu, Yong Li, Wei Lin,
and Shuaiwen Leon Song. Flash-llm: Enabling cost-effective and highly-efficient large generative
model inference with unstructured sparsity. arXiv preprint arXiv:2309.10285, 2023a.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023b.

Yanyue Xie, Zhi Zhang, Ding Zhou, Cong Xie, Ziang Song, Xin Liu, Yanzhi Wang, Xue Lin, and
An Xu. Moe-pruner: Pruning mixture-of-experts large language model using the hints from its
router. arXiv preprint arXiv:2410.12013, 2024.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, Ajay Jaiswal,
Mykola Pechenizkiy, Yi Liang, et al. Outlier weighed layerwise sparsity (owl): A missing secret
sauce for pruning llms to high sparsity. arXiv preprint arXiv:2310.05175, 2023.

Mingyang Zhang, Hao Chen, Chunhua Shen, Zhen Yang, Linlin Ou, Xinyi Yu, and Bohan Zhuang.
Loraprune: Structured pruning meets low-rank parameter-efficient fine-tuning. arXiv preprint
arXiv:2305.18403, 2023.

Nan Zhang, Yanchi Liu, Xujiang Zhao, Wei Cheng, Runxue Bao, Rui Zhang, Prasenjit Mitra, and
Haifeng Chen. Pruning as a domain-specific llm extractor. arXiv preprint arXiv:2405.06275,
2024a.

Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao, Lu Hou, and Carlo Vittorio Cannistraci. Plug-
and-play: An efficient post-training pruning method for large language models. In The Twelfth
International Conference on Learning Representations, 2024b.

Yuxin Zhang, Mingbao Lin, Zhihang Lin, Yiting Luo, Ke Li, Fei Chao, Yongjian Wu, and Rongrong Ji.
Learning best combination for efficient n: M sparsity. Advances in Neural Information Processing
Systems, 35:941–953, 2022.

Bowen Zhao, Hannaneh Hajishirzi, and Qingqing Cao. Apt: Adaptive pruning and tuning pretrained
language models for efficient training and inference. arXiv preprint arXiv:2401.12200, 2024.

Tingting Zhao, Hirotaka Hachiya, Gang Niu, and Masashi Sugiyama. Analysis and improvement of
policy gradient estimation. Advances in Neural Information Processing Systems, 24, 2011.

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and
Hongsheng Li. Learning n: m fine-grained structured sparse neural networks from scratch. arXiv
preprint arXiv:2102.04010, 2021.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning Wang,
Zhihang Yuan, Xiuhong Li, et al. A survey on efficient inference for large language models. arXiv
preprint arXiv:2404.14294, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

The Use of Large Language Models. In this work, we only evaluate the performance on LLMs in
our experiments and employ LLMs to refine the writing and presentation of our manuscript. Other
aspects of the work are unrelated to LLMs.

Limitation and Broader Impact. This paper presents a memory-efficient training framework for
learning semi-structured sparse masks based on policy gradient, achieving comprehensive improve-
ments in performance and efficiency through substantial upgrades in both the probabilistic modeling
and optimizers. A limitation of this paper is that when training large-scale models, the primary
time consumption lies in simulating the mask sampling process. Utilizing more efficient sampling
simulations can further enhance training efficiency. The core contributions of this paper mainly
include linear-space probabilistic modeling and optimizer enhancements. These two aspects can be
widely applied to various model pruning tasks, not just the specific task addressed in this work.

A EXPERIMENTS

A.1 EXPERIMENTAL DETAILS AND REPRODUCIBILITY

In this paper, we reproduce the baselines using their official open-source codes provided in each
paper. For fairness, we use the C4-en dataset as the calibration/training dataset. For the MaskLLM,
we follow Fang et al. (2024) to adopt 520k C4-en samples for training 2k iterations with batchsize
256. For other methods, we follow their setups to adopt 128 C4-en samples as calibration dataset.

Hyperparameters. For the MaskPro, we evaluate a wide range of dataset sizes, ranging from 1 to
320k. We select the learning rate from [25, 50, 100, 200] for each model and 50/100 proves to be a
relatively effective choice. In the training, we use batchsize as 32 and training for ∼10k iterations.
Using a batchsize larger than 32 is also encouraged, as larger batches generally lead to stable training.
In all experiments, we adopt the smoothing coefficient α = 0.99 to stably follow the loss residual.
We summarize the selection of certain hyperparameters in Table 2.

Table 2: Hyperparameters selections.
Model Learning rate Logits Magnitude Smoothing coefficient α Initial Mask

Gemma-7B 50 / 100 10.0 0.99 Top-N / Sparsegpt
Vicuna-V1.3-7B 50 10.0 0.99 Top-N / Sparsegpt

LLaMA-2-7B 50 10.0 0.99 Top-N / Sparsegpt
DeepSeek-7B 50 / 100 10.0 0.99 Top-N / Sparsegpt

Initialization. The initialization of logits in MaskPro is crucial. Standard random initialization
or zero initialization are ineffective. This is because the logits determine the sampling scale. For
instance, zero initialization implies that each position is sampled with equal probability, leading to a
very large number of negative samples during the initial training stage. Consequently, it becomes
exceedingly difficult to identify effective positive samples for learning. In our experiments, we
initialize the logits based on π0 = m0 ∗ C, where m0 is a pre-defined mask and C is the initial
logits magnitude. A larger C indicates that the mask changes less compared to the initial mask m0,
effectively maintaining a balance between positive and negative samples in the early training stages.
The design of m0 is flexible. In practice, training can also start with a randomly generated mask;
however, this approach typically requires a longer training period. We recommend directly using the
results from the Sparsegpt method or selecting the Top-N positions over M elements per group.

Training Environment. We train our proposed MaskPro on a single H100 / A100 GPU device. Other
details are stated in Table 3.

Table 3: Training Environment.
GPU CPU CUDA Driver Pytorch

1× H100 / A100 128× AMD EPYC 9354 32-C 12.4 535.230.02 2.5.1

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Evaluations. For fair comparisons, all evaluations are conducted on the public benchmark framework
LM-evaluation-harness framework (Gao et al., 2024a) (https://github.com/EleutherAI/lm-evaluation-
harness.git). Please refer to the relevant reproduction guidelines.

A.2 THE IMPORTANCE OF C IN LOGITS INITIALIZATION

We have previously discussed the selection of C in the experiments. Here, we will visualize some
practical scenarios encountered during the experiments and illustrate why C must be sufficiently
large to effectively drive the training process. We analyze the distribution of loss values of training
LLAMA-2-7B within 100 steps with a minibatch of 32 samples under different C initialization
settings, as shown in Figure 4.

0 1 2 3 4 5 6 7 8 9 10
Vaule of C

2.0

4.0

6.0

8.0

10.0

12.0

14.0

f(m
w

)

6 7 8 9 102.94
2.95
2.96
2.97
2.98
2.99
3.0

f(m0 w)

Figure 4: The distribution of loss within 100 steps under different C used for logits initialization.

We first explain which variables are affected by C. Since we use the softmax function to generate
the probabilities for the corresponding positions, the logits values determine whether the initial
probability of being sampled at a specific position is sufficiently large. In other words, when sampling
a new mask, it ensures how many positions with high probabilities remain unchanged. This point
is particularly important because the sampling space is extremely large. Without constraining the
sampling space, there is a high probability of sampling poor masks. Extremely poor masks are
incapable of capturing useful information effectively. Therefore, randomly initializing the C value or
directly setting it to zero is completely ineffective, as it cannot ensure the stability of the sampling
space, i.e., whether the distribution of positive and negative samples in the sampling space is balanced.

Next, we explain the meaning of Figure 4. We show the distribution of loss values over 100 training
steps using a minibatch under different C initialization settings on the LLaMA-2-7B model. In the
subplot, the red line corresponds to the loss of the initialized mask m0. When C is small, it is evident
that the training fails — the loss surges from the initial 2.95 to over 10. A large number of negative
samples flood into the training process, leading to chaotic learning. As C increases to 4, the stability
gradually improves. However, it is still insufficient. As shown in the subplot, even when C = 6,
more than 90% of the sampled masks still exhibit extremely poor performance. Until C increases
to 9 and 10, it can be observed that the distribution of positive and negative sampled masks during
training gradually maintains a 1:1 ratio. By this, the training can proceed effectively.

Here, we provide an additional example to explain and guide the selection of C for different network
parameters. As mentioned earlier, one probabilistic interpretation of C is to determine, on average,
how many positions are sampled differently from the initialized mask. We can succinctly express this
probability in a mathematical form. Suppose the initialized mask m0 is [0, 1, 1, 0], then its initial logits
is [0, C, C, 0] and the corresponding softmax probability is

[
1

2(eC+1)
, eC

2(eC+1)
, eC

2(eC+1)
, 1
2(eC+1)

]
.

Thus we have:

p(m = [0, 1, 1, 0] |π = [0, C, C, 0]) =
e2C

(eC + 1)(eC + 2)
.

In fact, the size of the sampling space where positive and negative samples are evenly distributed is
difficult to estimate for different model parameter sizes. However, we can reasonably speculate that

14

https://github.com/EleutherAI/lm-evaluation-harness.git
https://github.com/EleutherAI/lm-evaluation-harness.git

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

the total number of parameters is generally proportional to the above probability value. For larger
models, using a larger C can further maintain the effectiveness of the training space.

A.3 MORE EXPERIMENTS ON DIFFERENT TASKS

In addition to the primary comparisons presented in the main text, we extend our evaluation to
encompass over a dozen additional tasks to provide a more comprehensive demonstration of the
effectiveness of our proposed method. These extended tests are carefully selected to cover diverse
data distributions and task complexities, allowing us to assess the robustness and generalizability of
our approach. The results from these comprehensive experiments consistently highlight the superior
performance of our method across various scenarios, further reinforcing its effectiveness. The detailed
outcomes of these evaluations are presented as follows.

Table 4: Zero-shot evaluations of (2:4)-sparsity on other more tasks.

LLaMA-2-7B DeepSeek-7B

Dense Sparsegpt Pruner-Z MaskPro Dense Sparsegpt Pruner-Z MaskPro

WMDP 39.29 26.61 26.52 26.95 41.00 27.15 27.07 28.22
TMLU 29.58 25.03 25.13 25.38 37.17 25.99 24.36 25.37
Prost 23.60 24.26 24.03 24.41 28.19 28.22 27.62 29.57
AExams 21.04 23.65 23.65 23.65 23.65 23.65 23.65 23.65
AClue 27.47 25.33 25.31 26.24 32.34 27.17 26.88 27.31
ANLI-1 36.40 33.20 33.60 34.40 34.10 31.10 31.19 32.20
ANLI-2 37.20 34.10 33.90 34.10 36.60 33.70 33.20 33.50
ANLI-3 37.58 33.08 33.00 35.67 37.75 33.33 33.04 33.85
SCIQ 94.00 91.10 91.10 91.10 94.10 92.30 90.20 90.90
MathQA 28.24 23.72 23.55 23.95 29.48 25.93 25.12 26.76
Haerae 22.27 18.88 18.91 18.79 29.70 25.57 18.26 22.18
BoolQ 77.68 71.10 69.13 71.12 72.81 66.91 66.36 67.77
ComQA 32.92 20.80 20.08 22.03 36.69 23.10 22.95 23.18
LogiQA 25.65 21.66 21.78 22.89 25.04 21.73 21.35 22.58
COPA 87.00 81.00 79.00 79.00 84.00 86.00 84.00 87.00
WIC 49.84 47.81 47.22 49.84 51.10 48.00 48.81 49.06
WSC 36.54 36.54 36.54 36.54 64.42 36.54 36.54 36.54
CB 42.86 41.07 39.29 57.14 55.36 42.86 43.44 48.21
MultiRC 56.97 57.20 56.37 56.93 57.22 57.20 57.20 57.20
RTE 62.82 58.48 59.12 61.37 67.87 63.43 63.15 66.32

Mutual 70.84 68.01 67.44 68.53 71.30 67.43 67.24 68.33

WebQS 0.0586 0.0541 0.0544 0.0566 0.0876 0.0468 0.0226 0.0494

In this experiment, we evaluate the performance of MaskPro across a diverse set of tasks to com-
prehensively assess its effectiveness on LLaMA-2-7B and DeepSeek-7B. The experimental design
includes a variety of downstream tasks. MaskPro consistently demonstrates superior performance
over competing methods, such as SparseGPT and Pruner-Zero, in the majority of datasets. The
method effectively balances accuracy and computational efficiency, achieving more favorable out-
comes without compromising on memory constraints. This consistent performance across multiple
tasks highlights the robustness and generalizability of MaskPro in handling different scenarios. On
smaller datasets, the performance gains of MaskPro are relatively moderate, as the evaluation is
constrained by limited sample diversity. However, when tested on larger datasets with extensive
testing samples, MaskPro consistently demonstrates substantial improvements over baseline methods.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.4 TRAINING WITH DIFFERENT DATASET SIZE

In this section, we report the training results using different numbers of samples. In Figure 5, we
present the loss residuals of training on LLaMA-2-7B model with 1, 32, 128, and 320k samples,
respectively. We set batchsize as 32 for all others expect for 1 as 1. All are trained for 10k iterations.

0 2000 4000 6000 8000 10000
Iteration

0.5

0.4

0.3

0.2

0.1

0.0

f(m
t

w
,

)
f(m

0
w

,
)

Train with 1 Sample

(a) Training set = 1.

0 2000 4000 6000 8000 10000
Iteration

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

0.02

f(m
t

w
,

)
f(m

0
w

,
)

Train with 32 Samples

(b) Training set = 32.

0 2000 4000 6000 8000 10000
Iteration

0.12

0.10

0.08

0.06

0.04

0.02

0.00

0.02

f(m
t

w
,

)
f(m

0
w

,
)

Train with 128 Samples

(c) Training set = 128.

0 2000 4000 6000 8000 10000
Iteration

0.150

0.125

0.100

0.075

0.050

0.025

0.000

f(m
t

w
,

)
f(m

0
w

,
)

Train with 320k Samples

(d) Training set = 320k.

Figure 5: Loss residual curves of training on LLaMA-2-7B model with 1, 32, 128, and 320k samples.

It can be observed that MaskPro does not require a large number of training samples. Even with just
1 sample (in a single minibatch), it can complete training and achieve stable performance. The loss
on a single training sample can steadily decrease, but this does not necessarily imply a continually
decreased loss on the test dataset. In fact, despite the persistent reduction in training loss, the test
set performance may have already stabilized. In Figure 3 (b) of the main text, we report the testing
results of the learned mask on the Wikitext dataset. Next, we evaluate the zero-shot accuracy on a
series of downstream tasks, shown in Table 5.

Table 5: Zero-shot evaluations of masks trained with different dataset size on LLaMA-2-7B.

HellaS. RACE PIQA WinoG. ARC-E ARC-C OBQA Avg.

320k samples 46.18 37.13 73.07 65.82 66.12 32.85 26.20 49.62
128 samples 46.10 37.03 72.47 65.62 65.49 32.25 25.80 49.25
32 samples 46.32 36.89 72.80 65.27 65.95 32.66 25.80 49.38
1 sample 46.39 37.61 72.96 64.64 65.70 32.59 24.40 49.18

It can be observed that although the performance slightly declines, overall, even training with just 1
sample can still maintain satisfactory results, and in some datasets, the performance is even slightly
higher.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.5 PERFORMANCE OF (4:8)-SPARSITY

In this section, we report the results for (4:8)-sparsity in Table 6 and corresponding training loss
curves in Figure 6. The training hyperparameters are consistent with those reported in Table 2.

Table 6: Zero-shot evaluations of (4:8)-sparsity. The MaskLLM method suffers from severe memory
explosion and exceeds the memory limitation of 8× A100 GPUs (> 640 G).

Wiki. HellaS. RACE PIQA WinoG. ARC-E ARC-C OBQA

LLAMA-2-7B 8.71 57.15 39.62 78.07 68.90 76.35 43.34 31.40
- MASKLLM — — — — — — — —

- MAGNITUDE 61.99 46.05 35.31 72.20 62.27 64.81 34.07 25.80
- SPARSEGPT 14.99 48.19 38.55 73.78 67.72 68.15 36.01 27.80
- WANDA 15.28 47.04 38.18 74.14 66.77 67.00 34.56 26.40
- GBLM 15.21 47.32 37.51 74.16 67.56 67.13 34.56 27.20
- PRUNER-ZERO 15.10 47.82 38.13 74.07 67.23 68.18 34.97 27.20
- MaskPro 13.73 49.51 39.33 74.65 68.43 68.64 35.92 28.20

DEEPSEEK-7B 9.70 56.94 39.62 79.27 70.40 75.25 43.60 32.60
- MASKLLM — — — — — — — —

- MAGNITUDE 109.37 45.32 32.06 72.42 61.64 56.31 32.68 23.40
- SPARSEGPT 14.67 48.36 38.09 75.24 65.82 70.20 36.69 29.20
- WANDA 14.76 49.09 38.47 75.46 64.88 68.48 34.22 27.20
- GBLM 14.74 49.03 38.76 75.73 65.11 68.18 34.13 27.00
- PRUNER-ZERO 14.85 48.22 38.32 75.12 65.66 69.23 35.50 27.80
- MaskPro 13.89 50.97 39.25 75.87 66.27 69.51 36.89 29.80

0 2000 4000 6000 8000 10000
Iteration

0.08

0.06

0.04

0.02

0.00

f(m
t

w
,

)
f(m

0
w

,
)

Train with 512 Samples

(a) LLaMA-2-7B.

0 2000 4000 6000 8000 10000
Iteration

0.04

0.02

0.00

0.02

0.04

0.06

f(m
t

w
,

)
f(m

0
w

,
)

Train with 512 Samples

(b) DeepSeek-7B.

Figure 6: Loss residual curves of training for the (4:8)-sparsity.

A.6 MEMORY SCALABILITY

In this section, we report the memory scalability in Table 7.

Table 7: Memory (GB) reuqired for training on DeepSeek-7B.

MaskLLM MaskPro

(1:4)-Sparsity 266.35 36.82
(2:4)-Sparsity 339.56 36.82
(4:8)-Sparsity >640.00 36.95

The MaskPro method, due to its linear probability modeling, almost does not cause memory growth
as the (N:M) ratio scales. When training the (4:8)-sparsity on DeepSeek-7B model, MaskLLM has

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

encountered OOM (Out of Memory) on 8× A100 (>640G). In contrast, MaskPro can achieve the
expansion with almost no additional memory overhead.

A.7 PERFORMANCE OF (8:16)-SPARSITY

Moreover, we provide the (8:16)-Sparsity pattern to evaluate the performance of our proposed
MaskPro method. This setting involves significantly larger combinatorial spaces which can greatly
support the efficiency of MaskPro.

Table 8: Zero-shot evaluations of (8:16)-sparsity on LLaMA2-7B.

HellaS. RACE PIQA WinoG. ARC-E ARC-C OBQA Avg.

LLAMA-7B 57.15 39.62 78.07 68.90 76.35 43.34 31.40 56.40

- MAGNITUDE 52.27 35.02 72.74 64.48 67.68 37.03 27.20 50.92
- SPARSEGPT 50.19 39.04 74.43 66.22 70.45 36.43 28.80 52.22
- WANDA 49.77 39.14 75.30 66.61 70.62 36.18 28.80 52.35
- GBLM 49.51 39.90 75.68 66.38 69.91 36.43 27.60 52.20
- PRUNER-ZERO 50.12 38.68 75.22 66.13 69.93 35.48 27.80 51.91
- MaskPro 53.15 39.23 76.15 66.56 72.87 40.13 29.60 53.96

LLAMA-13B 60.05 40.48 79.11 72.22 79.42 48.46 35.20 59.28

- MAGNITUDE 55.43 37.51 74.48 66.06 68.94 38.05 27.60 52.58
- SPARSEGPT 54.24 40.38 77.15 70.19 75.08 41.31 31.00 55.62
- WANDA 54.50 39.62 77.09 70.09 73.19 40.36 30.80 55.09
- GBLM 54.45 39.18 76.35 69.92 73.75 40.07 29.60 54.76
- PRUNER-ZERO 54.11 38.64 76.28 70.41 72.92 40.55 30.00 54.70
- MaskPro 57.35 39.92 77.83 70.68 76.45 43.26 30.60 56.58

Under this sparsity pattern, the memory requirement of MaskLLM becomes extremely large, even
exceeding the resource demands commonly used in the community to train models with hundreds
of billions of parameters. Moreover, our MaskPro approach introduce minor training cost, while
achieving better results than rule-based methods.

A.8 PERFORMANCE ON LARGER SCALE MODELS

In this section, we present the results of applying MaskPro to larger models, specifically the 13B
and 30B variants. We retain the same hyperparameter settings used for the 7B model, with the only
adjustment being a slight tuning of the initialization logits magnitude.

Table 9: Zero-shot evaluations of (2:4)-sparsity on 13B/30B models.

HellaS. RACE PIQA WinoG. ARC-E ARC-C OBQA Avg.

LLAMA-13B 60.05 40.48 79.11 72.22 79.42 48.46 35.20 59.28

- MAGNITUDE 50.10 36.84 71.76 61.88 62.29 31.74 23.40 48.29
- SPARSEGPT 47.73 38.95 73.61 69.22 69.95 36.35 27.40 51.89
- WANDA 46.24 38.47 73.94 67.32 68.73 34.13 24.20 50.43
- GBLM 46.65 37.97 73.46 69.04 69.33 34.75 25.80 51.00
- PRUNER-ZERO 46.15 38.85 73.13 67.24 67.52 33.89 25.20 50.28
- MaskPro 49.24 38.91 75.12 70.33 71.85 38.26 27.40 53.02

LLAMA-30B 63.36 39.14 80.63 75.85 80.64 51.45 36.40 61.07

- MAGNITUDE 49.57 35.69 70.24 65.59 57.32 31.66 27.80 48.27
- SPARSEGPT 55.25 37.77 77.45 73.68 75.25 43.27 31.80 56.35
- WANDA 54.18 40.00 77.69 73.24 74.24 42.15 31.60 56.16
- GBLM 54.68 37.35 75.24 73.12 74.68 42.32 30.80 55.46
- PRUNER-ZERO 53.69 37.13 75.86 73.04 74.23 41.25 31.20 55.20
- MaskPro 59.76 37.28 78.24 73.32 76.83 45.65 33.20 57.75

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Notably, MaskPro remains highly effective even when applied to models at the 30B scale. This
demonstrates the robustness and scalability of the proposed probabilistic formulation. Furthermore,
due to the linear probability modeling and the use of policy-gradient–based optimization, MaskPro
achieves this performance with significantly reduced computational overhead. In particular, the train-
ing process requires far fewer resources compared to methods that rely on dense mask representations
or exhaustive combinatorial search. These properties highlight the practical advantages of MaskPro,
especially in large-scale scenarios where both memory efficiency and training stability are critical.

A.9 SENSITIVITY OF TRACKER COEFFICIENT α

In this part, we demonstrate the sensitivity studies of the tracker coefficient α. In our PG update,
the parameter α is used to track a stable estimate of the current baseline and prevent it from being
overly influenced by the stochastic variance of sampled losses. Conceptually, this plays the same
role as β1 or β2 in the Adam optimizer. To examine its sensitivity, we conducted the following set of
experiments:

Table 10: Sensitivity studies of tracker coefficient α.

α = 0.7 α = 0.9 α = 0.95 α = 0.99 α = 0.995

LLAMA-7B 34.25 48.28 49.37 49.62 49.21

LLAMA-13B 38.68 51.23 52.78 53.02 52.74

We find that using α = 0.99 consistently across all tasks provides the most stable and reliable
performance. Therefore, we only report the selection of 0.99 for reproduction in the main text. This
hyperparameter requires almost no additional tuning.

A.10 SENSITIVITY OF LOGITS MAGNITUDE C

In this part, we demonstrate the sensitivity of the logits magnitude C. In the initialization, the
parameter C is used for stable sampling space. A detailed explanation is provided in Appendix A.2.
If C is set too small, a single sampling step has a high probability of producing a poor mask, which
can lead to a severe imbalance between positive and negative samples during training, ultimately
hindering the learning process of combinatorial optimization. Therefore, choosing a sufficiently large
C during initialization allows the training to remain stable. We evaluated different values and the
results are as follows:

Table 11: Sensitivity studies of initial logits magnitude C.

C = 8 C = 9 C = 10 C = 11 C = 12

LLAMA-7B - 49.17 49.62 49.59 49.55

LLAMA-13B - 52.45 52.94 53.02 52.99

A.11 ABLATION STUDIES OF INITIAL MASK m0

In this part, we evaluate how the different initialization mask m0 affects the results. Unlike gradient-
based methods, RL methods typically converge more slowly, so a good initialization can significantly
shorten the training process.

Table 12: Ablation studies of initial mask m0.

Random Top-K Wanda GBLM Sparsegpt

LLAMA-7B 30.27 45.97 46.71 46.56 47.97
- MASKPRO 36.35 48.35 49.33 49.45 49.62

- IMPROVEMENT +6.08 +2.38 +2.62 +2.89 +1.65

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

In practice, when using SparseGPT for initialization, the model converges in roughly 10000 steps.
With TopK initialization, extending the training over 20000 steps yields a relatively smooth result.
We can see that random initialization can also train the mask, but the training process is slow. We
further conduct a longer training experiment specifically for random initialization, and the results are
as follows:

Table 13: Long-term training on the random initialization.

T = 20000 T = 30000 T = 50000 T = 70000

ACCURACY 36.35 38.43 40.74 42.37

This training process is quite lengthy, and we estimate that completing the full experiment would
require at least 300000 steps. Such behavior is consistent with the theoretical convergence rate of
RL-based methods, which is why we do not encourage training from random initialization. We hope
that these two experiments address the reviewer’s concerns: it is not that RL-based methods cannot
be trained from random initialization, but rather that it is unnecessary, as simple priors such as top-K
can significantly shorten the training cycle.

A.12 TRAINING WITH 1 DATA SAMPLE FROM DIFFERENT INITIAL MASK m0

In this part, we additionally evaluate the stability of the training process of "with 1 data sample" from
different initialization.

Table 14: Ablation studies of dataset size on different initial mask m0.

Random Top-K Wanda GBLM Sparsegpt

WITH 128 DATA SAMPLES 36.35 49.35 49.33 49.45 49.62
WITH 1 DATA SAMPLES 35.97 49.12 49.04 49.21 49.18

We would like to clarify that MaskPro is indeed not very sensitive to the number of samples. The
essence of RL-based methods lies in accurately estimating and constructing the reward, rather than
relying on large data volumes. While we do not deny that using a larger dataset may yield further
improvements, the performance obtained with only a few hundred samples is already very close.

A.13 TRAINING TIME PROFILES ON MASKPRO

In this part, we mainly show the training time profiles of our MaskPro method under different patterns
and models. We use torch.multinomial function for (N:M)-sparsity sampling, which simulates the
sampling process through a lookup-based mechanism and provides high accuracy. The forward pass
is implemented through a standard wrapper function. Specifically, we wrap the linear layer with an
additional mask parameter and integrate the mask computation directly inside the linear operation.
This design avoids modifying PyTorch’s computation graph and enables efficient inference. The
logits updates are computed entirely through matrix calculation, and PyTorch’s built-in libraries
already provide the necessary parallelization. To further illustrate the implementation details, we
report the per-step training time as follows:

Table 15: Averaged time required in each step on (2:4)-Sparsity.

Mask Sampling Forward PG Update

TIME RATIO TIME RATIO TIME RATIO

LLAMA-7B 2.328S 85.94% 0.062S 2.29% 0.319S 11.77%

LLAMA-13B 4.739S 85.83% 0.139S 2.52% 0.644S 11.65%

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

The main source of time consumption comes from the sampling process. We also evaluated the
sampling performance under different sparsity patterns, as shown in the table below.

Table 16: Mask sampling time in each step on different (N:M)-Sparsity.

(2:4)-Sparsity (4:8)-Sparsity (8:16)-Sparsity

LLAMA-7B 2.328S 1.334S 0.794S

LLAMA-13B 4.739S 2.692S 1.574S

We can observe that doubling the model size roughly doubles the sampling time. Another interesting
observation is that the sampling time of (N:M)-Sparsity depends on M . With the same model size, a
larger M leads to shorter sampling time, due to parallel optimizations in the sampling process. For a
d-dimensional model, there are a total of d

M sampling groups. Although increasing N and M makes
each group more expensive to sample, the total number of parallel groups decreases proportionally.
This reduction in the number of groups results in a more favorable computation pattern for hardware.
Consequently, for more complex (N:M)-Sparsity, the time required for a single sampling step can
actually be lower. Large M is a GPU-friendly selection.

A.14 ALTERNATIVE STRATEGIES FOR ACCELERATING SAMPLING

In this part, we additionally explore two alternative accelerated sampling strategies along with their
corresponding results. Sampling is the primary computational bottleneck of RL-based methods.
Therefore, we explored several alternative acceleration strategies to speed up the training process,
and their effects are summarized below.

Table 17: Acceleration of mask sampling and their corresponding performance on (2:4)-Sparsity.

torch.multinomial Naive Gumbel-TopK Gaussion-TopK

TIME ACC. TIME ACC. TIME ACC.

LLAMA-7B 2.328S 49.62 1.821S (1.27×) 49.24 (-0.38) 1.496S (1.58×) 48.84 (-0.78)

LLAMA-13B 4.739S 53.02 3.645S (1.30×) 52.59 (-0.43) 3.061S (1.55×) 52.22 (-0.80)

Within an acceptable error range, the training time can be further reduced. However, we still
recommend using higher-precision sampling methods, as the current training time requirement of
MaskPro is already quite reasonable. On the impact of randomness on experiments, RL methods
rely on sampling, so they are generally less sensitive to random seeds compared with gradient-based
methods, and tend to exhibit stronger robustness across settings.

B DETAILED DESCRIPTION OF WITHOUT-REPLACEMENT PROBABILITY
p(m|π)

This section aims to present a specific form of p(m|π) and its related gradient ∇ log (p(m|π)). Note

that in Eq.8, we define p(m|π) :=
∏ d

M
i=1 p(mi|πi) where mi :=

⊕N
j=1 ai,j for any i ∈ [dM] and

p(mi|πi) denotes the probability of our MaskPro generating the mask mi under logits πi. Therefore,
before presenting the details of p(m|π), we firstly investigate the probability p(mi|πi).

B.1 DETAILED DESCRIPTION OF p(mi|πi)

It is worth noting that the mask vector mi ∈ SN :M such that we can assume mi =
∑
i∈[N] eki where

ej denotes the j-th basis vector of the space R1×M , ki ∈ [M],∀i ∈ [N] and k1 ̸= k2 ̸= . . . ̸= kN .
In other words, {k1, . . . , kN} is an N -size subset of [M] = {1, . . . ,M}.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

From the definition of mi, we know that mi :=
⊕N

j=1 ai,j . Furthermore, according to Eq.23

in Section C.1, we also can know that, in order to ensure that mi =
⊕N

j=1 ai,j =
∑
i∈[N] eki ,

we typically require a one-to-one assignment of the previously defined N distinct basis vectors
{ek1 , . . . , ekN } to {ai,1, . . . ,ai,N}. In general, there are N ! different ways to perform this matching.

To better illustrate our results, we introduce the concept of permutation from group theory to
represent these N ! one-to-one assignment. More specifically, for any one-to-one assignment from
{ek1 , . . . , ekN } to {ai,1, . . . ,ai,N}, we represent is as a bijective function σ : {1, . . . , N} →
{k1, . . . , kN}. Here, each bijection σ means that we match each basis vector eσ(j),∀j ∈ [N] to the j-
th sampled vector ai,j in the sampling-without-replacement process, namely, ai,j = eσ(j),∀j ∈ [N].
Moreover, we denote all such bijections as BN (mi), that is to say,

BN (mi) := {σ : σ is a bijection from [N] to {k1, . . . , kN}}.
With the notions of σ and BN (mi), we next present the specific form of p(mi|πi). At first, like
Section 4.1, we assume πi = (πi,1, . . . , πi,M) and define ψ(πi) = (eπi,1∑M

j=1 e
πi,j

, . . . , eπi,M∑M
j=1 e

πi,j
) as

the softmax function. Then, for a specific assignment σ ∈ BN (mi), we have that

Pr
(
{ai,j = eσ(j)}Nj=1|πi

)
=

N∏
j=1

[ψ(πi)]σ(j)

1−
∑j−1
a=1 [ψ(πi)]σ(a)

, (15)

where the symbol ‘Pr’ denotes the probability and [ψ(πi)]j denotes its j-th component. Moreover,
in Eq.15, when j = 1, we define the summation

∑0
a=1 [ψ(πi)]σ(a) ≡ 0 and simultaneously specify

0
0
:= 1.

It is important to note that in Eq.15, the value
[ψ(πi)]σ(j)

1−
∑j−1
a=1[ψ(πi)]σ(a)

stands for the j-step sampling-

without-replacement probability. Finally, from the result of Eq.15, we have that

p(mi|πi) =
∑

σ∈BN (mi)

Pr
(
{ai,j = eσ(j)}Nj=1|πi

)

=
∑

σ∈BN (mi)

 N∏
j=1

[ψ(πi)]σ(j)

1−
∑j−1
a=1 [ψ(πi)]σ(a)

 .

(16)

B.2 DETAILED DESCRIPTION OF p(m|π)

Due to that p(m|π) :=
∏ d

M
i=1 p(mi|πi) and Eq.16, we then can show that

p(m|π) :=
d
M∏
i=1

p(mi|πi) =
d
M∏
i=1

 ∑
σ∈BN (mi)

 N∏
j=1

[ψ(πi)]σ(j)

1−
∑j−1
a=1 [ψ(πi)]σ(a)

 . (17)

B.3 COMPUTE THE GRADIENT ∇π log (p(m|π))

Note that in Eq.10, in order to update the logits π via mini-batch stochastic policy gradient descent,
we need to frequently compute the gradient ∇π log (p(m|π)). Thus, in this subsection, we give the
detailed form of this ∇π log (p(m|π)).

At first, due to that p(m|π) :=
∏ d

M
i=1 p(mi|πi), we can know log (p(m|π)) =

∑ d
M
i=1 log (p(mi|πi))

such that

∇π log (p(m|π)) =

(
∇π1

log (p(m1|π1)) ,∇π2
log (p(m2|π2)) , . . . ,∇π d

M

log
(
p(m d

M
|π d

M
)
))

.

Therefore, in the subsequent part of this subsection, we show the specific form of ∇πi log (p(mi|πi))
for any i ∈ [dM]. Like Section B.1, we assume that mi =

∑
i∈[N] eki where ki ∈ [M],∀i ∈ [N] and

k1 ̸= k2 ̸= . . . ̸= kN .

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Then, when πi = (πi,1, . . . , πi,M), for any k ∈ [M] = {1, . . . ,M}, we have that

∂
(
log (p(mi|πi))

)
∂πi,k

=
1

p(mi|πi)

∂
(
p (mi|πi))

)
∂πi,k

=
1

p(mi|πi)

∂

(∑
σ∈BN (mi)

(∏N
j=1

[ψ(πi)]σ(j)

1−
∑j−1
a=1[ψ(πi)]σ(a)

))
∂πi,k

=
1

p(mi|πi)
∑

σ∈BN (mi)

∂

(∏N
j=1

[ψ(πi)]σ(j)

1−
∑j−1
a=1[ψ(πi)]σ(a)

)
∂πi,k

=
1

p(mi|πi)
∑

σ∈BN (mi)

 N∏
j=1

1

1−
∑j−1
a=1 [ψ(πi)]σ(a)

 ∂
(∏N

j=1 [ψ(πi)]σ(j)

)
∂πi,k

+
1

p(mi|πi)
∑

σ∈BN (mi)

 N∏
j=1

[ψ(πi)]σ(j)

 ∂

(∏N
j=1

1

1−
∑j−1
a=1[ψ(πi)]σ(a)

)
∂πi,k

.

(18)

Next, we compute the
∂(
∏N
j=1[ψ(πi)]σ(j))
∂πi,k

and
∂

(∏N
j=1

1

1−
∑j−1
a=1[ψ(πi)]σ(a)

)
∂πi,l

in Eq.18. At first, from the
definition of ψ(πi), we can show

∂ [ψ(πi)]j
∂πi,k

= − [ψ(πi)]k ∗ [ψ(πi)]j ,∀k ̸= j ∈ [M];

∂ [ψ(πi)]k
∂πi,k

= [ψ(πi)]k

(
1− [ψ(πi)]k

)
.

(19)

As a result, we have that

∂
(∏N

j=1 [ψ(πi)]σ(j)

)
∂πi,k

=

 N∏
j=1

[ψ(πi)]σ(j)

(I [k ∈ {ki}Ni=1

]
−N ∗ [ψ(πi)]k

)
, (20)

where I is the indicator function.

As for
∂

(∏N
j=1

1

1−
∑j−1
a=1[ψ(πi)]σ(a)

)
∂πi,l

, we have that

∂

(∏N
j=1

1

1−
∑j−1
a=1[ψ(πi)]σ(a)

)
∂πi,k

=

 N∏
j=1

1

1−
∑j−1
a=1 [ψ(πi)]σ(a)


 N∑
j=1

∂(
∑j−1
a=1[ψ(πi)]σ(a))
∂πi,k

1−
∑j−1
a=1 [ψ(πi)]σ(a)


=

 N∏
j=1

1

1−
∑j−1
a=1 [ψ(πi)]σ(a)

 N∑
j=1

[ψ(πi)]k

(
I[j > σ−1(k)]−

∑j−1
a=1 [ψ(πi)]σ(a)

)
1−

∑j−1
a=1 [ψ(πi)]σ(a)

 ,

(21)

where I is the indicator function and σ−1 denotes the inverse mapping of σ. Especially when
k ∈ {k1, . . . , kN}, e.g., k = kc where c ∈ [N], we set σ−1(k) = c. As for k ̸= {k1, . . . , kN}, we
set σ−1(k) = ∞ such that I[j > σ−1(k)] = 0 for any j ∈ [N].

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Merging Eq.21 and Eq.20 into Eq.18, we can finally have that

∂
(
log (p(mi|πi))

)
∂πi,k

=
∑

σ∈BN (mi)

 N∏
j=1

[ψ(πi)]σ(j)

1−
∑j−1
a=1 [ψ(πi)]σ(a)


(
I
[
k ∈ {ki}Ni=1

]
−N [ψ(πi)]k

)
p(mi|πi)

+
∑
σ∈BN

 N∏
j=1

[ψ(πi)]σ(j)

1−
∑j−1
a=1 [ψ(πi)]σ(a)

 N∑
j=1

[ψ(πi)]k

(
I[j > σ−1(k)]−

∑j−1
a=1 [ψ(πi)]σ(a)

)
p(mi|πi)

(
1−

∑j−1
a=1 [ψ(πi)]σ(a)

)
 ,

where p(mi|πi) =
∑
σ∈BN (mi)

(∏N
j=1

[ψ(πi)]σ(j)

1−
∑j−1
i=1 [ψ(πi)]σ(i)

)
and mi =

∑
i∈[N] eki ∈ SN :M .

C PROOFS

In this Section, we provide the detailed proofs of the main theorems.

C.1 PROOF OF THEOREM 1

This subsection aims to present a rigorous proof for the representation Theorem 1. Before going
in the details, we first assume that, in Eq.4, ai = eki ,∀i ∈ [N] where ki ∈ [M],∀i ∈ [N] and
k1 ̸= k2 ̸= . . . ̸= kN . With this assumption, then we can show that,

N⊙
i=1

(1M − ai) = 1M −

 ∑
j∈{k1,...,kN}

ej

 . (22)

We verify this Eq.22 by induction. Firstly, when N = 1, Eq. 22 naturally holds. Subsequently, we
assume that whenN = m < M , Eq. 22 is right. As a result, we can show that, whenN = m+1 ≤M

N⊙
i=1

(1M − ai) =

m+1⊙
i=1

(1M − ai) =

(
m⊙
i=1

(1M − ai)

)
⊙ (1M − am+1)

=

1M −
∑

j∈{k1,...,km}

ej

⊙
(
1M − ekm+1

)

= 1M −

 ∑
j∈{k1,...,km}

ej

− ekm+1
−

∑
j∈{k1,...,km}

(
ekm+1

⊙ ej
)
= 1M −

 ∑
j∈{k1,...,km+1}

ej

 ,

where the final equality follows from that ekm+1
⊙ ej = 0, when j ̸= km+1. As a result, the Eq. 22

holds for any N ≤M .

According to the result of Eq. 22, we can easily have that
N⊕
i=1

ai = 1−
N⊙
i=1

(
1− ai

)
=

∑
j∈{k1,...,kN}

ej . (23)

Therefore, from Eq.23, we can infer that, when ai ∈ {e1, . . . , eM},∀i ∈ [N] and a1 ̸= a2 ̸= . . . ̸=
aN ,

⊕N
i=1 ai ∈ B1×M and ∥

⊕N
i=1 ai∥1 = N such that

⊕N
i=1 ai ∈ SN :M where B denotes the

Boolean set. Furthermore, for any binary vector b ∈ MN :M , we can redefine b =
∑
i∈[N] esi where

si ∈ [M],∀i ∈ [N] and s1 ̸= s2 ̸= . . . ̸= sN . Then, if we set ai = esi for i ∈ {1, . . . , n}, acoording
to the result of Eq.23, we can have

N⊕
i=1

ai =
∑
i∈[N]

esi = b.

As a result, we can establish that

SN :M =

{
N⊕
i=1

ai : ai ∈ {e1, . . . , eM},∀i ∈ [N] and a1 ̸= a2 ̸= . . . ̸= aN

}
.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

C.2 PROOF OF POLICY GRADIENT ESTIMATOR EQUATION 9

From the notations in Eq.8, we have that

Φ(π) := Eξ∼D,m={mi|mi∼p(mi|πi)} [f (m⊙w, ξ)] :=

∫
Eξ [f (m⊙w, ξ)] p(m|π)dm. (24)

It is worth noting that in right-hand side(RHS) of Eq.24, only the component “p(m|π)" contains the
unknown logits variable π. As a result, we have that

∇πΦ(π) = ∇π

∫
Eξ [f (m⊙w, ξ)] p(m|π)dm

=

∫
Eξ [f (m⊙w, ξ)]∇πp(m|π)dm

=

∫
Eξ [f (m⊙w, ξ)]

∇πp(m|π)
p(m|π)

p(m|π)dm

=

∫
Eξ [f (m⊙w, ξ)]

(
∇π log (p(m|π))

)
p(m|π)dm

= Eξ∼D,m={mi|mi∼p(mi|πi)} [f(m⊙w, ξ)∇ log (p(m|π))] ,

where the forth equality comes from the relationship that
(
log(f(x))

)′

=
d
(
log(f(x))

)
dx = f ′(x)

f(x) .

C.3 PROOF OF THEOREM 2

We first investigate the properties of the policy gradient update method applied in this paper. As
shown in Eq.(9), the general policy gradient satisfies the following equation:

∇Φ(π) = Ep(m|π) [f(m⊙w)∇ log (p(m|π))] ,

where Eξ [f(m⊙w, ξ)] = f(m⊙w).

In the training, due to the limitations of data samples, instead of computing the full loss f(m⊙w),
we typically use a small mini-batch stochastic gradient, that is,

gp = f(m⊙w, ξ)∇ log (p(m|π)) ,

C.3.1 LOSS RESIDUAL AND SMOOTHING TRACKER ARE UNBIASED ESTIMATORS OF ∇Φ(π)

We denote gr as update via loss residual:

gr = (f(m⊙w, ξ)− f(m0 ⊙w, ξ))∇ log (p(m|π)) ,

and gsr as update via loss residual with smoothing tracker:

gsr = (f(m⊙w, ξ)− f(m0 ⊙w, ξ)− δ)∇ log (p(m|π)) ,
δ = αδ + (1− α) (f(m⊙w, ξ)− f(m0 ⊙w, ξ)) .

It is worth noting that these two introduced additional terms f(m0 ⊙w, ξ) and δ are independent of
the logits variable π such that we can know that

Ep(m|π) [(f(m0 ⊙w, ξ) + δ)∇ log (p(m|π))] = (f(m0 ⊙w, ξ) + δ)

∫
p(m|π)∇p(m|π)

p(m|π)
dm

= (f(m0 ⊙w, ξ) + δ)∇
∫
p(m|π)dm = (f(m0 ⊙w, ξ) + δ)∇1 = 0.

Therefore, our proposed update using the loss residual with smoothing tracker remains an unbiased
estimator of the standard policy gradient. Similarly, letting δ = 0, it degrades to the update with only
loss residual, which is also a unbiased estimator of the standard policy gradient. In fact, our proposed
enhanced version of the policy gradient update can be viewed as an auxiliary training method that
introduces a baseline term, similar to the approach in reinforcement learning (Williams, 1992).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

C.3.2 EFFICIENCY OF gR

We first investigate the properties of updating via loss residual f(m⊙w, ξ)− f(m0 ⊙w, ξ). We
have the variance of the standard policy gradient gp as:

Var [gp] = E
[
f(m⊙w, ξ)2 (∇ log (p(m|π)))2

]
− E [f(m⊙w, ξ)∇ log (p(m|π))]2

= E
[
(f(m⊙w, ξ))

2
(∇ log (p(m|π)))2

]
−∇Φ(π)2.

Similarly, since E [gr] = ∇Φ(π), the variance of gr achieves:

Var [gr] = E
[
(f(m⊙w, ξ)− f(m0 ⊙w, ξ))

2
(∇ log (p(m|π)))2

]
−∇Φ(π)2.

Thus we have:

Var [gr]− Var [gp]

= Ep(m|π)

[
(∇ log (p(m|π)))2 Eξ

[
(f(m⊙w, ξ)− f(m0 ⊙w, ξ))

2 − f(m⊙w, ξ)2
]]

= Ep(m|π)

(∇ log (p(m|π)))2︸ ︷︷ ︸
≥0

Eξ

f(m0 ⊙w, ξ)︸ ︷︷ ︸
≥0

(f(m0 ⊙w, ξ)− 2f(m⊙w, ξ))


 .

Their relative magnitudes are determined by f(m0 ⊙w, ξ)− 2f(m⊙w, ξ) term and we have:{
Var [gr] ≥ Var [gp] , when f(m0 ⊙w, ξ) ≥ 2f(m⊙w, ξ),

Var [gr] < Var [gp] , when f(m0 ⊙w, ξ) < 2f(m⊙w, ξ).

Therefore, updating via loss residual can always achieve a lower variance when f(m ⊙ w, ξ) >
1
2f(m0 ⊙w, ξ). This implies that the variance in the initial training stage is significantly lower than
that of the vanilla PGE gp, enabling substantial acceleration. We also validate this in our experiments,
where the vanilla policy gradient converges extremely slowly and barely learns effective information,
while gr can achieve a rapid reduction in loss within only hundreds of iterations.

C.3.3 EFFICIENCY OF gSR

Similarly, since E [gsr] = ∇Φ(π), the variance of gsr achieves:

Var [gsr] = E
[
(f(m⊙w, ξ)− f(m0 ⊙w, ξ)− δ)

2
(∇ log (p(m|π)))2

]
−∇Φ(π)2.

And we have:

Var [gsr]− Var [gp]

= Ep(m|π)

[
(∇ log (p(m|π)))2 Eξ

[
(f(m⊙w, ξ)− f(m0 ⊙w, ξ)− δ)

2 − f(m⊙w, ξ)2
]]

= Ep(m|π)

[
(∇ log (p(m|π)))2 Eξ

[
f(m0 ⊙w, ξ)2

]]
+ Ep(m|π)

[
(∇ log (p(m|π)))2 Eξ

[
δ2
]]

− 2Ep(m|π)

[
(∇ log (p(m|π)))2 Eξ [f(m⊙w, ξ)δ]

]
+ 2Ep(m|π)

[
(∇ log (p(m|π)))2 Eξ [f(m0 ⊙w, ξ)δ]

]
− 2Ep(m|π)

[
(∇ log (p(m|π)))2 Eξ [f(m⊙w, ξ)f(m0 ⊙w, ξ)]

]
= Ep(m|π)

[
(∇ log (p(m|π)))2

]
︸ ︷︷ ︸

denoted by A≥0

δ2 + 2Ep(m|π)

[
(∇ log (p(m|π)))2 (f(m0 ⊙w)− f(m⊙w))

]
︸ ︷︷ ︸

denoted by B

δ

+ Ep(m|π)

[
(∇ log (p(m|π)))2 Eξ [f(m0 ⊙w, ξ) (f(m0 ⊙w, ξ)− 2f(m⊙w, ξ))]

]
︸ ︷︷ ︸

Var[gr]−Var[gp]

.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Clearly, when δ = 0, Var [gsr] = Var [gr]. Next, we discuss the case where δ ̸= 0. The above
expression can be viewed as a quadratic function w.r.t. δ, i.e.,

Var [gsr]− Var [gp] = V (δ) = Aδ2 +Bδ + (Var [gr]− Var [gp]),

According to the definition of δ, it is the moving average of the f(m⊙w, ξ)− f(m0 ⊙w, ξ) term.
By considering f(m ⊙ w, ξ) ≥ 1

2f(m0 ⊙ w, ξ), we can intuitively examine the corresponding
magnitude relationships through the function plots. As shown in Figure 7, when |δ| < |BA |, we always
have Var [gsr] < Var [gr]. Furthermore, if δ = − B

2A , the extent of variance reduction will reach its
maximum. Therefore we have:

δ⋆ = − B

2A
=

Ep(m|π)

[
(∇ log (p(m|π)))2 (f(m⊙w)− f(m0 ⊙w))

]
Ep(m|π)

[
(∇ log (p(m|π)))2

]
= Ep(m|π)

 (∇ log (p(m|π)))2

Ep(m|π)

[
(∇ log (p(m|π)))2

] (f(m⊙w)− f(m0 ⊙w))


= Ep̂(m|π) [f(m⊙w)− f(m0 ⊙w)] ,

where p̂(m|π) = p(m|π)(∇ log(p(m|π)))2

Ep(m|π)[(∇ log(p(m|π)))2]
.

Clearly, δ⋆ can be interpreted as the expectation of f(m ⊙ w) − f(m0 ⊙ w) under the optimal
distribution p̂(m|π), or equivalently, as the weighted average over all possible cases. It is feasible to
accurately measure this distribution. When the original distribution p(m|π) is known, the optimal
distribution can be derived; however, the corresponding computational overhead to calculate it is
prohibitively high. Therefore, we track all stochastic sampling in the training process and calculate
the moving average of each f(mt ⊙w, ξ)− f(m0 ⊙w, ξ) as a compromise. After a long iteration t
and enough samplings, δ can achieve significant and stable performance.

Therefore, we have Var [gsr] ≲ Var [gr] < Var [gp].

Var[gr]-Var[gp]

B
2A > 0 if B < 0

B
A

Var[gsr]-Var[gp]

(a) When B < 0.

Var[gr]-Var[gp]

B
2A < 0 if B > 0

B
A

Var[gsr]-Var[gp]

(b) When B > 0.

Figure 7: .

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

And the theoretically maximal variance reduction can be expressed as:

max {Var [gp]− Var [gsr]}

= −Ep(m|π)

[
(∇ log (p(m|π)))2 Eξ [f(m0 ⊙w, ξ) (f(m0 ⊙w, ξ)− 2f(m⊙w, ξ))]

]
+

(
Ep(m|π)

[
(∇ log (p(m|π)))2 (f(m⊙w)− f(m0 ⊙w))

])2
Ep(m|π)

[
(∇ log (p(m|π)))2

]
= Var [gp]− Var [gr] +

(
Ep(m|π)

[
(∇ log (p(m|π)))2 (f(m⊙w)− f(m0 ⊙w))

])2
Ep(m|π)

[
(∇ log (p(m|π)))2

] .

28

	Introduction
	Related Work
	Preliminary
	Semi-Structured Sparsity
	Rethinking the Probabilistic Modeling in MaskLLM and the Memory Inefficiency

	Methodology
	MaskPro: A Linear-Space Probabilistic Relaxation for Semi-Structured Sparsity
	Policy Gradient Estimator and Refined (N:M)-Sparsity Learning

	Unbiasedness and Variance Reduction
	Experiments
	Summary
	Experiments
	Experimental Details and Reproducibility
	The Importance of in Logits Initialization
	More Experiments on Different Tasks
	Training with Different Dataset Size
	Performance of (4:8)-Sparsity
	Memory Scalability
	Performance of (8:16)-Sparsity
	Performance on Larger Scale Models
	Sensitivity of Tracker Coefficient
	Sensitivity of Logits Magnitude C
	Ablation Studies of Initial Mask m0
	Training with 1 Data Sample from different Initial Mask m0
	Training Time Profiles on MaskPro
	Alternative Strategies for Accelerating Sampling

	Detailed Description of Without-Replacement Probability
	Detailed Description of
	Detailed Description of
	Compute the Gradient

	Proofs
	Proof of Theorem 1
	Proof of Policy Gradient Estimator
	Proof of Theorem 2
	Loss Residual and Smoothing Tracker are Unbiased Estimators of
	Efficiency of
	Efficiency of

