Under review as a conference paper at ICLR 2026

MASKPRO: LINEAR-SPACE PROBABILISTIC LEARNING
FOR STRICT (N:M)-SPARSITY ON LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

The rapid scaling of large language models (LLMs) has made inference efficiency
a primary bottleneck in the practical deployment. To address this, semi-structured
sparsity offers a promising solution by strategically retaining N elements out of
every M weights, thereby enabling hardware-friendly acceleration and reduced
memory. However, existing (N:M)-compatible approaches typically fall into two
categories: rule-based layerwise greedy search, which suffers from considerable
errors, and gradient-driven combinatorial learning, which incurs prohibitive train-
ing costs. To tackle these challenges, we propose a novel linear-space probabilistic
framework named MaskPro, which aims to learn a prior categorical distribution
for every M consecutive weights and subsequently leverages this distribution to
generate the (N:M)-sparsity throughout an /N-way sampling without replacement.
Furthermore, to mitigate the training instability induced by the high variance of
policy gradients in the super large combinatorial space, we propose a novel update
method by introducing a moving average tracker of loss residuals instead of vanilla
loss. Finally, we conduct comprehensive theoretical analysis and extensive exper-
iments to validate the superior performance of MaskPro, as well as its excellent
scalability in memory efficiency and exceptional robustness to data samples.

1 INTRODUCTION

Recent studies have witnessed the rapid advancement of LLMs across various domains, establishing
them as a highly promising solution for a wide range of downstream tasks (Hendrycks et al.l 2020;
Brown et al.l 2020; Achiam et al.|[2023)). However, the massive parameter size introduces significant
overhead in both training and inference (Touvron et al., [2023} |Grattafiori et al., | 2024)), underscoring
the pressing need for efficient approaches in real-world applications (Shen et al.| 2023} Zhou et al.,
2024). In response, semi-structured sparsity has emerged as a technique with considerable practical
potential, as its acceleration can be efficiently harnessed by hardware accelerators (Mishra et al.,
2021; |Pool et al., [2021)). Specifically, it adopts a designated sparsity pattern, retaining only N out
of every M consecutive weights, a scheme commonly referred to as (N:M)-sparsity. Owing to
its effective support from parallel computing libraries, its inference performance is exceptionally
efficient, offering a viable path toward the practical and scalable local deployment of LLMs.

Although its procedural design is relatively straightforward, effectively implementing (N:M)-sparsity
while preserving model performance still remains a formidable challenge. One major obstacle lies in
its enormous combinatorial scale, making it extremely difficult to identify the optimal mask. Existing
methods can be broadly classified into two main branches. The first category encompasses rule-
based approaches that bypass backpropagation by leveraging a calibration set to greedily minimize
layerwise errors through the objective miny, |[wx — (m @ w)x||? (Frantar & Alistarh,|[2023). Based
on this, a series of variants incorporating auxiliary information, e.g., [s-norm of input activations (Sun
et al.,[2023) and gradients (Das et al.,2023; Dong et al., [2024)) have been further applied, leading to
certain improvements. However, such handcrafted metrics inherently suffer from considerable gaps
with the end-to-end loss, ultimately capping the potential effectiveness of these methods. To address
this, |[Fang et al.|(2024) propose a learning-based method MaskLLLM. Specifically, it determines the
optimal solution by directly optimizing the objective min,, f(m @ w) in generation tasks on a large
dataset. MaskLLLM achieves remarkable results, but its training costs are prohibitively high, even
exceeding the overhead of finetuning the LLM itself. For instance, training the (N:M)-sparsity on

Under review as a conference paper at ICLR 2026

M elements N-way sampling w/o replacement

~-EEEN - DoEE DEEE IEEE B

-ENEEs[Lasn} BETHC DEDE>DE0E <
-DEEE 1.1.- HOEE DDEE DEED

Logits Probability p Mask m Parameters w v

{ Loss

Refined Policy Gradient Estimator

Figure 1: Implementation of our proposed MaskPro for learning (2:4)-sparse masks.

d-dimensional weights requires at least additional O (()]ff) memory to save the logits. As N and

M scale up, this memory overhead can even grow exponentially, yielding extremely poor scalability.

Our Motivation. Existing solutions either suffer from inherent biases or incur prohibitively high
training costs, making them difficult to implement. This motivates us to further explore a memory-
efficient learning-based method for this problem. Naturally, probabilistic modeling combined with
efficient policy gradient estimators (PGE) emerges as a promising study. However, due to the vast
combinatorial space and large model size, the variance of policy gradients can become so substantial
that training is nearly impossible. Moreover, the memory overhead required to store the logits remains
excessively large. To enable effective training, these two challenges must be adequately addressed.

To tackle these challenges, we introduce a linear-space probabilistic framework termed as MaskPro.
Compared with the current state-of-the-art MaskLLLM (Fang et al.,|2024), instead of the probability
distributions for all possible masks of M weights, our proposed MaskPro establishes a categorical
distribution for every M consecutive elements and then utilizes this distribution to generate the (N:M)-
sparsity through an N-way sampling without replacement. This implies that for any (N:M)-sparsity
pattern, we only require O(d) memory to store the logits. Furthermore, we propose a novel PGE
update to accelerate and stabilize the entire training process, which modifies the independent loss
metric in vanilla PGE by the loss residuals with a moving average tracker. We provide the rigorous
theoretical analysis for our probabilistic modeling and prove the unbiasedness and variance reduction
properties of the proposed PGE. To investigate its effectiveness, we conduct extensive experiments
on several LLMs and report the performance across various downstream tasks. Experiments indicate
that the proposed MaskPro can achieve significant performance improvements while maintaining
memory usage comparable to rule-based methods, with substantially lower training overhead than
MaskLLLM. Moreover, the MaskPro method demonstrates remarkable robustness to data samples,
which can achieve stable performance even with only 1 training sample.

‘We summarize the main contributions of this work as follows:

e We propose a linear-space probabilistic framework MaskPro, formulating the (N:M)-sparsity
as a process of N-way samplings without replacement within a categorical distribution over

M consecutive elements, which reduces the memory for logits from O ((%) %) to O(d).

e We propose an enhanced policy gradient that substitutes the raw loss in standard policy
gradients with per-minibatch loss residuals. To maintain stability, we further incorporate a
moving-average baseline that adaptively tracks the residual dynamics during training.

e We provide the comprehensive theoretical analysis to understand the memory effectiveness
of MaskPro and the variance reduction properties of the proposed policy gradient update.
Extensive experiments validate its significant performance. Moreover, it exhibits outstanding
robustness to data samples, maintaining stable results even with only 1 training sample.

2 RELATED WORK

Model Pruning. Model pruning is an important compression technique that has been adopted in
several domains (Han et al.l [2015; [Frankle & Carbinl [2018; [Liu et al.,[2019} Xia et al., [2023b; |Sun
et al., 2023} |Sreenivas et al., 2024; [Luo et al., 2025). It also demonstrates strong practicality in

Under review as a conference paper at ICLR 2026

real-world applications of LLMs. A series of structured learning and optimization methods on pruning
and training have been proposed and widely applied, including the depth- and width-based (Ko et al.}
2023)), kernel-based (Xia et al., 2023a), LoORA-based (Chen et al.,|2023;|Zhang et al.,[2023;|Zhao et al.,
2024)), row- and column-based (Ashkboos et al.,[2024), channel-based (Gao et al.,|2024b; Dery et al.|
2024)), layer-based (Yin et al., 2023; Men et al., 2024; Zhang et al.| 2024a), attention head-base (Ma
et al., [2023), MoE-based (Chen et al., 2022; Xie et al.||2024). These methods leverage a prune-train
process to effectively reduce the number of effective parameters while maintaining efficient training,
bring a promising solution for the practical application and deployment of LLMs in the real-world
scenarios. However, structured pruning typically considers a specific model structure as the minimal
pruning unit, which can significantly impact the model’s performance. The fundamental unit of a
model is each individual weight, implying that unstructured pruning methods generally have higher
potential on the performance (Frantar & Alistarhl [2023; |Jaiswal et al.| [2023). Such methods can
typically identify a fine-grained mask that closely approaches the performance of dense models.

Semi-structure Pruning. Due to the inability of GPUs and parallel computing devices to perfectly
support arbitrary element-wise sparse computations, the practical efficiency of sparse models remains
significantly constrained. Semi-structured sparsity offers a promising pathway for practical appli-
cations (Zhou et al., [2021; [Zhang et al., [2022; |[Lu et al.,|2023)), which is also called (N:M)-sparsity.
A series of methods supporting semi-structured sparsity have been consistently applied, primarily
including rule-based (Han et al., 2015} [Frantar & Alistarh, [2023} Sun et al.,|2023} |Das et al.| 2023}
Dong et al., [2024; Zhang et al., 2024b) and learning-based (Holmes et al.,[2021; Fang et al., [2024;
Huang et al., [2025) approaches. Our work is the first to adopt policy gradients for learning semi-
structured masks on LLMs. Enormous variance of policy gradients caused by the vast combinatorial
space makes learning (N:M)-sparsity via PGE more challenging than those gradient-based methods.

3 PRELIMINARY

3.1 SEMI-STRUCTURED SPARSITY

The core idea of semi-structured sparsity aims to divide the entire weights w € R? into groups of M
consecutive elements and then retain N effective weights for each group. More specifically, we can
formulate the semi-structured sparsity as the following combinatorial optimization problem:

*

m*= agmin Eeop[f(mow,E)], (M)

m={m;|m;cSN:M}

where f(-) denotes the corresponding loss function, the symbol ® stands for the element-wise
multiplication, £ ~ D represents the minibatch sampled from the underlying distribution D and
SNM = {m; € BM : |m; |, = N} (B is the Boolean set and | - ||; denotes {; norm).

Generally speaking, in order to find the optimal mask m* for problem [I] we are confronted with
two significant challenges: i) Huge Search Space: In the context of LLMs, the model parameter
scale d can become extremely large, which will result in the search space for problem [I] reaching

d
an astounding size of (%) /M; ii) Non-Differentiability of Mask Selection: The discrete nature of
problem [I] prevents us from utilizing the well-established gradient-based methods such as SGD (Lan|
2020) and conditional gradient algorithm (Braun et al., | 2022) to search for the optimal mask m*.

To address these aforementioned issues, we will introduce an innovative probabilistic framework
termed as MaskPro for problem [l|in the subsequent sections. Prior to that, we first review the
state-of-the-art learning-based MaskLLM method (Fang et al.,[2024).

3.2 RETHINKING THE PROBABILISTIC MODELING IN MASKLLM AND THE MEMORY
INEFFICIENCY

Recent advance provides a learning method to address Problem [T} named MaskLLM (Fang et al.
2024)). Specifically, for each group of M consecutive weights, MasklLLM defines a categorical
distribution with class probability [pl, D2, D) SN:I\/Il] where), p; = 1, and each p; represents the
probability of the corresponding element in SV, By random sampling, if a certain mask performs
better, it is reasonable to increase the probability of the sampled mask. Otherwise, the sampling
probability should be decreased. Thus, Problem [I]can be transformed as,

Under review as a conference paper at ICLR 2026

{p*(mi)} = a{r% m;?Ewa,m:{mﬂmin(m,;)} [f(m Ow, 5)] 3 2)
p(m;

where p(m;) is the categorical distribution of the i-th mask m; over
To enable the end-to-end training, MaskLLLM further introduces Gumbel-Max(Gumbel, [1954)) as
reparameterization to relax the discrete sampling into a continuous form, making it naturally differen-

tiable. This reparameterized loss-driven mask learning method is highly effective on various LLMs,
providing a innovative perspective for addressing this problem.

SN:JW

However, the memory overhead in the MaskLLLM training process is extremely large. Firstly, the
backpropagation of gradients typically requires storing a large number of intermediate activation
values and a substantial amount of optimizer states must be maintained during updates. A more
notable issue is the separate probability assigned to each possible selection of m; over SV which
may cause extreme memory explosion. Concretely, when learning (N:M)-sparsity for the weights

w € RY, MaskLLM requires at least O ((%) %) space to save the logits for learning probabilities,
which approximately reaches O (%d) at the worst case (N = M/2). This implies that the
computational resources required by MaskLLLM can even increase exponentially as M becomes large,
significantly limiting its scalability in practical scenarios, especially with extremely large model size.

4 METHODOLOGY

In this section, we present the details of our proposed MaskPro method. Specifically, in Section 4.1}
we introduce the novel linear-space probabilistic framework to tackle the memory drawback of the
vanilla sampling process in MaskLLM (Fang et al.| 2024). Then, in Sectionf.2] we propose to adopt
the backpropagation-free policy gradient for training. Moreover, we further refine the logits update
via utilizing the loss residual with a smoothing tracker instead of vanilla loss metric, which enhances
the effectiveness and stability of the learning process.

4.1 MASKPRO: A LINEAR-SPACE PROBABILISTIC RELAXATION FOR SEMI-STRUCTURED
SPARSITY

Before going into the details of our proposed MaskPro probabilistic framework, we first present a
representation theory of the concerned N:M mask set S¥*M = {m; € B"*M : |m;|j; = N}. In
order to better illustrate our results, we need to introduce a new operation & for the coordinate-
wise probabilistic sum of two vectors. Formally, for any a € R'*M and b € R'*M | we define
a®b=1y — (1) —a) ® (1) — b), where the symbol 1,; denotes the M-dimensional vector
whose all coordinates are 1. It is worth noting that this ¢ is a symmetric associative operator, namely,
a®b = b@a. Therefore, it also makes sense to apply the operation @ to a set of vectors. Specifically,

given multiple M -dimentional vectors {a1, ..., ay }, we can define that
N N
@ai:m@az@-“@az\r:<1M—®(1M—a¢)>~ 3)
i=1 i=1

SN:I\/[

With this operation &, we then can derive a sparse representation for the N:M mask set ie.,

Theorem 1 (Representation of N:M Sparsity)

N
SN:M — {@ai: a; € {e1,...,em}, Vi € [N] andal#ag#...#aN},)
i=1

where each e; denotes the j-th basis vector of the space RIXM,

From a high-level viewpoint, Theorem [l|offers a parameter-reduced representation of the mask space
SN:M Notably, representing N distinct M -dimensional vectors {ay, ..., ay} typically requires at
most (N M) unknown parameters. In contrast, the mask set S often has a enormous size of (7).
Particularly when N is comparable to M, the parameter scale N M of vectors {aj,...,ax} can be
significantly smaller than the space complexity () of SV,

Under review as a conference paper at ICLR 2026

Motivated by the results of Theorem if we represent each mask m; € SV in problem asa
probabilistic sum of {a; 1,...,a; v} where a; ; € {e1,...,ex},Vj € [N]and a; ;, # a; j,, Vi1 #
J2. then we naturally can reformulate our concerned mask selection problem|I]as a binary optimization

with variables {a; ;},, Vi € [{4], that is to say,

N
min }E5~D f @am‘ Owi, ||, st oaj #a;;,, Y1 #j2 €[N, ()
j=1

a; jef{er,....enm

where the symbol w; denotes the i-th group of the whole weight vector w € R% and i € [%]

Notably, in Eq we only employ NM * % = Nd unknown parameters, which is significantly
smaller than the ((%) %) parameters scale used by the MaskLLM method. However, this new
parameter-reduced formulation Eq.equation [5| of problem [I] still remains a discrete combinatorial
optimization problem such that we cannot directly utilize gradient information to search for the
optimal mask. To overcome this hurdle, we further introduce a novel probabilistic relaxation for
problem [3]in the subsequent part of this section.

Note that in Eq we restrict each group of variables {a; 1,...,a; v} to be N distinct basis vectors
in R™M 'thatis, a; ; € {e1,...,en},Vj € [N]and a, j, # a; j,,Vj1 # jo € [N]. In other words,
we hope to identify an effective N-size subset from the basis vectors {eq, ..., e}, which closely
resembles an N-way sampling-without-replacement process over {e1, ..., ey }. Inspired by this
finding, we design a novel continuous-relaxation framework named MaskPro for Eq[3] i.e., Firstly, we
allocate a categorical distribution p; = (p; 1, .., pi,m) for each group of variables {a; 1,...,a; v}
Subsequently, we employ every categorical distribution p; to sequentially generate N different
random basis vectors {e; 1, ...,€; y} throughout an N-way sampling-without-replacement trial
where e; ; € {ey,...,en} and e; 5, # €;j,,Vj1 # jo. Finally, we assign these sampled basis
vectors to the variables {a; 1,...,a; y} by setting a; ; = e; ;,Vj € [N].

Specifically, under the previously described probabilistic framework, the discrete problem equation 3]
can naturally be converted into a continuous optimization task focused on learning the optimal

categorical distributions p; across the basis vectors {ey, ..., e}, that s,
N
min _ ®(p) :=E(,, 3~ o p en |f @ai,j Owi,é]|, (6)
lpilli=1,vi€[£F] = =1

where {a; };vzl ~ p; represents the NV-step sampling-without-replacement process guided by the
d
categorical distribution p;. Note that representing all % different categorical distributions {p; }*,

typically requires % * M = d unknown parameters. Thus, by introducing randomness, the parameter
scale of problem|[6|can be further reduced from the previous Nd of problem[3]to a linear d.

Next, we utilize the re-parameterization trick to eliminate the unit simplex constraint inherent in the
problem|[6] namely, {p; € [0,1]™ : ||p;||y = 1}. This step is crucial as it enables us to avoid the
computationally expensive projection operations. Specifically, we reset p; := softmax(s;) where
m; = (mi1,...,mi) is the logits of softmax function. With this reformulation, we can transform

d
the problem|6|as an unconstrained optimization regarding the logits = := {m;},, that is,

N

mgn q)(ﬂ-) = E{a,ﬂ }JN=1~s0ftmax(7ri),£~D f @ a5 © Wy, 5 ' (7)
j=1

To avoid rlejpeatedly using the cumbersome notation €, in the remainder of this paper, we define

m; = P,_, a; j forany i € (2] and also use p(m;|m;) to denote the probability of our MaskPro

generating the mask m; under logits ;. Then, the previous problem[/|can be rewritten as:

H;_inq)(ﬂ.) = E&ND,m:{mﬂmin(mi\ﬂ'i)} [f (m © W’E)] = /Ef [f (m © W7§)]p(m|ﬂ.)dm7 ®

led

a
where m € is the concatenation of all mask {my, ..., m%} and p(m|m) == [[X, p(m;|m;).

Under review as a conference paper at ICLR 2026

4.2 PoOLICY GRADIENT ESTIMATOR AND REFINED (N:M)-SPARSITY LEARNING

Thanks to the probabilistic formulation of Eq. |8} we thus can facilitate an efficient optimization via a
policy gradient estimator. Specifically, we have the following equality:

As for the proof of Eq[9]and the specific calculation of p(m|r) in our MaskPro, please refer to
Appendix @] and [B] Note that Eq@ can be computed purely with forward propagation. Therefore,

we can update the logits variables 7 via a mini-batch stochastic gradient descent, that is to say,
T = T — nf (my © w, §)Vlog (p(my|m)) . (10)

Although Eq. may perform well in elementary tasks, it faces one major challenge in the context
of LLMs, which is caused by the inherent differences in loss values among different minibatch.

Ambiguity on Mask m; and Minibatch £. The policy gradient updates logits based on the loss
metric, aiming to encourage the logits to select masks that result in lower loss values. However, when
the loss variation caused by mask sampling is significantly smaller than the loss variation caused by
changing the minibatch, the loss metric alone cannot effectively distinguish whether the current mask
is beneficial or detrimental. For example, we denote &0, as the minibatch whose loss is inherently low
and &pign as the minibatch with high loss. Then we sample two masks and denote one that achieves
lower loss by myga,q and the other by my,q. There are typically two scenarios during training.

° f(mgood Ow, flow) < f(mbad Ow, flow) and f(mgood O] Wa&high) < f(mbad Ow, ghigh)'
* Abad case: f(Mpag © W, low) < f(Mgood © W, Epigh)-

The first case is likely to hold in most cases, as a good mask 120 T T
can generally reduce the loss on most minibatches. But % random minibatch &
when the bad case occurs, Eq.(I0) interprets that the lower- 100 random minibatch &;
loss sample as the better one, yielding more erroneous 8o{ —— EpmmfimoOw,§))
learning on my,ag. To better illustrate this phenomenon,
we randomly select two minibatches during the training
of LLaMA-2-7B and extract the logits at the 500-th it- 40

60

eration. We then sampl; IQOO masks 'and plot their loss ” Mydod|Mpag Mggod |Mpad
distributions, as shown in Figure 2] It is clearly observed

< . 1S- n R REIE A |
that f(Mpg © W,&1) < f(Mgoos © W,). Such dis 0 2014 2.948 2.952 2.956

parities between minibatches are quite common, causing
Eq.(I0) to frequently encounter conflicting information))
when learning solely based on loss value f(m ® w,¢). Figure 2: Loss-related misconceptions.

Loss fimow,¢&))

To address this issue, we propose to use the loss residual to update the logits, which can distinguish
the loss variations independently caused by mask changes. By rethinking the first case above, to
accurately evaluate whether a mask is better, we should fix the impact of minibatch. Similarly, we
introduce f(m; ® w,&) — f(my © w,§) instead of f(m; ® w,£) alone to evaluate whether the
current sampled mask my is better than the baseline of initial mg. Thus, the update is refined as:

1 =7 — 1 (f(my ©w, &) — f(me © w,§)) Vlog (p(my|m)) . 11

In experiments, the effectiveness of Eq.(TT) is significantly better than that of Eq.(TI0). However, it
exhibits poor numerical stability. To further handle the potential numerical explosion during training,
motivated by |Zhao et al.| (201 1)), we introduce a moving average tracker to evaluate the averaged loss
residual under the current logits. Specifically, we reformulate Eq.(TT) as follows:

Tep1 =T — 0 (f(m © w,) — f(mo © w,§) —§) Vlog (p(my|m)),
§=ad+(1—a)(f(m;ow,§) — flmyOw,E)).

Eq.(I2) not only effectively distinguishes the loss variations caused by each sampled mask but also
stabilizes its numerical distribution around zero through the § term. This prevents aggressive logits
updates caused by large loss variations, ensuring a more stable training process. We also provide a
theoretical intuition and understanding for the § term in Appendix[C.3.3]

12)

We summarize the training procedure in Algorithm [T} At ¢-th iteration, we first reshape the logits
7 into groups of M consecutive elements and then apply the softmax function to generate the

Under review as a conference paper at ICLR 2026

corresponding probabilities p;. Based on p;, we perform an N-way sampling without replacement for
each group, resulting in a strict (N:M)-sparse mask. We then calculate the policy gradient to update
the current logits. By calculating the loss residual on the corresponding minibatch £, we can obtain
the independent impact of the loss value. With the assistance of a smoothing tracker, we ensure that
the distribution of loss residuals used for the policy gradient remains stable. Then we complete the
policy gradient update of the logits. Finally, we update the smoothing tracker §. Regarding the final
output, since the output consists of the logits 7 of all weights, in our experiments, we directly select
the top-/NV positions with the highest logits within each group of M elements as the mask. Actually, a
more refined approach is to perform multiple N-way sampling-without-replacement processes and
then evaluate them on a small calibration set to select the optimal mask.

Algorithm 1 Learning (N:M)-Sparsity via MaskPro

Input: frozen weights w, initial logits 7y, initial mask m, learning rate 7, smoothing coefficient
a = 0.99, smoothing tracker § = 0.
Output: learned logits 7
1: fort=0,1,2,--- , T —1do
2: sample a minibatch ¢ for training
3: reshape m; into groups of M elements and calculate p; = softmax(7;) for each group
4: perform N-way sampling without replacement by p; to generate the mask m;
5: perform inference and calculate the loss residual f(m; ® w, &) — f(my © w, &)
6.
7
8

update logits w41 = m — 1 (f(m, © W, &) — f(mg ©w,§) — 6) Vlog (p(my|m))
: update the smoothing tracker § = ad + (1 — a) (f(m; © w, &) — f(mg © w,§))
: end for

5 UNBIASEDNESS AND VARIANCE REDUCTION

In this section, we primarily demonstrate the unbiasedness and variance-reduced properties of our
proposed PGE update. For clarity of exposition, we denote these three updates as:

g = f(m O w,&)Vlog (p(m]|r)),
g =(f(mow,§) — f(mg©w,§)) Vieg (p(mlr)),
gs = (f(mOW,§) - f(mg ©w,§) —d) Viog (p(ml|r)),

where g, is the vanilla PGE, g; is the update via loss residual and g is the update via loss residual
with smoothing tracker d. Then the following theorem holds (proof is deferred to Appendix [C.3).

Theorem 2 The proposed PGEs are all unbiased estimators of the policy gradient, i.e.,
Furthermore, when the sampled mask satisfies f(m; © w,§) > % f(my ® w,§), we have:

Var [gs) < Var[g:] < Var[g,) . (14)

In Theorem 2} Eq[T3]showes that our proposed updates g, and g, are both unbiased estimators of the
gradient V® (), effectively supporting the training process. Furthermore, when f(m; ® w,§) >
% f(my © w, &), from Eq of Theorem we know that before the loss of the sampling mask m;
decreases to less than half of the initial one, using the update via loss residual with smoothing tracker
can achieve more efficient training. Once the optimization process has sufficiently progressed such
that the loss is less than half of the initial loss, a new set of m can be selected to replace mg to
continue efficient training. In practical experiments, this condition is almost easily satisfied, as the
loss rarely drops below half of the initial value when training with an initial mask with simple priors.

6 EXPERIMENTS

In this section, we first introduce the baselines along with details of the dataset and models. Then we
present the main experiments. We also conduct sensitivity studies of o and C' on Appendix and
to provide proper guidance for the reproducibility and extensibility.

Under review as a conference paper at ICLR 2026

Table 1: Zero-shot evaluations of (2:4)-sparsity. In the test, we freeze weight updates and directly
apply masks. The results corresponding to each model name reflects the evaluation of dense weights.

Wiki. HellaS. RACE PIQA WinoG. ARC-E ARC-C OBQA Memory

GEMMA-7B 112.39 60.54 40.19 79.71 73.09 81.65 49.91 32.80 —

- MASKLLM — 2542 20.10 5152 4949 25.21 21.59 18.40 | 467.14 G
- MAGNITUDE — 2523 2124 51.85 50.75 26.43 21.84 1240 | 16.32G
- SPARSEGPT — 26.07 2239 5511 50.36 30.64 18.43 14.80 | 34.94G
- WANDA — 26.80 22.78 56.47 48.86 32.66 17.75 13.60 | 29.63G
- GBLM — 26.81 2249 5452 51.07 32.38 17.66 14.00 | 39.38G
- PRUNER-ZERO — 2527 21.63 5321 50.75 24.58 2270 15.20 | 39.38G
- MaskPro — 2697 2326 57.88 52.82 3292 22.65 1640 | 48.63G

VICUNA-1.3-7B | 11.86 56.32 4191 7737 69.46 74.28 4241 34.60 —
- MASKLLM 14.91 49.07 39.13 7524 65.35 65.57 3357 2560 | 331.16 G

- MAGNITUDE 389.92 40.19 28.61 67.03 57.62 54.59 28.75 1940 | 12.82G
- SPARSEGPT 24.93 44.87 37.81 7062 63.30 62.92 3242 25.00 | 22.20G

- WANDA 25.24 4428 37.89 70.57 61.56 61.70 3217 23.00 | 21.25G
- GBLM 24.60 4429 38.37 70.51 61.80 62.84 3140 24.00 | 26.87G
- PRUNER-ZERO | 24.02 | 44.77 3742 71.22 6275 62.33 32.76 24.00 | 26.87G
- MaskPro 21.10 46.81 38.76 71.60 64.25 64.23 3319 24.80 | 35.90G

LLAMA-2-7B 8.71 57.15 39.62 78.07 68.90 76.35 43.34 3140 —
- MASKLLM 12.55 51.17 3856 7470 65.04 69.57 3567 2680 | 331.16G

- MAGNITUDE 307.39 45.43 3148 70.08 60.93 61.87 3020 2180 | 12.82G
- SPARSEGPT 21.07 | 4320 36.56 70.89 64.56 64.52 31.48 24.60 | 22.20G

- WANDA 23.44 4132 3589 7046 62.12 62.79 3020 2420 | 21.25G
- GBLM 21.64 4179 34.61 70.57 6275 63.17 29.86 2320 | 26.87G
- PRUNER-ZERO | 22.09 41.17 3464 70.18 62.35 61.32 27.05 22.80 | 26.87G
- MaskPro 17.17 46.18 37.13 73.07 65.82 66.12 32.85 2620 | 3590G

DEEPSEEK-7B 9.70 56.94 39.62 79.27 70.40 75.25 43.60 32.60 —
- MASKLLM 12.90 51.73 39.14 7595 65.80 68.10 3532 2580 | 339.56G

- MAGNITUDE 285.06 4097 2852 69.75 60.06 54.92 2756 2080 | 13.13G
- SPARSEGPT 19.12 | 45.58 37.80 7394 65.43 66.37 32.94 24.80 | 22.50G

- WANDA 19.68 4538 3512 73,56 63.14 65.49 3200 2280 | 21.55G
- GBLM 19.55 4534 36.17 73.99 6298 65.82 32.85 2360 | 27.98G
- PRUNER-ZERO | 20.71 4493 3522 7323 62.12 64.94 30.89 2320 | 27.98G
- MaskPro 17.97 47.78 37.75 7472 65.59 66.74 3349 28.60 | 36.82G

Baselines. We select the backpropagation-free methods including Magnitude (Han et al., [2015)),
SparseGPT (Frantar & Alistarhl|2023)), Wanda (Sun et al., [2023), GBLM-Pruner (Das et al., [2023)),
and Pruner-Zero (Dong et al.| 2024)) as baselines. We also report the results of the backpropagation-
based MaskLLLM (Fang et al.,[2024)). The backpropagation-free methods perform sparsification by
minimizing the layer-wise errors of the output activations caused by sparse weights, while MaskLLM
updates the mask by optimizing masks through the loss function of the text generation task.

Models & Dataset. We evaluate the performance on 4 LLMs, including Vicuna-7B (Chiang et al.|,
2023), LLaMA-2-7B (Touvron et al., 2023)), Deepseek-7B (DeepSeek-AlL [2024)), Gemma-7B (Team!
et al., 2024). To ensure a fair comparison, we use the C4 dataset (Raffel et al.l 2020) as a unified
calibration or training dataset for each method and adopt the LM-evaluation-harness framework (Gao
et al.,2024a) for zero-shot evaluations. Due to the page limitation, more details of the hyperparameters
and experimental setups for reproducibility can be found in Appendix [A.T]

Performance. In Table[l] we report the zero-shot evaluation on several downstream tasks for the
(2:4)-sparsity. We conduct extensive experiments on several 7B models to validate the effectiveness
of our proposed method. MaskPro generally outperforms existing non-backpropagation methods,
achieving an average performance improvement of over 2% over the top-2 accuracy. On certain
models and datasets, it achieves performance nearly comparable to MaskLLLM. On the Wikitext
PPL test, the MaskPro method also shows a consistent improvement, about 3 on LLaMA-2-7B and
over 3 on the others. The weights of the Gemma-7B model are not sufficiently sparse, resulting

Under review as a conference paper at ICLR 2026

_. 0.025 30
W -.- Sparsegpt + Pruner-Zero
~ 0.000
2 - 281 -@- Wanda -@- MaskPro
© —0.025 = GBLM
- R 26
-0.050)
£ =’
= -0.075 P24
! 0.100 E
o 3 22
» —0.125 E.
3 ! 20+
® -0.150{ === Loss Residual Q
= === Vanilla Policy Gradient = 181
g 0175 Loss Residual with Smoothing Tracker ’_—H_—*'—H_—‘
= _0.200 i ‘ ; ; ‘ ‘ 16
: 0 1000 2000 3000 4000 5000 6000 1 16 32 64 128 256 512
Iteration Dataset Size

(a) Training Effectiveness of Three PGE Updates. (b) Training Performance of Different Dataset Size.

Figure 3: (a) We show the different loss curves trained with the three PGEs. (b) We report the PPL
on Wikitext of different methods trained with 1, 16, 32, 64, 128, 256, and 512 data samples.

in suboptimal performance of its corresponding sparse model and unstable PPL results. We show
more evaluations in the Appendix [A73] More experiments of (4:8) / (8:16)-Sparsity are stated in
Appendix [A.5]and[A.7} We also evaluate MaskPro on 13B and 30B models in Appendix[A.8]

Optimizers. In Figure[3|(a), we evaluate the training performance of vanilla PGE, loss residual and
loss residual with the smoothing tracker. The metric on the y-axis represents how much the loss value
of the current minibatch is reduced by the mask sampled from the current logits compared to the
initial mask. It can be observed that the vanilla policy gradient update is almost ineffective, with the
loss oscillating around zero without effectively learning any useful information. After applying the
loss residual update, significant improvement is observed as the logits receive effective guidance to
sample better masks. However, its effect is not sufficiently stable — after achieving a certain level
of improvement, large oscillations occur, preventing further learning progress. The update of loss
residual with the smoothing tracker can efficiently and stably train this task, leading to better results.

Size of Training Set. Our proposed MaskPro requires significantly less data samples compared to
other learning-based methods. As shown in Figure |§| (b), we evaluate the PPL of the Wikitext dataset
on LLaMAZ2-7B after training 10k iterations with training set sizes of 1, 16, 32, 64, 128, 256, 512.
According to the experimental results reported by [Fang et al.| (2024), MaskLLLM requires at least 1280
training samples to achieve the results of SparseGPT, and 520k samples for convergence. In contrast,
our proposed MaskPro can be trained with a minimal number of training samples while maintaining
nearly stable performance even with 1 data sample. We also provide results in Appendix [AT2]
comparing runs initialized from different masks with 1 sample versus 128 samples. Our experiments
show that training with a single sample remains stable, with only a slight loss in performance.

Training Efficiency. We evaluate efficiency primarily by comparing memory usage, training time,
and the size of the training dataset. Traditional rule-based methods learn masks by evaluating specific
metrics on a small validation set. For example, in the (2:4)-sparsity on LLaMA-2-7B, the Pruner-Zero
requires 26.87 GB of memory and 128 C4-en data samples. And for the learning-based MaskLLLM, it
requires 330 GB of memory across 8x A100 GPUs and 520k training samples, taking over 1200
GPU hours. A significant advantage of our proposed MaskPro method is its low computational and
memory overhead during training. More details of training time profile reports on different patterns
and corresponding acceleration techniques of sampling are shown in Appendix [A.13]and[A.T4]

7 SUMMARY

In this paper, we propose a novel memory-efficient framework named MaskPro, which leverages
policy gradient updates to learn semi-structured sparsity. By reformulating the (N:M)-sparsity as a
linear-space probability relaxation, our approach reduces the memory for logits storage from vanilla

o ((%) %) to O(d). Furthermore, we propose a novel PGE that replaces the vanilla loss metric

with loss residuals, refined by a moving average tracker, effectively accelerating training and reducing
variance. Lastly, comprehensive theoretical analysis and extensive experiments demonstrates the
effectiveness of our MaskPro in achieving substantial performance gains with minimal training costs.

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024.

Gébor Braun, Alejandro Carderera, Cyrille W Combettes, Hamed Hassani, Amin Karbasi, Aryan
Mokhtari, and Sebastian Pokutta. Conditional gradient methods. arXiv preprint arXiv:2211.14103,
2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Tianyi Chen, Tianyu Ding, Badal Yadav, Ilya Zharkov, and Luming Liang. Lorashear: Efficient large
language model structured pruning and knowledge recovery. arXiv preprint arXiv:2310.18356,
2023.

Tianyu Chen, Shaohan Huang, Yuan Xie, Binxing Jiao, Daxin Jiang, Haoyi Zhou, Jianxin Li, and Furu
Wei. Task-specific expert pruning for sparse mixture-of-experts. arXiv preprint arXiv:2206.00277,
2022.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//1lmsys.org/blog/2023-03-30-vicuna/.

Rocktim Jyoti Das, Mingjie Sun, Liqun Ma, and Zhiqiang Shen. Beyond size: How gradients shape
pruning decisions in large language models. arXiv preprint arXiv:2311.04902, 2023.

DeepSeek-Al. Deepseek 1lm: Scaling open-source language models with longtermism. arXiv preprint
arXiv:2401.02954,2024. URL https://github.com/deepseek—ai/DeepSeek—LLM.

Lucio Dery, Steven Kolawole, Jean-Francois Kagy, Virginia Smith, Graham Neubig, and Ameet

Talwalkar. Everybody prune now: Structured pruning of llms with only forward passes. arXiv
preprint arXiv:2402.05406, 2024.

Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu, Xinglin Pan, Qiang Wang, and Xiaowen Chu.
Pruner-zero: Evolving symbolic pruning metric from scratch for large language models. In
Proceedings of the 41st International Conference on Machine Learning. PMLR, 2024. URL
https://arxiv.org/abs/2406.02924. [arXiv: 2406.02924].

Gongfan Fang, Hongxu Yin, Saurav Muralidharan, Greg Heinrich, Jeff Pool, Jan Kautz, Pavlo
Molchanov, and Xinchao Wang. Maskllm: Learnable semi-structured sparsity for large language
models. arXiv preprint arXiv:2409.17481, 2024.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Elias Frantar and Dan Alistarh. SparseGPT: Massive language models can be accurately pruned in
one-shot. arXiv preprint arXiv:2301.00774, 2023.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 07 2024a. URL https://zenodo.org/records/12608602!

Yuan Gao, Zujing Liu, Weizhong Zhang, Bo Du, and Gui-Song Xia. Bypass back-propagation:
Optimization-based structural pruning for large language models via policy gradient. arXiv preprint
arXiv:2406.10576, 2024b.

10

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://github.com/deepseek-ai/DeepSeek-LLM
https://arxiv.org/abs/2406.02924
https://zenodo.org/records/12608602

Under review as a conference paper at ICLR 2026

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dabhle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Emil Julius Gumbel. Statistical theory of extreme values and some practical applications: a series of
lectures, volume 33. US Government Printing Office, 1954.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Connor Holmes, Minjia Zhang, Yuxiong He, and Bo Wu. Nxmtransformer: Semi-structured sparsifi-
cation for natural language understanding via admm. Advances in neural information processing
systems, 34:1818-1830, 2021.

Weiyu Huang, Yuezhou Hu, Guohao Jian, Jun Zhu, and Jianfei Chen. Pruning large language models
with semi-structural adaptive sparse training. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pp. 24167-24175, 2025.

Ajay Jaiswal, Shiwei Liu, Tianlong Chen, Zhangyang Wang, et al. The emergence of essential
sparsity in large pre-trained models: The weights that matter. Advances in Neural Information
Processing Systems, 36:38887-38901, 2023.

Jongwoo Ko, Seungjoon Park, Yujin Kim, Sumyeong Ahn, Du-Seong Chang, Euijai Ahn, and
Se-Young Yun. Nash: A simple unified framework of structured pruning for accelerating encoder-
decoder language models. arXiv preprint arXiv:2310.10054, 2023.

Guanghui Lan. First-order and stochastic optimization methods for machine learning, volume 1.
Springer, 2020.

Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Kwang-Ting Cheng, and Jian
Sun. Metapruning: Meta learning for automatic neural network channel pruning. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 3296-3305, 2019.

Yucheng Lu, Shivani Agrawal, Suvinay Subramanian, Oleg Rybakov, Christopher De Sa, and Amir
Yazdanbakhsh. Step: learning n: M structured sparsity masks from scratch with precondition. In
International Conference on Machine Learning, pp. 22812-22824. PMLR, 2023.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. Ol-pruner: Length-harmonizing fine-tuning for ol-like reasoning pruning.
arXiv preprint arXiv:2501.12570, 2025.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702-21720, 2023.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh,

Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks. arXiv preprint
arXiv:2104.08378, 2021.

Jeff Pool, Abhishek Sawarkar, and Jay Rodge. Accelerating inference with sparsity using the nvidia
ampere architecture and nvidia tensorrt. NVIDIA Developer Technical Blog, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi

Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1-67, 2020.

11

Under review as a conference paper at ICLR 2026

Li Shen, Yan Sun, Zhiyuan Yu, Liang Ding, Xinmei Tian, and Dacheng Tao. On efficient training of
large-scale deep learning models: A literature review. arXiv preprint arXiv:2304.03589, 2023.

Sharath Turuvekere Sreenivas, Saurav Muralidharan, Raviraj Joshi, Marcin Chochowski, Ameya Sunil
Mahabaleshwarkar, Gerald Shen, Jiaqi Zeng, Zijia Chen, Yoshi Suhara, Shizhe Diao, et al. LIm
pruning and distillation in practice: The minitron approach. arXiv preprint arXiv:2408.11796,
2024.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
large language models. arXiv preprint arXiv:2306.11695, 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229-256, 1992.

Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang, Zhongzhu Zhou, Xiafei Qiu, Yong Li, Wei Lin,
and Shuaiwen Leon Song. Flash-llm: Enabling cost-effective and highly-efficient large generative
model inference with unstructured sparsity. arXiv preprint arXiv:2309.10285, 2023a.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Dangi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023b.

Yanyue Xie, Zhi Zhang, Ding Zhou, Cong Xie, Ziang Song, Xin Liu, Yanzhi Wang, Xue Lin, and
An Xu. Moe-pruner: Pruning mixture-of-experts large language model using the hints from its
router. arXiv preprint arXiv:2410.12013, 2024.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, Ajay Jaiswal,
Mykola Pechenizkiy, Yi Liang, et al. Outlier weighed layerwise sparsity (owl): A missing secret
sauce for pruning llms to high sparsity. arXiv preprint arXiv:2310.05175, 2023.

Mingyang Zhang, Hao Chen, Chunhua Shen, Zhen Yang, Linlin Ou, Xinyi Yu, and Bohan Zhuang.
Loraprune: Structured pruning meets low-rank parameter-efficient fine-tuning. arXiv preprint
arXiv:2305.18403, 2023.

Nan Zhang, Yanchi Liu, Xujiang Zhao, Wei Cheng, Runxue Bao, Rui Zhang, Prasenjit Mitra, and
Haifeng Chen. Pruning as a domain-specific llm extractor. arXiv preprint arXiv:2405.06275,
2024a.

Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao, Lu Hou, and Carlo Vittorio Cannistraci. Plug-
and-play: An efficient post-training pruning method for large language models. In The Tivelfth
International Conference on Learning Representations, 2024b.

Yuxin Zhang, Mingbao Lin, Zhihang Lin, Yiting Luo, Ke Li, Fei Chao, Yongjian Wu, and Rongrong Ji.
Learning best combination for efficient n: M sparsity. Advances in Neural Information Processing
Systems, 35:941-953, 2022.

Bowen Zhao, Hannaneh Hajishirzi, and Qingqing Cao. Apt: Adaptive pruning and tuning pretrained
language models for efficient training and inference. arXiv preprint arXiv:2401.12200, 2024.

Tingting Zhao, Hirotaka Hachiya, Gang Niu, and Masashi Sugiyama. Analysis and improvement of
policy gradient estimation. Advances in Neural Information Processing Systems, 24, 2011.

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and
Hongsheng Li. Learning n: m fine-grained structured sparse neural networks from scratch. arXiv
preprint arXiv:2102.04010, 2021.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning Wang,
Zhihang Yuan, Xiuhong Li, et al. A survey on efficient inference for large language models. arXiv
preprint arXiv:2404.14294, 2024.

12

Under review as a conference paper at ICLR 2026

The Use of Large Language Models. In this work, we only evaluate the performance on LLMs in
our experiments and employ LLMs to refine the writing and presentation of our manuscript. Other
aspects of the work are unrelated to LLMs.

Limitation and Broader Impact. This paper presents a memory-efficient training framework for
learning semi-structured sparse masks based on policy gradient, achieving comprehensive improve-
ments in performance and efficiency through substantial upgrades in both the probabilistic modeling
and optimizers. A limitation of this paper is that when training large-scale models, the primary
time consumption lies in simulating the mask sampling process. Utilizing more efficient sampling
simulations can further enhance training efficiency. The core contributions of this paper mainly
include linear-space probabilistic modeling and optimizer enhancements. These two aspects can be
widely applied to various model pruning tasks, not just the specific task addressed in this work.

A EXPERIMENTS

A.1 EXPERIMENTAL DETAILS AND REPRODUCIBILITY

In this paper, we reproduce the baselines using their official open-source codes provided in each
paper. For fairness, we use the C4-en dataset as the calibration/training dataset. For the MaskLLLM,
we follow Fang et al.| (2024) to adopt 520k C4-en samples for training 2k iterations with batchsize
256. For other methods, we follow their setups to adopt 128 C4-en samples as calibration dataset.

Hyperparameters. For the MaskPro, we evaluate a wide range of dataset sizes, ranging from 1 to
320k. We select the learning rate from [25, 50, 100, 200] for each model and 50/100 proves to be a
relatively effective choice. In the training, we use batchsize as 32 and training for ~ 10k iterations.
Using a batchsize larger than 32 is also encouraged, as larger batches generally lead to stable training.
In all experiments, we adopt the smoothing coefficient o = 0.99 to stably follow the loss residual.
We summarize the selection of certain hyperparameters in Table 2]

Table 2: Hyperparameters selections.

Model | Learning rate Logits Magnitude ~ Smoothing coefficient o Initial Mask
Gemma-7B 50/100 10.0 0.99 Top-N / Sparsegpt
Vicuna-V1.3-7B 50 10.0 0.99 Top-N / Sparsegpt
LLaMA-2-7B 50 10.0 0.99 Top-N / Sparsegpt
DeepSeek-7B 50/ 100 10.0 0.99 Top-N / Sparsegpt

Initialization. The initialization of logits in MaskPro is crucial. Standard random initialization
or zero initialization are ineffective. This is because the logits determine the sampling scale. For
instance, zero initialization implies that each position is sampled with equal probability, leading to a
very large number of negative samples during the initial training stage. Consequently, it becomes
exceedingly difficult to identify effective positive samples for learning. In our experiments, we
initialize the logits based on 7y = myg * C, where my is a pre-defined mask and C' is the initial
logits magnitude. A larger C' indicates that the mask changes less compared to the initial mask myg,
effectively maintaining a balance between positive and negative samples in the early training stages.
The design of my is flexible. In practice, training can also start with a randomly generated mask;
however, this approach typically requires a longer training period. We recommend directly using the
results from the Sparsegpt method or selecting the Top-/V positions over M elements per group.

Training Environment. We train our proposed MaskPro on a single H100 / A100 GPU device. Other
details are stated in Table

Table 3: Training Environment.
GPU CPU CUDA Driver Pytorch
1x H100/ A100 128 x AMD EPYC 9354 32-C 12.4 535.230.02 251

13

Under review as a conference paper at ICLR 2026

Evaluations. For fair comparisons, all evaluations are conducted on the public benchmark framework
LM-evaluation-harness framework (Gao et al.,[2024a) (https://github.com/Eleuther Al/Im-evaluation-
harness.git). Please refer to the relevant reproduction guidelines.

A.2 THE IMPORTANCE OF C' IN LOGITS INITIALIZATION

We have previously discussed the selection of C' in the experiments. Here, we will visualize some
practical scenarios encountered during the experiments and illustrate why C must be sufficiently
large to effectively drive the training process. We analyze the distribution of loss values of training
LLAMA-2-7B within 100 steps with a minibatch of 32 samples under different C initialization
settings, as shown in Figure 4]

3.0
14.0 2.99 — flmpyow)
12.0 2.98

2 10.0 2.97
o) 2.96 ; %
g 80 2.95 e
E = s | L

4.0 i
2.0

6 7 8 9 10

i ;\\J — —_— —_— p— p— t

0 1 2 3 4 5 6 7 8 9 10
Vaule of C

Figure 4: The distribution of loss within 100 steps under different C' used for logits initialization.

We first explain which variables are affected by C'. Since we use the softmax function to generate
the probabilities for the corresponding positions, the logits values determine whether the initial
probability of being sampled at a specific position is sufficiently large. In other words, when sampling
a new mask, it ensures how many positions with high probabilities remain unchanged. This point
is particularly important because the sampling space is extremely large. Without constraining the
sampling space, there is a high probability of sampling poor masks. Extremely poor masks are
incapable of capturing useful information effectively. Therefore, randomly initializing the C' value or
directly setting it to zero is completely ineffective, as it cannot ensure the stability of the sampling
space, i.e., whether the distribution of positive and negative samples in the sampling space is balanced.

Next, we explain the meaning of Figure[d] We show the distribution of loss values over 100 training
steps using a minibatch under different C' initialization settings on the LLaMA-2-7B model. In the
subplot, the red line corresponds to the loss of the initialized mask mg. When C' is small, it is evident
that the training fails — the loss surges from the initial 2.95 to over 10. A large number of negative
samples flood into the training process, leading to chaotic learning. As C' increases to 4, the stability
gradually improves. However, it is still insufficient. As shown in the subplot, even when C' = 6,
more than 90% of the sampled masks still exhibit extremely poor performance. Until C increases
to 9 and 10, it can be observed that the distribution of positive and negative sampled masks during
training gradually maintains a 1:1 ratio. By this, the training can proceed effectively.

Here, we provide an additional example to explain and guide the selection of C' for different network
parameters. As mentioned earlier, one probabilistic interpretation of C' is to determine, on average,
how many positions are sampled differently from the initialized mask. We can succinctly express this
probability in a mathematical form. Suppose the initialized mask my is [0, 1, 1, 0], then its initial logits

e eC

1 1
2(eC+1)’ 2(eC+1)? 2(eC+1)’ 2(eC+1) |

is [0, C, C, 0] and the corresponding softmax probability is [
Thus we have:

62C

(€€ +1)(e€ +2)°

In fact, the size of the sampling space where positive and negative samples are evenly distributed is
difficult to estimate for different model parameter sizes. However, we can reasonably speculate that

p(m=1[0,1,1,0]|x =[0,C,C,0]) =

14

https://github.com/EleutherAI/lm-evaluation-harness.git
https://github.com/EleutherAI/lm-evaluation-harness.git

Under review as a conference paper at ICLR 2026

the total number of parameters is generally proportional to the above probability value. For larger
models, using a larger C' can further maintain the effectiveness of the training space.

A.3 MORE EXPERIMENTS ON DIFFERENT TASKS

In addition to the primary comparisons presented in the main text, we extend our evaluation to
encompass over a dozen additional tasks to provide a more comprehensive demonstration of the
effectiveness of our proposed method. These extended tests are carefully selected to cover diverse
data distributions and task complexities, allowing us to assess the robustness and generalizability of
our approach. The results from these comprehensive experiments consistently highlight the superior
performance of our method across various scenarios, further reinforcing its effectiveness. The detailed
outcomes of these evaluations are presented as follows.

Table 4: Zero-shot evaluations of (2:4)-sparsity on other more tasks.

LLaMA-2-7B DeepSeek-7B

Dense Sparsegpt Pruner-Z MaskPro Dense Sparsegpt Pruner-Z MaskPro

WMDP | 39.29 | 26.61 26.52 2695 | 41.00 | 2715 27.07 28.22
TMLU | 29.58 | 25.03 25.13 2538 | 37.17 | 25.99 24.36 25.37
Prost 23.60 | 24.26 24.03 2441 | 28.19 | 2822 27.62 29.57
AExams | 21.04 | 23.65 23.65 23.65 | 23.65| 23.65 23.65 23.65
AClue | 2747 | 2533 25.31 2624 | 3234 | 2717 26.88 27.31
ANLI-1 | 3640 | 33.20 33.60 3440 | 34.10 | 31.10 31.19 32.20
ANLI-2 | 3720 | 34.10 33.90 34.10 | 36.60 | 33.70 33.20 33.50
ANLI-3 | 3758 | 33.08 33.00 35.67 | 37.75| 3333 33.04 33.85
SCIQ 94.00 | 91.10 91.10 91.10 | 94.10 | 92.30 90.20 90.90
MathQA | 28.24 | 23.72 23.55 2395 | 2948 | 25.93 25.12 26.76
Haerae | 2227 | 18.88 18.91 18.79 | 29.70 | 25.57 18.26 22.18
BoolQ | 77.68 | 7110 69.13 7112 | 7281 | 6691 66.36 67.77
ComQA | 32.92 | 20.80 20.08 22.03 | 36.69 | 23.10 22.95 23.18
LogiQA | 25.65 | 21.66 2178 2289 | 2504 | 2173 21.35 22.58
COPA | 87.00 | 81.00 79.00 79.00 | 84.00 | 86.00 84.00 87.00
WIC 4984 | 47.81 47.22 49.84 | 51.10 | 48.00 48.81 49.06
WSC 36.54 | 36.54 36.54 3654 | 6442 | 36.54 36.54 36.54

CB 4286 | 4107 3929 5714 | 5536 | 4286 4344 4821
MultiRC | 56.97 | 5720 5637 5693 |57.22 | 5720 5720 57.20
RTE 62.82 | 5848 59.12 6137 | 6787 | 6343 6315 6632
Mutual | 70.84 | 68.01 6744 6853 | 7130 | 6743 6724 68.33

WebQS [0.0586| 0.0541 0.0544 0.0566 |0.0876| 0.0468 0.0226 0.0494

In this experiment, we evaluate the performance of MaskPro across a diverse set of tasks to com-
prehensively assess its effectiveness on LLaMA-2-7B and DeepSeek-7B. The experimental design
includes a variety of downstream tasks. MaskPro consistently demonstrates superior performance
over competing methods, such as SparseGPT and Pruner-Zero, in the majority of datasets. The
method effectively balances accuracy and computational efficiency, achieving more favorable out-
comes without compromising on memory constraints. This consistent performance across multiple
tasks highlights the robustness and generalizability of MaskPro in handling different scenarios. On
smaller datasets, the performance gains of MaskPro are relatively moderate, as the evaluation is
constrained by limited sample diversity. However, when tested on larger datasets with extensive
testing samples, MaskPro consistently demonstrates substantial improvements over baseline methods.

15

Under review as a conference paper at ICLR 2026

A.4 TRAINING WITH DIFFERENT DATASET SIZE

In this section, we report the training results using different numbers of samples. In Figure 5] we
present the loss residuals of training on LLaMA-2-7B model with 1, 32, 128, and 320k samples,
respectively. We set batchsize as 32 for all others expect for 1 as 1. All are trained for 10k iterations.

> 0.0 === Train with 1 Sample LV === Train with 32 Samples
H
o -0.1
£
= -0.2
|
> -0.3
3
o) -0.4
£
= ~0.5
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Iteration Iteration
(a) Training set = 1. (b) Training set = 32.
s 0.02 m== Train with 128 Samples | Wr == Train with 320k Samples
> 0.000
3
O -0.025
E -0.050
w
I -0.075
o 0.100
s °
® -0.1251
g -0.150 {
L
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Iteration Iteration
(c) Training set = 128. (d) Training set = 320k.

Figure 5: Loss residual curves of training on LLaMA-2-7B model with 1, 32, 128, and 320k samples.

It can be observed that MaskPro does not require a large number of training samples. Even with just
1 sample (in a single minibatch), it can complete training and achieve stable performance. The loss
on a single training sample can steadily decrease, but this does not necessarily imply a continually
decreased loss on the test dataset. In fact, despite the persistent reduction in training loss, the test
set performance may have already stabilized. In Figure 3] (b) of the main text, we report the testing
results of the learned mask on the Wikitext dataset. Next, we evaluate the zero-shot accuracy on a
series of downstream tasks, shown in Table[3]

Table 5: Zero-shot evaluations of masks trained with different dataset size on LLaMA-2-7B.

| HellaS. RACE PIQA WinoG. ARC-E ARC-C OBQA Avg.

320k samples | 46.18 37.13 73.07 65.82 66.12 32.85 26.20 | 49.62
128 samples 46.10 37.03 7247 65.62 65.49 32.25 25.80 | 49.25
32 samples 46.32 36.890 72.80 65.27 65.95 32.66 25.80 | 49.38

1 sample 46.39 37.61 72.96 64.64 65.70 32.59 2440 | 49.18

It can be observed that although the performance slightly declines, overall, even training with just 1
sample can still maintain satisfactory results, and in some datasets, the performance is even slightly
higher.

16

Under review as a conference paper at ICLR 2026

A.5 PERFORMANCE OF (4:8)-SPARSITY

In this section, we report the results for (4:8)-sparsity in Table [§ and corresponding training loss
curves in Figure[f] The training hyperparameters are consistent with those reported in Table 2]

Table 6: Zero-shot evaluations of (4:8)-sparsity. The MaskLLM method suffers from severe memory
explosion and exceeds the memory limitation of 8 x A100 GPUs (> 640 G).

Wiki. HellaS. RACE PIQA WinoG. ARC-E ARC-C OBQA

LLAMA-2-7B 871 | 57.15 39.62 78.07 6890 7635 4334 31.40
- MASKLLM - — — — — — — —

- MAGNITUDE 61.99 46.05 3531 7220 62.27 64.81 34.07 25.80
- SPARSEGPT 14.99 | 48.19 38.55 73.78 67.72 68.15 36.01 27.80

- WANDA 15.28 47.04 38.18 74.14 66.77 67.00 34.56 26.40
- GBLM 15.21 4732 3751 74.16 67.56 67.13 34.56 27.20
- PRUNER-ZERO | 15.10 47.82 38.13 7407 67.23 68.18 34.97 27.20
- MaskPro 13.73 49.51 3933 74.65 68.43 68.64 35.92 28.20

DEEPSEEK-7B 970 | 5694 39.62 7927 7040 7525 43.60 32.60
- MASKLLM — — — — — — — —

- MAGNITUDE 109.37 4532 32.06 7242 61.64 56.31 32.68 23.40
- SPARSEGPT 14.67 | 4836 38.09 7524 65.82 7020 36.69 29.20

- WANDA 14.76 49.09 3847 75.46 64.88 68.48 3422 27.20
- GBLM 14.74 49.03 38.76 7573 65.11 68.18 34.13 27.00
- PRUNER-ZERO | 14.85 48.22 3832 75.12 65.66 69.23 35.50 27.80
- MaskPro 13.89 50.97 39.25 75.87 66.27 69.51 36.89 29.80

> 0.00/ == Train with 512 Samples > 0.06 == Train with 512 Samples
sz H
o) ® 0.04
S —0.02 s
£ E 002
L w
| |
—0.04
o o 0.00
3 H
- i -0.02
10 0.06 1o}
- -
£ € —0.04
= -0.08 =
0 2000 4000 6000 8000 10000 (1] 2000 4000 6000 8000 10000
Iteration Iteration
(a) LLaMA-2-7B. (b) DeepSeek-7B.

Figure 6: Loss residual curves of training for the (4:8)-sparsity.

A.6 MEMORY SCALABILITY
In this section, we report the memory scalability in Table[7]

Table 7: Memory (GB) reuqired for training on DeepSeek-7B.

| MaskLLM MaskPro

(1:4)-Sparsity 266.35 36.82
(2:4)-Sparsity 339.56 36.82
(4:8)-Sparsity | >640.00 36.95

The MaskPro method, due to its linear probability modeling, almost does not cause memory growth
as the (N:M) ratio scales. When training the (4:8)-sparsity on DeepSeek-7B model, Mask[LLM has

17

Under review as a conference paper at ICLR 2026

encountered OOM (Out of Memory) on 8 x A100 (>640G). In contrast, MaskPro can achieve the
expansion with almost no additional memory overhead.

A.7 PERFORMANCE OF (8:16)-SPARSITY

Moreover, we provide the (8:16)-Sparsity pattern to evaluate the performance of our proposed
MaskPro method. This setting involves significantly larger combinatorial spaces which can greatly
support the efficiency of MaskPro.

Table 8: Zero-shot evaluations of (8:16)-sparsity on LLaMA2-7B.

HellaS. RACE PIQA WinoG. ARC-E ARC-C OBQA Avg.
LLAMA-7B | 57.15 39.62 78.07 68.90 76.35 4334 31.40 | 56.40

- MAGNITUDE 52.27 35.02 72.74 64.48 67.68 37.03 27.20 | 50.92
- SPARSEGPT 50.19 39.04 74.43 66.22 70.45 36.43 28.80 | 52.22

- WANDA 49.77 39.14 7530 66.61 70.62 36.18 28.80 | 52.35
- GBLM 49.51 3990 75.68 6638 69.91 36.43 27.60 | 52.20
- PRUNER-ZERO | 50.12 38.68 75.22 66.13 6993 3548 27.80 | 51.91
- MaskPro 53.15 39.23 76.15 66.56 72.87 40.13 29.60 | 53.96

LLAMA-13B | 60.05 40.48 79.11 7222 79.42 48.46 35.20 | 59.28

- MAGNITUDE 55.43 37.51 74.48 66.06 68.94 38.05 27.60 | 52.58
- SPARSEGPT 54.24 40.38 77.15 70.19 75.08 41.31 31.00 | 55.62

- WANDA 54.50 39.62 77.09 70.09 73.19 40.36 30.80 | 55.09
- GBLM 54.45 39.18 76.35 69.92 73.75 40.07 29.60 | 54.76
- PRUNER-ZERO | 54.11 38.64 76.28 70.41 72.92 40.55 30.00 | 54.70
- MaskPro 57.35 39.92 77.83 70.68 76.45 43.26 30.60 | 56.58

Under this sparsity pattern, the memory requirement of MaskLLM becomes extremely large, even
exceeding the resource demands commonly used in the community to train models with hundreds
of billions of parameters. Moreover, our MaskPro approach introduce minor training cost, while
achieving better results than rule-based methods.

A.8 PERFORMANCE ON LARGER SCALE MODELS
In this section, we present the results of applying MaskPro to larger models, specifically the 13B

and 30B variants. We retain the same hyperparameter settings used for the 7B model, with the only
adjustment being a slight tuning of the initialization logits magnitude.

Table 9: Zero-shot evaluations of (2:4)-sparsity on 13B/30B models.

HellaS. RACE PIQA WinoG. ARC-E ARC-C OBQA Avg.
LLAMA-13B | 60.05 40.48 79.11 7222 79.42 4846 35.20 | 59.28

- MAGNITUDE 50.10 36.84 71.76 61.88 62.29 31.74 23.40 | 48.29
- SPARSEGPT 47.73 38.95 73.61 69.22 6995 36.35 27.40 |51.89

- WANDA 46.24 38.47 73.94 67.32 68.73 34.13 24.20 | 50.43
- GBLM 46.65 3797 73.46 69.04 69.33 3475 25.80 | 51.00
- PRUNER-ZERO | 46.15 38.85 73.13 67.24 67.52 33.89 25.20 | 50.28
- MaskPro 49.24 3891 75.12 70.33 71.85 38.26 27.40 | 53.02

LLAMA-30B | 63.36 39.14 80.63 75.85 80.64 51.45 36.40 | 61.07

- MAGNITUDE 49.57 35.69 70.24 65.59 57.32 31.66 27.80 | 48.27
- SPARSEGPT 55.25 37.77 77.45 73.68 75.25 43.27 31.80 | 56.35

- WANDA 54.18 40.00 77.69 73.24 7424 42.15 31.60 | 56.16
- GBLM 54.68 3735 75.24 73.12 74.68 42.32 30.80 | 55.46
- PRUNER-ZERO | 53.69 37.13 75.86 73.04 7423 41.25 31.20 | 55.20
- MaskPro 59.76 37.28 78.24 73.32 76.83 45.65 33.20 | 57.75

18

Under review as a conference paper at ICLR 2026

Notably, MaskPro remains highly effective even when applied to models at the 30B scale. This
demonstrates the robustness and scalability of the proposed probabilistic formulation. Furthermore,
due to the linear probability modeling and the use of policy-gradient—based optimization, MaskPro
achieves this performance with significantly reduced computational overhead. In particular, the train-
ing process requires far fewer resources compared to methods that rely on dense mask representations
or exhaustive combinatorial search. These properties highlight the practical advantages of MaskPro,
especially in large-scale scenarios where both memory efficiency and training stability are critical.

A.9 SENSITIVITY OF TRACKER COEFFICIENT «

In this part, we demonstrate the sensitivity studies of the tracker coefficient o. In our PG update,
the parameter « is used to track a stable estimate of the current baseline and prevent it from being
overly influenced by the stochastic variance of sampled losses. Conceptually, this plays the same
role as 31 or (35 in the Adam optimizer. To examine its sensitivity, we conducted the following set of
experiments:

Table 10: Sensitivity studies of tracker coefficient a.

a=07 =09 a=095 a=0.99 o=0.995
LLAMA-7B | 34.25 48.28 49.37 49.62 49.21
LLAMA-13B | 38.68 51.23 52.78 53.02 52.74

We find that using @ = 0.99 consistently across all tasks provides the most stable and reliable
performance. Therefore, we only report the selection of 0.99 for reproduction in the main text. This
hyperparameter requires almost no additional tuning.

A.10 SENSITIVITY OF LOGITS MAGNITUDE C

In this part, we demonstrate the sensitivity of the logits magnitude C. In the initialization, the
parameter C' is used for stable sampling space. A detailed explanation is provided in Appendix A.2.
If C is set too small, a single sampling step has a high probability of producing a poor mask, which
can lead to a severe imbalance between positive and negative samples during training, ultimately
hindering the learning process of combinatorial optimization. Therefore, choosing a sufficiently large
C during initialization allows the training to remain stable. We evaluated different values and the
results are as follows:

Table 11: Sensitivity studies of initial logits magnitude C'.

C=8 C=9 C=10 C=11 C=12
LLAMA-7B | - 49.17 49.62 49.59 49.55
LLAMA-13B | - 52.45 5294 53.02 52.99

A.11 ABLATION STUDIES OF INITIAL MASK myg

In this part, we evaluate how the different initialization mask m affects the results. Unlike gradient-
based methods, RL methods typically converge more slowly, so a good initialization can significantly
shorten the training process.

Table 12: Ablation studies of initial mask my.

Random Top-K Wanda GBLM Sparsegpt

LLAMA-7B 30.27 4597 46.71 46.56 47.97
- MASKPRO 36.35 48.35 49.33 49.45 49.62

-IMPROVEMENT‘ +6.08 +2.38 +2.62 +2.89 +1.65

19

Under review as a conference paper at ICLR 2026

In practice, when using SparseGPT for initialization, the model converges in roughly 10000 steps.
With TopK initialization, extending the training over 20000 steps yields a relatively smooth result.
We can see that random initialization can also train the mask, but the training process is slow. We
further conduct a longer training experiment specifically for random initialization, and the results are
as follows:

Table 13: Long-term training on the random initialization.

T = 20000 T = 30000 7T = 50000 T = 70000
ACCURACY | 36.35 38.43 40.74 42.37

This training process is quite lengthy, and we estimate that completing the full experiment would
require at least 300000 steps. Such behavior is consistent with the theoretical convergence rate of
RL-based methods, which is why we do not encourage training from random initialization. We hope
that these two experiments address the reviewer’s concerns: it is not that RL-based methods cannot
be trained from random initialization, but rather that it is unnecessary, as simple priors such as top-K
can significantly shorten the training cycle.

A.12 TRAINING WITH 1 DATA SAMPLE FROM DIFFERENT INITIAL MASK my

In this part, we additionally evaluate the stability of the training process of "with 1 data sample" from
different initialization.

Table 14: Ablation studies of dataset size on different initial mask my.

Random Top-K Wanda GBLM Sparsegpt

WITH 128 DATA SAMPLES 36.35 49.35 49.33 49.45 49.62
WITH 1 DATA SAMPLES 35.97 49.12 49.04 49.21 49.18

We would like to clarify that MaskPro is indeed not very sensitive to the number of samples. The
essence of RL-based methods lies in accurately estimating and constructing the reward, rather than
relying on large data volumes. While we do not deny that using a larger dataset may yield further
improvements, the performance obtained with only a few hundred samples is already very close.

A.13 TRAINING TIME PROFILES ON MASKPRO

In this part, we mainly show the training time profiles of our MaskPro method under different patterns
and models. We use torch.multinomial function for (N:M)-sparsity sampling, which simulates the
sampling process through a lookup-based mechanism and provides high accuracy. The forward pass
is implemented through a standard wrapper function. Specifically, we wrap the linear layer with an
additional mask parameter and integrate the mask computation directly inside the linear operation.
This design avoids modifying PyTorch’s computation graph and enables efficient inference. The
logits updates are computed entirely through matrix calculation, and PyTorch’s built-in libraries
already provide the necessary parallelization. To further illustrate the implementation details, we
report the per-step training time as follows:

Table 15: Averaged time required in each step on (2:4)-Sparsity.

Mask Sampling Forward PG Update

TIME RATIO TIME RATIO TIME RATIO
LLAMA-7B | 2.3285 85.94% | 0.062s 2.29% | 0.319s 11.77%
LLAMA-13B | 4.739s 85.83% | 0.139s 2.52% | 0.644s 11.65%

20

Under review as a conference paper at ICLR 2026

The main source of time consumption comes from the sampling process. We also evaluated the
sampling performance under different sparsity patterns, as shown in the table below.

Table 16: Mask sampling time in each step on different (N:M)-Sparsity.

(2:4)-Sparsity (4:8)-Sparsity (8:16)-Sparsity
LLAMA-7B | 2.328s | 1.334s | 0.794s
LLAMA-13B | 4.739s | 2.692s | 1.574s

We can observe that doubling the model size roughly doubles the sampling time. Another interesting
observation is that the sampling time of (N:M)-Sparsity depends on M. With the same model size, a
larger M leads to shorter sampling time, due to parallel optimizations in the sampling process. For a
d-dimensional model, there are a total of % sampling groups. Although increasing N and M makes
each group more expensive to sample, the total number of parallel groups decreases proportionally.
This reduction in the number of groups results in a more favorable computation pattern for hardware.
Consequently, for more complex (N:M)-Sparsity, the time required for a single sampling step can
actually be lower. Large M is a GPU-friendly selection.

A.14 ALTERNATIVE STRATEGIES FOR ACCELERATING SAMPLING

In this part, we additionally explore two alternative accelerated sampling strategies along with their
corresponding results. Sampling is the primary computational bottleneck of RL-based methods.
Therefore, we explored several alternative acceleration strategies to speed up the training process,
and their effects are summarized below.

Table 17: Acceleration of mask sampling and their corresponding performance on (2:4)-Sparsity.

torch.multinomial Naive Gumbel-TopK Gaussion-TopK

TIME Acc. TIME Acc. TIME Acc.
LLAMA-7B | 2.3285 49.62 | 1.821s(1.27x) 49.24(-0.38) | 1.496s (1.58x) 48.84 (-0.78)
LLAMA-13B | 4.739s 53.02 | 3.645s (1.30x) 52.59(-0.43) | 3.061s (1.55x) 52.22 (-0.80)

Within an acceptable error range, the training time can be further reduced. However, we still
recommend using higher-precision sampling methods, as the current training time requirement of
MaskPro is already quite reasonable. On the impact of randomness on experiments, RL methods
rely on sampling, so they are generally less sensitive to random seeds compared with gradient-based
methods, and tend to exhibit stronger robustness across settings.

B DETAILED DESCRIPTION OF WITHOUT-REPLACEMENT PROBABILITY
p(m]|r)

This section aims to present a specific form of p(m|7) and its related gradient V log (p(m|7)). Note
that in Eq we define p(m|7) = [, p(m;|r;) where m; := @jv ,a;; forany i € [£] and

p(m;|m;) denotes the probability of our MaskPro generating the mask m; under logits ;. Therefore,
before presenting the details of p(m|r), we firstly investigate the probability p(m;|;).

B.1 DETAILED DESCRIPTION OF p(m;|m;)

It is worth noting that the mask vector m; € S™*™ such that we can assume m; = > ic(n) ek, Where

e; denotes the j-th basis vector of the space R\ M k; € [M],Vi € [N] and ky # ko # ... # kn.
In other words, {k1,...,kn} is an N-size subset of [M] = {1,..., M

21

Under review as a conference paper at ICLR 2026

N

From the definition of m;, we know that m; = € j—1 @i,;- Furthermore, according to Eq

in Section we also can know that, in order to ensure that m; = EB;\; aij = D ic[N] ©hi»
we typically require a one-to-one assignment of the previously defined N distinct basis vectors
{€k,,--- ey fto{a;1,...,a; n}. In general, there are N! different ways to perform this matching.

To better illustrate our results, we introduce the concept of permutation from group theory to
represent these N! one-to-one assignment. More specifically, for any one-to-one assignment from
{€ky, -, eryt to {a;1,...,a; N}, We represent is as a bijective function o : {1,...,N} —
{k1,...,kn}. Here, each bijection o means that we match each basis vector e, ;, Vj € [N] to the j-
th sampled vector a; ; in the sampling-without-replacement process, namely, a; ; = e, (;, Vj € [N].
Moreover, we denote all such bijections as By (m;), that is to say,

By (m;) := {0 : o is a bijection from [N] to {k1,...,kn}}.

With the notions of ¢ and By (m;), we next present the specific form of p(m;|;). At first, like

Section 4.1 we assume m; = (7, 1, ...,) and define ¢(m;) = (Zf}”’lﬂ s Zf{:i‘kii ~) as
j=1¢ " j=1¢"
the softmax function. Then, for a specific assignment o € By (m;), we have that
Pr({a;,; = e} |m) = ﬂ Wl (15)
1,] — ©Co(j)S 5= 7
! S 1=)] ey

where the symbol ‘Pr’ denotes the probability and [¢)(7;)] j denotes its j-th component. Moreover,
in Eq when j = 1, we define the summation 22:1 [(7i)] 5(q) = 0 and simultaneously specify

0.
8:=1.

[¥(m)], (5

1= [)])
without-replacement probability. Finally, from the result of EqJ15] we have that

plmilm) = > Pr({ai; = e, lm)

c€BN(m;)

_ Z ﬂ W(Wi)]g(j)

1
c€BN(m;) \j=1 - Za:l [w(ﬂi)]g(a)

It is important to note that in EqJ15| the value stands for the j-step sampling-

(16)

B.2 DETAILED DESCRIPTION OF p(m|7)

4
Due to that p(m|7) = [[X, p(m;|m;) and Eq we then can show that

d

. B N W(Wi)]g(j)
p(m|r) = Hp my|m;) = H > 11 [y . (17)

i=1 \oce€By(m;) \j=1 a=1 W’(W)]a(a)

B.3 COMPUTE THE GRADIENT V log (p(m|7))

Note that in Eq[I0] in order to update the logits 7 via mini-batch stochastic policy gradient descent,
we need to frequently compute the gradient V log (p(m|)). Thus, in this subsection, we give the
detailed form of this V. log (p(m|r)).

4 4
At first, due to that p(m|r7) = [[X, p(m;|m;), we can know log (p(m|rm)) = "M, log (p(m;|m;))
such that

Vi log (p(m|r)) = (Vm log (p(my|m)) , Vi, log (p(mz|m2)) ..., Vi , log (p(mﬁlﬂ%))) :
Therefore, in the subsequent part of this subsection, we show the specific form of V., log (p(m;|m;))
for any i € [-%]. Like Sectlon L we assume that m; =}, ey, where k; € [M], Vi € [N] and

ki # ke # ... # kn.

22

Under review as a conference paper at ICLR 2026

Then, when 71; = (m;1,...,m,m), forany k € [M] = {1,..., M}, we have that

o(tog (pmilm))) 1 9(p(milm)))

o™ik p(m;|m;) o™ik
N [l)
1 0 (ZaeBN(mi) (Hj—l 1—Ziﬂw(ﬂ'i)]ﬁ(a))>
p(mg|m;) omy i
N [(m)]a)
- 1 Z g <HJ’=1 1Zi_i[w<m)1a<a)> 8
p(ml|7rl) GGBN(mi) aﬂ—i,k’ ()
N 0 (I [()l
. 1 z H 1 (j=1 i a(4)
p(my|m;) cebmm) \jo1 1~ St [Y(7)] 5 (a) Ok
N a—
1 J= 1‘2?;:1[#’(“7?)]6(@)
+ V(i) .
(TN, (7)) 8(=1 1—21*1[11v<w-)] >
Next, we compute the Flam k’ W’ and 8‘;:1 ‘o / in Eql18l At first, from the
definition of v (;), we can show
o [(mi)l; .
ST = ftml +)] Yk # € (M)
O () 4
i)k _) _ _
or b = Wl (1=),).

As a result, we have that

0 (T2, [l Al
(— ()) _ (H W(m)]g(j)) (11 [k € {ki}] —N*[¢(ﬂi)]k>7 (20)

Jj=1

where 1 is the indicator function.

o)
I= ST T e, e
As for =1l)

671'7;’1

N1
0 (Hj—l 1Zi=i[w(m)]o<a>)

(97ri’k

, we have that

N 1 N (i) o)

Om; K
— —— 2D
5 [wm)]g(a)) 2 T

(1 | o- [l (1 > o= (0)] = X323 o)
- j=1 1- Zé;i [w(ﬂ_i)]o(a) j=1 1 - Zi; W’(Wi)]g(a) ’

Il
~

where I is the indicator function and o~' denotes the inverse mapping of . Especially when

k€ {ki,....,kn}, e.g, k= k. where c € [N], weseto~ (k) = c. Asfor k # {ki,...,kn}, we
set 071 (k) = oo such that I[j > o~*(k)] = 0 for any j € [N].

23

Under review as a conference paper at ICLR 2026

Merging Eq[21]and Eq[20]into Eq[I8] we can finally have that
0 log (p(mim)) s (e (k€ {kita] = N ()],)

Ok ceBy(my) \j=1 1~ > ()] o) p(mi|m;)
SN) I 5~)l (17> 0 (0)] = 25 (o)l o)
oeBy \im L= E Wl) \5= plmilm) (1= 2320 ()]0 |
where p(m;|mi) = >, c 5 (m,) (H;V_1 m> andm; =3,y €k € SN

C PROOFS
In this Section, we provide the detailed proofs of the main theorems.

C.1 PROOF OF THEOREM/[I]

This subsection aims to present a rigorous proof for the representation Theorem [I] Before going
in the details, we first assume that, in EQ{4| a; = ey, Vi € [N] where k; € [M],Vi € [N] and
k1 # ko # ... # kx. With this assumption, then we can show that,

N
Oy —a)=1y- > e (22)
i=1 je{ki,....kn}

We verify this Eq[22]by induction. Firstly, when N = 1, Eq.[22]naturally holds. Subsequently, we
assume that when N = m < M, Eq.is right. As aresult, we can show that, when N = m+1 < M

N m+1 m
@ (1 —ay) = @ 1y —ay) = (@ (1nr — ai)) O 1Apm —amt1)

i=1 i=1 i=1

=1y — E €; @(leeka)
je{k17---7k1n}

=1y — E €| —€kyyr — E : (ekm-*—l ©) eﬁ) =1y — Z €|
je{k17---7k7n} je{kly--<7krn} jE{kla--<7krn+1}

where the final equality follows from that ey, ., © e; = 0, when j # k,,, 1. As aresult, the Eq.
holds for any N < M.
According to the result of Eq.[22] we can easily have that
N N

Bu1-O0-0)- ¥

i=1 i=1 j€lkr, ok}
Therefore, from Eq we can infer that, when a; € {e;,...,ey},Vi € [N]anda; #as # ... #
ay, @Y a; € BUM and | @, a;l, = N such that @, a; € SNM where B denotes the
Boolean set. Furthermore, for any binary vector b € M, we can redefine b = 3=, x; es, where

s; € [M],Vi € [N]and s1 # s3 # ... # sn. Then, if we seta; = e, fori € {1,...,n}, acoording
to the result of Eq[23] we can have

N
EBai = Z es, =b.
i=1

i€[N]
As a result, we can establish that

N
SV:M — {@ai: a; € {e1,...,eyn},Vi € [N] and a; #ag#...;ﬁaN}.
i=1

24

Under review as a conference paper at ICLR 2026

C.2 PROOF OF POLICY GRADIENT ESTIMATOR EQUATION [9]

From the notations in Eq[8] we have that

It is worth noting that in right-hand side(RHS) of Eq only the component “p(m/|7)" contains the
unknown logits variable . As a result, we have that

VAWﬂzvﬂ/Edﬂm®w£ﬂMmhMm

_ / Ee [f (m © w, £)] Vp(m|m)dm

Vp(m|m)

plmfr) PRI

= [Eelrmow.e)

— [Ee(f (mow,©)] (Vs log (p(m|m)))plom]m)dm
= EEND,m:{mi\mirwp(milm)} [.f(m Ow, g)v log (p(rn|7r))] s

d(log(f () _ f'()
e OF

where the forth equality comes from the relationship that (1og(f (x))) =

C.3 PROOF OF THEOREM[Z]

We first investigate the properties of the policy gradient update method applied in this paper. As
shown in Eq.(9), the general policy gradient satisfies the following equation:

V& (1) = Epm|r) [f(m © w)Vlog (p(m]|))],
where E¢ [f(m O w,§)] = f(m O w).

In the training, due to the limitations of data samples, instead of computing the full loss f(m © w),
we typically use a small mini-batch stochastic gradient, that is,

9p = f(m © W7§)V10g (p(m|7r)) ’

C.3.1 Lo0SS RESIDUAL AND SMOOTHING TRACKER ARE UNBIASED ESTIMATORS OF V()

We denote g, as update via loss residual:

gr = (f(m © Waf) - f(m() © W7£)) VIOg (p(m‘ﬂ—))v

and g as update via loss residual with smoothing tracker:

gsr = (f(m O W, &) = f(mg ©w, &) — §) Vlog (p(m]m)),
5= ad+(1-a)(f(mow,E) — f(meow,E)).
It is worth noting that these two introduced additional terms f(my ® w, £) and ¢ are independent of
the logits variable 7 such that we can know that
Vp(mir)

Ep(m|r) [(f(mo ©® W, &) + 6) Viog (p(m]|n))] = (f(mo@wﬁ)—i-é)/p(mhr) ()

— (f(mo @ w,&) +8) V[plmfrdm = (Flmo © w,) +5) V1 =0,

Therefore, our proposed update using the loss residual with smoothing tracker remains an unbiased
estimator of the standard policy gradient. Similarly, letting § = 0, it degrades to the update with only
loss residual, which is also a unbiased estimator of the standard policy gradient. In fact, our proposed
enhanced version of the policy gradient update can be viewed as an auxiliary training method that
introduces a baseline term, similar to the approach in reinforcement learning (Williams) [1992).

25

Under review as a conference paper at ICLR 2026

C.3.2 EFFICIENCY OF gg

We first investigate the properties of updating via loss residual f(m © w,§) — f(mg © w,§). We
have the variance of the standard policy gradient g, as:

Var[gy] = E [/(m © w, €)% (V log (p(m|m)))°] ~ E[f(m © w,)V log (p(m|))]*
—E[(f(m©w,©)* (Vlog (p(m|m)))*| — V@ (r).
Similarly, since E [g;] = V®(r), the variance of g, achieves:
Var[g] = B [(f(m © w,€) = f(mo © w,£))’ (Vlog (p(m]m)))°] — Vo (r)?.
Thus we have:

Var [g] — Var [gp]
= Eymim) | (V 10g (p(mir)))* Ee [(f(m © w,€) = f(mo © w,€))* = f(m© w,)]

= Epmim | (Vlog (p(m|7)))* E¢ | f(mo © w,€) (f(mo ©w,) —2f(m o w,§))

>0 >0

Their relative magnitudes are determined by f(my ® w,£) — 2f(m © w, §) term and we have:

Var [g:] > Var[gy], when f(mo©w,§) >2f(mOw,§),

Var [g;] < Var[g,], when f(mo©w,§) <2f(mow,§).
Therefore, updating via loss residual can always achieve a lower variance when f(m ©® w,§) >
% f(my © w,). This implies that the variance in the initial training stage is significantly lower than
that of the vanilla PGE gp, enabling substantial acceleration. We also validate this in our experiments,

where the vanilla policy gradient converges extremely slowly and barely learns effective information,
while g; can achieve a rapid reduction in loss within only hundreds of iterations.

C.3.3 EFFICIENCY OF ggy

Similarly, since E [g;] = V® (), the variance of g achieves:
Var[ga] = E [(/(m © w,€) = f(mo © w,€) — 8)? (¥ log (p(m[m)))*] — V().

And we have:

Var [gy] — Var [g,]
— Epomir) |(V10g (p(m]m))* Ee [(/(m ©w,€) — f(mo © w,€) ~) ~ f(m©w,¢)*]
= Ep(ani) | (7 10g (p(m])))” Ee [£(m0 © W,)%]] + Epgani) [(7 log (p(m|7)))” Ee [6%]]

— 2B pr) [(V log (p(mim)))” B¢ [f(m © w,)]

+ 2B i) [(7 log (p(mim)))” Ee [(mo © w, £)9]]

— 2B i) (7 10g (p(m[m)))? e [£(m © w, &) f(mo © w,&)]]
= Epmir) | (V108 (p(m)))?] 6% + 2B anir) [(V I0g (p(m]m)))* (/ (mp @ W) = f(m & w))] 6

denoted by A>0 denoted by B
+ Ep(anizy | (V 1og (p(m]m))? Ee [£ (m0 © w, €) (f(m0 © w,€) — 2/ (m & w,£)]]

Var[gr] 7Va.r[gp]

26

Under review as a conference paper at ICLR 2026

Clearly, when § = 0, Var[gy] = Var[g]. Next, we discuss the case where § # 0. The above
expression can be viewed as a quadratic function w.r.t. 4, i.e.,

Var [gy] — Var [g,] = V(0) = Ad? + BS + (Var[g;] — Var [gp]),

According to the definition of 4, it is the moving average of the f(m © w,§) — f(mg © w,) term.
By considering f(m ® w,§) > 1 f(mg ® w,£), we can intuitively examine the corresponding

magnitude relationships through the function plots. As shown in Figure when || < \% |, we always

have Var [gy;] < Var [g,]. Furthermore, if § = —£;, the extent of variance reduction will reach its
maximum. Therefore we have:

B _ Byt [(Viog (p(mfm)* (f(m 0 w) — f(mo © w))
24 Ep(mir) | (7 1og (p(m|)))’]
| Epmin) |(V log (p(mim)))’?|

= Ejmin) [f(mOw) — f(my © w)],

p(m|m)(V log(p(m|n)))*
Ep(m|m) [(V log(p(m|7)))?]"

where p(m|r) =

Clearly, 6* can be interpreted as the expectation of f(m ® w) — f(my ® w) under the optimal
distribution p(m|r), or equivalently, as the weighted average over all possible cases. It is feasible to
accurately measure this distribution. When the original distribution p(m/|r) is known, the optimal
distribution can be derived; however, the corresponding computational overhead to calculate it is
prohibitively high. Therefore, we track all stochastic sampling in the training process and calculate
the moving average of each f(m; ® w, &) — f(mg ® w, {) as a compromise. After a long iteration ¢
and enough samplings, § can achieve significant and stable performance.

Therefore, we have Var [g] < Var [g] < Var [gp].

Varlgs]-Varlg,l Varlgs1-Varlg,]

B . B H
-5 >0if[B<0 —5x OifB>0
_B
0]

Var[g,1-Varig,l

hN

(a) When B < 0.

Figure 7: .

27

---9
(o)}
i

Var[g,]-Varlg,]

(b) When B > 0.

Under review as a conference paper at ICLR 2026

And the theoretically maximal variance reduction can be expressed as:

max {Var [g,] — Var [g]}
= ~Ep(min [(V1og (p(m|m)))° Ee [£(mo © w,€) (f(my © w,) — 2f(m & w,)]
. (Butmie) (9108 i) (0) — Stam 0 w)])
Epumie) |(V 10g (p(mim)))’?]
(Bt [(V & (p(m[)))? (f(m © w) — f(mg & w)])
Ep(enir) [(V log (p(mir)))’] |

= Var [g,] — Var [¢;] +

28

	Introduction
	Related Work
	Preliminary
	Semi-Structured Sparsity
	Rethinking the Probabilistic Modeling in MaskLLM and the Memory Inefficiency

	Methodology
	MaskPro: A Linear-Space Probabilistic Relaxation for Semi-Structured Sparsity
	Policy Gradient Estimator and Refined (N:M)-Sparsity Learning

	Unbiasedness and Variance Reduction
	Experiments
	Summary
	Experiments
	Experimental Details and Reproducibility
	The Importance of in Logits Initialization
	More Experiments on Different Tasks
	Training with Different Dataset Size
	Performance of (4:8)-Sparsity
	Memory Scalability
	Performance of (8:16)-Sparsity
	Performance on Larger Scale Models
	Sensitivity of Tracker Coefficient
	Sensitivity of Logits Magnitude C
	Ablation Studies of Initial Mask m0
	Training with 1 Data Sample from different Initial Mask m0
	Training Time Profiles on MaskPro
	Alternative Strategies for Accelerating Sampling

	Detailed Description of Without-Replacement Probability
	Detailed Description of
	Detailed Description of
	Compute the Gradient

	Proofs
	Proof of Theorem 1
	Proof of Policy Gradient Estimator
	Proof of Theorem 2
	Loss Residual and Smoothing Tracker are Unbiased Estimators of
	Efficiency of
	Efficiency of

