

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MASKPRO: LINEAR-SPACE PROBABILISTIC LEARNING FOR STRICT (N:M)-SPARSITY ON LLMS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

012 The rapid scaling of large language models (LLMs) has made inference efficiency
013 a primary bottleneck in the practical deployment. To address this, semi-structured
014 sparsity offers a promising solution by strategically retaining N elements out of
015 every M weights, thereby enabling hardware-friendly acceleration and reduced
016 memory. However, existing (N:M)-compatible approaches typically fall into two
017 categories: rule-based layerwise greedy search, which suffers from considerable
018 errors, and gradient-driven combinatorial learning, which incurs prohibitive train-
019 ing costs. To tackle these challenges, we propose a novel linear-space probabilistic
020 framework named MaskPro, which aims to learn a prior categorical distribution
021 for every M consecutive weights and subsequently leverages this distribution to
022 generate the (N:M)-sparsity throughout an N -way sampling without replacement.
023 Furthermore, to mitigate the training instability induced by the high variance of
024 policy gradients in the super large combinatorial space, we propose a novel update
025 method by introducing a moving average tracker of loss residuals instead of vanilla
026 loss. Finally, we conduct comprehensive theoretical analysis and extensive exper-
027 iments to validate the superior performance of MaskPro, as well as its excellent
028 scalability in memory efficiency and exceptional robustness to data samples.

1 INTRODUCTION

031 Recent studies have witnessed the rapid advancement of LLMs across various domains, establishing
032 them as a highly promising solution for a wide range of downstream tasks (Hendrycks et al., 2020;
033 Brown et al., 2020; Achiam et al., 2023). However, the massive parameter size introduces significant
034 overhead in both training and inference (Touvron et al., 2023; Grattafiori et al., 2024), underscoring
035 the pressing need for efficient approaches in real-world applications (Shen et al., 2023; Zhou et al.,
036 2024). In response, semi-structured sparsity has emerged as a technique with considerable practical
037 potential, as its acceleration can be efficiently harnessed by hardware accelerators (Mishra et al.,
038 2021; Pool et al., 2021). Specifically, it adopts a designated sparsity pattern, retaining only N out
039 of every M consecutive weights, a scheme commonly referred to as (N:M)-sparsity. Owing to
040 its effective support from parallel computing libraries, its inference performance is exceptionally
041 efficient, offering a viable path toward the practical and scalable local deployment of LLMs.

042 Although its procedural design is relatively straightforward, effectively implementing (N:M)-sparsity
043 while preserving model performance still remains a formidable challenge. One major obstacle lies in
044 its enormous combinatorial scale, making it extremely difficult to identify the optimal mask. Existing
045 methods can be broadly classified into two main branches. The first category encompasses rule-
046 based approaches that bypass backpropagation by leveraging a calibration set to greedily minimize
047 layerwise errors through the objective $\min_{\mathbf{m}} \|\mathbf{w}\mathbf{x} - (\mathbf{m} \odot \mathbf{w})\mathbf{x}\|^2$ (Frantar & Alistarh, 2023). Based
048 on this, a series of variants incorporating auxiliary information, e.g., l_2 -norm of input activations (Sun
049 et al., 2023) and gradients (Das et al., 2023; Dong et al., 2024) have been further applied, leading to
050 certain improvements. However, such handcrafted metrics inherently suffer from considerable gaps
051 with the end-to-end loss, ultimately capping the potential effectiveness of these methods. To address
052 this, Fang et al. (2024) propose a learning-based method MaskLLM. Specifically, it determines the
053 optimal solution by directly optimizing the objective $\min_{\mathbf{m}} f(\mathbf{m} \odot \mathbf{w})$ in generation tasks on a large
dataset. MaskLLM achieves remarkable results, but its training costs are prohibitively high, even
exceeding the overhead of finetuning the LLM itself. For instance, training the (N:M)-sparsity on

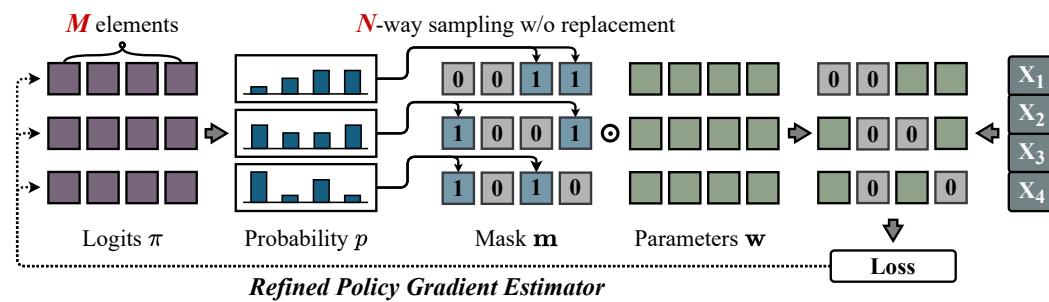


Figure 1: Implementation of our proposed MaskPro for learning (2:4)-sparse masks.

d -dimensional weights requires at least additional $\mathcal{O}\left(\binom{M}{N} \frac{d}{M}\right)$ memory to save the logits. As N and M scale up, this memory overhead can even grow exponentially, yielding extremely poor scalability.

Our Motivation. Existing solutions either suffer from inherent biases or incur prohibitively high training costs, making them difficult to implement. This motivates us to further explore a memory-efficient learning-based method for this problem. Naturally, probabilistic modeling combined with efficient policy gradient estimators (PGE) emerges as a promising study. However, due to the vast combinatorial space and large model size, the variance of policy gradients can become so substantial that training is nearly impossible. Moreover, the memory overhead required to store the logits remains excessively large. To enable effective training, these two challenges must be adequately addressed.

To tackle these challenges, we introduce a linear-space probabilistic framework termed as MaskPro. Compared with the current state-of-the-art MaskLLM (Fang et al., 2024), instead of the probability distributions for all possible masks of M weights, our proposed MaskPro establishes a categorical distribution for every M consecutive elements and then utilizes this distribution to generate the (N:M)-sparsity through an N -way sampling without replacement. This implies that for any (N:M)-sparsity pattern, we only require $\mathcal{O}(d)$ memory to store the logits. Furthermore, we propose a novel PGE update to accelerate and stabilize the entire training process, which modifies the independent loss metric in vanilla PGE by the loss residuals with a moving average tracker. We provide the rigorous theoretical analysis for our probabilistic modeling and prove the unbiasedness and variance reduction properties of the proposed PGE. To investigate its effectiveness, we conduct extensive experiments on several LLMs and report the performance across various downstream tasks. Experiments indicate that the proposed MaskPro can achieve significant performance improvements while maintaining memory usage comparable to rule-based methods, with substantially lower training overhead than MaskLLM. Moreover, the MaskPro method demonstrates remarkable robustness to data samples, which can achieve stable performance even with **only 1 training sample**.

We summarize the main contributions of this work as follows:

- We propose a linear-space probabilistic framework MaskPro, formulating the (N:M)-sparsity as a process of N -way samplings without replacement within a categorical distribution over M consecutive elements, which reduces the memory for logits from $\mathcal{O}\left(\binom{M}{N} \frac{d}{M}\right)$ to $\mathcal{O}(d)$.
- We propose an enhanced policy gradient that substitutes the raw loss in standard policy gradients with per-minibatch loss residuals. To maintain stability, we further incorporate a moving-average baseline that adaptively tracks the residual dynamics during training.
- We provide the comprehensive theoretical analysis to understand the memory effectiveness of MaskPro and the variance reduction properties of the proposed policy gradient update. Extensive experiments validate its significant performance. Moreover, it exhibits outstanding robustness to data samples, maintaining stable results even with only 1 training sample.

2 RELATED WORK

Model Pruning. Model pruning is an important compression technique that has been adopted in several domains (Han et al., 2015; Frankle & Carbin, 2018; Liu et al., 2019; Xia et al., 2023b; Sun et al., 2023; Sreenivas et al., 2024; Luo et al., 2025). It also demonstrates strong practicality in

real-world applications of LLMs. A series of structured learning and optimization methods on pruning and training have been proposed and widely applied, including the depth- and width-based (Ko et al., 2023), kernel-based (Xia et al., 2023a), LoRA-based (Chen et al., 2023; Zhang et al., 2023; Zhao et al., 2024), row- and column-based (Ashkboos et al., 2024), channel-based (Gao et al., 2024b; Dery et al., 2024), layer-based (Yin et al., 2023; Men et al., 2024; Zhang et al., 2024a), attention head-base (Ma et al., 2023), MoE-based (Chen et al., 2022; Xie et al., 2024). These methods leverage a prune-train process to effectively reduce the number of effective parameters while maintaining efficient training, bring a promising solution for the practical application and deployment of LLMs in the real-world scenarios. However, structured pruning typically considers a specific model structure as the minimal pruning unit, which can significantly impact the model’s performance. The fundamental unit of a model is each individual weight, implying that unstructured pruning methods generally have higher potential on the performance (Frantar & Alistarh, 2023; Jaiswal et al., 2023). Such methods can typically identify a fine-grained mask that closely approaches the performance of dense models.

Semi-structure Pruning. Due to the inability of GPUs and parallel computing devices to perfectly support arbitrary element-wise sparse computations, the practical efficiency of sparse models remains significantly constrained. Semi-structured sparsity offers a promising pathway for practical applications (Zhou et al., 2021; Zhang et al., 2022; Lu et al., 2023), which is also called (N:M)-sparsity. A series of methods supporting semi-structured sparsity have been consistently applied, primarily including rule-based (Han et al., 2015; Frantar & Alistarh, 2023; Sun et al., 2023; Das et al., 2023; Dong et al., 2024; Zhang et al., 2024b) and learning-based (Holmes et al., 2021; Fang et al., 2024; Huang et al., 2025) approaches. Our work is the first to adopt policy gradients for learning semi-structured masks on LLMs. Enormous variance of policy gradients caused by the vast combinatorial space makes learning (N:M)-sparsity via PGE more challenging than those gradient-based methods.

3 PRELIMINARY

3.1 SEMI-STRUCTURED SPARSITY

The core idea of semi-structured sparsity aims to divide the entire weights $\mathbf{w} \in \mathbb{R}^d$ into groups of M consecutive elements and then retain N effective weights for each group. More specifically, we can formulate the semi-structured sparsity as the following combinatorial optimization problem:

$$\mathbf{m}^* = \arg \min_{\mathbf{m} = \{\mathbf{m}_i \mid \mathbf{m}_i \in \mathcal{S}^{N:M}\}} \mathbb{E}_{\xi \sim \mathcal{D}} [f(\mathbf{m} \odot \mathbf{w}, \xi)], \quad (1)$$

where $f(\cdot)$ denotes the corresponding loss function, the symbol \odot stands for the element-wise multiplication, $\xi \sim \mathcal{D}$ represents the minibatch sampled from the underlying distribution \mathcal{D} and $\mathcal{S}^{N:M} = \{\mathbf{m}_i \in \mathbb{B}^{1 \times M} : \|\mathbf{m}_i\|_1 = N\}$ (\mathbb{B} is the Boolean set and $\|\cdot\|_1$ denotes l_1 norm).

Generally speaking, in order to find the optimal mask \mathbf{m}^* for problem 1, we are confronted with two significant challenges: *i) Huge Search Space*: In the context of LLMs, the model parameter scale d can become extremely large, which will result in the search space for problem 1 reaching an astounding size of $\binom{M}{N}^{d/M}$; *ii) Non-Differentiability of Mask Selection*: The discrete nature of problem 1 prevents us from utilizing the well-established gradient-based methods such as SGD (Lan, 2020) and conditional gradient algorithm (Braun et al., 2022) to search for the optimal mask \mathbf{m}^* .

To address these aforementioned issues, we will introduce an innovative probabilistic framework termed as MaskPro for problem 1 in the subsequent sections. Prior to that, we first review the state-of-the-art learning-based MaskLLM method (Fang et al., 2024).

3.2 RETHINKING THE PROBABILISTIC MODELING IN MASKLLM AND THE MEMORY INEFFICIENCY

Recent advance provides a learning method to address Problem 1, named MaskLLM (Fang et al., 2024). Specifically, for each group of M consecutive weights, MaskLLM defines a categorical distribution with class probability $[p_1, p_2, \dots, p_{|\mathcal{S}^{N:M}|}]$ where $\sum_i p_i = 1$, and each p_i represents the probability of the corresponding element in $\mathcal{S}^{N:M}$. By random sampling, if a certain mask performs better, it is reasonable to increase the probability of the sampled mask. Otherwise, the sampling probability should be decreased. Thus, Problem 1 can be transformed as,

$$\{p^*(\mathbf{m}_i)\} = \arg \min_{\{p(\mathbf{m}_i)\}} \mathbb{E}_{\xi \sim \mathcal{D}, \mathbf{m} = \{\mathbf{m}_i | \mathbf{m}_i \sim p(\mathbf{m}_i)\}} [f(\mathbf{m} \odot \mathbf{w}, \xi)], \quad (2)$$

where $p(\mathbf{m}_i)$ is the categorical distribution of the i -th mask \mathbf{m}_i over $\mathcal{S}^{N:M}$.

To enable the end-to-end training, MaskLLM further introduces Gumbel-Max(Gumbel, 1954) as reparameterization to relax the discrete sampling into a continuous form, making it naturally differentiable. This reparameterized loss-driven mask learning method is highly effective on various LLMs, providing a innovative perspective for addressing this problem.

However, the memory overhead in the MaskLLM training process is extremely large. Firstly, the backpropagation of gradients typically requires storing a large number of intermediate activation values and a substantial amount of optimizer states must be maintained during updates. A more notable issue is the separate probability assigned to each possible selection of \mathbf{m}_i over $\mathcal{S}^{N:M}$, which may cause extreme memory explosion. Concretely, when learning (N:M)-sparsity for the weights $\mathbf{w} \in \mathbb{R}^d$, MaskLLM requires at least $\mathcal{O}\left(\binom{M}{N} \frac{d}{M}\right)$ space to save the logits for learning probabilities, which approximately reaches $\mathcal{O}\left(\frac{2^M}{M} d\right)$ at the worst case ($N \approx M/2$). This implies that the computational resources required by MaskLLM can even increase exponentially as M becomes large, significantly limiting its scalability in practical scenarios, especially with extremely large model size.

4 METHODOLOGY

In this section, we present the details of our proposed MaskPro method. Specifically, in Section 4.1, we introduce the novel linear-space probabilistic framework to tackle the memory drawback of the vanilla sampling process in MaskLLM (Fang et al., 2024). Then, in Section 4.2, we propose to adopt the backpropagation-free policy gradient for training. Moreover, we further refine the logits update via utilizing the loss residual with a smoothing tracker instead of vanilla loss metric, which enhances the effectiveness and stability of the learning process.

4.1 MASKPRO: A LINEAR-SPACE PROBABILISTIC RELAXATION FOR SEMI-STRUCTURED SPARSITY

Before going into the details of our proposed MaskPro probabilistic framework, we first present a representation theory of the concerned N:M mask set $\mathcal{S}^{N:M} = \{\mathbf{m}_i \in \mathbb{B}^{1 \times M} : \|\mathbf{m}_i\|_1 = N\}$. In order to better illustrate our results, we need to introduce a new operation \oplus for the coordinate-wise probabilistic sum of two vectors. Formally, for any $\mathbf{a} \in \mathbb{R}^{1 \times M}$ and $\mathbf{b} \in \mathbb{R}^{1 \times M}$, we define $\mathbf{a} \oplus \mathbf{b} = \mathbf{1}_M - (\mathbf{1}_M - \mathbf{a}) \odot (\mathbf{1}_M - \mathbf{b})$, where the symbol $\mathbf{1}_M$ denotes the M -dimensional vector whose all coordinates are 1. It is worth noting that this \oplus is a symmetric associative operator, namely, $\mathbf{a} \oplus \mathbf{b} = \mathbf{b} \oplus \mathbf{a}$. Therefore, it also makes sense to apply the operation \oplus to a set of vectors. Specifically, given multiple M -dimentional vectors $\{\mathbf{a}_1, \dots, \mathbf{a}_N\}$, we can define that

$$\bigoplus_{i=1}^N \mathbf{a}_i = \mathbf{a}_1 \oplus \mathbf{a}_2 \oplus \dots \oplus \mathbf{a}_N = \left(\mathbf{1}_M - \bigodot_{i=1}^N (\mathbf{1}_M - \mathbf{a}_i) \right). \quad (3)$$

With this operation \oplus , we then can derive a sparse representation for the N:M mask set $\mathcal{S}^{N:M}$, i.e.,

Theorem 1 (Representation of N:M Sparsity)

$$\mathcal{S}^{N:M} = \left\{ \bigoplus_{i=1}^N \mathbf{a}_i : \mathbf{a}_i \in \{\mathbf{e}_1, \dots, \mathbf{e}_M\}, \forall i \in [N] \text{ and } \mathbf{a}_1 \neq \mathbf{a}_2 \neq \dots \neq \mathbf{a}_N \right\}, \quad (4)$$

where each \mathbf{e}_j denotes the j -th basis vector of the space $\mathbb{R}^{1 \times M}$.

From a high-level viewpoint, Theorem 1 offers a parameter-reduced representation of the mask space $\mathcal{S}^{N:M}$. Notably, representing N distinct M -dimensional vectors $\{\mathbf{a}_1, \dots, \mathbf{a}_N\}$ typically requires at most (NM) unknown parameters. In contrast, the mask set $\mathcal{S}^{N:M}$ often has a enormous size of $(\binom{M}{N})$. Particularly when N is comparable to M , the parameter scale NM of vectors $\{\mathbf{a}_1, \dots, \mathbf{a}_N\}$ can be significantly smaller than the space complexity $(\binom{M}{N})$ of $\mathcal{S}^{N:M}$.

Motivated by the results of Theorem 1, if we represent each mask $\mathbf{m}_i \in \mathcal{S}^{N:M}$ in problem 1 as a probabilistic sum of $\{\mathbf{a}_{i,1}, \dots, \mathbf{a}_{i,N}\}$ where $\mathbf{a}_{i,j} \in \{\mathbf{e}_1, \dots, \mathbf{e}_M\}$, $\forall j \in [N]$ and $\mathbf{a}_{i,j_1} \neq \mathbf{a}_{i,j_2}, \forall j_1 \neq j_2$, then we naturally can reformulate our concerned mask selection problem 1 as a binary optimization with variables $\{\mathbf{a}_{i,j}\}_{j=1}^N, \forall i \in [\frac{d}{M}]$, that is to say,

$$\min_{\mathbf{a}_{i,j} \in \{\mathbf{e}_1, \dots, \mathbf{e}_M\}} \mathbb{E}_{\xi \sim \mathcal{D}} \left[f \left(\bigoplus_{j=1}^N \mathbf{a}_{i,j} \odot \mathbf{w}_i, \xi \right) \right], \text{ s.t. } \mathbf{a}_{i,j_1} \neq \mathbf{a}_{i,j_2}, \forall j_1 \neq j_2 \in [N], \quad (5)$$

where the symbol \mathbf{w}_i denotes the i -th group of the whole weight vector $\mathbf{w} \in \mathbb{R}^d$ and $i \in [\frac{d}{M}]$.

Notably, in Eq.5, we only employ $NM * \frac{d}{M} = Nd$ unknown parameters, which is significantly smaller than the $\binom{M}{N} \frac{d}{M}$ parameters scale used by the MaskLLM method. However, this new parameter-reduced formulation Eq.5 of problem 1 still remains a discrete combinatorial optimization problem such that we cannot directly utilize gradient information to search for the optimal mask. To overcome this hurdle, we further introduce a novel probabilistic relaxation for problem 5 in the subsequent part of this section.

Note that in Eq.5, we restrict each group of variables $\{\mathbf{a}_{i,1}, \dots, \mathbf{a}_{i,N}\}$ to be N distinct basis vectors in $\mathbb{R}^{1 \times M}$, that is, $\mathbf{a}_{i,j} \in \{\mathbf{e}_1, \dots, \mathbf{e}_M\}$, $\forall j \in [N]$ and $\mathbf{a}_{i,j_1} \neq \mathbf{a}_{i,j_2}, \forall j_1 \neq j_2 \in [N]$. In other words, we hope to identify an effective N -size subset from the basis vectors $\{\mathbf{e}_1, \dots, \mathbf{e}_M\}$, which closely resembles an N -way sampling-without-replacement process over $\{\mathbf{e}_1, \dots, \mathbf{e}_M\}$. Inspired by this finding, we design a novel continuous-relaxation framework named MaskPro for Eq.5, i.e., Firstly, we allocate a categorical distribution $\mathbf{p}_i = (p_{i,1}, \dots, p_{i,M})$ for each group of variables $\{\mathbf{a}_{i,1}, \dots, \mathbf{a}_{i,N}\}$. Subsequently, we employ every categorical distribution \mathbf{p}_i to sequentially generate N different random basis vectors $\{\mathbf{e}_{i,1}, \dots, \mathbf{e}_{i,N}\}$ throughout an N -way sampling-without-replacement trial where $\mathbf{e}_{i,j} \in \{\mathbf{e}_1, \dots, \mathbf{e}_M\}$ and $\mathbf{e}_{i,j_1} \neq \mathbf{e}_{i,j_2}, \forall j_1 \neq j_2$. Finally, we assign these sampled basis vectors to the variables $\{\mathbf{a}_{i,1}, \dots, \mathbf{a}_{i,N}\}$ by setting $\mathbf{a}_{i,j} := \mathbf{e}_{i,j}, \forall j \in [N]$.

Specifically, under the previously described probabilistic framework, the discrete problem equation 5 can naturally be converted into a continuous optimization task focused on learning the optimal categorical distributions \mathbf{p}_i across the basis vectors $\{\mathbf{e}_1, \dots, \mathbf{e}_M\}$, that is,

$$\min_{\|\mathbf{p}_i\|_1=1, \forall i \in [\frac{d}{M}]} \Phi(\mathbf{p}) := \mathbb{E}_{\{\mathbf{a}_{i,j}\}_{j=1}^N \sim \mathbf{p}_i, \xi \sim \mathcal{D}} \left[f \left(\bigoplus_{j=1}^N \mathbf{a}_{i,j} \odot \mathbf{w}_i, \xi \right) \right], \quad (6)$$

where $\{\mathbf{a}_{i,j}\}_{j=1}^N \sim \mathbf{p}_i$ represents the N -step sampling-without-replacement process guided by the categorical distribution \mathbf{p}_i . Note that representing all $\frac{d}{M}$ different categorical distributions $\{\mathbf{p}_i\}_{i=1}^{\frac{d}{M}}$ typically requires $\frac{d}{M} * M = d$ unknown parameters. Thus, by introducing randomness, the parameter scale of problem 6 can be further reduced from the previous Nd of problem 5 to a linear d .

Next, we utilize the re-parameterization trick to eliminate the unit simplex constraint inherent in the problem 6, namely, $\{\mathbf{p}_i \in [0, 1]^M : \|\mathbf{p}_i\|_1 = 1\}$. This step is crucial as it enables us to avoid the computationally expensive projection operations. Specifically, we reset $\mathbf{p}_i := \text{softmax}(\pi_i)$ where $\pi_i = (\pi_{i,1}, \dots, \pi_{i,M})$ is the logits of softmax function. With this reformulation, we can transform the problem 6 as an unconstrained optimization regarding the logits $\pi := \{\pi_i\}_{i=1}^{\frac{d}{M}}$, that is,

$$\min_{\pi} \Phi(\pi) := \mathbb{E}_{\{\mathbf{a}_{i,j}\}_{j=1}^N \sim \text{softmax}(\pi_i), \xi \sim \mathcal{D}} \left[f \left(\bigoplus_{j=1}^N \mathbf{a}_{i,j} \odot \mathbf{w}_i, \xi \right) \right]. \quad (7)$$

To avoid repeatedly using the cumbersome notation \bigoplus , in the remainder of this paper, we define $\mathbf{m}_i := \bigoplus_{j=1}^N \mathbf{a}_{i,j}$ for any $i \in [\frac{d}{M}]$ and also use $p(\mathbf{m}_i | \pi_i)$ to denote the probability of our MaskPro generating the mask \mathbf{m}_i under logits π_i . Then, the previous problem 7 can be rewritten as:

$$\min_{\pi} \Phi(\pi) := \mathbb{E}_{\xi \sim \mathcal{D}, \mathbf{m} = \{\mathbf{m}_i | \mathbf{m}_i \sim p(\mathbf{m}_i | \pi_i)\}} [f(\mathbf{m} \odot \mathbf{w}, \xi)] = \int \mathbb{E}_{\xi} [f(\mathbf{m} \odot \mathbf{w}, \xi)] p(\mathbf{m} | \pi) d\mathbf{m}, \quad (8)$$

where $\mathbf{m} \in \mathbb{B}^{1 \times d}$ is the concatenation of all mask $\{\mathbf{m}_1, \dots, \mathbf{m}_{\frac{d}{M}}\}$ and $p(\mathbf{m} | \pi) := \prod_{i=1}^{\frac{d}{M}} p(\mathbf{m}_i | \pi_i)$.

270 4.2 POLICY GRADIENT ESTIMATOR AND REFINED (N:M)-SPARSITY LEARNING
271272 Thanks to the probabilistic formulation of Eq. 8, we thus can facilitate an efficient optimization via a
273 policy gradient estimator. Specifically, we have the following equality:
274

275
$$\nabla \Phi(\pi) = \mathbb{E}_{\xi \sim \mathcal{D}, \mathbf{m} = \{\mathbf{m}_i | \mathbf{m}_i \sim p(\mathbf{m}_i | \pi_i)\}} [f(\mathbf{m} \odot \mathbf{w}, \xi) \nabla \log(p(\mathbf{m} | \pi))]. \quad (9)$$

276 As for the proof of Eq.9 and the specific calculation of $p(\mathbf{m} | \pi)$ in our MaskPro, please refer to
277 Appendix C.2 and B. Note that Eq.9 can be computed purely with forward propagation. Therefore,
278 we can update the logits variables π via a mini-batch stochastic gradient descent, that is to say,
279

280
$$\pi_{t+1} = \pi_t - \eta f(\mathbf{m}_t \odot \mathbf{w}, \xi) \nabla \log(p(\mathbf{m}_t | \pi_t)). \quad (10)$$

281 Although Eq.(10) may perform well in elementary tasks, it faces one major challenge in the context
282 of LLMs, which is caused by the inherent differences in loss values among different minibatch.
283284 **Ambiguity on Mask \mathbf{m}_t and Minibatch ξ .** The policy gradient updates logits based on the loss
285 metric, aiming to encourage the logits to select masks that result in lower loss values. However, when
286 the loss variation caused by mask sampling is significantly smaller than the loss variation caused by
287 changing the minibatch, the loss metric alone cannot effectively distinguish whether the current mask
288 is beneficial or detrimental. For example, we denote ξ_{low} as the minibatch whose loss is inherently low
289 and ξ_{high} as the minibatch with high loss. Then we sample two masks and denote one that achieves
290 lower loss by \mathbf{m}_{good} and the other by \mathbf{m}_{bad} . There are typically two scenarios during training.
291292

- 293 • $f(\mathbf{m}_{\text{good}} \odot \mathbf{w}, \xi_{\text{low}}) \leq f(\mathbf{m}_{\text{bad}} \odot \mathbf{w}, \xi_{\text{low}})$ and $f(\mathbf{m}_{\text{good}} \odot \mathbf{w}, \xi_{\text{high}}) \leq f(\mathbf{m}_{\text{bad}} \odot \mathbf{w}, \xi_{\text{high}})$.
- 294 • A bad case: $f(\mathbf{m}_{\text{bad}} \odot \mathbf{w}, \xi_{\text{low}}) \leq f(\mathbf{m}_{\text{good}} \odot \mathbf{w}, \xi_{\text{high}})$.

295 The first case is likely to hold in most cases, as a good mask
296 can generally reduce the loss on most minibatches. But
297 when the bad case occurs, Eq.(10) interprets that the lower-
298 loss sample as the better one, yielding more erroneous
299 learning on \mathbf{m}_{bad} . To better illustrate this phenomenon,
300 we randomly select two minibatches during the training
301 of LLaMA-2-7B and extract the logits at the 500-th it-
302 eration. We then sample 1000 masks and plot their *loss*
303 *distributions*, as shown in Figure 2. It is clearly observed
304 that $f(\mathbf{m}_{\text{bad}} \odot \mathbf{w}, \xi_1) \leq f(\mathbf{m}_{\text{good}} \odot \mathbf{w}, \xi_2)$. Such
305 disparities between minibatches are quite common, causing
306 Eq.(10) to frequently encounter conflicting information
307 when learning solely based on loss value $f(\mathbf{m} \odot \mathbf{w}, \xi)$.
308309 To address this issue, we propose to use the loss residual to update the logits, which can distinguish
310 the loss variations independently caused by mask changes. By rethinking the first case above, to
311 accurately evaluate whether a mask is better, we should fix the impact of minibatch. Similarly, we
312 introduce $f(\mathbf{m}_t \odot \mathbf{w}, \xi) - f(\mathbf{m}_0 \odot \mathbf{w}, \xi)$ instead of $f(\mathbf{m}_t \odot \mathbf{w}, \xi)$ alone to evaluate whether the
313 current sampled mask \mathbf{m}_t is better than the baseline of initial \mathbf{m}_0 . Thus, the update is refined as:
314

315
$$\pi_{t+1} = \pi_t - \eta (f(\mathbf{m}_t \odot \mathbf{w}, \xi) - f(\mathbf{m}_0 \odot \mathbf{w}, \xi)) \nabla \log(p(\mathbf{m}_t | \pi_t)). \quad (11)$$

316 In experiments, the effectiveness of Eq.(11) is significantly better than that of Eq.(10). However, it
317 exhibits poor numerical stability. To further handle the potential numerical explosion during training,
318 motivated by Zhao et al. (2011), we introduce a moving average tracker to evaluate the averaged loss
319 residual under the current logits. Specifically, we reformulate Eq.(11) as follows:
320

321
$$\begin{aligned} \pi_{t+1} &= \pi_t - \eta (f(\mathbf{m}_t \odot \mathbf{w}, \xi) - f(\mathbf{m}_0 \odot \mathbf{w}, \xi) - \delta) \nabla \log(p(\mathbf{m}_t | \pi_t)), \\ \delta &= \alpha \delta + (1 - \alpha) (f(\mathbf{m}_t \odot \mathbf{w}, \xi) - f(\mathbf{m}_0 \odot \mathbf{w}, \xi)). \end{aligned} \quad (12)$$

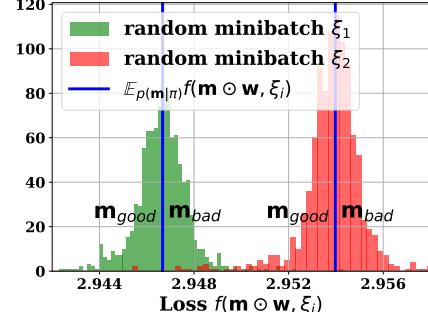
322 Eq.(12) not only effectively distinguishes the loss variations caused by each sampled mask but also
323 stabilizes its numerical distribution around zero through the δ term. This prevents aggressive logits
324 updates caused by large loss variations, ensuring a more stable training process. We also provide a
325 theoretical intuition and understanding for the δ term in Appendix C.3.3.
326327 We summarize the training procedure in Algorithm 1. At t -th iteration, we first reshape the logits
328 π_t into groups of M consecutive elements and then apply the softmax function to generate the
329

Figure 2: Loss-related misconceptions.

324 corresponding probabilities p_t . Based on p_t , we perform an N -way sampling without replacement for
 325 each group, resulting in a strict (N:M)-sparse mask. We then calculate the policy gradient to update
 326 the current logits. By calculating the loss residual on the corresponding minibatch ξ , we can obtain
 327 the independent impact of the loss value. With the assistance of a smoothing tracker, we ensure that
 328 the distribution of loss residuals used for the policy gradient remains stable. Then we complete the
 329 policy gradient update of the logits. Finally, we update the smoothing tracker δ . Regarding the final
 330 output, since the output consists of the logits π_T of all weights, in our experiments, we directly select
 331 the top- N positions with the highest logits within each group of M elements as the mask. Actually, a
 332 more refined approach is to perform multiple N -way sampling-without-replacement processes and
 333 then evaluate them on a small calibration set to select the optimal mask.

Algorithm 1 Learning (N:M)-Sparsity via MaskPro

Input: frozen weights \mathbf{w} , initial logits π_0 , initial mask \mathbf{m}_0 , learning rate η , smoothing coefficient
 $\alpha = 0.99$, smoothing tracker $\delta = 0$.

Output: learned logits π_T

```

1: for  $t = 0, 1, 2, \dots, T - 1$  do
2:   sample a minibatch  $\xi$  for training
3:   reshape  $\pi_t$  into groups of  $M$  elements and calculate  $p_t = \text{softmax}(\pi_t)$  for each group
4:   perform  $N$ -way sampling without replacement by  $p_t$  to generate the mask  $\mathbf{m}_t$ 
5:   perform inference and calculate the loss residual  $f(\mathbf{m}_t \odot \mathbf{w}, \xi) - f(\mathbf{m}_0 \odot \mathbf{w}, \xi)$ 
6:   update logits  $\pi_{t+1} = \pi_t - \eta(f(\mathbf{m}_t \odot \mathbf{w}, \xi) - f(\mathbf{m}_0 \odot \mathbf{w}, \xi) - \delta) \nabla \log(p(\mathbf{m}_t | \pi_t))$ 
7:   update the smoothing tracker  $\delta = \alpha\delta + (1 - \alpha)(f(\mathbf{m}_t \odot \mathbf{w}, \xi) - f(\mathbf{m}_0 \odot \mathbf{w}, \xi))$ 
8: end for

```

5 UNBIASEDNESS AND VARIANCE REDUCTION

In this section, we primarily demonstrate the unbiasedness and variance-reduced properties of our proposed PGE update. For clarity of exposition, we denote these three updates as:

$$\begin{aligned}
 g_p &= f(\mathbf{m} \odot \mathbf{w}, \xi) \nabla \log(p(\mathbf{m} | \pi)), \\
 g_r &= (f(\mathbf{m} \odot \mathbf{w}, \xi) - f(\mathbf{m}_0 \odot \mathbf{w}, \xi)) \nabla \log(p(\mathbf{m} | \pi)), \\
 g_{sr} &= (f(\mathbf{m} \odot \mathbf{w}, \xi) - f(\mathbf{m}_0 \odot \mathbf{w}, \xi) - \delta) \nabla \log(p(\mathbf{m} | \pi)),
 \end{aligned}$$

where g_p is the vanilla PGE, g_r is the update via loss residual and g_{sr} is the update via loss residual with smoothing tracker δ . Then the following theorem holds (proof is deferred to Appendix C.3).

Theorem 2 *The proposed PGEs are all unbiased estimators of the policy gradient, i.e.,*

$$\mathbb{E}[g_p] = \mathbb{E}[g_r] = \mathbb{E}[g_{sr}] = \nabla \Phi(\pi). \quad (13)$$

Furthermore, when the sampled mask satisfies $f(\mathbf{m}_t \odot \mathbf{w}, \xi) > \frac{1}{2}f(\mathbf{m}_0 \odot \mathbf{w}, \xi)$, we have:

$$\text{Var}[g_{sr}] \lesssim \text{Var}[g_r] < \text{Var}[g_p]. \quad (14)$$

In Theorem 2, Eq.13 shows that our proposed updates g_r and g_{sr} are both unbiased estimators of the gradient $\nabla \Phi(\pi)$, effectively supporting the training process. Furthermore, when $f(\mathbf{m}_t \odot \mathbf{w}, \xi) > \frac{1}{2}f(\mathbf{m}_0 \odot \mathbf{w}, \xi)$, from Eq.14 of Theorem 2, we know that before the loss of the sampling mask \mathbf{m}_t decreases to less than half of the initial one, using the update via loss residual with smoothing tracker can achieve more efficient training. Once the optimization process has sufficiently progressed such that the loss is less than half of the initial loss, a new set of \mathbf{m} can be selected to replace \mathbf{m}_0 to continue efficient training. In practical experiments, this condition is almost easily satisfied, as the loss rarely drops below half of the initial value when training with an initial mask with simple priors.

6 EXPERIMENTS

In this section, we first introduce the baselines along with details of the dataset and models. Then we present the main experiments. We also conduct sensitivity studies of α and C on Appendix A.9 and A.10 to provide proper guidance for the reproducibility and extensibility.

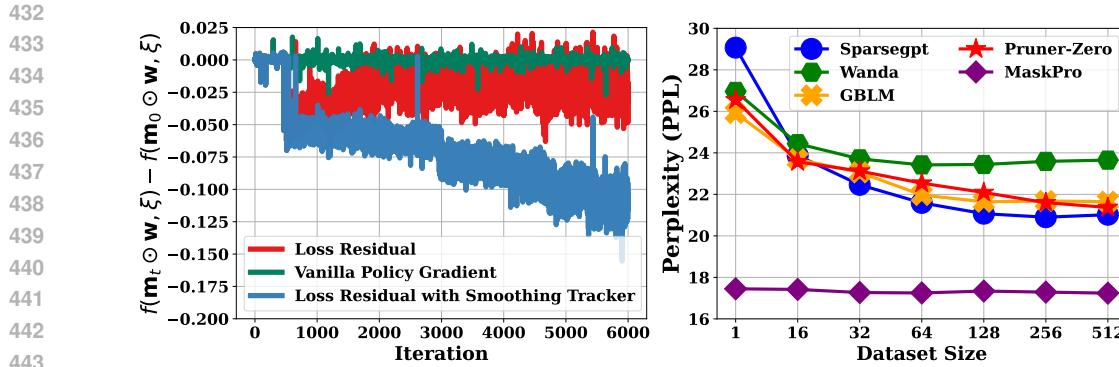
378
 379 Table 1: Zero-shot evaluations of (2:4)-sparsity. In the test, we freeze weight updates and directly
 380 apply masks. The results corresponding to each model name reflects the evaluation of dense weights.

	Wiki.	HellaS.	RACE	PIQA	WinoG.	ARC-E	ARC-C	OBQA	Memory
GEMMA-7B	112.39	60.54	40.19	79.71	73.09	81.65	49.91	32.80	—
- MASKLLM	—	25.42	20.10	51.52	49.49	25.21	21.59	18.40	467.14 G
- MAGNITUDE	—	25.23	21.24	51.85	50.75	26.43	21.84	12.40	16.32 G
- SPARSEGPT	—	26.07	22.39	55.11	50.36	30.64	18.43	14.80	34.94 G
- WANDA	—	26.80	22.78	56.47	48.86	32.66	17.75	13.60	29.63 G
- GBLM	—	26.81	22.49	54.52	51.07	32.38	17.66	14.00	39.38 G
- PRUNER-ZERO	—	25.27	21.63	53.21	50.75	24.58	22.70	15.20	39.38 G
- MaskPro	—	26.97	23.26	57.88	52.82	32.92	22.65	16.40	48.63 G
VICUNA-1.3-7B	11.86	56.32	41.91	77.37	69.46	74.28	42.41	34.60	—
- MASKLLM	14.91	49.07	39.13	75.24	65.35	65.57	33.57	25.60	331.16 G
- MAGNITUDE	389.92	40.19	28.61	67.03	57.62	54.59	28.75	19.40	12.82 G
- SPARSEGPT	24.93	44.87	37.81	70.62	63.30	62.92	32.42	25.00	22.20 G
- WANDA	25.24	44.28	37.89	70.57	61.56	61.70	32.17	23.00	21.25 G
- GBLM	24.60	44.29	38.37	70.51	61.80	62.84	31.40	24.00	26.87 G
- PRUNER-ZERO	24.02	44.77	37.42	71.22	62.75	62.33	32.76	24.00	26.87 G
- MaskPro	21.10	46.81	38.76	71.60	64.25	64.23	33.19	24.80	35.90 G
LLAMA-2-7B	8.71	57.15	39.62	78.07	68.90	76.35	43.34	31.40	—
- MASKLLM	12.55	51.17	38.56	74.70	65.04	69.57	35.67	26.80	331.16 G
- MAGNITUDE	307.39	45.43	31.48	70.08	60.93	61.87	30.20	21.80	12.82 G
- SPARSEGPT	21.07	43.20	36.56	70.89	64.56	64.52	31.48	24.60	22.20 G
- WANDA	23.44	41.32	35.89	70.46	62.12	62.79	30.20	24.20	21.25 G
- GBLM	21.64	41.79	34.61	70.57	62.75	63.17	29.86	23.20	26.87 G
- PRUNER-ZERO	22.09	41.17	34.64	70.18	62.35	61.32	27.05	22.80	26.87 G
- MaskPro	17.17	46.18	37.13	73.07	65.82	66.12	32.85	26.20	35.90 G
DEEPSPEEK-7B	9.70	56.94	39.62	79.27	70.40	75.25	43.60	32.60	—
- MASKLLM	12.90	51.73	39.14	75.95	65.80	68.10	35.32	25.80	339.56 G
- MAGNITUDE	285.06	40.97	28.52	69.75	60.06	54.92	27.56	20.80	13.13 G
- SPARSEGPT	19.12	45.58	37.80	73.94	65.43	66.37	32.94	24.80	22.50 G
- WANDA	19.68	45.38	35.12	73.56	63.14	65.49	32.00	22.80	21.55 G
- GBLM	19.55	45.34	36.17	73.99	62.98	65.82	32.85	23.60	27.98 G
- PRUNER-ZERO	20.71	44.93	35.22	73.23	62.12	64.94	30.89	23.20	27.98 G
- MaskPro	17.97	47.78	37.75	74.72	65.59	66.74	33.49	28.60	36.82 G

414
 415 **Baselines.** We select the backpropagation-free methods including Magnitude (Han et al., 2015),
 416 SparseGPT (Frantar & Alistarh, 2023), Wanda (Sun et al., 2023), GBLM-Pruner (Das et al., 2023),
 417 and Pruner-Zero (Dong et al., 2024) as baselines. We also report the results of the backpropagation-
 418 based MaskLLM (Fang et al., 2024). The backpropagation-free methods perform sparsification by
 419 minimizing the layer-wise errors of the output activations caused by sparse weights, while MaskLLM
 420 updates the mask by optimizing masks through the loss function of the text generation task.

421 **Models & Dataset.** We evaluate the performance on 4 LLMs, including Vicuna-7B (Chiang et al.,
 422 2023), LLaMA-2-7B (Touvron et al., 2023), Deepseek-7B (Deepseek-AI, 2024), Gemma-7B (Team
 423 et al., 2024). To ensure a fair comparison, we use the C4 dataset (Raffel et al., 2020) as a unified
 424 calibration or training dataset for each method and adopt the *LM-evaluation-harness* framework (Gao
 425 et al., 2024a) for zero-shot evaluations. Due to the page limitation, more details of the hyperparameters
 426 and experimental setups for reproducibility can be found in Appendix A.1.

427 **Performance.** In Table 1, we report the zero-shot evaluation on several downstream tasks for the
 428 (2:4)-sparsity. We conduct extensive experiments on several 7B models to validate the effectiveness
 429 of our proposed method. MaskPro generally outperforms existing non-backpropagation methods,
 430 achieving an average performance improvement of over 2% over the top-2 accuracy. On certain
 431 models and datasets, it achieves performance nearly comparable to MaskLLM. On the WikiText
 432 PPL test, the MaskPro method also shows a consistent improvement, about 3 on LLaMA-2-7B and
 433 over 3 on the others. The weights of the Gemma-7B model are not sufficiently sparse, resulting



(a) Training Effectiveness of Three PGE Updates. (b) Training Performance of Different Dataset Size.

Figure 3: (a) We show the different loss curves trained with the three PGEs. (b) We report the PPL on Wikitext of different methods trained with 1, 16, 32, 64, 128, 256, and 512 data samples.

in suboptimal performance of its corresponding sparse model and unstable PPL results. We show more evaluations in the Appendix A.3. [More experiments of \(4:8\) / \(8:16\)-Sparsity are stated in Appendix A.5 and A.7. We also evaluate MaskPro on 13B and 30B models in Appendix A.8.](#)

Optimizers. In Figure 3 (a), we evaluate the training performance of vanilla PGE, loss residual and loss residual with the smoothing tracker. The metric on the y-axis represents how much the loss value of the current minibatch is reduced by the mask sampled from the current logits compared to the initial mask. It can be observed that the vanilla policy gradient update is almost ineffective, with the loss oscillating around zero without effectively learning any useful information. After applying the loss residual update, significant improvement is observed as the logits receive effective guidance to sample better masks. However, its effect is not sufficiently stable — after achieving a certain level of improvement, large oscillations occur, preventing further learning progress. The update of loss residual with the smoothing tracker can efficiently and stably train this task, leading to better results.

Size of Training Set. Our proposed MaskPro requires significantly less data samples compared to other learning-based methods. As shown in Figure 3 (b), we evaluate the PPL of the Wikitext dataset on LLaMA2-7B after training 10k iterations with training set sizes of 1, 16, 32, 64, 128, 256, 512. According to the experimental results reported by Fang et al. (2024), MaskLLM requires at least 1280 training samples to achieve the results of SparseGPT, and 520k samples for convergence. In contrast, our proposed MaskPro can be trained with a minimal number of training samples while maintaining nearly stable performance even with 1 data sample. [We also provide results in Appendix A.12 comparing runs initialized from different masks with 1 sample versus 128 samples. Our experiments show that training with a single sample remains stable, with only a slight loss in performance.](#)

Training Efficiency. We evaluate efficiency primarily by comparing memory usage, training time, and the size of the training dataset. Traditional rule-based methods learn masks by evaluating specific metrics on a small validation set. For example, in the (2:4)-sparsity on LLaMA-2-7B, the Pruner-Zero requires 26.87 GB of memory and 128 C4-en data samples. And for the learning-based MaskLLM, it requires **330 GB** of memory across **8 × A100** GPUs and **520k** training samples, taking over **1200** GPU hours. A significant advantage of our proposed MaskPro method is its low computational and memory overhead during training. [More details of training time profile reports on different patterns and corresponding acceleration techniques of sampling are shown in Appendix A.13 and A.14.](#)

7 SUMMARY

In this paper, we propose a novel memory-efficient framework named MaskPro, which leverages policy gradient updates to learn semi-structured sparsity. By reformulating the (N:M)-sparsity as a linear-space probability relaxation, our approach reduces the memory for logits storage from vanilla $\mathcal{O}\left(\binom{M}{N} \frac{d}{M}\right)$ to $\mathcal{O}(d)$. Furthermore, we propose a novel PGE that replaces the vanilla loss metric with loss residuals, refined by a moving average tracker, effectively accelerating training and reducing variance. Lastly, comprehensive theoretical analysis and extensive experiments demonstrates the effectiveness of our MaskPro in achieving substantial performance gains with minimal training costs.

486 REFERENCES
487

488 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
489 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
490 *arXiv preprint arXiv:2303.08774*, 2023.

491 Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefer, and James
492 Hensman. SliceGPT: Compress large language models by deleting rows and columns. *arXiv
493 preprint arXiv:2401.15024*, 2024.

494 Gábor Braun, Alejandro Carderera, Cyrille W Combettes, Hamed Hassani, Amin Karbasi, Aryan
495 Mokhtari, and Sebastian Pokutta. Conditional gradient methods. *arXiv preprint arXiv:2211.14103*,
496 2022.

497 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
498 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
499 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

500 Tianyi Chen, Tianyu Ding, Badal Yadav, Ilya Zharkov, and Luming Liang. Lorashear: Efficient large
501 language model structured pruning and knowledge recovery. *arXiv preprint arXiv:2310.18356*,
502 2023.

503 Tianyu Chen, Shaohan Huang, Yuan Xie, Binxing Jiao, Daxin Jiang, Haoyi Zhou, Jianxin Li, and Furu
504 Wei. Task-specific expert pruning for sparse mixture-of-experts. *arXiv preprint arXiv:2206.00277*,
505 2022.

506 Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
507 Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
508 open-source chatbot impressing gpt-4 with 90%* chatGPT quality, March 2023. URL <https://lmsys.org/blog/2023-03-30-vicuna/>.

509 Rocktim Jyoti Das, Mingjie Sun, Liqun Ma, and Zhiqiang Shen. Beyond size: How gradients shape
510 pruning decisions in large language models. *arXiv preprint arXiv:2311.04902*, 2023.

511 DeepSeek-AI. Deepseek llm: Scaling open-source language models with longtermism. *arXiv preprint
512 arXiv:2401.02954*, 2024. URL <https://github.com/DeepSeek-AI/DeepSeek-LLM>.

513 Lucio Dery, Steven Kolawole, Jean-François Kagy, Virginia Smith, Graham Neubig, and Ameet
514 Talwalkar. Everybody prune now: Structured pruning of llms with only forward passes. *arXiv
515 preprint arXiv:2402.05406*, 2024.

516 Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu, Xinglin Pan, Qiang Wang, and Xiaowen Chu.
517 Pruner-zero: Evolving symbolic pruning metric from scratch for large language models. In
518 *Proceedings of the 41st International Conference on Machine Learning*. PMLR, 2024. URL
519 <https://arxiv.org/abs/2406.02924>. [arXiv: 2406.02924].

520 Gongfan Fang, Hongxu Yin, Saurav Muralidharan, Greg Heinrich, Jeff Pool, Jan Kautz, Pavlo
521 Molchanov, and Xinchao Wang. Maskllm: Learnable semi-structured sparsity for large language
522 models. *arXiv preprint arXiv:2409.17481*, 2024.

523 Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
524 networks. *arXiv preprint arXiv:1803.03635*, 2018.

525 Elias Frantar and Dan Alistarh. SparseGPT: Massive language models can be accurately pruned in
526 one-shot. *arXiv preprint arXiv:2301.00774*, 2023.

527 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
528 Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
529 Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
530 Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
531 language model evaluation, 07 2024a. URL <https://zenodo.org/records/12608602>.

532 Yuan Gao, Zujing Liu, Weizhong Zhang, Bo Du, and Gui-Song Xia. Bypass back-propagation:
533 Optimization-based structural pruning for large language models via policy gradient. *arXiv preprint
534 arXiv:2406.10576*, 2024b.

540 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 541 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
 542 models. *arXiv preprint arXiv:2407.21783*, 2024.

543

544 Emil Julius Gumbel. *Statistical theory of extreme values and some practical applications: a series of*
 545 *lectures*, volume 33. US Government Printing Office, 1954.

546

547 Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
 548 with pruning, trained quantization and huffman coding. *arXiv preprint arXiv:1510.00149*, 2015.

549

550 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
 551 Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint*
 552 *arXiv:2009.03300*, 2020.

553

Connor Holmes, Minjia Zhang, Yuxiong He, and Bo Wu. Nxmtransformer: Semi-structured sparsifi-
 554 cation for natural language understanding via admm. *Advances in neural information processing*
 555 *systems*, 34:1818–1830, 2021.

556

Weiyu Huang, Yuezhou Hu, Guohao Jian, Jun Zhu, and Jianfei Chen. Pruning large language models
 557 with semi-structural adaptive sparse training. In *Proceedings of the AAAI Conference on Artificial*
 558 *Intelligence*, volume 39, pp. 24167–24175, 2025.

559

Ajay Jaiswal, Shiwei Liu, Tianlong Chen, Zhangyang Wang, et al. The emergence of essential
 560 sparsity in large pre-trained models: The weights that matter. *Advances in Neural Information*
 561 *Processing Systems*, 36:38887–38901, 2023.

562

Jongwoo Ko, Seungjoon Park, Yujin Kim, Sumyeong Ahn, Du-Seong Chang, Euijai Ahn, and
 563 Se-Young Yun. Nash: A simple unified framework of structured pruning for accelerating encoder-
 564 decoder language models. *arXiv preprint arXiv:2310.10054*, 2023.

565

Guanghui Lan. *First-order and stochastic optimization methods for machine learning*, volume 1.
 566 Springer, 2020.

567

Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Kwang-Ting Cheng, and Jian
 568 Sun. Metapruning: Meta learning for automatic neural network channel pruning. In *Proceedings*
 569 *of the IEEE/CVF international conference on computer vision*, pp. 3296–3305, 2019.

570

Yucheng Lu, Shivani Agrawal, Suvinay Subramanian, Oleg Rybakov, Christopher De Sa, and Amir
 571 Yazdanbakhsh. Step: learning n: M structured sparsity masks from scratch with precondition. In
 572 *International Conference on Machine Learning*, pp. 22812–22824. PMLR, 2023.

573

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
 574 and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning.
 575 *arXiv preprint arXiv:2501.12570*, 2025.

576

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
 577 language models. *Advances in neural information processing systems*, 36:21702–21720, 2023.

578

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
 579 Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
 580 *arXiv preprint arXiv:2403.03853*, 2024.

581

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh,
 582 Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks. *arXiv preprint*
 583 *arXiv:2104.08378*, 2021.

584

Jeff Pool, Abhishek Sawarkar, and Jay Rodge. Accelerating inference with sparsity using the nvidia
 585 ampere architecture and nvidia tensorrt. *NVIDIA Developer Technical Blog*, 2021.

586

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 587 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 588 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.

594 Li Shen, Yan Sun, Zhiyuan Yu, Liang Ding, Xinmei Tian, and Dacheng Tao. On efficient training of
 595 large-scale deep learning models: A literature review. *arXiv preprint arXiv:2304.03589*, 2023.

596

597 Sharath Turuvekere Sreenivas, Saurav Muralidharan, Raviraj Joshi, Marcin Chochowski, Ameya Sunil
 598 Mahabaleshwarkar, Gerald Shen, Jiaqi Zeng, Zijia Chen, Yoshi Suhara, Shizhe Diao, et al. Llm
 599 pruning and distillation in practice: The minitron approach. *arXiv preprint arXiv:2408.11796*,
 600 2024.

601 Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
 602 large language models. *arXiv preprint arXiv:2306.11695*, 2023.

603 Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
 604 Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
 605 based on gemini research and technology. *arXiv preprint arXiv:2403.08295*, 2024.

606

607 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 608 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 609 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

610 Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
 611 learning. *Machine learning*, 8:229–256, 1992.

612 Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang, Zhongzhu Zhou, Xiafei Qiu, Yong Li, Wei Lin,
 613 and Shuaiwen Leon Song. Flash-llm: Enabling cost-effective and highly-efficient large generative
 614 model inference with unstructured sparsity. *arXiv preprint arXiv:2309.10285*, 2023a.

615

616 Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
 617 model pre-training via structured pruning. *arXiv preprint arXiv:2310.06694*, 2023b.

618

619 Yanyue Xie, Zhi Zhang, Ding Zhou, Cong Xie, Ziang Song, Xin Liu, Yanzhi Wang, Xue Lin, and
 620 An Xu. Moe-pruner: Pruning mixture-of-experts large language model using the hints from its
 621 router. *arXiv preprint arXiv:2410.12013*, 2024.

622

623 Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, Ajay Jaiswal,
 624 Mykola Pechenizkiy, Yi Liang, et al. Outlier weighed layerwise sparsity (owl): A missing secret
 625 sauce for pruning llms to high sparsity. *arXiv preprint arXiv:2310.05175*, 2023.

626

627 Mingyang Zhang, Hao Chen, Chunhua Shen, Zhen Yang, Linlin Ou, Xinyi Yu, and Bohan Zhuang.
 628 Loraprune: Structured pruning meets low-rank parameter-efficient fine-tuning. *arXiv preprint
 629 arXiv:2305.18403*, 2023.

630

631 Nan Zhang, Yanchi Liu, Xujiang Zhao, Wei Cheng, Runxue Bao, Rui Zhang, Prasenjit Mitra, and
 632 Haifeng Chen. Pruning as a domain-specific llm extractor. *arXiv preprint arXiv:2405.06275*,
 633 2024a.

634

635 Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao, Lu Hou, and Carlo Vittorio Cannistraci. Plug-
 636 and-play: An efficient post-training pruning method for large language models. In *The Twelfth
 637 International Conference on Learning Representations*, 2024b.

638

639 Yuxin Zhang, Mingbao Lin, Zhihang Lin, Yiting Luo, Ke Li, Fei Chao, Yongjian Wu, and Rongrong Ji.
 640 Learning best combination for efficient n: M sparsity. *Advances in Neural Information Processing
 641 Systems*, 35:941–953, 2022.

642

643 Bowen Zhao, Hannaneh Hajishirzi, and Qingqing Cao. Apt: Adaptive pruning and tuning pretrained
 644 language models for efficient training and inference. *arXiv preprint arXiv:2401.12200*, 2024.

645

646 Tingting Zhao, Hirotaka Hachiya, Gang Niu, and Masashi Sugiyama. Analysis and improvement of
 647 policy gradient estimation. *Advances in Neural Information Processing Systems*, 24, 2011.

648

649 Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and
 650 Hongsheng Li. Learning n: m fine-grained structured sparse neural networks from scratch. *arXiv
 651 preprint arXiv:2102.04010*, 2021.

652

653 Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning Wang,
 654 Zhihang Yuan, Xiuhong Li, et al. A survey on efficient inference for large language models. *arXiv
 655 preprint arXiv:2404.14294*, 2024.

648
649 The Use of Large Language Models. In this work, we only evaluate the performance on LLMs in
650 our experiments and employ LLMs to refine the writing and presentation of our manuscript. Other
651 aspects of the work are unrelated to LLMs.

652 **653 Limitation and Broader Impact.** This paper presents a memory-efficient training framework for
654 learning semi-structured sparse masks based on policy gradient, achieving comprehensive improve-
655 ments in performance and efficiency through substantial upgrades in both the probabilistic modeling
656 and optimizers. A limitation of this paper is that when training large-scale models, the primary
657 time consumption lies in simulating the mask sampling process. Utilizing more efficient sampling
658 simulations can further enhance training efficiency. The core contributions of this paper mainly
659 include linear-space probabilistic modeling and optimizer enhancements. These two aspects can be
660 widely applied to various model pruning tasks, not just the specific task addressed in this work.

661 A EXPERIMENTS

663 A.1 EXPERIMENTAL DETAILS AND REPRODUCIBILITY

664
665 In this paper, we reproduce the baselines using their official open-source codes provided in each
666 paper. For fairness, we use the C4-en dataset as the calibration/training dataset. For the MaskLLM,
667 we follow Fang et al. (2024) to adopt 520k C4-en samples for training 2k iterations with batchsize
668 256. For other methods, we follow their setups to adopt 128 C4-en samples as calibration dataset.

669 **670 Hyperparameters.** For the MaskPro, we evaluate a wide range of dataset sizes, ranging from 1 to
671 320k. We select the learning rate from [25, 50, 100, 200] for each model and 50/100 proves to be a
672 relatively effective choice. In the training, we use batchsize as 32 and training for $\sim 10k$ iterations.
673 Using a batchsize larger than 32 is also encouraged, as larger batches generally lead to stable training.
674 In all experiments, we adopt the smoothing coefficient $\alpha = 0.99$ to stably follow the loss residual.
675 We summarize the selection of certain hyperparameters in Table 2.

676
677 Table 2: Hyperparameters selections.

678 Model	679 Learning rate	680 Logits Magnitude	681 Smoothing coefficient α	682 Initial Mask
Gemma-7B	50 / 100	10.0	0.99	Top- N / Sparsegpt
Vicuna-V1.3-7B	50	10.0	0.99	Top- N / Sparsegpt
LLaMA-2-7B	50	10.0	0.99	Top- N / Sparsegpt
DeepSeek-7B	50 / 100	10.0	0.99	Top- N / Sparsegpt

683
684 **685 Initialization.** The initialization of logits in MaskPro is crucial. **686 Standard random initialization**
687 **688 or zero initialization are ineffective.** This is because the logits determine the sampling scale. For
689 instance, zero initialization implies that each position is sampled with equal probability, leading to a
690 very large number of negative samples during the initial training stage. Consequently, it becomes
691 exceedingly difficult to identify effective positive samples for learning. In our experiments, we
692 initialize the logits based on $\pi_0 = \mathbf{m}_0 * C$, where \mathbf{m}_0 is a pre-defined mask and C is the initial
693 logits magnitude. A larger C indicates that the mask changes less compared to the initial mask \mathbf{m}_0 ,
694 effectively maintaining a balance between positive and negative samples in the early training stages.
695 The design of \mathbf{m}_0 is flexible. In practice, training can also start with a randomly generated mask;
696 however, this approach typically requires a longer training period. We recommend directly using the
697 results from the Sparsegpt method or selecting the Top- N positions over M elements per group.

698 **699 Training Environment.** We train our proposed MaskPro on a single H100 / A100 GPU device. Other
700 details are stated in Table 3.

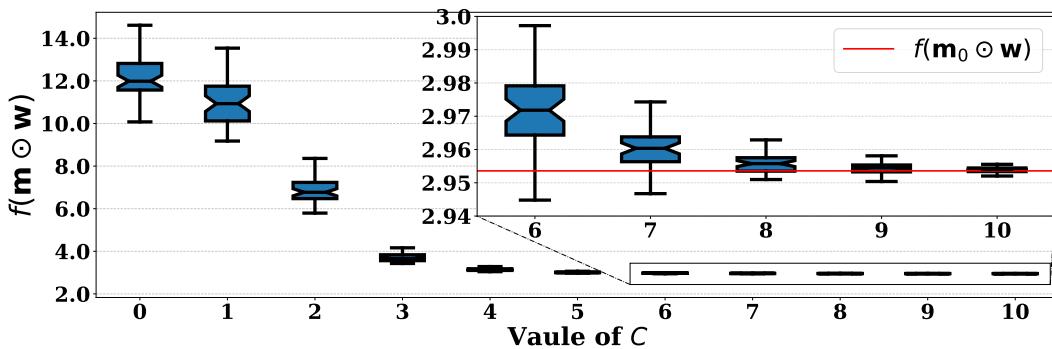
701
702 Table 3: Training Environment.

703 GPU	704 CPU	705 CUDA	706 Driver	707 Pytorch
1× H100 / A100	128× AMD EPYC 9354 32-C	12.4	535.230.02	2.5.1

702 **Evaluations.** For fair comparisons, all evaluations are conducted on the public benchmark framework
 703 *LM-evaluation-harness framework* (Gao et al., 2024a) (<https://github.com/EleutherAI/lm-evaluation-harness.git>). Please refer to the relevant reproduction guidelines.
 704

706 **A.2 THE IMPORTANCE OF C IN LOGITS INITIALIZATION**
 707

708 We have previously discussed the selection of C in the experiments. Here, we will visualize some
 709 practical scenarios encountered during the experiments and illustrate why C must be sufficiently
 710 large to effectively drive the training process. We analyze the distribution of loss values of training
 711 LLAMA-2-7B within 100 steps with a minibatch of 32 samples under different C initialization
 712 settings, as shown in Figure 4.



725 Figure 4: The distribution of loss within 100 steps under different C used for logits initialization.
 726

727 **We first explain which variables are affected by C .** Since we use the softmax function to generate
 728 the probabilities for the corresponding positions, the logits values determine whether the initial
 729 probability of being sampled at a specific position is sufficiently large. In other words, when sampling
 730 a new mask, it ensures how many positions with high probabilities remain unchanged. This point
 731 is particularly important because the sampling space is extremely large. Without constraining the
 732 sampling space, there is a high probability of sampling poor masks. Extremely poor masks are
 733 incapable of capturing useful information effectively. Therefore, randomly initializing the C value or
 734 directly setting it to zero is completely ineffective, as it cannot ensure the stability of the sampling
 735 space, i.e., whether the distribution of positive and negative samples in the sampling space is balanced.
 736

737 **Next, we explain the meaning of Figure 4.** We show the distribution of loss values over 100 training
 738 steps using a minibatch under different C initialization settings on the LLAMA-2-7B model. In the
 739 subplot, the red line corresponds to the loss of the initialized mask m_0 . When C is small, it is evident
 740 that the training fails — the loss surges from the initial 2.95 to over 10. A large number of negative
 741 samples flood into the training process, leading to chaotic learning. As C increases to 4, the stability
 742 gradually improves. However, it is still insufficient. As shown in the subplot, even when $C = 6$,
 743 more than 90% of the sampled masks still exhibit extremely poor performance. Until C increases
 744 to 9 and 10, it can be observed that the distribution of positive and negative sampled masks during
 745 training gradually maintains a 1:1 ratio. By this, the training can proceed effectively.

746 Here, we provide an additional example to explain and guide the selection of C for different network
 747 parameters. As mentioned earlier, one probabilistic interpretation of C is to determine, on average,
 748 how many positions are sampled differently from the initialized mask. We can succinctly express this
 749 probability in a mathematical form. Suppose the initialized mask m_0 is $[0, 1, 1, 0]$, then its initial logits
 750 is $[0, C, C, 0]$ and the corresponding softmax probability is $\left[\frac{1}{2(e^C+1)}, \frac{e^C}{2(e^C+1)}, \frac{e^C}{2(e^C+1)}, \frac{1}{2(e^C+1)} \right]$.
 751 Thus we have:

$$p(m = [0, 1, 1, 0] | \pi = [0, C, C, 0]) = \frac{e^{2C}}{(e^C + 1)(e^C + 2)}.$$

752 In fact, the size of the sampling space where positive and negative samples are evenly distributed is
 753 difficult to estimate for different model parameter sizes. However, we can reasonably speculate that
 754

756 the total number of parameters is generally proportional to the above probability value. For larger
 757 models, using a larger C can further maintain the effectiveness of the training space.
 758

759 **A.3 MORE EXPERIMENTS ON DIFFERENT TASKS**
 760

761 In addition to the primary comparisons presented in the main text, we extend our evaluation to
 762 encompass over a dozen additional tasks to provide a more comprehensive demonstration of the
 763 effectiveness of our proposed method. These extended tests are carefully selected to cover diverse
 764 data distributions and task complexities, allowing us to assess the robustness and generalizability of
 765 our approach. The results from these comprehensive experiments consistently highlight the superior
 766 performance of our method across various scenarios, further reinforcing its effectiveness. The detailed
 767 outcomes of these evaluations are presented as follows.
 768

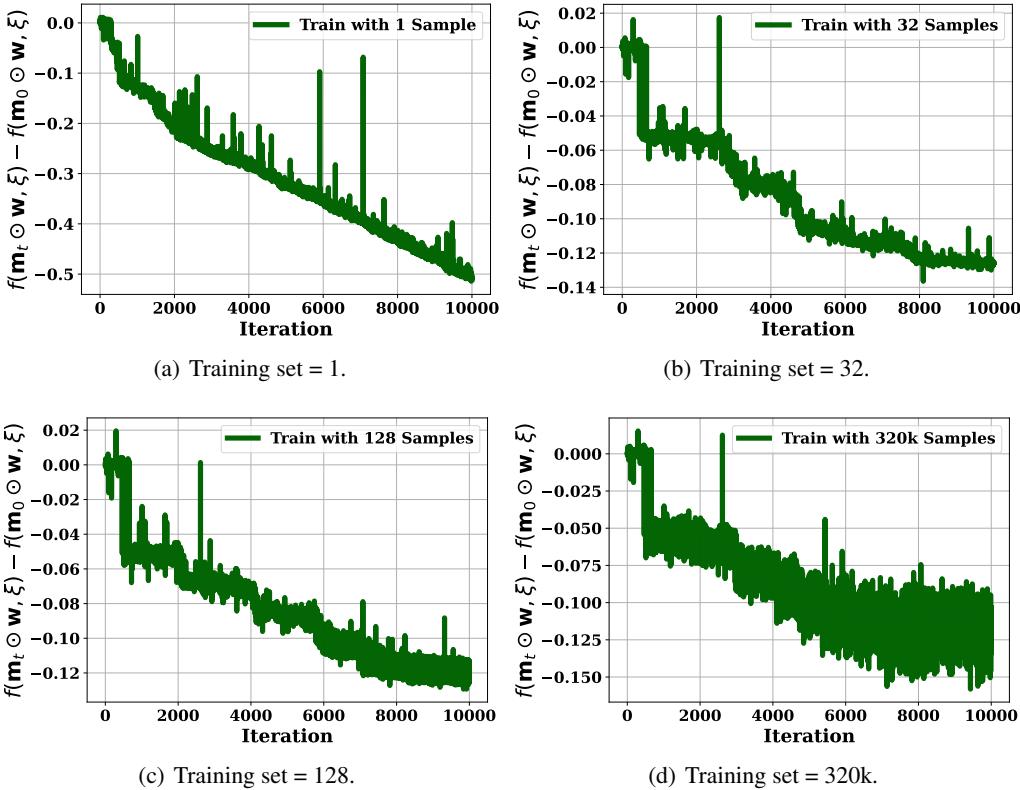
769 Table 4: Zero-shot evaluations of (2:4)-sparsity on other more tasks.
 770

	LLaMA-2-7B				DeepSeek-7B			
	Dense	Sparsegpt	Pruner-Z	MaskPro	Dense	Sparsegpt	Pruner-Z	MaskPro
WMDP	39.29	<u>26.61</u>	26.52	26.95	41.00	<u>27.15</u>	27.07	28.22
TMLU	29.58	25.03	<u>25.13</u>	25.38	37.17	25.99	24.36	<u>25.37</u>
Prost	23.60	<u>24.26</u>	24.03	24.41	28.19	<u>28.22</u>	27.62	29.57
AExams	21.04	23.65	23.65	23.65	23.65	23.65	23.65	23.65
AClue	27.47	<u>25.33</u>	25.31	26.24	32.34	<u>27.17</u>	26.88	27.31
ANLI-1	36.40	33.20	<u>33.60</u>	34.40	34.10	31.10	<u>31.19</u>	32.20
ANLI-2	37.20	<u>34.10</u>	33.90	34.10	36.60	33.70	33.20	<u>33.50</u>
ANLI-3	37.58	<u>33.08</u>	33.00	35.67	37.75	<u>33.33</u>	33.04	33.85
SCIQ	94.00	91.10	91.10	91.10	94.10	92.30	90.20	<u>90.90</u>
MathQA	28.24	<u>23.72</u>	23.55	23.95	29.48	<u>25.93</u>	25.12	26.76
Haerae	22.27	<u>18.88</u>	18.91	18.79	29.70	25.57	18.26	<u>22.18</u>
BoolQ	77.68	<u>71.10</u>	69.13	71.12	72.81	<u>66.91</u>	66.36	67.77
ComQA	32.92	<u>20.80</u>	20.08	22.03	36.69	<u>23.10</u>	22.95	23.18
LogiQA	25.65	21.66	<u>21.78</u>	22.89	25.04	<u>21.73</u>	21.35	22.58
COPA	87.00	81.00	<u>79.00</u>	<u>79.00</u>	84.00	<u>86.00</u>	84.00	87.00
WIC	49.84	<u>47.81</u>	47.22	49.84	51.10	48.00	<u>48.81</u>	49.06
WSC	36.54	36.54	36.54	36.54	64.42	36.54	36.54	36.54
CB	42.86	<u>41.07</u>	39.29	57.14	55.36	42.86	<u>43.44</u>	48.21
MultiRC	56.97	57.20	56.37	<u>56.93</u>	57.22	57.20	57.20	57.20
RTE	62.82	58.48	<u>59.12</u>	61.37	67.87	<u>63.43</u>	63.15	66.32
Mutual	70.84	<u>68.01</u>	67.44	68.53	71.30	<u>67.43</u>	67.24	68.33
WebQS	0.0586	0.0541	<u>0.0544</u>	0.0566	0.0876	<u>0.0468</u>	0.0226	0.0494

800
 801 In this experiment, we evaluate the performance of MaskPro across a diverse set of tasks to com-
 802 prehensively assess its effectiveness on LLaMA-2-7B and DeepSeek-7B. The experimental design
 803 includes a variety of downstream tasks. MaskPro consistently demonstrates superior performance
 804 over competing methods, such as SparseGPT and Pruner-Zero, in the majority of datasets. The
 805 method effectively balances accuracy and computational efficiency, achieving more favorable out-
 806 comes without compromising on memory constraints. This consistent performance across multiple
 807 tasks highlights the robustness and generalizability of MaskPro in handling different scenarios. On
 808 smaller datasets, the performance gains of MaskPro are relatively moderate, as the evaluation is
 809 constrained by limited sample diversity. However, when tested on larger datasets with extensive
 testing samples, MaskPro consistently demonstrates substantial improvements over baseline methods.

810 A.4 TRAINING WITH DIFFERENT DATASET SIZE
811

812 In this section, we report the training results using different numbers of samples. In Figure 5, we
813 present the loss residuals of training on LLaMA-2-7B model with 1, 32, 128, and 320k samples,
814 respectively. We set batchsize as 32 for all others expect for 1 as 1. All are trained for 10k iterations.
815



829
830
831
832
833
834
835
836
837
838
839
840
841
842 Figure 5: Loss residual curves of training on LLaMA-2-7B model with 1, 32, 128, and 320k samples.
843
844

845 It can be observed that MaskPro does not require a large number of training samples. Even with just
846 1 sample (in a single minibatch), it can complete training and achieve stable performance. The loss
847 on a single training sample can steadily decrease, but this does not necessarily imply a continually
848 decreased loss on the test dataset. In fact, despite the persistent reduction in training loss, the test
849 set performance may have already stabilized. In Figure 3 (b) of the main text, we report the testing
850 results of the learned mask on the Wikitext dataset. Next, we evaluate the zero-shot accuracy on a
851 series of downstream tasks, shown in Table 5.
852
853

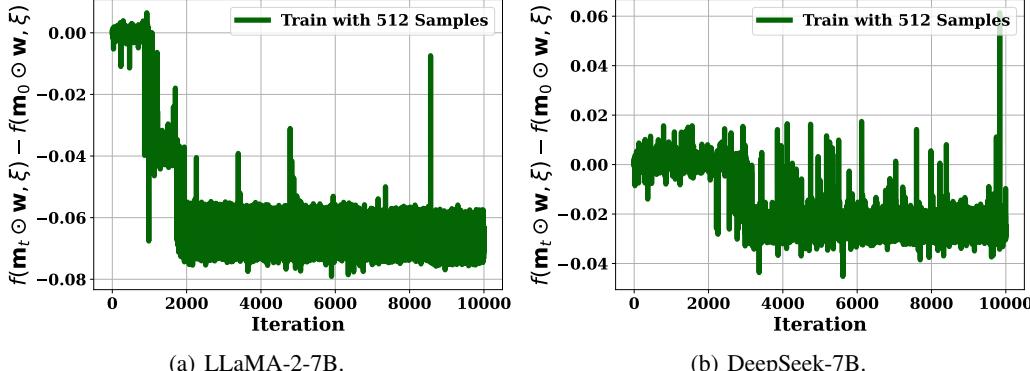
854 Table 5: Zero-shot evaluations of masks trained with different dataset size on LLaMA-2-7B.
855

	HellaS.	RACE	PIQA	WinoG.	ARC-E	ARC-C	OBQA	Avg.
320k samples	46.18	37.13	73.07	65.82	66.12	32.85	26.20	49.62
128 samples	46.10	37.03	72.47	65.62	65.49	32.25	25.80	49.25
32 samples	46.32	36.89	72.80	65.27	65.95	32.66	25.80	49.38
1 sample	46.39	37.61	72.96	64.64	65.70	32.59	24.40	49.18

862 It can be observed that although the performance slightly declines, overall, even training with just 1
863 sample can still maintain satisfactory results, and in some datasets, the performance is even slightly
864 higher.
865

864 A.5 PERFORMANCE OF (4:8)-SPARSITY
865866 In this section, we report the results for (4:8)-sparsity in Table 6 and corresponding training loss
867 curves in Figure 6. The training hyperparameters are consistent with those reported in Table 2.
868869 Table 6: Zero-shot evaluations of (4:8)-sparsity. The MaskLLM method suffers from severe memory
870 explosion and exceeds the memory limitation of 8× A100 GPUs (> 640 G).
871

	Wiki.	HellaS.	RACE	PIQA	WinoG.	ARC-E	ARC-C	OBQA
LLAMA-2-7B	8.71	57.15	39.62	78.07	68.90	76.35	43.34	31.40
- MASKLLM	—	—	—	—	—	—	—	—
- MAGNITUDE	61.99	46.05	35.31	72.20	62.27	64.81	34.07	25.80
- SPARSEGPT	<u>14.99</u>	<u>48.19</u>	<u>38.55</u>	73.78	<u>67.72</u>	68.15	36.01	<u>27.80</u>
- WANDA	15.28	47.04	38.18	74.14	66.77	67.00	34.56	26.40
- GBLM	15.21	47.32	37.51	<u>74.16</u>	67.56	67.13	34.56	27.20
- PRUNER-ZERO	15.10	47.82	38.13	74.07	67.23	<u>68.18</u>	34.97	27.20
- MaskPro	13.73	49.51	39.33	74.65	68.43	68.64	<u>35.92</u>	28.20
DEEPMSEEK-7B	9.70	56.94	39.62	79.27	70.40	75.25	43.60	32.60
- MASKLLM	—	—	—	—	—	—	—	—
- MAGNITUDE	109.37	45.32	32.06	72.42	61.64	56.31	32.68	23.40
- SPARSEGPT	<u>14.67</u>	48.36	38.09	75.24	<u>65.82</u>	70.20	<u>36.69</u>	<u>29.20</u>
- WANDA	14.76	49.09	38.47	<u>75.46</u>	64.88	68.48	34.22	27.20
- GBLM	14.74	49.03	<u>38.76</u>	75.73	65.11	68.18	34.13	27.00
- PRUNER-ZERO	14.85	48.22	38.32	75.12	65.66	69.23	35.50	27.80
- MaskPro	13.89	50.97	39.25	75.87	66.27	<u>69.51</u>	36.89	29.80

903 Figure 6: Loss residual curves of training for the (4:8)-sparsity.
904905 A.6 MEMORY SCALABILITY
906907 In this section, we report the memory scalability in Table 7.
908909 Table 7: Memory (GB) required for training on DeepSeek-7B.
910

	MaskLLM	MaskPro
(1:4)-Sparsity	266.35	36.82
(2:4)-Sparsity	339.56	36.82
(4:8)-Sparsity	>640.00	36.95

911 The MaskPro method, due to its linear probability modeling, almost does not cause memory growth
912 as the (N:M) ratio scales. When training the (4:8)-sparsity on DeepSeek-7B model, MaskLLM has
913
914

918 encountered OOM (Out of Memory) on $8 \times$ A100 ($>640G$). In contrast, MaskPro can achieve the
 919 expansion with almost no additional memory overhead.
 920

921 A.7 PERFORMANCE OF (8:16)-SPARSITY 922

923 Moreover, we provide the (8:16)-Sparsity pattern to evaluate the performance of our proposed
 924 MaskPro method. This setting involves significantly larger combinatorial spaces which can greatly
 925 support the efficiency of MaskPro.
 926

927
 928 Table 8: Zero-shot evaluations of (8:16)-sparsity on LLaMA2-7B.
 929

	HellaS.	RACE	PIQA	WinoG.	ARC-E	ARC-C	OBQA	Avg.
LLAMA-7B	57.15	39.62	78.07	68.90	76.35	43.34	31.40	56.40
- MAGNITUDE	52.27	35.02	72.74	64.48	67.68	37.03	27.20	50.92
- SPARSEGPT	50.19	39.04	74.43	66.22	70.45	36.43	28.80	52.22
- WANDA	49.77	39.14	75.30	66.61	70.62	36.18	28.80	52.35
- GBLM	49.51	39.90	75.68	66.38	69.91	36.43	27.60	52.20
- PRUNER-ZERO	50.12	38.68	75.22	66.13	69.93	35.48	27.80	51.91
MaskPro	53.15	39.23	76.15	66.56	72.87	40.13	29.60	53.96
LLAMA-13B	60.05	40.48	79.11	72.22	79.42	48.46	35.20	59.28
- MAGNITUDE	55.43	37.51	74.48	66.06	68.94	38.05	27.60	52.58
- SPARSEGPT	54.24	40.38	77.15	70.19	75.08	41.31	31.00	55.62
- WANDA	54.50	39.62	77.09	70.09	73.19	40.36	30.80	55.09
- GBLM	54.45	39.18	76.35	69.92	73.75	40.07	29.60	54.76
- PRUNER-ZERO	54.11	38.64	76.28	70.41	72.92	40.55	30.00	54.70
MaskPro	57.35	39.92	77.83	70.68	76.45	43.26	30.60	56.58

944
 945 Under this sparsity pattern, the memory requirement of MaskLLM becomes extremely large, even
 946 exceeding the resource demands commonly used in the community to train models with hundreds
 947 of billions of parameters. Moreover, our MaskPro approach introduce minor training cost, while
 948 achieving better results than rule-based methods.
 949

950 A.8 PERFORMANCE ON LARGER SCALE MODELS 951

952 In this section, we present the results of applying MaskPro to larger models, specifically the 13B
 953 and 30B variants. We retain the same hyperparameter settings used for the 7B model, with the only
 954 adjustment being a slight tuning of the initialization logits magnitude.
 955

956
 957 Table 9: Zero-shot evaluations of (2:4)-sparsity on 13B/30B models.
 958

	HellaS.	RACE	PIQA	WinoG.	ARC-E	ARC-C	OBQA	Avg.
LLAMA-13B	60.05	40.48	79.11	72.22	79.42	48.46	35.20	59.28
- MAGNITUDE	50.10	36.84	71.76	61.88	62.29	31.74	23.40	48.29
- SPARSEGPT	47.73	38.95	73.61	69.22	69.95	36.35	27.40	51.89
- WANDA	46.24	38.47	73.94	67.32	68.73	34.13	24.20	50.43
- GBLM	46.65	37.97	73.46	69.04	69.33	34.75	25.80	51.00
- PRUNER-ZERO	46.15	38.85	73.13	67.24	67.52	33.89	25.20	50.28
MaskPro	49.24	38.91	75.12	70.33	71.85	38.26	27.40	53.02
LLAMA-30B	63.36	39.14	80.63	75.85	80.64	51.45	36.40	61.07
- MAGNITUDE	49.57	35.69	70.24	65.59	57.32	31.66	27.80	48.27
- SPARSEGPT	55.25	37.77	77.45	73.68	75.25	43.27	31.80	56.35
- WANDA	54.18	40.00	77.69	73.24	74.24	42.15	31.60	56.16
- GBLM	54.68	37.35	75.24	73.12	74.68	42.32	30.80	55.46
- PRUNER-ZERO	53.69	37.13	75.86	73.04	74.23	41.25	31.20	55.20
MaskPro	59.76	37.28	78.24	73.32	76.83	45.65	33.20	57.75

972 Notably, MaskPro remains highly effective even when applied to models at the 30B scale. This
 973 demonstrates the robustness and scalability of the proposed probabilistic formulation. Furthermore,
 974 due to the linear probability modeling and the use of policy-gradient-based optimization, MaskPro
 975 achieves this performance with significantly reduced computational overhead. In particular, the train-
 976 ing process requires far fewer resources compared to methods that rely on dense mask representations
 977 or exhaustive combinatorial search. These properties highlight the practical advantages of MaskPro,
 978 especially in large-scale scenarios where both memory efficiency and training stability are critical.

980 A.9 SENSITIVITY OF TRACKER COEFFICIENT α

981 In this part, we demonstrate the sensitivity studies of the tracker coefficient α . In our PG update,
 982 the parameter α is used to track a stable estimate of the current baseline and prevent it from being
 983 overly influenced by the stochastic variance of sampled losses. Conceptually, this plays the same
 984 role as β_1 or β_2 in the Adam optimizer. To examine its sensitivity, we conducted the following set of
 985 experiments:

988 Table 10: Sensitivity studies of tracker coefficient α .

	$\alpha = 0.7$	$\alpha = 0.9$	$\alpha = 0.95$	$\alpha = 0.99$	$\alpha = 0.995$
LLAMA-7B	34.25	48.28	49.37	49.62	49.21
LLAMA-13B	38.68	51.23	52.78	53.02	52.74

994 We find that using $\alpha = 0.99$ consistently across all tasks provides the most stable and reliable
 995 performance. Therefore, we only report the selection of 0.99 for reproduction in the main text. This
 996 hyperparameter requires almost no additional tuning.

998 A.10 SENSITIVITY OF LOGITS MAGNITUDE C

1000 In this part, we demonstrate the sensitivity of the logits magnitude C . In the initialization, the
 1001 parameter C is used for stable sampling space. A detailed explanation is provided in Appendix A.2.
 1002 If C is set too small, a single sampling step has a high probability of producing a poor mask, which
 1003 can lead to a severe imbalance between positive and negative samples during training, ultimately
 1004 hindering the learning process of combinatorial optimization. Therefore, choosing a sufficiently large
 1005 C during initialization allows the training to remain stable. We evaluated different values and the
 1006 results are as follows:

1008 Table 11: Sensitivity studies of initial logits magnitude C .

	$C = 8$	$C = 9$	$C = 10$	$C = 11$	$C = 12$
LLAMA-7B	-	49.17	49.62	49.59	49.55
LLAMA-13B	-	52.45	52.94	53.02	52.99

1014 A.11 ABLATION STUDIES OF INITIAL MASK m_0

1016 In this part, we evaluate how the different initialization mask m_0 affects the results. Unlike gradient-
 1017 based methods, RL methods typically converge more slowly, so a good initialization can significantly
 1018 shorten the training process.

1021 Table 12: Ablation studies of initial mask m_0 .

	Random	Top-K	Wanda	GBLM	Sparsesegpt
LLAMA-7B	30.27	45.97	46.71	46.56	47.97
- MASKPRO	36.35	48.35	49.33	49.45	49.62
- IMPROVEMENT	+6.08	+2.38	+2.62	+2.89	+1.65

1026 In practice, when using SparseGPT for initialization, the model converges in roughly 10000 steps.
 1027 With TopK initialization, extending the training over 20000 steps yields a relatively smooth result.
 1028 We can see that random initialization can also train the mask, but the training process is slow. We
 1029 further conduct a longer training experiment specifically for random initialization, and the results are
 1030 as follows:

Table 13: Long-term training on the random initialization.

	$T = 20000$	$T = 30000$	$T = 50000$	$T = 70000$
ACCURACY	36.35	38.43	40.74	42.37

1038 This training process is quite lengthy, and we estimate that completing the full experiment would
 1039 require at least 300000 steps. Such behavior is consistent with the theoretical convergence rate of
 1040 RL-based methods, which is why we do not encourage training from random initialization. We hope
 1041 that these two experiments address the reviewer’s concerns: it is not that RL-based methods cannot
 1042 be trained from random initialization, but rather that it is unnecessary, as simple priors such as top-K
 1043 can significantly shorten the training cycle.

A.12 TRAINING WITH 1 DATA SAMPLE FROM DIFFERENT INITIAL MASK m_0

1047 In this part, we additionally evaluate the stability of the training process of "with 1 data sample" from
 1048 different initialization.

Table 14: Ablation studies of dataset size on different initial mask m_0 .

	Random	Top-K	Wanda	GBLM	Sparsegpt
WITH 128 DATA SAMPLES	36.35	49.35	49.33	49.45	49.62
WITH 1 DATA SAMPLES	35.97	49.12	49.04	49.21	49.18

1057 We would like to clarify that MaskPro is indeed not very sensitive to the number of samples. The
 1058 essence of RL-based methods lies in accurately estimating and constructing the reward, rather than
 1059 relying on large data volumes. While we do not deny that using a larger dataset may yield further
 1060 improvements, the performance obtained with only a few hundred samples is already very close.

A.13 TRAINING TIME PROFILES ON MASKPRO

1064 In this part, we mainly show the training time profiles of our MaskPro method under different patterns
 1065 and models. We use `torch.multinomial` function for (N:M)-sparsity sampling, which simulates the
 1066 sampling process through a lookup-based mechanism and provides high accuracy. The forward pass
 1067 is implemented through a standard wrapper function. Specifically, we wrap the linear layer with an
 1068 additional mask parameter and integrate the mask computation directly inside the linear operation.
 1069 This design avoids modifying PyTorch’s computation graph and enables efficient inference. The
 1070 logits updates are computed entirely through matrix calculation, and PyTorch’s built-in libraries
 1071 already provide the necessary parallelization. To further illustrate the implementation details, we
 1072 report the per-step training time as follows:

Table 15: Averaged time required in each step on (2:4)-Sparsity.

	Mask Sampling		Forward		PG Update	
	TIME	RATIO	TIME	RATIO	TIME	RATIO
LLAMA-7B	2.328s	85.94%	0.062s	2.29%	0.319s	11.77%
LLAMA-13B	4.739s	85.83%	0.139s	2.52%	0.644s	11.65%

1080
 1081 The main source of time consumption comes from the sampling process. We also evaluated the
 1082 sampling performance under different sparsity patterns, as shown in the table below.
 1083

1084 Table 16: Mask sampling time in each step on different (N:M)-Sparsity.

	(2:4)-Sparsity	(4:8)-Sparsity	(8:16)-Sparsity
LLAMA-7B	2.328s	1.334s	0.794s
LLAMA-13B	4.739s	2.692s	1.574s

1090
 1091 We can observe that doubling the model size roughly doubles the sampling time. Another interesting
 1092 observation is that the sampling time of (N:M)-Sparsity depends on M . With the same model size, a
 1093 larger M leads to shorter sampling time, due to parallel optimizations in the sampling process. For a
 1094 d -dimensional model, there are a total of $\frac{d}{M}$ sampling groups. Although increasing N and M makes
 1095 each group more expensive to sample, the total number of parallel groups decreases proportionally.
 1096 This reduction in the number of groups results in a more favorable computation pattern for hardware.
 1097 Consequently, for more complex (N:M)-Sparsity, the time required for a single sampling step can
 1098 actually be lower. Large M is a GPU-friendly selection.
 1099

1100 A.14 ALTERNATIVE STRATEGIES FOR ACCELERATING SAMPLING

1101 In this part, we additionally explore two alternative accelerated sampling strategies along with their
 1102 corresponding results. Sampling is the primary computational bottleneck of RL-based methods.
 1103 Therefore, we explored several alternative acceleration strategies to speed up the training process,
 1104 and their effects are summarized below.

1105 Table 17: Acceleration of mask sampling and their corresponding performance on (2:4)-Sparsity.

	torch.multinomial		Naive Gumbel-TopK		Gaussian-TopK	
	TIME	ACC.	TIME	ACC.	TIME	ACC.
LLAMA-7B	2.328s	49.62	1.821s (1.27 \times)	49.24 (-0.38)	1.496s (1.58 \times)	48.84 (-0.78)
LLAMA-13B	4.739s	53.02	3.645s (1.30 \times)	52.59 (-0.43)	3.061s (1.55 \times)	52.22 (-0.80)

1114
 1115 Within an acceptable error range, the training time can be further reduced. However, we still
 1116 recommend using higher-precision sampling methods, as the current training time requirement of
 1117 MaskPro is already quite reasonable. On the impact of randomness on experiments, RL methods
 1118 rely on sampling, so they are generally less sensitive to random seeds compared with gradient-based
 1119 methods, and tend to exhibit stronger robustness across settings.

1120 B DETAILED DESCRIPTION OF WITHOUT-REPLACEMENT PROBABILITY

1121 $p(\mathbf{m}|\pi)$

1124 This section aims to present a specific form of $p(\mathbf{m}|\pi)$ and its related gradient $\nabla \log(p(\mathbf{m}|\pi))$. Note
 1125 that in Eq.8, we define $p(\mathbf{m}|\pi) := \prod_{i=1}^M p(\mathbf{m}_i|\pi_i)$ where $\mathbf{m}_i := \bigoplus_{j=1}^N \mathbf{a}_{i,j}$ for any $i \in [M]$ and
 1126 $p(\mathbf{m}_i|\pi_i)$ denotes the probability of our MaskPro generating the mask \mathbf{m}_i under logits π_i . Therefore,
 1127 before presenting the details of $p(\mathbf{m}|\pi)$, we firstly investigate the probability $p(\mathbf{m}_i|\pi_i)$.
 1128

1129 B.1 DETAILED DESCRIPTION OF $p(\mathbf{m}_i|\pi_i)$

1130 It is worth noting that the mask vector $\mathbf{m}_i \in \mathcal{S}^{N:M}$ such that we can assume $\mathbf{m}_i = \sum_{i \in [N]} \mathbf{e}_{k_i}$ where
 1131 \mathbf{e}_j denotes the j -th basis vector of the space $\mathbb{R}^{1 \times M}$, $k_i \in [M]$, $\forall i \in [N]$ and $k_1 \neq k_2 \neq \dots \neq k_N$.
 1132 In other words, $\{k_1, \dots, k_N\}$ is an N -size subset of $[M] = \{1, \dots, M\}$.

1134 From the definition of \mathbf{m}_i , we know that $\mathbf{m}_i := \bigoplus_{j=1}^N \mathbf{a}_{i,j}$. Furthermore, according to Eq.23
 1135 in Section C.1, we also can know that, in order to ensure that $\mathbf{m}_i = \bigoplus_{j=1}^N \mathbf{a}_{i,j} = \sum_{i \in [N]} \mathbf{e}_{k_i}$,
 1136 we typically require a one-to-one assignment of the previously defined N distinct basis vectors
 1137 $\{\mathbf{e}_{k_1}, \dots, \mathbf{e}_{k_N}\}$ to $\{\mathbf{a}_{i,1}, \dots, \mathbf{a}_{i,N}\}$. In general, there are $N!$ different ways to perform this matching.
 1138

1139 To better illustrate our results, we introduce the concept of permutation from group theory to
 1140 represent these $N!$ one-to-one assignment. More specifically, for any one-to-one assignment from
 1141 $\{\mathbf{e}_{k_1}, \dots, \mathbf{e}_{k_N}\}$ to $\{\mathbf{a}_{i,1}, \dots, \mathbf{a}_{i,N}\}$, we represent it as a bijective function $\sigma : \{1, \dots, N\} \rightarrow$
 1142 $\{k_1, \dots, k_N\}$. Here, each bijection σ means that we match each basis vector $\mathbf{e}_{\sigma(j)}$, $\forall j \in [N]$ to the j -
 1143 th sampled vector $\mathbf{a}_{i,j}$ in the sampling-without-replacement process, namely, $\mathbf{a}_{i,j} = \mathbf{e}_{\sigma(j)}$, $\forall j \in [N]$.
 1144 Moreover, we denote all such bijections as $B_N(\mathbf{m}_i)$, that is to say,

$$1145 B_N(\mathbf{m}_i) := \{\sigma : \sigma \text{ is a bijection from } [N] \text{ to } \{k_1, \dots, k_N\}\}.$$

1146 With the notions of σ and $B_N(\mathbf{m}_i)$, we next present the specific form of $p(\mathbf{m}_i | \pi_i)$. At first, like
 1147 Section 4.1, we assume $\pi_i = (\pi_{i,1}, \dots, \pi_{i,M})$ and define $\psi(\pi_i) = (\frac{e^{\pi_{i,1}}}{\sum_{j=1}^M e^{\pi_{i,j}}}, \dots, \frac{e^{\pi_{i,M}}}{\sum_{j=1}^M e^{\pi_{i,j}}})$ as
 1148 the softmax function. Then, for a specific assignment $\sigma \in B_N(\mathbf{m}_i)$, we have that

$$1150 \Pr(\{\mathbf{a}_{i,j} = \mathbf{e}_{\sigma(j)}\}_{j=1}^N | \pi_i) = \prod_{j=1}^N \frac{[\psi(\pi_i)]_{\sigma(j)}}{1 - \sum_{a=1}^{j-1} [\psi(\pi_i)]_{\sigma(a)}}, \quad (15)$$

1151 where the symbol ‘Pr’ denotes the probability and $[\psi(\pi_i)]_j$ denotes its j -th component. Moreover,
 1152 in Eq.15, when $j = 1$, we define the summation $\sum_{a=1}^0 [\psi(\pi_i)]_{\sigma(a)} \equiv 0$ and simultaneously specify
 1153 $\frac{0}{0} := 1$.

1154 It is important to note that in Eq.15, the value $\frac{[\psi(\pi_i)]_{\sigma(j)}}{1 - \sum_{a=1}^{j-1} [\psi(\pi_i)]_{\sigma(a)}}$ stands for the j -step sampling-
 1155 without-replacement probability. Finally, from the result of Eq.15, we have that

$$1156 p(\mathbf{m}_i | \pi_i) = \sum_{\sigma \in B_N(\mathbf{m}_i)} \Pr(\{\mathbf{a}_{i,j} = \mathbf{e}_{\sigma(j)}\}_{j=1}^N | \pi_i) \\ 1157 = \sum_{\sigma \in B_N(\mathbf{m}_i)} \left(\prod_{j=1}^N \frac{[\psi(\pi_i)]_{\sigma(j)}}{1 - \sum_{a=1}^{j-1} [\psi(\pi_i)]_{\sigma(a)}} \right). \quad (16)$$

1158 B.2 DETAILED DESCRIPTION OF $p(\mathbf{m} | \pi)$

1159 Due to that $p(\mathbf{m} | \pi) := \prod_{i=1}^M p(\mathbf{m}_i | \pi_i)$ and Eq.16, we then can show that

$$1160 p(\mathbf{m} | \pi) := \prod_{i=1}^M p(\mathbf{m}_i | \pi_i) = \prod_{i=1}^M \left(\sum_{\sigma \in B_N(\mathbf{m}_i)} \left(\prod_{j=1}^N \frac{[\psi(\pi_i)]_{\sigma(j)}}{1 - \sum_{a=1}^{j-1} [\psi(\pi_i)]_{\sigma(a)}} \right) \right). \quad (17)$$

1161 B.3 COMPUTE THE GRADIENT $\nabla_{\pi} \log(p(\mathbf{m} | \pi))$

1162 Note that in Eq.10, in order to update the logits π via mini-batch stochastic policy gradient descent,
 1163 we need to frequently compute the gradient $\nabla_{\pi} \log(p(\mathbf{m} | \pi))$. Thus, in this subsection, we give the
 1164 detailed form of this $\nabla_{\pi} \log(p(\mathbf{m} | \pi))$.

1165 At first, due to that $p(\mathbf{m} | \pi) := \prod_{i=1}^M p(\mathbf{m}_i | \pi_i)$, we can know $\log(p(\mathbf{m} | \pi)) = \sum_{i=1}^M \log(p(\mathbf{m}_i | \pi_i))$
 1166 such that

$$1167 \nabla_{\pi} \log(p(\mathbf{m} | \pi)) = \left(\nabla_{\pi_1} \log(p(\mathbf{m}_1 | \pi_1)), \nabla_{\pi_2} \log(p(\mathbf{m}_2 | \pi_2)), \dots, \nabla_{\pi_{\frac{d}{M}}} \log(p(\mathbf{m}_{\frac{d}{M}} | \pi_{\frac{d}{M}})) \right).$$

1168 Therefore, in the subsequent part of this subsection, we show the specific form of $\nabla_{\pi_i} \log(p(\mathbf{m}_i | \pi_i))$
 1169 for any $i \in [\frac{d}{M}]$. Like Section B.1, we assume that $\mathbf{m}_i = \sum_{i \in [N]} \mathbf{e}_{k_i}$ where $k_i \in [M]$, $\forall i \in [N]$ and
 1170 $k_1 \neq k_2 \neq \dots \neq k_N$.

1188 Then, when $\pi_i = (\pi_{i,1}, \dots, \pi_{i,M})$, for any $k \in [M] = \{1, \dots, M\}$, we have that
 1189

$$\begin{aligned}
 \frac{\partial \left(\log(p(\mathbf{m}_i | \pi_i)) \right)}{\partial \pi_{i,k}} &= \frac{1}{p(\mathbf{m}_i | \pi_i)} \frac{\partial \left(p(\mathbf{m}_i | \pi_i) \right)}{\partial \pi_{i,k}} \\
 &= \frac{1}{p(\mathbf{m}_i | \pi_i)} \frac{\partial \left(\sum_{\sigma \in B_N(\mathbf{m}_i)} \left(\prod_{j=1}^N \frac{[\psi(\pi_i)]_{\sigma(j)}}{1 - \sum_{a=1}^{j-1} [\psi(\pi_i)]_{\sigma(a)}} \right) \right)}{\partial \pi_{i,k}} \\
 &= \frac{1}{p(\mathbf{m}_i | \pi_i)} \sum_{\sigma \in B_N(\mathbf{m}_i)} \frac{\partial \left(\prod_{j=1}^N \frac{[\psi(\pi_i)]_{\sigma(j)}}{1 - \sum_{a=1}^{j-1} [\psi(\pi_i)]_{\sigma(a)}} \right)}{\partial \pi_{i,k}} \\
 &= \frac{1}{p(\mathbf{m}_i | \pi_i)} \sum_{\sigma \in B_N(\mathbf{m}_i)} \left(\prod_{j=1}^N \frac{1}{1 - \sum_{a=1}^{j-1} [\psi(\pi_i)]_{\sigma(a)}} \right) \frac{\partial \left(\prod_{j=1}^N [\psi(\pi_i)]_{\sigma(j)} \right)}{\partial \pi_{i,k}} \\
 &\quad + \frac{1}{p(\mathbf{m}_i | \pi_i)} \sum_{\sigma \in B_N(\mathbf{m}_i)} \left(\prod_{j=1}^N [\psi(\pi_i)]_{\sigma(j)} \right) \frac{\partial \left(\prod_{j=1}^N \frac{1}{1 - \sum_{a=1}^{j-1} [\psi(\pi_i)]_{\sigma(a)}} \right)}{\partial \pi_{i,k}}.
 \end{aligned} \tag{18}$$

1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 Next, we compute the $\frac{\partial \left(\prod_{j=1}^N [\psi(\pi_i)]_{\sigma(j)} \right)}{\partial \pi_{i,k}}$ and $\frac{\partial \left(\prod_{j=1}^N \frac{1}{1 - \sum_{a=1}^{j-1} [\psi(\pi_i)]_{\sigma(a)}} \right)}{\partial \pi_{i,l}}$ in Eq.18. At first, from the
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510

1242 Merging Eq.21 and Eq.20 into Eq.18, we can finally have that
1243

$$\begin{aligned} 1244 \frac{\partial \left(\log(p(\mathbf{m}_i|\pi_i)) \right)}{\partial \pi_{i,k}} &= \sum_{\sigma \in B_N(\mathbf{m}_i)} \left(\prod_{j=1}^N \frac{[\psi(\pi_i)]_{\sigma(j)}}{1 - \sum_{a=1}^{j-1} [\psi(\pi_i)]_{\sigma(a)}} \right) \frac{\left(\mathbb{I}[k \in \{k_i\}_{i=1}^N] - N [\psi(\pi_i)]_k \right)}{p(\mathbf{m}_i|\pi_i)} \\ 1247 &+ \sum_{\sigma \in B_N} \left(\prod_{j=1}^N \frac{[\psi(\pi_i)]_{\sigma(j)}}{1 - \sum_{a=1}^{j-1} [\psi(\pi_i)]_{\sigma(a)}} \right) \left(\sum_{j=1}^N \frac{[\psi(\pi_i)]_k \left(\mathbb{I}[j > \sigma^{-1}(k)] - \sum_{a=1}^{j-1} [\psi(\pi_i)]_{\sigma(a)} \right)}{p(\mathbf{m}_i|\pi_i) \left(1 - \sum_{a=1}^{j-1} [\psi(\pi_i)]_{\sigma(a)} \right)} \right), \end{aligned}$$

1250
1251 where $p(\mathbf{m}_i|\pi_i) = \sum_{\sigma \in B_N(\mathbf{m}_i)} \left(\prod_{j=1}^N \frac{[\psi(\pi_i)]_{\sigma(j)}}{1 - \sum_{i=1}^{j-1} [\psi(\pi_i)]_{\sigma(i)}} \right)$ and $\mathbf{m}_i = \sum_{i \in [N]} \mathbf{e}_{k_i} \in \mathcal{S}^{N:M}$.
1252
1253

C PROOFS

1254 In this Section, we provide the detailed proofs of the main theorems.
1255

C.1 PROOF OF THEOREM 1

1256 This subsection aims to present a rigorous proof for the representation Theorem 1. Before going
1257 in the details, we first assume that, in Eq.4, $\mathbf{a}_i = \mathbf{e}_{k_i}, \forall i \in [N]$ where $k_i \in [M], \forall i \in [N]$ and
1258 $k_1 \neq k_2 \neq \dots \neq k_N$. With this assumption, then we can show that,
1259

$$\bigodot_{i=1}^N (\mathbf{1}_M - \mathbf{a}_i) = \mathbf{1}_M - \left(\sum_{j \in \{k_1, \dots, k_N\}} \mathbf{e}_j \right). \quad (22)$$

1260 We verify this Eq.22 by induction. Firstly, when $N = 1$, Eq. 22 naturally holds. Subsequently, we
1261 assume that when $N = m < M$, Eq. 22 is right. As a result, we can show that, when $N = m+1 \leq M$
1262

$$\begin{aligned} 1263 \bigodot_{i=1}^N (\mathbf{1}_M - \mathbf{a}_i) &= \bigodot_{i=1}^{m+1} (\mathbf{1}_M - \mathbf{a}_i) = \left(\bigodot_{i=1}^m (\mathbf{1}_M - \mathbf{a}_i) \right) \odot (\mathbf{1}_M - \mathbf{a}_{m+1}) \\ 1264 &= \left(\mathbf{1}_M - \sum_{j \in \{k_1, \dots, k_m\}} \mathbf{e}_j \right) \odot (\mathbf{1}_M - \mathbf{e}_{k_{m+1}}) \\ 1265 &= \mathbf{1}_M - \left(\sum_{j \in \{k_1, \dots, k_m\}} \mathbf{e}_j \right) - \mathbf{e}_{k_{m+1}} - \sum_{j \in \{k_1, \dots, k_m\}} (\mathbf{e}_{k_{m+1}} \odot \mathbf{e}_j) = \mathbf{1}_M - \left(\sum_{j \in \{k_1, \dots, k_{m+1}\}} \mathbf{e}_j \right), \end{aligned}$$

1266 where the final equality follows from that $\mathbf{e}_{k_{m+1}} \odot \mathbf{e}_j = 0$, when $j \neq k_{m+1}$. As a result, the Eq. 22
1267 holds for any $N \leq M$.
1268

According to the result of Eq. 22, we can easily have that
1269

$$\bigoplus_{i=1}^N \mathbf{a}_i = \mathbf{1} - \bigodot_{i=1}^N (\mathbf{1} - \mathbf{a}_i) = \sum_{j \in \{k_1, \dots, k_N\}} \mathbf{e}_j. \quad (23)$$

1270 Therefore, from Eq.23, we can infer that, when $\mathbf{a}_i \in \{\mathbf{e}_1, \dots, \mathbf{e}_M\}, \forall i \in [N]$ and $\mathbf{a}_1 \neq \mathbf{a}_2 \neq \dots \neq$
1271 \mathbf{a}_N , $\bigoplus_{i=1}^N \mathbf{a}_i \in \mathbb{B}^{1 \times M}$ and $\|\bigoplus_{i=1}^N \mathbf{a}_i\|_1 = N$ such that $\bigoplus_{i=1}^N \mathbf{a}_i \in \mathcal{S}^{N:M}$ where \mathbb{B} denotes the
1272 Boolean set. Furthermore, for any binary vector $\mathbf{b} \in \mathbb{M}^{N:M}$, we can redefine $\mathbf{b} = \sum_{i \in [N]} \mathbf{e}_{s_i}$ where
1273 $s_i \in [M], \forall i \in [N]$ and $s_1 \neq s_2 \neq \dots \neq s_N$. Then, if we set $\mathbf{a}_i = \mathbf{e}_{s_i}$ for $i \in \{1, \dots, n\}$, according
1274 to the result of Eq.23, we can have
1275

$$\bigoplus_{i=1}^N \mathbf{a}_i = \sum_{i \in [N]} \mathbf{e}_{s_i} = \mathbf{b}.$$

1276 As a result, we can establish that
1277

$$\mathcal{S}^{N:M} = \left\{ \bigoplus_{i=1}^N \mathbf{a}_i : \mathbf{a}_i \in \{\mathbf{e}_1, \dots, \mathbf{e}_M\}, \forall i \in [N] \text{ and } \mathbf{a}_1 \neq \mathbf{a}_2 \neq \dots \neq \mathbf{a}_N \right\}.$$

1296 C.2 PROOF OF POLICY GRADIENT ESTIMATOR EQUATION 9
12971298 From the notations in Eq.8, we have that
1299

1300
$$\Phi(\pi) := \mathbb{E}_{\xi \sim \mathcal{D}, \mathbf{m} = \{\mathbf{m}_i | \mathbf{m}_i \sim p(\mathbf{m}_i | \pi_i)\}} [f(\mathbf{m} \odot \mathbf{w}, \xi)] := \int \mathbb{E}_\xi [f(\mathbf{m} \odot \mathbf{w}, \xi)] p(\mathbf{m} | \pi) d\mathbf{m}. \quad (24)$$

1301

1302 It is worth noting that in right-hand side(RHS) of Eq.24, only the component "p($\mathbf{m} | \pi$)" contains the
1303 unknown logits variable π . As a result, we have that
1304

1305
$$\begin{aligned} \nabla_\pi \Phi(\pi) &= \nabla_\pi \int \mathbb{E}_\xi [f(\mathbf{m} \odot \mathbf{w}, \xi)] p(\mathbf{m} | \pi) d\mathbf{m} \\ 1306 &= \int \mathbb{E}_\xi [f(\mathbf{m} \odot \mathbf{w}, \xi)] \nabla_\pi p(\mathbf{m} | \pi) d\mathbf{m} \\ 1307 &= \int \mathbb{E}_\xi [f(\mathbf{m} \odot \mathbf{w}, \xi)] \frac{\nabla_\pi p(\mathbf{m} | \pi)}{p(\mathbf{m} | \pi)} p(\mathbf{m} | \pi) d\mathbf{m} \\ 1308 &= \int \mathbb{E}_\xi [f(\mathbf{m} \odot \mathbf{w}, \xi)] \left(\nabla_\pi \log(p(\mathbf{m} | \pi)) \right) p(\mathbf{m} | \pi) d\mathbf{m} \\ 1309 &= \mathbb{E}_{\xi \sim \mathcal{D}, \mathbf{m} = \{\mathbf{m}_i | \mathbf{m}_i \sim p(\mathbf{m}_i | \pi_i)\}} [f(\mathbf{m} \odot \mathbf{w}, \xi) \nabla \log(p(\mathbf{m} | \pi))], \end{aligned}$$

1310

1311 where the forth equality comes from the relationship that $\left(\log(f(x)) \right)' = \frac{d(\log(f(x)))}{dx} = \frac{f'(x)}{f(x)}$.
13121313 C.3 PROOF OF THEOREM 2
13141315 We first investigate the properties of the policy gradient update method applied in this paper. As
1316 shown in Eq.(9), the general policy gradient satisfies the following equation:
1317

1318
$$\nabla \Phi(\pi) = \mathbb{E}_{p(\mathbf{m} | \pi)} [f(\mathbf{m} \odot \mathbf{w}) \nabla \log(p(\mathbf{m} | \pi))],$$

1319

1320 where $\mathbb{E}_\xi [f(\mathbf{m} \odot \mathbf{w}, \xi)] = f(\mathbf{m} \odot \mathbf{w})$.
13211322 In the training, due to the limitations of data samples, instead of computing the full loss $f(\mathbf{m} \odot \mathbf{w})$,
1323 we typically use a small mini-batch stochastic gradient, that is,
1324

1325
$$g_p = f(\mathbf{m} \odot \mathbf{w}, \xi) \nabla \log(p(\mathbf{m} | \pi)),$$

1326

1327 C.3.1 LOSS RESIDUAL AND SMOOTHING TRACKER ARE UNBIASED ESTIMATORS OF $\nabla \Phi(\pi)$
13281329 We denote g_r as update via loss residual:
1330

1331
$$g_r = (f(\mathbf{m} \odot \mathbf{w}, \xi) - f(\mathbf{m}_0 \odot \mathbf{w}, \xi)) \nabla \log(p(\mathbf{m} | \pi)),$$

1332

1333 and g_{sr} as update via loss residual with smoothing tracker:
1334

1335
$$\begin{aligned} g_{sr} &= (f(\mathbf{m} \odot \mathbf{w}, \xi) - f(\mathbf{m}_0 \odot \mathbf{w}, \xi) - \delta) \nabla \log(p(\mathbf{m} | \pi)), \\ 1336 \delta &= \alpha \delta + (1 - \alpha) (f(\mathbf{m} \odot \mathbf{w}, \xi) - f(\mathbf{m}_0 \odot \mathbf{w}, \xi)). \end{aligned}$$

1337

1338 It is worth noting that these two introduced additional terms $f(\mathbf{m}_0 \odot \mathbf{w}, \xi)$ and δ are independent of
1339 the logits variable π such that we can know that
1340

1341
$$\begin{aligned} 1342 \mathbb{E}_{p(\mathbf{m} | \pi)} [(f(\mathbf{m}_0 \odot \mathbf{w}, \xi) + \delta) \nabla \log(p(\mathbf{m} | \pi))] &= (f(\mathbf{m}_0 \odot \mathbf{w}, \xi) + \delta) \int p(\mathbf{m} | \pi) \frac{\nabla p(\mathbf{m} | \pi)}{p(\mathbf{m} | \pi)} d\mathbf{m} \\ 1343 &= (f(\mathbf{m}_0 \odot \mathbf{w}, \xi) + \delta) \nabla \int p(\mathbf{m} | \pi) d\mathbf{m} = (f(\mathbf{m}_0 \odot \mathbf{w}, \xi) + \delta) \nabla 1 = 0. \end{aligned}$$

1344

1345 Therefore, our proposed update using the loss residual with smoothing tracker remains an unbiased
1346 estimator of the standard policy gradient. Similarly, letting $\delta = 0$, it degrades to the update with only
1347 loss residual, which is also a unbiased estimator of the standard policy gradient. In fact, our proposed
1348 enhanced version of the policy gradient update can be viewed as an auxiliary training method that
1349 introduces a baseline term, similar to the approach in reinforcement learning (Williams, 1992).

1350 C.3.2 EFFICIENCY OF g_p
13511352 We first investigate the properties of updating via loss residual $f(\mathbf{m} \odot \mathbf{w}, \xi) - f(\mathbf{m}_0 \odot \mathbf{w}, \xi)$. We
1353 have the variance of the standard policy gradient g_p as:

1354
$$\begin{aligned} 1355 \text{Var}[g_p] &= \mathbb{E} \left[f(\mathbf{m} \odot \mathbf{w}, \xi)^2 (\nabla \log(p(\mathbf{m}|\pi)))^2 \right] - \mathbb{E} [f(\mathbf{m} \odot \mathbf{w}, \xi) \nabla \log(p(\mathbf{m}|\pi))]^2 \\ 1356 &= \mathbb{E} \left[(f(\mathbf{m} \odot \mathbf{w}, \xi))^2 (\nabla \log(p(\mathbf{m}|\pi)))^2 \right] - \nabla \Phi(\pi)^2. \\ 1357 \end{aligned}$$

1358 Similarly, since $\mathbb{E}[g_r] = \nabla \Phi(\pi)$, the variance of g_r achieves:

1360
$$\text{Var}[g_r] = \mathbb{E} \left[(f(\mathbf{m} \odot \mathbf{w}, \xi) - f(\mathbf{m}_0 \odot \mathbf{w}, \xi))^2 (\nabla \log(p(\mathbf{m}|\pi)))^2 \right] - \nabla \Phi(\pi)^2.$$

1361

1362 Thus we have:

1363
$$\begin{aligned} 1364 \text{Var}[g_r] - \text{Var}[g_p] &= \mathbb{E}_{p(\mathbf{m}|\pi)} \left[(\nabla \log(p(\mathbf{m}|\pi)))^2 \mathbb{E}_\xi \left[(f(\mathbf{m} \odot \mathbf{w}, \xi) - f(\mathbf{m}_0 \odot \mathbf{w}, \xi))^2 - f(\mathbf{m} \odot \mathbf{w}, \xi)^2 \right] \right] \\ 1365 &= \mathbb{E}_{p(\mathbf{m}|\pi)} \left[\underbrace{(\nabla \log(p(\mathbf{m}|\pi)))^2}_{\geq 0} \mathbb{E}_\xi \left[\underbrace{f(\mathbf{m}_0 \odot \mathbf{w}, \xi)}_{\geq 0} (f(\mathbf{m}_0 \odot \mathbf{w}, \xi) - 2f(\mathbf{m} \odot \mathbf{w}, \xi)) \right] \right]. \\ 1366 \\ 1367 \\ 1368 \\ 1369 \\ 1370 \end{aligned}$$

1371 Their relative magnitudes are determined by $f(\mathbf{m}_0 \odot \mathbf{w}, \xi) - 2f(\mathbf{m} \odot \mathbf{w}, \xi)$ term and we have:

1372
$$\begin{cases} \text{Var}[g_r] \geq \text{Var}[g_p], & \text{when } f(\mathbf{m}_0 \odot \mathbf{w}, \xi) \geq 2f(\mathbf{m} \odot \mathbf{w}, \xi), \\ \text{Var}[g_r] < \text{Var}[g_p], & \text{when } f(\mathbf{m}_0 \odot \mathbf{w}, \xi) < 2f(\mathbf{m} \odot \mathbf{w}, \xi). \end{cases}$$

1373

1374 Therefore, updating via loss residual can always achieve a lower variance when $f(\mathbf{m} \odot \mathbf{w}, \xi) > \frac{1}{2}f(\mathbf{m}_0 \odot \mathbf{w}, \xi)$. This implies that the variance in the initial training stage is significantly lower than
1375 that of the vanilla PGE g_p , enabling substantial acceleration. We also validate this in our experiments,
1376 where the vanilla policy gradient converges extremely slowly and barely learns effective information,
1377 while g_r can achieve a rapid reduction in loss within only hundreds of iterations.
13781381 C.3.3 EFFICIENCY OF g_{sr}
13821383 Similarly, since $\mathbb{E}[g_{sr}] = \nabla \Phi(\pi)$, the variance of g_{sr} achieves:

1384
$$\text{Var}[g_{sr}] = \mathbb{E} \left[(f(\mathbf{m} \odot \mathbf{w}, \xi) - f(\mathbf{m}_0 \odot \mathbf{w}, \xi) - \delta)^2 (\nabla \log(p(\mathbf{m}|\pi)))^2 \right] - \nabla \Phi(\pi)^2.$$

1385

1386 And we have:

1387
$$\begin{aligned} 1388 \text{Var}[g_{sr}] - \text{Var}[g_p] &= \mathbb{E}_{p(\mathbf{m}|\pi)} \left[(\nabla \log(p(\mathbf{m}|\pi)))^2 \mathbb{E}_\xi \left[(f(\mathbf{m} \odot \mathbf{w}, \xi) - f(\mathbf{m}_0 \odot \mathbf{w}, \xi) - \delta)^2 - f(\mathbf{m} \odot \mathbf{w}, \xi)^2 \right] \right] \\ 1389 &= \mathbb{E}_{p(\mathbf{m}|\pi)} \left[(\nabla \log(p(\mathbf{m}|\pi)))^2 \mathbb{E}_\xi [f(\mathbf{m}_0 \odot \mathbf{w}, \xi)^2] \right] + \mathbb{E}_{p(\mathbf{m}|\pi)} \left[(\nabla \log(p(\mathbf{m}|\pi)))^2 \mathbb{E}_\xi [\delta^2] \right] \\ 1390 &\quad - 2\mathbb{E}_{p(\mathbf{m}|\pi)} \left[(\nabla \log(p(\mathbf{m}|\pi)))^2 \mathbb{E}_\xi [f(\mathbf{m} \odot \mathbf{w}, \xi) \delta] \right] \\ 1391 &\quad + 2\mathbb{E}_{p(\mathbf{m}|\pi)} \left[(\nabla \log(p(\mathbf{m}|\pi)))^2 \mathbb{E}_\xi [f(\mathbf{m}_0 \odot \mathbf{w}, \xi) \delta] \right] \\ 1392 &\quad - 2\mathbb{E}_{p(\mathbf{m}|\pi)} \left[(\nabla \log(p(\mathbf{m}|\pi)))^2 \mathbb{E}_\xi [f(\mathbf{m} \odot \mathbf{w}, \xi) f(\mathbf{m}_0 \odot \mathbf{w}, \xi)] \right] \\ 1393 &= \underbrace{\mathbb{E}_{p(\mathbf{m}|\pi)} \left[(\nabla \log(p(\mathbf{m}|\pi)))^2 \right]}_{\text{denoted by } A \geq 0} \delta^2 + \underbrace{2\mathbb{E}_{p(\mathbf{m}|\pi)} \left[(\nabla \log(p(\mathbf{m}|\pi)))^2 (f(\mathbf{m}_0 \odot \mathbf{w}, \xi) - f(\mathbf{m} \odot \mathbf{w}, \xi)) \right]}_{\text{denoted by } B} \delta \\ 1394 &\quad + \underbrace{\mathbb{E}_{p(\mathbf{m}|\pi)} \left[(\nabla \log(p(\mathbf{m}|\pi)))^2 \mathbb{E}_\xi [f(\mathbf{m}_0 \odot \mathbf{w}, \xi) (f(\mathbf{m}_0 \odot \mathbf{w}, \xi) - 2f(\mathbf{m} \odot \mathbf{w}, \xi))] \right]}_{\text{Var}[g_r] - \text{Var}[g_p]}. \\ 1395 \\ 1396 \\ 1397 \\ 1398 \\ 1399 \\ 1400 \\ 1401 \\ 1402 \\ 1403 \end{aligned}$$

1404 Clearly, when $\delta = 0$, $\text{Var}[g_{sr}] = \text{Var}[g_r]$. Next, we discuss the case where $\delta \neq 0$. The above
 1405 expression can be viewed as a quadratic function w.r.t. δ , i.e.,
 1406

1407

1408

$$1409 \text{Var}[g_{sr}] - \text{Var}[g_p] = V(\delta) = A\delta^2 + B\delta + (\text{Var}[g_r] - \text{Var}[g_p]),$$

1410

1411

1412 According to the definition of δ , it is the moving average of the $f(\mathbf{m} \odot \mathbf{w}, \xi) - f(\mathbf{m}_0 \odot \mathbf{w}, \xi)$ term.
 1413 By considering $f(\mathbf{m} \odot \mathbf{w}, \xi) \geq \frac{1}{2}f(\mathbf{m}_0 \odot \mathbf{w}, \xi)$, we can intuitively examine the corresponding
 1414 magnitude relationships through the function plots. As shown in Figure 7, when $|\delta| < |\frac{B}{A}|$, we always
 1415 have $\text{Var}[g_{sr}] < \text{Var}[g_r]$. Furthermore, if $\delta = -\frac{B}{2A}$, the extent of variance reduction will reach its
 1416 maximum. Therefore we have:
 1417

1418

1419

$$\begin{aligned} 1420 \delta^* &= -\frac{B}{2A} = \frac{\mathbb{E}_{p(\mathbf{m}|\pi)} \left[(\nabla \log(p(\mathbf{m}|\pi)))^2 (f(\mathbf{m} \odot \mathbf{w}) - f(\mathbf{m}_0 \odot \mathbf{w})) \right]}{1421 \mathbb{E}_{p(\mathbf{m}|\pi)} \left[(\nabla \log(p(\mathbf{m}|\pi)))^2 \right]} \\ 1422 &= \mathbb{E}_{p(\mathbf{m}|\pi)} \left[\frac{(\nabla \log(p(\mathbf{m}|\pi)))^2}{\mathbb{E}_{p(\mathbf{m}|\pi)} \left[(\nabla \log(p(\mathbf{m}|\pi)))^2 \right]} (f(\mathbf{m} \odot \mathbf{w}) - f(\mathbf{m}_0 \odot \mathbf{w})) \right] \\ 1423 &= \mathbb{E}_{\hat{p}(\mathbf{m}|\pi)} [f(\mathbf{m} \odot \mathbf{w}) - f(\mathbf{m}_0 \odot \mathbf{w})], \end{aligned}$$

1428

1429

1430

1431

$$\text{where } \hat{p}(\mathbf{m}|\pi) = \frac{p(\mathbf{m}|\pi)(\nabla \log(p(\mathbf{m}|\pi)))^2}{\mathbb{E}_{p(\mathbf{m}|\pi)} [(\nabla \log(p(\mathbf{m}|\pi)))^2]}.$$

1432

1433

1434

1435

1436

1437

1438

Clearly, δ^* can be interpreted as the expectation of $f(\mathbf{m} \odot \mathbf{w}) - f(\mathbf{m}_0 \odot \mathbf{w})$ under the optimal distribution $\hat{p}(\mathbf{m}|\pi)$, or equivalently, as the weighted average over all possible cases. It is feasible to accurately measure this distribution. When the original distribution $p(\mathbf{m}|\pi)$ is known, the optimal distribution can be derived; however, the corresponding computational overhead to calculate it is prohibitively high. Therefore, we track all stochastic sampling in the training process and calculate the moving average of each $f(\mathbf{m}_t \odot \mathbf{w}, \xi) - f(\mathbf{m}_0 \odot \mathbf{w}, \xi)$ as a compromise. After a long iteration t and enough samplings, δ can achieve significant and stable performance.

1439

1440

Therefore, we have $\text{Var}[g_{sr}] \lesssim \text{Var}[g_r] < \text{Var}[g_p]$.

1441

1442

1443

1444

1445

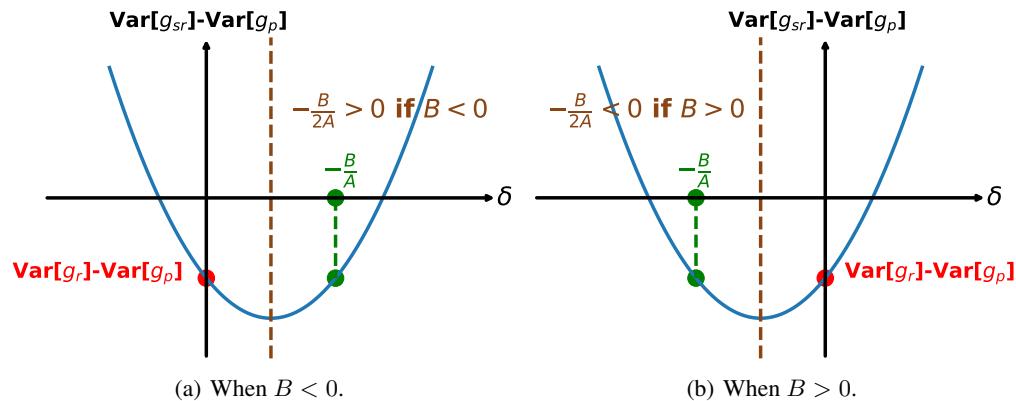


Figure 7: .

1458 And the theoretically maximal variance reduction can be expressed as:
 1459

$$\begin{aligned}
 1460 \quad & \max \{ \text{Var}[g_p] - \text{Var}[g_{sr}] \} \\
 1461 \quad & = -\mathbb{E}_{p(\mathbf{m}|\pi)} \left[(\nabla \log(p(\mathbf{m}|\pi)))^2 \mathbb{E}_\xi [f(\mathbf{m}_0 \odot \mathbf{w}, \xi) (f(\mathbf{m}_0 \odot \mathbf{w}, \xi) - 2f(\mathbf{m} \odot \mathbf{w}, \xi))] \right] \\
 1462 \quad & + \frac{\left(\mathbb{E}_{p(\mathbf{m}|\pi)} \left[(\nabla \log(p(\mathbf{m}|\pi)))^2 (f(\mathbf{m} \odot \mathbf{w}) - f(\mathbf{m}_0 \odot \mathbf{w})) \right] \right)^2}{\mathbb{E}_{p(\mathbf{m}|\pi)} \left[(\nabla \log(p(\mathbf{m}|\pi)))^2 \right]} \\
 1463 \quad & = \text{Var}[g_p] - \text{Var}[g_r] + \frac{\left(\mathbb{E}_{p(\mathbf{m}|\pi)} \left[(\nabla \log(p(\mathbf{m}|\pi)))^2 (f(\mathbf{m} \odot \mathbf{w}) - f(\mathbf{m}_0 \odot \mathbf{w})) \right] \right)^2}{\mathbb{E}_{p(\mathbf{m}|\pi)} \left[(\nabla \log(p(\mathbf{m}|\pi)))^2 \right]}.
 \end{aligned}$$

1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511