Under review as a conference paper at ICLR 2025

LEMMA-RCA: A LARGE MULTI-MODAL MULTI-
DOMAIN DATASET FOR ROOT CAUSE ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Root cause analysis (RCA) is crucial for enhancing the reliability and performance
of complex systems. However, progress in this field has been hindered by the
lack of large-scale, open-source datasets tailored for RCA. To bridge this gap, we
introduce LEMMA-RCA, a large dataset designed for diverse RCA tasks across
multiple domains and modalities. LEMMA-RCA features various real-world fault
scenarios from Information Technology (IT) and Operational Technology (OT)
systems, encompassing microservices, water distribution, and water treatment
systems, with hundreds of system entities involved. We evaluate the performance
of fourteen baseline methods on LEMMA-RCA across various settings, including
offline and online modes, as well as single and multi-modal configurations. The
dataset is publicly available at https://lemma-rca.github.io/l

1 INTRODUCTION

Root cause analysis (RCA) is essential for identifying the underlying causes of system failures,
ensuring the reliability and robustness of real-world systems. Recent advancements in artificial
intelligence and software development have led to increased complexity and interdependence in
modern systems. This complexity heightens their vulnerability to faults arising from interactions
among modular services, which can disrupt user experiences and incur significant financial losses.
Traditional manual RCA, however, is labor-intensive, costly, and prone to errors due to the complexity
of systems and the extensive data involved. Therefore, efficient and effective data-driven RCA
methods are crucial for pinpointing failures and mitigating financial losses when system faults occur.

Root cause analysis has been extensively studied across various domains and settings (Capozzoli et al.|
2015 |Deng & Hooi}, 2021; |Brandon et al.,2020; |[Fourlas & Karras), 2021} |Gao et al.,[2015). Based on
the application scenarios, RCA can be carried out in offline/online fashion with single/multi-modal
system data. Existing studies on RCA in these settings involve numerous learning techniques such as
Bayesian methods (Alaeddini & Dogan| 2011)), decision trees (Chen et al., 2004), etc. Particularly,
causal structure learning based technique (Burr, 2003} Pamfil et al., 2020; |Ng et al., 2020; [Tank et al.,
2022; Yu et al., 2023} [Wang et al.| |2023azb}; [Zheng et al., [2024) has proven effective in constructing
causal or dependency graphs between different system entities and key performance indicators (KPIs),
thereby enabling the tracing of underlying causes through these structures.

Data is the oxygen of data-driven methods. Despite significant progress in RCA techniques, the
availability of large-scale public datasets remains limited, often due to confidentiality concerns (Harsh
et al.l 2023)). This scarcity hinders fair comparisons between RCA methods. Additionally, publicly
accessible datasets often contain manually injected faults rather than real faults, and each dataset
typically covers only a single domain. These limitations can prevent existing RCA methods from
effectively identifying various types of system faults in real-world scenarios, potentially leading to
regulatory and ethical consequences in critical sectors.

To address these limitations, we introduce LEMMA-RCA, a collection of Large-scalE Multi-ModAl
datasets with various real system faults to facilitate future research in Root Cause Analysis. LEMMA-
RCA encompasses real-world applications such as IT operations and water treatment systems, with
hundreds of system entities involved. LEMMA-RCA accommodates multi-modal data including
textual system logs with millions of event records and time series metric data with more than 100, 000
timestamps. We annotate LEMMA-RCA with ground truth labels indicating the precise time stamps
when real system faults occur and their corresponding root-cause system entities.

https://lemma-rca.github.io/

Under review as a conference paper at ICLR 2025

Table 1: Existing datasets for root cause analysis. The top row corresponds to our dataset. The symbols v and
X indicate that the dataset has or does not have the corresponding feature, respectively.

Dataset Public Real Faults Large-scale Multi-domain Dependency Graph - Modality -
Single Multiple

LEMMA-RCA v v v v v v 4

NeZha v v v
PetShop v v v
Sock-Shop v
ITOps v v v
Murphy v v

A comparison between LEMMA-RCA and existing datasets for RCA is presented in[Table 1] We
briefly discuss the status of existing datasets: 1) NeZha (Yu et al.,|2023)) has limited size and contains
many missing parts in the monitoring data, and it is confined to one domain: microservice architec-
tures. 2) PetShop (Saurabh Garg, Imaya Kumar Jagannathan, 2024) has a small size. Additionally,
the system comprises only 41 components, limiting its complexity and reducing the practicality for
real-world scenarios. 3) Sock-Shop (Ikram et al.| 2022)) is small-scale with only 13 microservices, and
the injected faults (CPU hog and memory leak) are synthetic. Additionally, the data is not publicly
available and consists solely of single-modality metrics, lacking diversity in data sources such as logs
or traces. 4) ITOps (Li et al.| 2022c)) dataset is not public and contains structured logs that do not
contribute to comprehending the underlying causal mechanism of system failures, making it difficult
to conduct fine-grained RCA. 5) Murphy (Harsh et al.,2023)) is collected from a simple system and
also not public. In comparison to prior work, LEMMA-RCA demonstrates a comprehensive maturity
on the accessibility, authenticity, and diversity.

LEMMA-RCA enables fair comparisons among different RCA methods. We evaluate fourteen
baseline methods, with eleven suited for offline settings and the remaining three designed for online
RCA. The quality of various data modalities is assessed in both online and offline setups. The
experimental results demonstrate the effectiveness of LEMMA-RCA on evaluating related methods
and its extensive utility for advanced research in root cause analysis.

2 PRELIMINARIES AND RELATED WORK

Key Performance Indicator (KPI) is a monitoring time series that indicates the system status. For
instance, latency and service response time are two common KPIs used in microservice systems. A
large value of latency or response time usually indicates a low-quality system performance or even a
system failure.

Entity Metrics are multivariate time series collected by monitoring numerous system entities or
components. For example, in a microservice system, a system entity can be a physical machine,
container, pod, efc. Some common entity metrics in a microservice system include CPU utilization,
Memory utilization, disk IO utilization, efc. An abnormal system entity is usually a potential root
cause of a system failure.

Data-driven Root Cause Analysis Problem. Given the monitoring data (including metrics and
logs) of system entities and system KPIs, the root cause analysis problem is to identify the top K
system entities that are most relevant to KPIs when a system fault occurs. RCA techniques can
be implemented in various settings, where offline/online and single-modal/multi-modal are mostly
commonly concerned. Offline RCA is conducted retrospectively with historical data to determine past
failures, whereas online RCA operates in real-time using current data streams to promptly address
issues. On the other hand, single-modal RCA relies solely on one type of data for a focused analysis,
while multi-modal RCA uses multiple data sources for a comprehensive assessment. We illustrate the
procedure of RCA in single-modal offline and multi-modal online settings in

Single-modal Offline Root Cause Analysis (RCA) retrospectively identifies the primary cause of
system failures using a single data type after an event has occurred (Wang et al., [2023b; Tang et al.,
2019; Meng et al.,2020b; [Li et al., 2021} Soldani & Brogi, [2022). For example, Meng et al. (Meng
et al.| [2020b)) analyze monitoring metric data to discern sequential relationships and integrate causal
and temporal information for root cause localization in microservice systems. Similarly, Wang et

Under review as a conference paper at ICLR 2025

al. (Wang et al., 2023b) construct an interdependent causal network from time series data, using a
random walk strategy to pinpoint the most probable root causes. Li et al. (Li et al.,|2021) evaluate
microservice traces, determining that a service with a higher ratio of abnormal to normal traces
is likely the root cause. Recently, large language model (LLM) based methods become a new
research direction to learn causal relation for root cause identification due to the success of LLMs
in performing complex tasks (Chen et al., 2024} |Shan et al.| [2024; |Goel et al., [2024; Zhou et al.,
2024; Roy et al.|, [2024; [Wang et al.,[2024). For instance, Chen et al. (Chen et al.,[2024)) introduce
RCACopilot, an innovative on-call system empowered by the large language model for automating
RCA of cloud incidents. Shan et al. (Shan et al., [2024)) propose to first identify the log messages
indicating configuration-related errors and then localize the suspected root-cause configuration
properties based on the selected log messages and the offered configuration settings by LLMs. Goel
et al. (Goel et al.} 2024)) demonstrate that LL.Ms can benefit from service functionality and upstream
dependency information in better reasoning, thus improving the quality of the identification of root
causes. Although these studies demonstrate notable efficacy, they rely exclusively on single-modal
data, which may lead to suboptimal and biased outcomes in root cause localization.

Multi-modal Offline RCA. Recent studies have explored utilizing multi-modal data for offline RCA,
which can be divided into two approaches (Yu et al., 2023; Hou et al., [2021; [Zheng et al., [2024;
Lan et al.}2023). The first approach, exemplified by Nezha (Yu et al.}|2023)) and PDiagnose (Hou
et al.,|2021), involves extracting information from each modality separately and then integrating it for
analysis. Conversely, the second approach focuses on the interactions between different modalities.
For instance, MULAN (Zheng et al [2024) develops a comprehensive causal graph by learning
correlations between modalities, while MM-DAG (Lan et al., 2023)) aims to jointly learn multiple
Direct Acyclic Graphs, improving both consistency and depth of analysis.

Online RCA. Despite significant advances, most RCA methods are designed for offline use, requiring
extensive data collection and full retraining for new faults, which delays response times. To address
this, Wang et al. (Wang et al.|[2023a)) introduced an online RCA method that decouples state-invariant
and state-dependent information and incrementally updates the causal graph. Li et al. (Li et al.|
2022a) developed a causal Bayesian network that leverages system architecture knowledge to mitigate
potential biases toward new data. However, these methods are limited to single-modal data, and there
is a critical need for online RCA methods that can effectively handle multi-modal data

Single-modal Offline RCA Detector

Physical System

Monitoring Agent :if:z— l\gztt:c tﬁjﬁ tﬁjﬂ DD/\D/D tﬁl‘jﬁ
Q Q = Historical Data O e

Detector

N L
System Fault Log Data % E_fj) E_?E’ E_?j-‘k_lj

at Time t

Physical System\‘—l ,,,,,,,,,,,,,,,,

! Detector at %Update ! Detectorat | | Detectorat |
@ Monitoring Agent ! Batchl |Detector | Bach2 | | Batcht !
' f—i P :
2 - = gachoota :>3/" %: s %: f/[]ﬂ %:
= ol i =0 | | E“ o= | i = |
\ J/ Multi-modal Online RCA

Figure 1: Illustration of RCA workflow in the single-modal offline setting (top) and the multi-modal online
setting (bottom). The other two settings can be viewed as an ensemble of corresponding components (data
collection, detector, modality) and follow the same systematic procedure.

3 LEMMA-RCA DATA

This section outlines the data resources, details the preprocessing steps, and presents visualizations to
illustrate the characteristics of the data released. The data licence can be found in

3.1 DATA COLLECTION

We collect real-world data from two domains: IT operations and OT operations. The IT domain
includes sub-datasets from Product Review and Cloud Computing microservice systems, while the

Under review as a conference paper at ICLR 2025

"kubernetes" :

ntainer_name
space na

azzbafiac7os06ec”
Jocker-pullable://docker-registry.default.sve:500"
"pod_i g

"labels” :

"deployment” : "django-search-6",
"deploymentconfig": "django-search”,
"name": "django-search”

%

"host” : "okd-nodeoz.ssc-ase.net",

"master_url" : "https://kubernetes.default.sve.cluster.local",

"namespace id”

af-c17f-11ea-92b5-005056aae7d2"

!@: oipeline et g
(a) The architecture of Product Review Platform (b) Log data captured by the ElasticSearch

Figure 2: Visualization of the microservice system platform, which contains 6 nodes and multiple pods that may
vary across different stages; and the ElasticSearch log data.

OT domain includes Secure Water Treatment (SWaT) and Water Distribution (WADI) sub-datasets
from water treatment and distribution systems. Data specifics are provided in

In the IT domain, we developed two microservice platforms: the Product Review Platform and the
Cloud Computing Platform. The Product Review Platform is composed of six OpenShift nodes
(such as ocp4-control-plane-1 through ocp4-control-plane-3, ocp4-compute-1 and ocp4-compute-2,
and ocp4-infra-1) and 216 system pods (including ProductPage, MongoDB, review, rating, payment,
Catalogue, shipping, efc.). In this setup, four distinct system faults are colleceted, including out-
of-memory, high-CPU-usage, external-storage-full, and DDoS attack, on four different dates. Each
system fault ran the microservice system for at least 49 hours with different pods involved. The
pods running in different stages may vary, and the pods associated with different types of system
faults also differ. The structure of this microservice system with some key pods during one fault is
depicted in (a). Both log and metric data were generated and stored systematically to ensure
comprehensive monitoring. Specifically, eleven types of node-level metrics (e.g., net disk IO usage,
net disk space usage, efc.) and six types of pod-level metrics (e.g., CPU usage, memory usage, efc.)
were recorded by Prometheus (Turnbull, 2018)), and the time granularity of these system metrics is 1
second. Log data, on the other hand, were collected by ElasticSearch (Zamfir et al.,[2019) and stored
in JSON files with detailed timestamps and retrieval periods. The contents of system logs include
timestamp, pod name, log message, efc., as shown in[Figure 2](b). The IMeter (Nevedrov} [2006) was
employed to collect the system status information, such as elapsed time, latency, connect time, thread
name, throughput, efc. The latency is considered as system KPI as the system failure would result in
the latency significantly increasing.

For the Cloud Computing Platform, we monitored six different types of faults (such as cryptojacking,
mistakes made by GitOps, configuration change failure, etc.), and collected system metrics and logs
from various sources. In contrast to the Product Review platform, system metrics were directly
extracted from CloudWatclﬂ Metrics on EC2 instances, and the time granularity of these system
metrics is 1 second. Log events were acquired from CloudWatch Logs, consisting of three data types
(i.e., log messages, api debug log, and mysql log). Log message describes general log message
about all system entities; api debug log contains debug information of the AP layer when the API
was executed; mysql logs contain log information from database layer, including connection logs to
mysql, which user connected from which host, and what queries were executed. Latency, error rate,
and utilization rate were tracked using JMeter tool, serving as Key performance indicators (KPIs).
This comprehensive logging and data storage setup facilitates detailed monitoring and analysis of the
system’s performance and behavior.

In the OT domain, we constructed two sub-datasets, SWaT and WADI, using monitoring data collected
by the iTrust lab at the Singapore University of Technology and Design (1Trust,2022). These two sub-
datasets consist of time-series/metrics data, capturing the monitoring status of each sensor/actuator as
well as the overall system at each second. Specifically, SWaT (Mathur & Tippenhauer, [2016)) was
collected over an 11-day period from a water treatment testbed equipped with 51 sensors. The system
operated normally during the first 7 days, followed by attacks over the last 4 days, resulting in 16
system faults. Similarly, WADI (Ahmed et al.| 2017) was gathered from a water distribution testbed

'https://aws.amazon.com/cloudwatch/

Under review as a conference paper at ICLR 2025

Table 2: Data statistics of IT and OT operation sub-datasets.

Microservice System (IT) Product Review Cloud Computing
Original Dataset Size 765 GB 540 GB
Number of (#) fault types 4 6
Average # entities per fault 216.0 167.71
Average # metrics per fault 11 (node-level) + 6 (pod-level) 6 (node-level) + 7 (pod-level)
Average # timestamps per fault 131,329.25 109,350.57
Average max log events per fault across pods 153,081,219.0 63,768,587.25
Water Treatment/Distribution (OT) SWaT WADI
Original Dataset Size 447G 5.67G
Number of (#)fault types 16 9
Average # entities per fault 51.0 123.0
Average # metrics per fault 7 (node-level) + 7 (pod-level) 7 (node-level) + 7 (pod-level)
Average # timestamps per fault 56239.88 85248.47

over 16 days, featuring 123 sensors and actuators. The system maintained normal operations for the
first 14 days before experiencing attacks in the final 2 days, with 15 system faults recorded.

Figure 3: Visualization of KPI for system failure cases. Left: the first two sub-figures are from the Product
Review sub-dataset; the third and fourth sub-figures are from the Cloud Computing sub-dataset; Right: the first
two sub-figures are from the SWaT sub-dataset; the last two sub-figures are from the WADI sub-dataset.

We visualized the key performance indicator (KPI) for eight failure cases in where sudden
spikes or drops in latency indicate system failures. The first two sub-figures on the left show the KPIs
for two faults in the Product Review sub-dataset, while the third and fourth sub-figures depict faults
in the Cloud Computing sub-dataset. The first two sub-figures on the right display faults in the SWaT
dataset, and the last two show faults in the WADI dataset. The x-axis represents the timestamp, and
the y-axis shows the system latency.

3.2 DATA PREPROCESSING

After collecting system metrics and logs, we assess whether each pod exhibits stationarity, as non-
stationary data are unpredictable and cannot be effectively modeled. Consequently, we exclude
non-stationary pods, retaining only stationary ones for subsequent data preprocessing steps.

Log Feature Extraction for Product Review and Cloud Computing. The logs of some system
entities we collected are limited and insufficient for meaningful root cause analysis. Thus, we
exclude them from further analysis. Additionally, the log data is unstructured and frequently uses
a special token, complicating its direct application for analysis. How to extract useful information
from unstructured log data remains a great challenge. Following (Zheng et al.|[2024)), we preprocess
the log data into time-series format. We first utilize a log parsing tool, such as Drain, to transform
unstructured logs into structured log messages represented as templates. We then segment the data
using fixed 10-minute windows with 30-second intervals, calculating the occurrence frequency of
each log template. This frequency forms our first feature type, denoted as X{ € RT, where T is
the number of timestamps. We prioritize this feature because frequent log templates often indicate
critical insights, particularly useful in identifying anomalies such as Distributed Denial of Service
(DDoS) attacks, where a surge in template frequency can indicate unusual activity.

Moreover, we introduce a second feature type based on ‘golden signals’ derived from domain
knowledge, emphasizing the frequency of abnormal logs associated with system failures like DDoS

Under review as a conference paper at ICLR 2025

attacks, storage failures, and resource over-utilization. Identifying specific keywords like ‘error,’
‘exception,” and ‘critical’ within log templates helps pinpoint anomalies. This feature, denoted as
XE € RT, assesses the presence of abnormal log templates to provide essential labeling information
for anomaly detection.

Lastly, we implement a TF-IDF based method, segmenting logs using the same time windows and
applying Principal Component Analysis (PCA) to reduce feature dimensionality, selecting the most
significant component as X € R”. We concatenate these three feature types to form the final
feature matrix X© = [X{; X£; X£] € R3*T, enhancing our capacity for a comprehensive analysis
of system logs and improving anomaly detection capabilities.

KPI Construction for SWaT and WADI. The SWaT and WADI sub-datasets include the label
column that reflects the system status; however, the values within this column are discrete. To
facilitate the root cause analysis, it is beneficial to transform these values into a continuous format.
Specifically, we propose to convert the label into a continuous time series. To achieve this, we employ
anomaly detection algorithms, such as Support Vector Data Description and Isolation Forest, to model
the data. Subsequently, the anomaly score, as determined by the model, will be utilized as the system
KPI. More data preprocessing details on SWaT and WADI can be found in

3.3 SYSTEM FAULT SCENARIOS
There are 10 different types of real system faults in Product Review and Cloud Computing sub-

datasets. Due to the space limitation, we select two representative cases (one from each) and provide
the details below. Other fault scenarios are presented in[Appendix B] We also visualize the system

fault of these two cases in

WS Clous pod
SO Service Pod Affected Pod
: RN 7 e openshift cluster ™,
t [

produtoage

atiogs

e

Figure 4: Visualization of two system fault scenarios. Left: Cryptojacking. Right: External storage failure.

* Cryptojacking. In this scenario, cloud usage fees increase due to cryptojacking, where a Coin
Miner is covertly downloaded and installed on a microservice (details-v1 pod) in an EKS cluster.
This miner gradually consumes IT resources, escalating the cloud computing costs. Identifying the
root cause is challenging because the cost (SLI) encompasses the entire system, and no individual
service errors are detected. Periodic external requests are sent to microservices, and after a day,
the miner’s activity triggers auto-scaling in details-v1, increasing resource usage. Fargate’s impact
on EKS costs is significant due to its resource dependency. KPI (SLI) is calculated from resource
usage, with all pod and node metrics collected from CloudWatch. However, there are no node logs
for Fargate, complicating diagnosis.

» External Storage Failure. In this system failure, we fill up the external storage disk connected to
the Database (DB) pod (i.e., mongodb-v1) within Microservice A’s OpenShift-|cluster. When the
storage becomes full, the DB pod cannot add new data, resulting in system errors. These errors
propagate to pods that depend on the DB pod, causing some services (ratings) within Microservice
A to encounter errors. We monitor changes in response and error information for Microservice
A using Jaeger logs. Metrics for all containers and nodes, including CPU and memory usage, are
obtained from Prometheus within OpenShift. Logs for all containers and nodes are retrieved from
Elasticsearch within OpenShift. Additionally, we collect message logs from the external storage.
We illustrate the metrics and log data of the root cause pod in [Figure 5]

“https://www.redhat.com/en/technologies/cloud-computing/openshift

Under review as a conference paper at ICLR 2025

PE———

bbbt bbbty

——

Figure 5: Visualization of root cause for one system failure case (i.e., External Storage Failure) on the Product
Review Platform. Left: six system metrics of root cause. Right: the system log of the root cause pod (i.e.,
Mongodb-v1) with the x-axis representing the timestamp, the y-axis indicating the log event ID, and the colored
dots denoting event occurrences. Sudden drops in the metrics data, as well as new log event patterns observed at
the midpoint, indicate a system failure.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Evaluation Metrics. To assess baseline RCA method on LEMMA-RCA, we choose three widely-
used metrics (Wang et al., [2023b; Meng et al, [2020a} |[Zheng et al.l [2024) and introduce them
below.

(1). Precision@K (PR@K): It measures the probability that the top K predicted root causes are real,
defined as:

1 Yoick Rali) €V,
PR@K = — i<k (1)
|A| % min (K, |v,|)

where A is the set of system faults, a is one fault in A, V, is the real root causes of a, R, is the
predicted root causes of a, and ¢ is the i-th predicted cause of R,.

(2). Mean Average Precision@K (MAP@K): It assesses the top K predicted causes from the
overall perspective, defined as:

1
MAP@K = TIA| > > Pr@j)
achi<j<K

where a higher value indicates better performance.

(3). Mean Reciprocal Rank (MRR): It evaluates the ranking capability of models, defined as:

1 1
MRR@K = — — 3
|A| % rankp,)

where rankp, is the rank number of the first correctly predicted root cause for system fault a.

Baselines. We evaluate the performance of the following RCA models on the benchmark sub-datasets:
(1). PC (Burr} [2003): This classic constraint-based causal discovery algorithm is designed to identify
the causal graph’s skeleton using an independence test. (2) Dynotears (Pamfil et al.l 2020): It
constructs dynamic Bayesian networks through vector autoregression models. (3). C-LSTM (Tank
et al.l 2022): This model utilizes LSTM to model temporal dependencies and capture nonlinear
Granger causality. (4). GOLEM (Ng et al, 2020): GOLEM relaxes the hard Directed Acyclic Graph
(DAG) constraint of NOTEARS (Zheng et al.l 2018)) with a scoring function. (5). REASON (Wang
et al., |2023b)): An interdependent network model learning both intra-level and inter-level causal
relationships. (6). Nezha (Yu et al.l 2023): A multi-modal method designed to identify root causes
by detecting abnormal patterns. (7). CORAL (Wang et al.,|2023a): An online single-modal RCA
method based on incremental disentangled causal graph learning. (8). CIRCA (Li et al., 2022b):
This model utilizes structural graph construction, regression-based hypothesis testing, and descendant
adjustment to identify root cause metrics. (9). e-Diagnosis (Shan et al.,|2019): This model diagnoses
small-window, long-tail latency in large-scale microservice platforms using a two-sample test and
e-statistics. (10). RCD (Ikram et al.,|2022): This technique hierarchically localizes the root cause of
failures by focusing on relevant sections of the causal graph. (11). PCMCI |Runge et al.|(2019): Thi
technique combines conditional independence tests with a causal discovery algorithm to infer causal

Under review as a conference paper at ICLR 2025

networks from high-dimensional, nonlinear time series data. (12) BARO [Pham et al.[(2024): It is
an end-to-end approach integrating Bayesian change point detection and nonparametric hypothesis
testing to accurately detect anomalies and identify root causes in microservice systems.

The first four baseline models were originally designed to learn causal structures solely from time
series data. As outlined in (Wang et al, 2023bja)), these causal discovery models can be extended
to identify the root cause nodes. In this process, we first apply causal discovery models to learn the
causal graphs, then utilize random walk with restarts (Wang et al} 20234) on these graphs to identify
the top K nodes as root causes. The last three algorithms are applicable exclusively to metric data.
Besides, we extend NOTEARS and GOLEM to the online learning setting, denoted by NOTEARS*
and GOLEM*, respectivelyﬂ For the online setting, we use the historical normal data (e.g., 8 hours
for the Product Review sub-dataset, and 1 hour for the SWaT and WADI sub-datasets) to construct
the initial causal graph and update iteratively for each new batch of data. CORAL can inherit the
causations from the previous data batch, while NOTEARS* and GOLEM* have to learn from scratch
for each new data batch. More details of experimental settings can be found in[Appendix E] For the
hyperparameters, we use the default parameter values for all baselines to ensure a fair comparison.

Table 3: Results for offline RCA baselines with multiple modalities on the Product Review dataset.

Modality Model PR@1 PR@5 PR@10 MRR MAP@3 MAP@5 MAP@I10
Dynotears 0 0 0.500 0.070 0 0 0.075
PC 0 0 0.250 0.053 0 0 0.050
PCMCI 0.250 0.500 0.500 0.342 0.250 0.300 0.400
Metric Only C-LSTM 0250 0.750 0.750 0.474 0.500 0.250 0.675
GOLEM 0 0 0.250 0.043 0 0 0.025
RCD 0 0 0.500 0.067 0 0 0.175
e-Diagnosis 0 0 0 0.017 0 0 0
CIRCA 0 0.500 0.500 0.250 0.333 0.400 0.450
BARO 0.500 0.500 0.500 0.500 0.500 0.500 0.500
REASON 0.750 1.000 1.000 0.875 0.917 0.950 0.975
Dynotears 0 0 0.250 0.058 0 0 0.075
PC 0 0 0.250 0.069 0 0 0.125
Log Only C-LSTM 0 0 0.250 0.0590 0 0 0.075
GOLEM 0 0 0.250 0.058 0 0 0.075
REASON 0 0.500 0.750 0.216 0.167 0.250 0.400
Dynotears 0 0 0.500 0.095 0 0 0.150
PC 0 0 0.250 0.064 0 0 0.125
C-LSTM 0.500 0.750 0.750 0.593 0.583 0.650 0.700
Multi-Modality GOLEM 0 0 0.250 0.064 0 0 0.050
REASON 0.750 1.000 1.000 0.875 0.917 0.950 0.975
Nezha 0 0.500 0.750 0.193 0.083 0.250 0.475

4.2 OFFLINE ROOT CAUSE ANALYSIS RESULTS

Product Review and Cloud Computing. We evaluate nine offline RCA methods including both
single-modal and multi-modal methods on Product Review and Cloud Computing sub-datasets. The
experimental results are presented in [Table 3| and [Table 4] with respect to Precision at K (PR@K),
Mean Reciprocal Rank (MRR), and Mean Average Precision at K (MAP@K). Our observations reveal
the following insights: (1) PC algorithm and GOLEM have the worse performance on both Product
Review and Cloud Computing sub-datasets. We conjecture that PC algorithm and GOLEM fail to
capture the long term dependency for such a large-scale dataset, thus having difficulty of capturing
the abnormal temporal patterns. Compared to PC algorithm and GOLEM, C-LSTM and Dynotears
consider modeling the temporal dependency by their unique designs (i.e., Recurrent Structure for C-
LSTM or dynamic Bayesian networks for Dynoters). Thus, we observe that C-LSTM and Dynotears
outperform PC algorithm and GOLEM on both Product Review and Cloud Computing sub-datasets.
This observation suggests the importance of modeling temporal dependency for these large-scale
time-series datasets. (2) CIRCA outperforms RCD and e-Diagnosis, which aligns with the results in
the Petshop work (Saurabh Garg, Imaya Kumar Jagannathan| [2024)), where CIRCA showed better
accuracy in RCA due to its regression-based hypothesis testing and adjustment mechanisms. (3)
The REASON method demonstrates notable success in identifying the root cause in 75% of system

Other baselines are not extended to the online setting as they are time-intensive when there are multiple data batches.

Under review as a conference paper at ICLR 2025

fault scenarios on Product Review sub-dataset, achieving a PR@1 score of 75%. This indicates
the utility of metric data alone in facilitating root cause identification. Compared to C-LSTM and
Dynotears, we contribute the superiority of REASON to its design on multi-level causal structure
learning. (3) The performance of these RCA methods is diminished when relying solely on log data
for root cause analysis on both sub-datasets. This suggests that log data complements these methods,
aiding in more accurate identification of potential root causes. (4) Integrating both metric and log
data enhances the performance of most RCA methods in terms of MRR, compared to using only
metric data. Additionally, we measure the difference between the dependency graph and the learned
causal graph on the Product Review sub-dataset. The experimental results and discussion could be
found in Appendix
Table 4: Results for offline RCA with multiple modalities on the Cloud Computing sub-dataset.

Modality Model PR@1 PR@5 PR@I0 MRR MAP@3 MAP@5 MAP@I0
Dynotears 0 0.167 0333 0.075 0 0.033 0.117
PC 0 0 0 0.029 0 0 0
Metric Only C-LSTM 0.167 0.333 0.333 0.300 0.278 0.300 0.317
GOLEM 0 0 0.167 0.044 0 0 0.017
RCD 0 0 0 0.028 0 0 0
e-Diagnosis 0 0 0 0.023 0 0 0
CIRCA 0 0.167 0333 0.090 0 0.033 0.167
REASON 0.167 1.000 1.000 0472 0.444 0.667 0.833
Dynotears 0 0 0.167 0.048 0 0 0.050
PC 0 0 0 0.032 0 0 0
Log Only C-LSTM 0 0 0.167 0.044 0 0 0.050
GOLEM 0 0 0.167 0.051 0 0 0.050
REASON 0 0 0333 0.082 0 0 0.067
Dynotears 0 0.167 0333 0.095 0 0.033 0.015
PC 0 0 0.167 0.042 0 0 0.050
C-LSTM 0.167 0.333 0.500 0.267 0.167 0.233 0.367
Multi-Modality GOLEM 0 0 0333 0.075 0 0 0.083
REASON 0.333 1.000 1.000 0.597 0.611 0.767 0.883
Nezha 0 0.333 0333 0.148 0.111 0.020 0.267

Table 5: Results for offline RCA baselines on the SWaT sub-dataset.

Dataset Model PR@l PR@5 PR@10 MRR MAP@3 MAP@5 MAP@I0

Dynotears 0.125 0.323 0427 0279 0.201 0.244 0.308

PC 0.125 0.344 0.583 0.262 0.129 0.204 0.350

C-LSTM 0.125 0.281 0.521 0.294 0.139 0.177 0.319

SWaT GOLEM 0.063 0.125 0479 0224 0.077 0.096 0.250
RCD 0.125 0.125 0.625 0.228 0.125 0.125 0.344

e-Diagnosis ~ 0.125 0.125 0.563 0217 0.125 0.125 0.294

CIRCA 0.188 0.250 0.688 0.287 0.188 0.200 0.394

REASON 0.250 0.667 0.844 0.410 0.240 0.350 0.576

Water Treatment/Distribution. We employ eight single-modal RCA methods to assess root cause
localization performance on the SWaT and WADI sub-datasets. The comparative results on the SWaT,
presented in are evaluated in terms of PR@K, MRR, and MAP@K. The experimental results
on the WADI sub-datasets are presented in in Appendix [C] Consistent with observations
on the Product Review and Cloud Computing sub-datasets, REASON outperforms the other four
baseline methods. However, a decline in performance for the best baseline method, REASON, is
noted when compared to its results on the Product Review and Cloud Computing datasets. This
decrease in performance can be attributed to the nature of the SWaT and WADI sub-datasets, where
faults are brief and the intervals between them are short. These fleeting events can be easily missed
by most RCA methods, thus posing a significant challenge in accurately identifying the root causes
within these two sub-datasets.

4.3 ONLINE ROOT CAUSE ANALYSIS RESULTS

We evaluate three RCA methods on all sub-datasets to demonstrate the utility of the LEMMA-RCA
sub-dataset in an online setting. Notice that due to the lack of multi-modal online RCA methods,

Under review as a conference paper at ICLR 2025

we measure the performance of these single-modal baseline methods using only metric data shown
in[Table 6] By observation, we find that the online version of RCA models (e.g., GOLEM*) outperform
their offline version (e.g., GOLEM) as online methods can rapidly capture the changing patterns
of the metric data, thus learning a more accurate and noise-free causal structure for RCA. Among
online methods, CORAL significantly outperforms NOTEARS* and GOLEM* due to the design of
state-invariant and state-dependent representations learning tailored for the online setting. Notably,
LEMMA-RCA is a large-scale real-world dataset, consisting of more than 100,000 timestamps across
several days with various system fault scenarios, which can be naturally transformed to the online
setting, compared with small datasets (e.g., NeZha (Yu et al., 2023))) with limited timestamps for
online RCA.
Table 6: Results for online root cause analysis baselines on all sub-datasets.

Dataset Model PR@I PR@5 PR@I0 MRR MAP@3 MAP@5 MAP@I0
CORAL 0750 1000 1000 0875 0917 0950 0975
Poduct NOTEARS® 0250 0750 0750 0481 0500 0.600 0.675
GOLEM® 0500 0750 0750 0.646 0.667 0700 0.725
CORAL 0500 0833 1000 0.667 0667 0733 0.867
Coggﬁgng NOTEARS* 0 0167 0667 0113 0 0.033 0.217
GOLEM* 0 0500 0833 0.8 0056 0200 0433
CORAL 0.063 0552 0927 0317 0156 0298 0540
SWaT ~ NOTEARS® 0063 0365 0677 0263 0149 0235 0422
GOLEM" 0.063 0427 0688 0281 0.70 0260 0437
CORAL 0357 0600 0833 0519 0287 0361 0.560
WADI NOTEARS* 0.143 0457 0726 0377 0187 0275 0484
GOLEM* 0241 0.600 0738 0402 0.198 0303 0.490

5 DISCUSSIONS

Broader impact: To facilitate accurate, efficient, and multi-modal root cause analysis research
across diverse domains, we introduce LEMMA-RCA as a new benchmark dataset. Our dataset also
offers significant potential for advancing research in areas like multi-modal anomaly detection,
change point detection, causal structure learning, and LLLM-based system diagnosis. Based on
the thorough data analysis and extensive experimental results, we highlight the following areas for
future research:

* Expanding Domain Applications: To enhance the LEMMA-RCA dataset’s versatility and impact,
we plan to incorporate data from additional domains such as cybersecurity and healthcare. This
integration of diverse data sources will facilitate the development of more comprehensive root cause
analysis technologies, significantly extending the dataset’s applicability across various industries.

* Online Multi-Modal Root Cause Analysis: Most RCA methods are offline and single-modal,
leaving a gap for real-time, multi-modal approaches. Developing these methods can enable instant
analysis of diverse data streams, essential for dynamic environments like industrial automation and
real-time monitoring.

Limitations: Despite its broad capabilities, the LEMMA-RCA dataset may have limited generaliz-
ability, as its fault scenarios may not fully capture the diversity of real-world conditions due to factors
like system interruptions and unforeseen circumstances. Additionally, the dependency graphs in our
data are semi-complete, reflecting the inherent challenge of obtaining complete ground-truth graphs
in complex systems, which may impact the precision of derived analyses.

6 CONCLUSION

In this work, we present LEMMA-RCA, the first large-scale, open-source dataset featuring real
system faults across various application domains and multiple modalities. We conduct an inclusive
empirical study on LEMMA-RCA by testing the performance of fourteen baseline methodologies
under different settings, including offline/online modes and single/multiple-modality data. Our
experimental results demonstrate the utility of LEMMA-RCA. By making this dataset publicly
available, we aim to facilitate further research and innovation in root cause analysis for complex
systems, contributing significantly to the development of more robust and secure methodologies that
ensure the high performance of modern systems, particularly those that are mission-critical.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Chuadhry Mujeeb Ahmed, Venkata Reddy Palleti, and Aditya P Mathur. Wadi: a water distribution
testbed for research in the design of secure cyber physical systems. In Proceedings of the 3rd
International Workshop on Cyber-Physical Systems for Smart Water Networks, pp. 25-28, 2017.

Adel Alaeddini and Ibrahim Dogan. Using bayesian networks for root cause analysis in statistical
process control. Expert Systems with Applications, 38(9):11230-11243, 2011.

Alvaro Brandon, Marc Solé, Alberto Huélamo, David Solans, Maria S Pérez, and Victor Muntés-
Mulero. Graph-based root cause analysis for service-oriented and microservice architectures.
Journal of Systems and Software, 159:110432, 2020.

Tom Burr. Causation, prediction, and search. Technometrics, 45(3):272-273, 2003.

Alfonso Capozzoli, Fiorella Lauro, and Imran Khan. Fault detection analysis using data mining
techniques for a cluster of smart office buildings. Expert Systems with Applications, 42(9):
4324-4338, 2015.

Mike Chen, Alice X Zheng, Jim Lloyd, Michael I Jordan, and Eric Brewer. Failure diagnosis using
decision trees. In International Conference on Autonomic Computing, 2004. Proceedings., pp.
36-43. IEEE, 2004.

Yinfang Chen, Huaibing Xie, Minghua Ma, Yu Kang, Xin Gao, Liu Shi, Yunjie Cao, Xuedong
Gao, Hao Fan, Ming Wen, et al. Automatic root cause analysis via large language models for
cloud incidents. In Proceedings of the Nineteenth European Conference on Computer Systems,
pp. 674-688, 2024.

Ailin Deng and Bryan Hooi. Graph neural network-based anomaly detection in multivariate time
series. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 4027-
4035, 2021.

George K Fourlas and George C Karras. A survey on fault diagnosis methods for uavs. In 2021
International Conference on Unmanned Aircraft Systems (ICUAS), pp. 394-403. IEEE, 2021.

Zhiwei Gao, Carlo Cecati, and Steven X. Ding. A survey of fault diagnosis and fault-tolerant tech-
niques—part i: Fault diagnosis with model-based and signal-based approaches. IEEE Transactions
on Industrial Electronics, 62(6):3757-3767, 2015. doi: 10.1109/TIE.2015.2417501.

Drishti Goel, Fiza Husain, Aditya Singh, Supriyo Ghosh, Anjaly Parayil, Chetan Bansal, Xuchao
Zhang, and Saravan Rajmohan. X-lifecycle learning for cloud incident management using llms.
In Companion Proceedings of the 32nd ACM International Conference on the Foundations of
Software Engineering, pp. 417-428, 2024.

Vipul Harsh, Wenxuan Zhou, Sachin Ashok, Radhika Niranjan Mysore, Brighten Godfrey, and Sujata
Banerjee. Murphy: Performance diagnosis of distributed cloud applications. In Proceedings of the
ACM SIGCOMM 2023 Conference, pp. 438-451, 2023.

Chuanjia Hou, Tong Jia, Yifan Wu, Ying Li, and Jing Han. Diagnosing performance issues in microser-
vices with heterogeneous data source. In 2021 IEEE Intl Conf on Parallel & Distributed Processing
with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications,
Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), New York City, NY,
USA, September 30 - Oct. 3, 2021, pp. 493-500. IEEE, 2021.

Azam Ikram, Sarthak Chakraborty, Subrata Mitra, Shiv Saini, Saurabh Bagchi, and Murat Kocaoglu.
Root cause analysis of failures in microservices through causal discovery. Advances in Neural
Information Processing Systems, 35:31158-31170, 2022.

iTrust. The website of itrust lab. [EB/OL], 2022. https://itrust.sutd.edu.sqg/
itrust—-labs_datasets/dataset_info/l.

Tian Lan, Ziyue Li, Zhishuai Li, Lei Bai, Man Li, Fugee Tsung, Wolfgang Ketter, Rui Zhao,
and Chen Zhang. Mm-dag: Multi-task dag learning for multi-modal data-with application for
traffic congestion analysis. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 1188-1199, 2023.

11

https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/
https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/

Under review as a conference paper at ICLR 2025

Mingjie Li, Zeyan Li, Kanglin Yin, Xiaohui Nie, Wenchi Zhang, Kaixin Sui, and Dan Pei. Causal
inference-based root cause analysis for online service systems with intervention recognition. In
Aidong Zhang and Huzefa Rangwala (eds.), KDD °22: The 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18, 2022, pp.
3230-3240. ACM, 2022a.

Mingjie Li, Zeyan Li, Kanglin Yin, Xiaohui Nie, Wenchi Zhang, Kaixin Sui, and Dan Pei. Causal
inference-based root cause analysis for online service systems with intervention recognition. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp- 3230-3240, 2022b.

Zeyan Li, Junjie Chen, Rui Jiao, Nengwen Zhao, Zhijun Wang, Shuwei Zhang, Yanjun Wu, Long
Jiang, Leiqin Yan, Zikai Wang, et al. Practical root cause localization for microservice systems
via trace analysis. In 2021 IEEE/ACM 29th International Symposium on Quality of Service
IWQOS), pp. 1-10. IEEE, 2021.

Zeyan Li, Nengwen Zhao, Shenglin Zhang, Yonggian Sun, Pengfei Chen, Xidao Wen, Minghua Ma,
and Dan Pei. Constructing large-scale real-world benchmark datasets for aiops. arXiv preprint
arXiv:2208.03938, 2022c.

Aditya P Mathur and Nils Ole Tippenhauer. Swat: A water treatment testbed for research and
training on ics security. In 2016 international workshop on cyber-physical systems for smart water
networks (CySWater), pp. 31-36. IEEE, 2016.

Yuan Meng, Shenglin Zhang, Yongqgian Sun, Ruru Zhang, Zhilong Hu, Yiyin Zhang, Chenyang Jia,
Zhaogang Wang, and Dan Pei. Localizing failure root causes in a microservice through causality
inference. In 28th IEEE/ACM International Symposium on Quality of Service, IWQoS 2020,
Hangzhou, China, June 15-17, 2020, pp. 1-10. IEEE, 2020a.

Yuan Meng, Shenglin Zhang, Yongqgian Sun, Ruru Zhang, Zhilong Hu, Yiyin Zhang, Chenyang Jia,
Zhaogang Wang, and Dan Pei. Localizing failure root causes in a microservice through causality
inference. In 2020 IEEE/ACM 28th International Symposium on Quality of Service IWQoS), pp.
1-10. IEEE, 2020b.

Dmitri Nevedrov. Using jmeter to performance test web services. Published on dev2dev, pp. 1-11,
2006.

Ignavier Ng, AmirEmad Ghassami, and Kun Zhang. On the role of sparsity and DAG constraints
for learning linear dags. In Hugo Larochelle, Marc’ Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020.

Roxana Pamfil, Nisara Sriwattanaworachai, Shaan Desai, Philip Pilgerstorfer, Konstantinos Geor-
gatzis, Paul Beaumont, and Bryon Aragam. DYNOTEARS: structure learning from time-series data.
In Silvia Chiappa and Roberto Calandra (eds.), The 23rd International Conference on Artificial
Intelligence and Statistics, AISTATS 2020, 26-28 August 2020, Online [Palermo, Sicily, Italy],
volume 108 of Proceedings of Machine Learning Research, pp. 1595-1605. PMLR, 2020.

Luan Pham, Huong Ha, and Hongyu Zhang. Baro: Robust root cause analysis for microservices
via multivariate bayesian online change point detection. Proceedings of the ACM on Software
Engineering, 1(FSE):2214-2237, 2024.

Devjeet Roy, Xuchao Zhang, Rashi Bhave, Chetan Bansal, Pedro Las-Casas, Rodrigo Fonseca, and
Saravan Rajmohan. Exploring llm-based agents for root cause analysis. In Companion Proceedings
of the 32nd ACM International Conference on the Foundations of Software Engineering, pp. 208—
219, 2024.

Jakob Runge, Peer Nowack, Marlene Kretschmer, Seth Flaxman, and Dino Sejdinovic. Detecting
and quantifying causal associations in large nonlinear time series datasets. Science advances, 5
(11):eaaud996, 2019.

12

Under review as a conference paper at ICLR 2025

Saurabh Garg, Imaya Kumar Jagannathan. Root cause analyses on petshop application, 2024.
https://github.com/amazon—-science/petshop-root—cause—analysis/
tree/main?tab=readme-ov-file.

Huasong Shan, Yuan Chen, Haifeng Liu, Yunpeng Zhang, Xiao Xiao, Xiaofeng He, Min Li, and Wei
Ding. ?-diagnosis: Unsupervised and real-time diagnosis of small-window long-tail latency in
large-scale microservice platforms. In The World Wide Web Conference, pp. 3215-3222, 2019.

Shiwen Shan, Yintong Huo, Yuxin Su, Yichen Li, Dan Li, and Zibin Zheng. Face it yourselves: An
Ilm-based two-stage strategy to localize configuration errors via logs. In Proceedings of the 33rd
ACM SIGSOFT International Symposium on Software Testing and Analysis, pp. 13-25, 2024.

Jacopo Soldani and Antonio Brogi. Anomaly detection and failure root cause analysis in (micro)
service-based cloud applications: A survey. ACM Computing Surveys (CSUR), 55(3):1-39, 2022.

LuAn Tang, Hengtong Zhang, Zhengzhang Chen, Bo Zong, LI Zhichun, Guofei Jiang, and Kenji
Yoshihira. Graph-based attack chain discovery in enterprise security systems, May 14 2019. US
Patent 10,289,841.

Alex Tank, Ian Covert, Nicholas J. Foti, Ali Shojaie, and Emily B. Fox. Neural granger causality.
IEEE Trans. Pattern Anal. Mach. Intell., 44(8):4267-4279, 2022.

James Turnbull. Monitoring with Prometheus. Turnbull Press, 2018.

Dongjie Wang, Zhengzhang Chen, Yanjie Fu, Yanchi Liu, and Haifeng Chen. Incremental causal
graph learning for online root cause analysis. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 2269-2278, 2023a.

Dongjie Wang, Zhengzhang Chen, Jingchao Ni, Liang Tong, Zheng Wang, Yanjie Fu, and Haifeng
Chen. Interdependent causal networks for root cause localization. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2023, Long Beach,

CA, USA, August 6-10, 2023, pp. 5051-5060. ACM, 2023b.

Zefan Wang, Zichuan Liu, Yingying Zhang, Aoxiao Zhong, Lunting Fan, Lingfei Wu, and Qingsong
Wen. Rcagent: Cloud root cause analysis by autonomous agents with tool-augmented large
language models. In Proceedings of the 31st ACM International Conference on Information &
Knowledge Management, 2024.

Guangba Yu, Pengfei Chen, Yufeng Li, Hongyang Chen, Xiaoyun Li, and Zibin Zheng. Nezha:
Interpretable fine-grained root causes analysis for microservices on multi-modal observability data.
2023.

Vlad-Andrei Zamfir, Mihai Carabas, Costin Carabas, and Nicolae Tapus. Systems monitoring and big
data analysis using the elasticsearch system. In 2019 22nd International Conference on Control
Systems and Computer Science (CSCS), pp. 188—193. IEEE, 2019.

Lecheng Zheng, Zhengzhang Chen, Jingrui He, and Haifeng Chen. Multi-modal causal structure
learning and root cause analysis. arXiv preprint arXiv:2402.02357, 2024.

Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. Dags with no tears: Continuous
optimization for structure learning. Advances in neural information processing systems, 31, 2018.

Bin Zhou, Xinyu Li, Tianyuan Liu, Kaizhou Xu, Wei Liu, and Jinsong Bao. Causalkgpt: industrial
structure causal knowledge-enhanced large language model for cause analysis of quality problems
in aerospace product manufacturing. Advanced Engineering Informatics, 59:102333, 2024.

13

https://github.com/amazon-science/petshop-root-cause-analysis/tree/main?tab=readme-ov-file
https://github.com/amazon-science/petshop-root-cause-analysis/tree/main?tab=readme-ov-file

Under review as a conference paper at ICLR 2025

A MONITORING TIME SERIES SEGMENTATION FOR SWAT AND WADI

In the original SWaT and WADI datasets, the attack model demonstrates irregular attack patterns,
occasionally targeting multiple sensors simultaneously, or executing attacks at closely spaced intervals.
To follow the principles of RCA, we have established two specific preprocessing rules for these
datasets: 1) Each recorded attack event must only involve a single sensor or actuator. 2) The duration
of the dataset corresponding to each attack event must be standardized to two hours. Consequently,
we selectively keep attack events that impact only one sensor or actuator. If the interval between
successive attack events is insufficiently short, we assume the stability in the monitoring data
immediately before and after each attack event. To ensure the necessary two-hour duration for each
event, we concatenate normal-state data from both before and after the attack period. This adjustment
positions the attack event centrally within a continuous two-hour segment, facilitating consistent and
accurate analysis.

B ADDITIONAL SYSTEM FAULT SCENARIOS

This section describes the processes used to generate and monitor system fault scenarios, with
emphasis on mimicking real-world fault patterns. Each scenario involved the induction of specific
failure conditions, while allowing the microservice system to exhibit its natural behavior under
stress. Metrics and logs were collected using established monitoring tools, such as Prometheus,
Elasticsearch, CloudWatch, Jaeger, and JMeter.

* Silent Pod Degradation Fault.

— Description: A pod in a load balancer contains a latent bug causing its CPU usage
to rise, which gradually increases latency for a subset of users without triggering
autoscaling or error alerts.

— Method: We periodically sent requests to Microservice A over a 24-hour period.
After this initial observation, we manually increased the CPU load on one specific
productpage-vl pod to simulate the bug.

— Data Collection: Metrics and logs were collected from CloudWatch, while KPIs such
as latency were measured using JMeter. The goal was to trace latency increases back
to the specific pod with elevated CPU utilization.

* Noisy Neighbor Issue.

— Description: A neighboring pod in a shared node generates high CPU load, impacting
the performance of the productpage-v1 pod and causing elevated error rates.

— Method: Requests were sent to Microservice A, while the pod ratings of Microservice
B (robot-shop) were moved to the same node as productpage-v1l, generating
contention.

— Data Collection: Metrics (CPU usage, memory usage) were gathered using
Prometheus, while logs were obtained from CloudWatch Logs. Configuration changes,
such as node assignments, were also recorded.

* Node Resource Contention Stress Test.
— Description: A stress test on CPU resources was conducted by inducing high load on
Microservice B, co-located with Microservice A on the same node.
— Method: Periodic requests were sent to Microservice A using JMeter, while a high
CPU load was generated on Microservice B using the OpenSSL speed command.
— Data Collection: HTTP response logs from JMeter were analyzed for performance
impacts. System metrics (CPU and memory usage) were retrieved from Prometheus,
while container logs were collected from Elasticsearch.
* DDoS Attack.

— Description: A Distributed Denial of Service (DDoS) attack was simulated to overload
the system, causing Out-of-Memory (OOM) errors in targeted pods.

— Method: Over a monitoring period of approximately 48 hours, we gradually increased
the request rate to Microservice A, eventually overwhelming the reviews-v2 and
reviews-v3 pods.

14

Under review as a conference paper at ICLR 2025

— Data Collection: Metrics such as CPU and memory utilization were collected via
Prometheus. Logs from Jaeger and Elasticsearch provided insights into the system’s
response to the attack.

* Malware Attack.
— Description: A malware pod executed a password list attack to compromise other
pods, propagating DDoS scripts to degrade overall system performance.

— Method: The attack started from a designated pod
(scenariolO-malware-deployment) and targeted others via SSH pass-
word brute-forcing, ultimately generating high load on productpage-v1l.

— Data Collection: JMeter was used to monitor KPIs (latency, error rate), while
Prometheus and CloudWatch Logs provided system metrics and logs for root-cause
analysis.

* Bug Infection.
— Description: A latent bug in the API caused asymmetric CPU load increases, degrading
response times without fully utilizing the CPU capacity.

— Method: Requests were sent periodically to the web service, and after a day, a script
induced increased CPU utilization on one core.

— Data Collection: KPIs were measured using JMeter, while system metrics and logs
were collected via CloudWatch for detailed analysis.
* Configuration Fault.
— Description: An incorrect resource limit in a Kubernetes manifest file led to a pod
being terminated by the OOM killer, impacting other services.

— Method: Requests were sent to Microservice A, while a Git push introduced a faulty
configuration for the details-v1 pod. The misconfigured pod eventually failed
under load.

— Data Collection: Error rates were tracked using JMeter, and metrics/logs were retrieved
from Prometheus and CloudWatch for root-cause identification.

C ADDITIONAL EXPERIMENTAL RESULTS

Here, we provide the additional experimental results of offline RCA methods on the WADI dataset in

Table 7: Results for offline root cause analysis baselines on the WADI sub-dataset.

Dataset Model PR@1 PR@5 PR@10 MRR MAP@3 MAP@5 MAP@I10
Dynotears 0.071 0.300 0476 0.222 0.107 0.174 0.268
PC 0.071 0.350 0.500 0.277 0.163 0.239 0.346
C-LSTM 0 0.350 0512 0.244 0.115 0.186 0.327
WADI GOLEM 0 0.400 0.536 0.235 0.099 0.204 0.348
RCD 0.071 0.400 0.643 0.264 0.190 0.286 0.464
e-Diagnosis 0 0.350 0.500 0211 0.167 0.249 0.371
CIRCA 0.143 0.550 0.714 0350 0.301 0.400 0.529
REASON 0.286 0.650 0.798 0.534 0.425 0.506 0.638

D LEMMA-RCA LICENSE

The LEMMA-RCA benchmark dataset is released under a CC BY-ND 4.0 International License:
https://creativecommons.org/licenses/by-nd/4.0. The license of any specific baseline methods used in
our codebase should be verified on their official repositories.

15

Under review as a conference paper at ICLR 2025

E REPRODUCIBILITY

All experiments are conducted on a server running Ubuntu 18 with an Intel(R) Xeon(R) Silver 4110
CPU @2.10GHz and one 11GB GTX2080 GPU. In the online RCA experiment, we set the size of
historical metric and log data to 8-hour intervals and each batch is set to be a 10-minute interval. We
use the Adam as the optimizer and we train the model for 100 iterations at each batch. In addition, all
methods were implemented using Python 3.8.12 and PyTorch 1.7.1.

F DETAILED DESCRIPTION OF BASELINES

We evaluate the performance of the following RCA models on the benchmark sub-datasets:

* PC (Burr}[2003): The PC algorithm is a data-driven method for causal discovery, producing a
partially directed acyclic graph (PDAG) that represents causal relationships among variables.
It starts with a fully connected graph and iteratively removes edges based on conditional
independence tests, then orients the remaining edges to construct a causal structure. The
algorithm assumes the causal Markov property, no hidden confounders, and no cycles in
the graph. It is widely used for root cause analysis to identify direct and indirect influences
on specific outcomes but is sensitive to the reliability of independence tests and cannot
distinguish between equivalent causal structures.

* Dynotears (Pamfil et al} [2020): Dynotears is score-based approach for learning these
models that scales gracefully to high-dimensional datasets. To accomplish this, the authors
cast the problem as an optimization problem (i.e. score-based learning), and use standard
second-order optimization schemes to solve the resulting program. Dynotears is based
on the recent algebraic characterization of acyclicity in directed graphs, which makes the
formulation simple and amenable to different modeling choices.

* C-LSTM [2022): The C-LSTM framework is designed for interpretable nonlin-
ear Granger causality discovery in MLPs and RNNs by leveraging the flexibility of neural
networks while introducing component-wise architectures to disentangle the effects of
lagged inputs on individual outputs. It enhances interpretability and manages limited, high-
dimensional data by applying sparsity-inducing penalties to weight groupings that connect
input histories to output series. The framework’s sparse component-wise models, such as
c¢MLP and cLSTM, incorporate group sparsity penalties to effectively select Granger-causal
relationships through the outgoing weights of inputs.

* GOLEM [2020): GOLEM (Gradient-based Optimization of dag-penalized Likeli-
hood for learning linEar dag Models) is a likelihood-based structure learning method for
DAGs that replaces hard DAG constraints with soft sparsity and DAG penalties, enabling
continuous unconstrained optimization. This approach simplifies the optimization problem
while maintaining the ability to learn a DAG equivalent to the ground truth. The framework
is validated in both asymptotic and finite-sample regimes, demonstrating its flexibility across
various linear models. By avoiding strict constraints, GOLEM is computationally more
efficient and theoretically robust for causal discovery.

* REASON (Wang et al] [2023b): REASON is a framework for root cause localization
in complex systems with interdependent network structures. It combines Topological
Causal Discovery (TCD) and Individual Causal Discovery (ICD). TCD employs hierarchical
graph neural networks to uncover intra- and inter-level causal relationships, modeling fault
propagation using a random walk with restarts. ICD focuses on analyzing individual time-
series data, using Extreme Value theory to detect abrupt fluctuations and estimate root cause
likelihoods, especially for short-lived failures. The framework integrates results from both
components to identify system entities with the highest causal scores as root causes.

¢ Nezha [2023): Nezha is an interpretable and fine-grained root cause analysis
(RCA) method for microservices that unifies heterogeneous observability data (metrics,
traces, logs) into a homogeneous event format. This representation enables the construction
of event graphs for integrated analysis. Nezha statistically localizes actionable root causes at
granular levels, such as specific code regions or resource types, offering high interpretability
to support confident mitigation actions by SREs.

16

Under review as a conference paper at ICLR 2025

e CORAL (Wang et al|[2023a): CORAL is an online root cause analysis (RCA) framework
that automatically triggers RCA processes and incrementally updates the RCA model.
It includes three key components: Trigger Point Detection, Incremental Disentangled
Causal Graph Learning, and Network Propagation-based Root Cause Localization. The
trigger detection uses multivariate singular spectrum analysis and cumulative sum statistics
to identify system state transitions in near-real-time. Incremental causal graph learning
decouples state-invariant and state-dependent information to efficiently update the RCA
model. Finally, CORAL applies a random walk with restarts on the causal graph to localize
root causes, terminating when the causal graph and root cause list stabilize.

e CIRCA [2022b): CIRCA is an unsupervised root cause analysis method that
formulates the problem as a causal inference task called intervention recognition. Its core
idea is to identify root cause indicators by evaluating changes in the probability distribution
of monitoring variables conditioned on their parents in a Causal Bayesian Network (CBN).
CIRCA applies this approach to online service systems by constructing a graph among
monitoring metrics, leveraging system architecture knowledge and causal assumptions to
guide the analysis.

* c-Diagnosis [2019): e-Diagnosis is an unsupervised, low-cost diagnosis algo-
rithm designed to address small-window long-tail latency (SWLT) in web services, which
arises in short statistical windows and typically affects a small subset of containers in
microservice clusters. It uses a two-sample test algorithm and e-statistics to measure the
similarity of time series, enabling the identification of root-cause metrics from millions
of metrics. The algorithm is implemented in a real-time diagnosis system for production
microservice platforms.

* RCD [2022): RCD is a scalable algorithm for detecting root causes of failures
in complex microservice architectures using a hierarchical and localized learning approach.
It treats the failure as an intervention to quickly identify the root cause, focuses learning
on the relevant portion of the causal graph to avoid costly conditional independence tests,
and explores the graph hierarchically. The technique is highly scalable, providing action-
able insights about root causes, while traditional methods become infeasible due to high
computation time.

G FIGURES FOR CLARITY

We provide figures related to the system architecture and fault scenarios in this section, for better
readability. The architecture of Product Review Platform is shown in[Figure 6] and the system fault
scenarios are demonstrated in[Figure 7|and|[Figure 8|

H DATASET LABELING METHODOLOGY

We provide more details on the system fault labeling strategy, which comes in two-fold: the root
cause labeling process and label validation.

Root Cause Labeling Process.

* For each system fault, we designed controlled fault scenarios to mimic realistic fault patterns
(e.g., external storage failure, database overload).

* During each controlled fault case, we monitored system behaviors, including metrics and
logs, to identify the exact root cause of the fault.

* The ground truth root cause was then labeled based on the specific fault of the system. This
ensures high accuracy in root cause labeling, as the faults were systematically induced and
their impacts directly observed.

17

Under review as a conference paper at ICLR 2025

918
919
920
921
i : Node : pod : dependency
. ',"I = Request
923 |__i:namespace D : Root Cause (High CPU Utilization)
I ;
924 control-plane-1! | control-plane-2 | { control-plane-3 compute-1 ! compute-2 infra-1
925 [—
e - istio-ingressgateway N
926 [openshift-apiserver-operator.] ‘ .‘
I elasticsearch-cdm- lasti h-cdm- lasti h-cdm-]!
927 |1 bpenshift-apiserver-operato [ca ¢ 1 } { elasticsearch-c ":'3 } { gtaiss';:t:ar;‘;aege:t‘z }E
H

P —

929 ~
openshift-apiserver S
930 - -
jaeger-query
931 Istio-system <

authentication-operator =
932]

N
\
i
. - '4 details-vl productpage R
hift-authentication-operatgr 1}
933 nshif '

. reviews-v3| @VD
935 (Loauth-opensit] 1 1 (Coauth-openshift] U1 [reviewsz |
1 - |

openshift-authentication i e
. (ratingsvz |

book-info ~_ ratings-v 3
o mongodb-vl A
938

939

Storage
940

941 Figure 6: Corresponding to (a). The architecture of Product Review Platform
942

943
944
945
946
947
948
949
950
951
952
953
954 : b o0
955 i B |
956 ‘ »

957
958
959
960
961
962

928 . : A m
istio-egressgateway
[apiserver] [apiserver] [apiserver]

N

ogpmm———

e

cloud-credential-operator]

/

SRTITRTC

e R

epshift-cloud-credential-opert

O :Pod

: Node (Fargate)

[I
ailability Zone ' | Availability Zone@ Availability Zone |
P Internet gateway | H

Public Subnet

: Users’ requests
! I =

NAT gateway ! Users

No errors. Usual
@ latency.

E Application load balancer
Why did the cost
increase?

Admin.

~7 Coin Miner consumes the resources.
964 Due to a lack of resources, auto-
scaling is performed.

966 ‘Amazon Elastic Container Kubemetes

967 Figure 7: Corresponding toleft. Visualization of Cryptojacking system fault scenario. Right: External
968 storage failure.

969
970
971

18

Under review as a conference paper at ICLR 2025

openshift cluster

Microservice A (book-info)

details

reviews

Figure 8: Corresponding toright. Visualization of External storage failure. system fault scenario.

Label Validation.

* To ensure label correctness, we validated the root cause labels by analyzing the system’s
behavior during and after fault. This involved cross-checking the observed anomalies in
system metrics and logs with the expected outcomes of the fault.

* Multiple experts reviewed the labeled faults to confirm the consistency and correctness of
the root cause assignments.

I PARAMETER SETTINGS FOR ALL BASELINE MODELS

We provide the detailed parameter settings for all baseline models as follows:

* Dynotears: 1ag=20 (maximum time lags), lambda_w=1e-3 (weight regularization),
lambda_a=1e-3 (autoregressive term regularization), g_thre=0. 3 (sparsity thresh-
old).

* PC: alpha=0.05 (significance level for conditional independence tests),
ci_test='fisherz’ (type of conditional independence test).

¢ C-LSTM: hidden=100 (hidden units in LSTM), 1ag=20 (maximum time lags for se-
quence modeling), 1am=10.0 (model complexity regularization), lam_ridge=1le-2
(ridge regression regularization), 1r=1e-3 (learning rate), max_iter=30000 (maxi-
mum iterations), g_thre=0. 3 (sparsity threshold).

e GOLEM: lambda_1l=2e-2 (weight for sparsity regularization), lambda_2=5.0
(weight for smoothness regularization), learning_rate=1e-3 (optimization learn-
ing rate), num_1iter=30000 (number of iterations for training), g_thre=0. 3 (sparsity
threshold).

* REASON: 1ag=20 (maximum time lags for causal modeling), L=150 (hidden layers
with 150 units), lambdal=1 (adjacency matrix sparsity regularization), lambda2=1e-2
(autoregressive term balancing regularization), gamma=0 . 8 (integration of individual and
topological causal effects), g_thre=0. 3 (sparsity threshold).

J PARAMETER SENSITIVITY ANALYSIS ON PRODUCT REVIEW SUBDATASET
(USING REASON)

We conducted parameter sensitivity tests for v and L on the Product Review subdataset. The results
are summarized in the following tables:

19

Under review as a conference paper at ICLR 2025

~ SENSITIVITY

7 [MAP@I0 | MRR
0.1 0.80 0.81
0.2 0.80 0.81
03 0.84 0.82
0.4 0.86 0.83
05 0.88 0.83
0.6 0.88 0.73
0.7 0.86 0.83
0.3 0.92 0.84
0.9 0.90 0.74

Table 8: Sensitivity of v on Product Review subdataset.
Analysis: The optimal v value is 0.8, achieving the best MAP@10 (0.92) and MRR (0.84). This

result demonstrates that a balanced integration of individual and topological causal effects is critical
for performance.

L SENSITIVITY

L | MAP@10 | MRR
10 0.52 0.50

20 0.33 0.25

50 0.37 0.32
100 0.42 0.28
150 0.53 0.50
200 0.37 0.33

Table 9: Sensitivity of L on Product Review subdataset.

Analysis: The best performance is observed at L = 150, where MAP@ 10 and MRR reach 0.53 and
0.50, respectively. This indicates that L = 150 provides the optimal hidden layer size, balancing
model capacity and complexity while avoiding underfitting or overfitting.

K QUALITY EVALUATION BASED ON THE COMPARISON BETWEEN
DEPENDENCY GRAPH AND LEARNED CAUSAL GRAPH

To evaluate the difference between the semi-complete dependency graph and the causal graph learned
by baseline methods, we conducted experiments on the Product Review sub-dataset (system metrics
data only). Following the methodology outlined in [1], we assessed the performance using four
commonly used metrics: True Positive Rate (TPR), False Discovery Rate (FDR), Structural Hamming
Distance (SHD), and Area Under the ROC Curve (AUROC).

Method | TPR T | FDR | | SHDJ] | AUROC T
Dynotear | 0.214 | 0.743 | 0.786 | 0.612
PC 0.112 | 0.892 | 0.861 0.563
C-LSTM | 0428 | 0427 | 0543 | 0.733
GOLEM | 0.126 | 0.847 | 0.823 | 0571
RCD 0.152 | 0.869 | 0.838 | 0.584
e-Diagnosis | 0.084 | 0.905 | 0.874 | 0.554
CIRCA | 0327 | 0544 | 0582 | 0.685
REASON | 0.634 | 0217 | 0347 | 0.846

Table 10: Comparison Between Dependency Graph and Learned Causal Graph on the Product Review sub-
dataset.

20

Under review as a conference paper at ICLR 2025

Evaluation and Results: For each system fault, we computed the metrics individually and then
averaged the results across four cases. It is important to note that system entities not included in the
semi-complete dependency graph were excluded from this comparison to ensure consistency and
fairness across methods. To ensure comparability for SHD, which is influenced by the number of
nodes in the graph, we normalized SHD by dividing it by the square of the number of nodes for each
system fault. Finally, we averaged the normalized SHD across the four system faults on the Product
Review sub-dataset. These results are summarized in the table above, providing a comprehensive
comparison between the dependency and causal graphs.

L. DATASET REPRESENTATIVENESS

In this section, we aim to show the representativeness of the released dataset. While it is challenging
to establish a universal metric for representativeness in benchmarks, we have made significant efforts
to ensure the dataset covers diverse fault scenarios:

* Real-World Fault Scenarios: The IT domain datasets (Product Review and Cloud Comput-
ing) encompass realistic microservice faults such as out-of-memory errors, DDoS attacks,
and cryptojacking, as outlined in Section 3.1 and Appendix B. Similarly, the OT domain
datasets (SWaT and WADI) include real-world cyber-physical system faults recorded in
controlled environments.

* Diversity of Fault Types: Across IT and OT domains, we include 10 distinct fault types,
ensuring coverage of both transient and persistent system failures. This diversity reflects
common issues faced by modern IT and OT systems.

e Comparative Analysis: As seen in Table 3 and related discussions, our dataset exhibits per-
formance trends consistent with other benchmarks (e.g., Petshop), supporting its credibility
as a representative evaluation platform.

* Quality Assurance: All data were collected using industry-standard monitoring tools like
Prometheus, CloudWatch, and Elasticsearch. Each fault scenario was validated to ensure it
mirrors real-world conditions.

21

	Introduction
	Preliminaries and Related Work
	LEMMA-RCA Data
	Data Collection
	Data Preprocessing
	System Fault Scenarios

	Experiments
	Experimental Setup
	Offline Root Cause Analysis Results
	Online Root Cause Analysis Results

	Discussions
	Conclusion
	Monitoring Time Series Segmentation for SWaT and WADI
	Additional System Fault Scenarios
	Additional Experimental Results
	LEMMA-RCA License
	Reproducibility
	Detailed Description of Baselines
	Figures for Clarity
	Dataset Labeling Methodology
	Parameter Settings for All Baseline Models
	Parameter Sensitivity Analysis on Product Review Subdataset (Using REASON)
	Quality Evaluation Based on the Comparison Between Dependency Graph and Learned Causal Graph
	Dataset Representativeness

