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The fair value of an option is given
by breakeven volatility, the value of
implied volatility that sets the profit
and loss of a delta-hedged option to
zero. We calculate breakeven vola-
tility for 400,000 options on the
S&P 500 and build a predictive
model for these volatilities. A two-
stage regression approach captures
the majority of the observed vari-
ation. By providing a link between
option characteristics and breakeven
volatility, we establish a non-para-
metric approach to pricing options
without the need to specify the
underlying price process. We illus-
trate the economic value of our
approach with a simulated trading
strategy based on breakeven volatil-
ity predictions.
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Introduction

T
he advent of option pricing models (Black and Scholes 1973;
Cox, Ross, and Rubinstein 1979) launched a revolution in modern
finance that saw explosive growth in options markets and mas-

sive interest in option pricing in the subsequent decades. Although
the option pricing literature contains a multitude of models, the
approaches often share a common idea: The value of an option is equal
to that of a replication portfolio with the same eventual payoffs
(Merton 1973). The most natural implementation of this simple and ele-
gant idea is to build a distribution of outcomes from a large set of repli-
cation portfolios using historical data, which can then be used to price
additional options. However, the implementation of this approach turns
out to be fraught with issues. Zou and Derman (1999) point out that
such replication can be time-consuming, and hedging errors due to
inaccurate volatility forecasts or infrequent hedging make the exercise
difficult. As a result, most researchers opt for a more structural
approach: Specify a return process for the underlying asset, derive the
pricing relationships, then calibrate the model to data.

We set out to build a non-parametric option pricing model based on
Merton’s (1973) original insight. In the past 20 years, computing power
has grown rapidly and option databases have become more compre-
hensive. These developments enable us to overcome the limitations
cited in Zou and Derman (1999). The first step towards an option pric-
ing model is to build a measure for the appropriate value of options.
Using historical prices, we calculate the fair value of an option, the
value of implied volatility (IV) that sets the profit and loss of a delta-
hedged option position to zero. This value is called breakeven volatil-
ity (BEV).

The profit and loss from a dynamically hedged option position recover
the difference between implied volatility and realized volatility, which
indicates a
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positive or negative risk premium (Bakshi, Cao, and
Chen 1997; Christoffersen et al. 2018). In computing
breakeven volatility, we set the profit and loss to
zero, removing risk premia embedded in market pri-
ces. To the extent market implied volatility of an
option differs from its breakeven volatility, the mar-
ket price contains either a risk premium or a dis-
count. If the IV were higher than the BEV, a delta-
hedged short position in this option would result in a
positive profit. If the IV were lower than the BEV, a
delta-hedged long position would show a positive
profit. In this sense, breakeven volatility provides the
fair value of an option to both sides of the contract
(Dupire 2006).

We build a large set of breakeven volatility values
for options on the S&P 500 Index (SPX), and we
construct a predictive model that connects option
characteristics to BEV. By providing a link
between moneyness, time to expiration, and
other observable characteristics and the fair
value of the option, the predictive relation can be
interpreted as a non-parametric option pricing
model.1 Given a new option with its own set of
characteristics, we can quickly determine its
fair value.

Parametric approaches are favored over non-para-
metric ones when the underlying asset’s return
dynamics are known, but this is rarely the case in
practice. The non-parametric approach to option
pricing can be data-intensive, but it offers a promis-
ing alternative to standard parametric pricing models
when parametric restrictions are violated. Since
non-parametric models do not rely on restrictive
assumptions, such as log-normality or sample-path
continuity, they are robust to the specification
errors that plague parametric models (Ait-Sahalia
and Lo 1998).

We construct delta-hedged positions for nearly
400,000 S&P 500 options with a variety of strike
prices and time to expiration ranging from 5 to 74
trading days. The empirical distribution of breakeven
volatility is similar to, but distinct from, that of
implied volatility. We construct volatility smirks for
both measures of volatility, and we uncover the fol-
lowing pattern: Breakeven and implied volatility are
almost identical in the at-the-money (ATM) region,
but as we move further away from the ATM strike
prices, the two measures diverge. Implied volatility
is higher than breakeven volatility for strike prices
lower than the underlying price, as well as for
strikes exceeding the underlying. The shapes of the
volatility smirks indicate that delta-hedged short

positions tend to earn positive profits for out-of-
the-money (OTM) puts, an empirical regularity con-
firmed in the literature (Coval and Shumway 2001;
Bakshi and Kapadia 2003).

We build a predictive model of breakeven volatility
using 12 variables and their transformations. In
addition to typical parameters used in option
pricing, such as moneyness and time to expiration,
we also include variables that have the potential to
bring added predictive power, such as the CBOE
VIX Volatility Index (VVIX), the difference between
the delta of the option and the ATM delta, and the
sensitivity of the option price with respect to vola-
tility. We use a two-stage regression approach to
build a statistical model that connects the predictor
variables and breakeven volatility. The first stage
produces forecasts of logged breakeven volatility,
and the second stage makes an adjustment such
that the predicted breakeven volatility values
are unbiased.

Our statistical model provides a reliable fit to break-
even volatility. The two-stage model captures 90%
of the variation in breakeven volatility. Model diag-
nostics reveal that the model performs best
between volatility values of 5 and 50%, but has dif-
ficulties if breakeven volatility is below 5%. Our
model predictions exhibit convexity in volatility
space, and option prices are consistent with an
underlying return distribution that exhibits negative
skew and excess kurtosis. While the above features
can be carefully engineered into a parametric model,
they arise naturally in our approach as we learn
from data.2

We test the economic value of our statistical model
through a simulated trading strategy that exploits the
difference between implied volatility and our forecast
of breakeven volatility. For a particular option, if its
implied volatility were lower than the predicted BEV,
the market price of the option is too low, and we
take a delta-hedged long position. If the implied vola-
tility were higher than the predicted BEV, the market
price is too high, so we take a delta-hedged short
position. We trade options whose breakeven volatil-
ity values differ more than $1 compared to the mid-
point price.

In our testing period from January 2015 to
November 2020, our statistical model achieves an
impressive out-of-sample R-squared of 0.71. The
BEV-based strategy identifies 6,783 trading oppor-
tunities, earning 6.8% per year with an annual vola-
tility of 4.5%. With a Sharpe ratio of 1.50, this
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strategy outperforms three alternative options strat-
egies in terms of expected returns per unit of risk.
The BEV strategy also provides a more attractive
risk-return tradeoff compared to a buy-and-hold
strategy in the S&P 500, which has a Sharpe ratio of
0.79 in our sample period.

We are not the first to use historical data to com-
pute terminal distributions and option prices.
Stutzer (1996) and Zou and Derman (1999) also use
historical data to compute option prices. Rather
than looking at the replicated value of an option,
these papers compute a risk-neutral distribution
from the empirical distribution of the underlying
asset. Stutzer (1996) notes the shortcoming of not
incorporating market information related to option
prices into his approach, stating “there is need for a
more detailed comparison of… non-parametric
model values to actual transaction prices.” We
answer Stutzer’s call to action by using actual
transaction prices to inform us about the fair
values of options. Furthermore, Zou and Derman’s
(1999) goal is relative pricing: Take exchange-
traded option prices as given, build a pricing
model, then calculate the prices of less liquid, over-
the-counter options. In contrast, our goal is
absolute pricing—to determine the fair value of indi-
vidual options based on their observable
characteristics.

Some papers have used breakeven volatility as a
diagnostic tool for market prices. Dupire (2006)
builds breakeven volatility surfaces and explains that
BEV is a fair volatility for both sides of an option
contract. He highlights using BEV surfaces as a tool
to understand market volatility surfaces. Mitoulis
(2019) carries out breakeven volatility calculations
using simulations, comparing delta-hedging results
using Black and Scholes (1973) and Heston (1993)
models. Neither paper attempts to forecast BEV val-
ues or explore trading implications of the differences
between implied and breakeven volatilities. As far as
we know, we are the first to build a non-parametric
option pricing model via a predictive model of break-
even volatility.

A crucial distinction between our paper and the
existing literature is the calculation of breakeven
volatility. Zou and Derman (1999), Dupire (2006),
and Mitoulis (2019) all construct a constant BEV
throughout the life of an option of a given strike
price and time to maturity. This calculation requires
perfect foresight of the path of the option and is
not feasible in real-time. Additionally, the resulting
BEV surfaces often admit arbitrage. Our approach

relaxes the constant breakeven volatility assumption
and allows for a term structure of BEV, which is
then solved by backward recursion. In doing so, we
use the implied volatility path as well as the stock
price path for the calculation. Breakeven volatility
values calculated from our approach do not allow
for arbitrage.

Our paper is also related to the literature on non-
parametric approaches to option pricing. A strand of
literature first developed in the 1990s. Hutchinson,
Lo, and Poggio (1994) use neural networks to
approximate the Black-Scholes formula. Ait-Sahalia
and Lo (1998) propose a kernel density estimator of
the risk-neutral distribution, effectively providing a
link between option characteristics and the second
derivative of the volatility smirk. These pioneering
papers led to more recent literature on using
machine learning methods to approximate the rela-
tionship between model inputs and outputs. Liu,
Oosterlee, and Bohte (2019) propose a neural net-
work model to approximate the Black-Scholes and
Heston (1993) models. Manzo and Qiao (2021) use
neural networks to approximate nine different credit
risk models. Compared to these papers, we do not
try to approximate existing option pricing models—
we let the data dictate how option characteristics
and prices are related. Furthermore, our target option
price is based on a fair valuation calculation rather
than the market price.

Breakeven Volatility

Data. We obtain option prices, implied volatility,
and deltas from SpiderRock Platform Services LLC.
SpiderRock is an options trading platform provider
and data vendor based in Chicago that serves trad-
ing desks at large banks, hedge funds, and propri-
etary trading firms. SpiderRock’s historical data and
option analytics include implied volatility, option
Greeks, risk metrics, and volatility surfaces derived
from the live data from SpiderRock’s trad-
ing systems.

Since OptionMetrics is commonly used in academic
studies, we would like to point out two differences
between SpiderRock and OptionMetrics data (Please
refer to Appendix A for more details). First, daily
options and underlying prices are recorded differ-
ently across the two databases. OptionMetrics uses
option prices at 3:59 p.m. Eastern Time and stock
settlement prices at market close at 4 p.m., whereas
SpiderRock uses the same option price at 3:59 p.m.
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but also uses stock prices at 3:59 p.m. Second,
SpiderRock data imposes put-call parity whereas
OptionMetrics maintain separate volatility surfaces
for puts and calls. Even if OptionMetrics were to
synchronize the option and stock quotes, one may
still prefer using forward prices derived from put-call
parity in implied volatility calculation.3 For these rea-
sons, we choose to use SpiderRock data. These data
are used for the computation and prediction of
breakeven volatility values in an attempt to use real-
time market data that traders rely on to create trad-
ing signals.

Variables used to predict breakeven volatility are
obtained from SpiderRock and Bloomberg. In particu-
lar, the strike price, days until expiration, implied
volatility, and other information related to the under-
lying are from SpiderRock. The CBOE Volatility Index
(VIX), the CBOE VIX Volatility Index, and variables
used to construct a realized volatility forecast of the
S&P 500 are from Bloomberg. Our sample is from
January 2013 to November 2020.

Calculation of Breakeven Volatility. The
breakeven volatility is the value that sets the profit
and loss from a delta-hedged option position to be
zero. Suppose we want to calculate the breakeven
volatility for a call option. The delta-hedged profit
and loss are given as follows:4

PnLt rð Þ ¼ cT � ct �
XT
s¼1

Ds�1 Ss � Ss�1ð Þ (1)

where cT is the payoff of the call option at maturity,
ct is the call price at the time of initiating the
position, Ds is the option delta at time s, and Ss is
the price of the underlying asset at time s: The
profit and loss of the delta-hedged option
depend on the volatility of the underlying. By
changing the volatility, we can trace out PnLt rð Þ as
a function of volatility. The breakeven volatility is
the value that sets PnLt rð Þ to zero. We can also
compute breakeven volatility in a similar manner
using put options.

To operationalize the above expression, we compute
the breakeven volatility as follows:

PnLT�1 rT�1ð Þ ¼ cT � cT�1ðrT�1Þ � DT�1ðST � ST�1Þ

…

PnLt rtð Þ ¼ ctþ1 � ct rtð Þ � Dt Stþ1 � Stð Þ (2)

For day s, we solve for the breakeven volatility rs

such that PnLs is set equal to zero. For a call option,

we start our computation when the call has five days
until expiration, which is taken to be T in the above
expressions. The call value at time T is taken to be
the market value. For the previous day, at time T�
1, we compute the fair value of the call option that
sets the profit and loss of the delta-hedged position
on that day to be zero. We then solve for the fair
value of the call option until we reach a time to
expiration of 74 trading days, so we can build a term
structure of breakeven volatility for a variety of time
to expiration ranging from 5 to 74 days.5 We com-
pute the breakeven volatility for call and put options
available from SpiderRock that have 5–74days until
expiration, including every option with a non-zero
bid price.6

We transform the fair values into volatility space
using the Black and Scholes (1973) model. A trans-
formation of prices into volatilities aids a compari-
son between breakeven volatility and implied
volatility. Volatilities are also more well-behaved
compared to dollar amounts, which facilitates build-
ing a predictive model. Because the Black-Scholes
equation is only used to transform option prices
into a more convenient space, much like an affine
transformation or taking logarithms, this transform-
ation does not require that the Black and Scholes
(1973) model is the correct pricing model
(Shimko 1993).

To delta-hedge the call options, we take the deltas
from SpiderRock, calculated using the Cox-Ross-
Rubinstein (CRR, Cox, Ross, and Rubinstein 1979)
binomial tree model.7 We compute the fair value of
the option until five trading days before maturity.
We do not hold the option until expiration due to
two reasons. First, due to the high gamma exposure
in the few days immediately before expiration,
volatility calculations can be quite noisy, and the
associated volatility curves are not smooth func-
tions of strike prices.8 Second, option traders often
do not roll over their positions on the expiration,
but rather a several days before expiration. Our
range of 5–74 trading days until maturity covers
the typical time to expiration options traders
engage in.9

Figure 1 provides a time series plot of the number of
options we use to calculate breakeven volatility. On
average, we have 278 strikes each day. This value is
somewhat biased upwards, by the extreme days with
more than 750 strikes; the median number of strikes
we use is 244. Although the equity index options
market is already quite liquid at the beginning of our
sample in 2013, the number of strikes steadily
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increased towards the later part of our sample. In
total, we compute breakeven volatility for
396,899 options.

Panel A of Table 1 presents the summary statistics
for breakeven volatility. From January 2013 to
November 2020, the average value of all the com-
puted breakeven volatilities is 25.4%, and the
median is 22.1%. We observe a broad range of val-
ues—the 10th percentile of the empirical distribu-
tion is just 9.5%, whereas the 90th percentile is
45.0%. The standard deviation of breakeven volatil-
ities is 16.2%. The distributional statistics for
breakeven volatility are similar, but not identical to,

those for implied volatility. In our sample
period, the implied volatility of options on the
S&P 500 index average 27.2%, with a median value
of 24.1%. The standard deviation of implied volatil-
ity, 15.6%, is somewhat lower compared to break-
even volatility. The percentiles of implied volatility
are also similar compared to those of breakeven
volatility. We also present the difference between
BEV and IV to understand their joint distribution.
On average, BEV is lower than IV by �1.8%. Their
difference has a standard deviation of 9.8%. BEVs
are generally lower than IVs, as indicated by the
negative percentile values up to the 75th, which
reflects that in our sample, many options appear to

Table 1. Summary Statistics

S&P 500

Variable Mean SD 10th 25th Median 75th 90th

BEV 25.4% 16.2% 9.5% 14.1% 22.1% 32.2% 45.0%
IV 27.2% 15.6% 10.9% 15.4% 24.1% 34.8% 46.5%
BEV-IV �1.8% 9.8% �7.2% �4.2% �2.3% �0.3% 3.0%

This table presents summary statistics for breakeven volatility and implied volatility of the S&P 500 Index. 10th, 25th, 75th, and
90th represent the quantile values. Our sample is from January 2013 to November 2020.

Figure 1. Number of Options Used to Calculate Breakeven Volatility
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be trading at a premium relative to their
fair values.

Existing papers focusing on isolating a variance risk
premium (VRP) often do so in the form of excess
returns of delta-hedged positions (Bakshi, Cao, and
Chen 1997; Goyenko and Zhang 2020; Bali et al.
2021). A delta-hedged short position that earns an
average positive return indicates implied volatility is
on average higher than subsequent realized volatility.
By setting the delta-hedged profit and loss to zero,
the breakeven volatility is a measure that sets the
VRP to zero for each individual option. In this way,
BEV calculations are more flexible than a single esti-
mate of realized volatility, since we retain the flexibil-
ity of having different volatility values for options
with the same maturity but different strike prices.
Therefore, breakeven volatilities provide richer infor-
mation set on the realized distribution.

Volatility Smirks. The idea of constructing repli-
cating portfolios using historical data has been dis-
cussed in the literature, but implementation has been
limited. Zou and Derman (1999) note that theoretic-
ally, the appropriate implied volatility for a given
option is determined by the cost of replicating that
option throughout its lifetime. However, the authors
do not pursue this idea because “such replication can
be time-consuming, and the hedging errors due to
inaccurate volatility forecasting and infrequency of

hedging make the exercise difficult.” Greatly
improved computing power in the past 20 years, as
well as more comprehensive option datasets, over-
come much of Zou and Derman’s (1999) concerns.
Mitoulis (2019) carries out breakeven volatility calcu-
lations using simulations but stops short of a more
complete empirical analysis. Having constructed BEV
values for a large set of S&P 500 options, we com-
pare the behavior of breakeven volatility and
implied volatility.

Figure 2 compares volatility smirks using breakeven
and implied volatilities. We average across all dates
and maturities to trace out the unconditional distri-
butions for these volatility measures. We plot the
volatility curves as a function of the normalized
strike, the ratio of the log moneyness of the option
divided by its scaled volatility.10 Defined this way,
the normalized strike provides a better measure to
compare options that have very different volatility
levels or time to expiration. There is a limited number
of listed call options with high strike prices, which
causes the volatility calculations to be truncated on
the right side, whereas the left side extends much
further. This asymmetry around the number of strikes
around the at-the-money value is commonly found in
the literature (e.g., Figlewski and Malik 2014). Since
the 1987 stock market crash, equity index options
have shown a persistent skew to OTM puts. The
most common explanation for this pattern is that
market participants want to protect against the possi-
bility of a large market crash, but they do not neces-
sarily purchase deep OTM calls in anticipation of a
large upward move. This sort of market participant
preference can explain why we observe many more
strike values below the current price of
the underlying.

In the vicinity of the at-the-money region, breakeven
volatility and implied volatility are largely similar.
When we get farther away from ATM strike prices,
the two volatility measures diverge. In the regions
where the strike price exceeds the underlying price—
the normalized strike is negative—implied volatility is
higher than breakeven volatility, indicating that delta-
hedged short positions in puts or calls with these
strikes tend to have positive profits on average.
Similarly, in the regions where the strike price is
lower than the underlying price, the breakeven vola-
tility is also lower than the implied volatility. The
implications for the profitability of delta-hedged posi-
tions from Figure 2 are consistent with documented
empirical facts in the literature. Coval and Shumway
(2001) and Bakshi and Kapadia (2003) find that short

Figure 2. Volatility Smirks of BEV and IV

This figure shows the volatility smirks constructed from break-
even volatility and implied volatility for the S&P 500 Index,
averaged across the full sample period and smoothed. The sam-
ple period is from January 2013 to November 2020.
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delta-hedged positions are profitable for out-of-the-
money puts.

A Data-Driven Valuation Process
In the previous section, we used historical data to
build a database of nearly 400,000 breakeven volatil-
ities for options of different moneyness and time to
expiration. While this exercise presents us with the
fair values of options, the breakeven volatility calcu-
lation uses future information, so it cannot be com-
puted in real-time. Suppose an investor wants to
know what an option with a time to expiration of
70days should be worth. She cannot calculate the
breakeven volatility for this option without knowing
its future price path. To compute the fair value of an
option in real-time, we require a model that estab-
lishes a link between the current observable charac-
teristics of an option to its breakeven volatility. To
this end, we build a predictive model for breakeven
volatility using a variety of input variables. The map-
ping from input variables to the breakeven volatility
learned by our model constitutes an option pric-
ing model.

Volatility Predictors. We consider the
following set of predictors for breakeven volatility.
Whereas some predictors are motivated by
financial theory, others are included for their likely
potential to contain strong predictive power. Since
our primary goal is to make a robust prediction for
breakeven volatility, we are not restricted to only
using variables that have a strong economic motiv-
ation. All variables are calculated at the
daily frequency.

1. VIX captures the market’s expectation for the
implied volatility of the S&P 500 Index over the
next 30 days. It is commonly used by investors
to gauge market sentiment. We use the log of
the CBOE Volatility Index at the market close.

2. VVIX is a volatility of volatility measure that
captures the expected volatility of the 30-day
forward price of the VIX. We use the closing
value of the CBOE VVIX Index.

3. rv is a GARCH forecast of the volatility of the S&P
500 returns over the same horizon as the time to
expiration of the option, including an adjustment
for the overnight component of volatility.

4. rt provides a measure for the time to expir-
ation. It is calculated as the square root of the
number of trading days to expiration divided
by 252.

5. lsk is a measure of the moneyness of the
option calculated as the natural log of the
price of the underlying over the strike price.
This variable is motivated by the empirical
finding that volatility is not constant across
moneyness (Zou and Derman 1999), and it
allows the breakeven volatility to vary as a
function of moneyness.

6. ATM.IV is the implied volatility of the option
closest to at-the-money, calculated using the
Black and Scholes (1973) model.

7. ImpliedVol is the market implied volatility of
the option calculated using the Black and
Scholes (1973) model.

8. RR is the difference between the delta of the
option and the ATM delta. This variable pro-
vides another way to capture higher volatilities
in the wings compared to ATM options.

9. vega is the sensitivity of the option price
with respect to volatility. We use the Black-
Scholes vega, equal to StN0 d1ð Þ ffiffiffiffiffiffiffiffiffiffiffi

T � t
p

, where
St is the price of the underlying, N0 �ð Þ is the
probability density function of standard nor-
mal distribution, d1 comes from the Black-
Scholes formula,11 and T � t is the time
to expiration.

10. gamma is the rate of change in the delta
with respect to changes in the underlying
price, or the second derivative of the option
price with respect to the price of the underly-
ing. We calculate the Black-Scholes gamma,
N0 d1ð Þ

Str
ffiffiffiffiffiffi
T�t

p , where r is the volatility of
the underlying.

11. vrt is defined as the VIX multiplied by the
square root of time to expiration. This variable is
a construction of r

ffiffiffiffiffiffiffiffiffiffiffi
T � t

p
from the Black-

Scholes model. Breaking up the Black-Scholes
model into its constituent parts allows for add-
itional flexibility in predicting breakeven volatility.

12. vvt2 is defined as the VIX squared multiplied
by the time to expiration. This variable is
another piece in the Black-Scholes
model, r

2

2 T � tð Þ:

We also include some transformations of the
above variables. lsk2 is the squared value of lsk,
motivated by the empirical observation that volatil-
ity measures are a convex function of moneyness.
ImpliedVol2 is equal to ImpliedVol squared. RR2 and
RR3 are the squared and cubed values of RR, moti-
vated by interpolation methods used in the litera-
ture to build volatility curves that try to capture the
curvature in the volatility surface through a cubic
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spline (Malz 2014; Neuberger 2012). vega2 is
vega squared.

Table 2 shows the summary statistics for the pre-
dictor variables, and Table 3 provides the pairwise
correlations. This table highlights the diversity of
our predictors; most variables are weakly correlated
with others. For example, the realized volatility fore-
cast rv is basically uncorrelated with the time to
expiration rt or the moneyness measures lsk and
lsk2, but it is positively correlated to volatility varia-
bles, such as the at-the-money implied volatility,
VIX, VVIX, as well as vrt and vvt2. Variable transfor-
mations are often highly correlated with the original
variables: lsk and lsk2 have a correlation of 0.77,
ImpliedVol and ImpliedVol2 have a correlation of
0.93, and vega and vega2 have a correlation of
0.94. Some variable pairs show large negative corre-
lations. Gamma has a �0.79 correlation with RR,
whereas RR2 has correlations of �0.90 and �0.79
with vega and vega2.

We include several volatility measures as predic-
tors, including VIX, ATM.IV, and rv. As one would
expect, these variables are highly correlated with
one another. To limit multicollinearity, we reduce
the correlations among these predictors through
orthogonalization, via a Gram-Schmidt process
(Cheney and Kincaid 2009). We run an ordinary
least squares regression of VIX on ATM.IV, then

we take the residual of the regression, VIX.res, as
the new predictor in place of VIX. We repeat the
same process for rv to obtain rv.res. By construc-
tion, VIX.res and rv.res are uncorrelated with
ATM.IV. Additionally, they are also only 0.33 corre-
lated with each other. We do not orthogonalize
ImpliedVol or ImpliedVol2, since these have greater
variation depending on the moneyness of the
option and tend to bring significantly different
information compared to the previous three volatil-
ity variables.

ATM.IV, VIX.res, and rv.res are all included as predic-
tors in our model. Presumably, the idiosyncratic com-
ponent of each volatility measure contributes to
predicting breakeven volatility, rather than just the
common component. If only the common component
of the volatility measures mattered for prediction, it
would not be necessary to retain all three volatility
measures—some form of average would suffice. For
example, we could construct a derived predictor as
the largest principal component (Hull and Qiao
2017). Because the three volatility measures capture
different information related to breakeven volatility,
we choose to include all three in the predic-
tion model.

The first row of Table 3 contains correlations among
the predictor variables and breakeven volatility, our
prediction target. Correlation is one measure of how

Table 2. Summary Statistics of Predictors

Variable Mean SD 10th 25th Median 75th 90th

VVIX 97.67 18.31 79.53 85.83 93.97 106.01 118.94
VIX 18.08 8.93 11.53 12.85 15.00 20.10 27.96
rt 0.39 0.10 0.24 0.32 0.40 0.47 0.52
lsk 0.15 0.21 �0.07 0.00 0.12 0.26 0.40
lsk2 (�10) 0.68 1.73 0.00 0.03 0.17 0.70 1.63
ATM.IV 16% 8% 10% 12% 14% 18% 25%
ImpliedVol 27% 16% 11% 15% 24% 35% 46%
ImpliedVol2 10% 14% 1% 2% 6% 12% 22%
RR 0.21 0.35 �0.45 �0.01 0.40 0.47 0.49
RR2 0.17 0.08 0.02 0.11 0.20 0.23 0.24
RR3 0.04 0.07 �0.09 0.00 0.07 0.11 0.11
vega 1.50 1.55 0.09 0.25 0.88 2.40 3.88
vega2 4.63 7.87 0.01 0.06 0.78 5.77 15.08
gamma (x100) 1.14 1.72 0.10 0.17 0.39 1.28 3.43
vrt (x10) 0.63 0.34 0.29 0.41 0.57 0.75 1.01
vvt2 (x100) 0.25 0.36 0.04 0.08 0.16 0.28 0.51
rv 0.24 0.18 0.14 0.16 0.19 0.27 0.39

This table presents summary statistics for the different variables used to predict breakeven volatility. The sample period is from
January 2013 to November 2020.
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well each variable would do in univariate predictive
regressions. Almost all the predictors exhibit consid-
erable correlations with our prediction target,
although the relationship can be positive or negative.
VVIX, lsk, RR, and vrt all have a positive relationship
with breakeven volatility; vega, vega2, and gamma
have a negative relationship with BEV. Suggestive
economic interpretations of a positive or negative
correlation with BEV can be found in our description
of the predictor variables.

Statistical Model. Our goal is to make good pre-
dictions of breakeven volatility. To the extent linear
models can offer good predictions for the target vari-
able, they are preferred over more complex models
given their simplicity and interpretability. Our

prediction target is BEVi, K, t, T for option i with
strike price K and time to expiration T� t: Because
the BEV calculation requires knowledge of the path
of the option and the underlying, it is only known on
the expiration date T: We use predictor variables at
time t, Xi,m, t, to form a conditional expectation of
the actual BEV value at time T: To simplify notation,
we will denote the target and predictor variables as
BEVi and Xi,m with the understanding that they are
known at different times.

The raw BEV values are truncated at zero and show
significant right skew. In the first stage, we transform
the dependent variable, BEV, into its logarithms. By
working in the log space of BEV, we obtain a distri-
bution well-approximated by a normal distribution,
and the predicted breakeven volatility value will be

Table 3. Correlation Matrix of Predictors

This table presents the pairwise correlations for the predictor variables and breakeven volatility. Positive correlations are shown in
shades of red, whereas negative correlations are shown in shades of blue. The shade of the cell indicates the strength of the cor-
relation. The sample period is from January 2013 to November 2020.
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guaranteed to be positive. Our first-stage regression
models logged BEV as a linear function of the pre-
dictor variables:

log BEVið Þ ¼ b0 þ
XM
m¼1

Xi,mbm þ ei (3)

where BEVi is the breakeven volatility linked to a par-
ticular set of parameters including time to expiration
and moneyness, Xi,m are the M predictors associated
with BEVi, and ei is the prediction error.

For a given set of predictor variables, Equation (3)
provides unbiased estimates for the expectation of
logged BEV, E½log BEVð Þ�: However, our goal is to find
the best prediction for the expectation of BEV,
E½BEV�: The approach to retransform a predicted
quantity back to its original scale is known as a
“smearing adjustment” in statistics (Duan 1983;
Taylor 1986). We cannot simply exponentiate our
prediction from Equation (3), because eE log BEVð Þ½ � �
E½BEV� by Jensen’s inequality.12 This point has been
emphasized by Duan (1983), who asserts that
unbiased and consistent predictions on a transformed
scale (using a monotonic function) do not transform
into unbiased or consistent quantities on the untrans-
formed scale.

If the residuals from Equation (3) were normally
distributed, there is a closed-form transformation
of the prediction of Equation (3), E½log BEVð Þ�, into
E½BEV� :

E BEV½ � ¼ eE log BEVð Þ½ �e1
2g

2
(4)

where g is the standard deviation of the residuals
ei of Equation (3). For residuals that are approxi-
mately normally distributed, the above expression
provides a fairly precise adjustment from the
logged values to the original values (Duan 1983).
However, the adjustment does not work well if the
residuals were not normally distributed. In the case
of non-normal residuals, Duan (1983) proposes the
following:

E BEV½ � ¼ eE log BEVð Þ½ � 1
N

XN
j¼1

eej (5)

where N is the number of data points used to esti-
mate Equation (3), and ejs are the residuals. Duan
(1983) posits that like Equation (4), our desired quan-
tity E BEV½ � and the exponentiated prediction from
Equation (3) eE log BEVð Þ½ � differ by a constant multiple.
Whereas normal theory implies a multiplicative factor
of e

1
2g

2
, Duan’s is 1

N

PN
j¼1 e

ej :

Empirically, the residuals from the first-stage
regression are not normally distributed. If we were
to apply Equation (4), the resultant breakeven
volatility values differ significantly from the actual
values. Equation (5) provides a better adjustment
factor, but the resulting BEV values still make
poor predictions for the actual values. To
overcome this retransformation issue, we use
a more general, supervised approach to
estimate the adjustment factor in a second-stage
regression:13

BEVi ¼ ceE½
dlog BEVið Þ� þ ei (6)

where dlog BEVið Þ are the predicted values from the
first-stage regression in Equation (3). Equation (6)
is estimated without an intercept, adhering to the
constant multiple relationships derived in Duan
(1983), and c is an estimate of the multiplicative fac-
tor that wedges between E BEV½ � and eE log BEVð Þ½ �: The
final prediction of the breakeven volatility comes
from the predicted component of Equation (6),

ĉeE½ dlog BEVið Þ�: Combining the two stages, the following
expression links the predictor variables with the final
prediction of BEV:

E BEVi½ � ¼ ĉe
bb0þPM

m¼1

Xi,m bbm
(7)

The in-sample results of the first-stage regression are
shown in Table 4. The predictors are all statistically
significant at the 1% level, indicating strong
predictive power of these variables for logged
values of breakeven volatility. Taken together, the
predictor variables can explain 53% of the variation
in BEV. The adjusted R-squared is nearly identical to
the unadjusted R-squared because we have many
observations compared to the number of
regressors.14

In-sample R-squared can overstate the predictive
power of our model. To more accurately assess how
well our model can predict breakeven volatility, we
use a 10-fold cross-validation approach to calculate
the coefficient of determination. We partition our
data into 10 subsamples of roughly equal size. For
each subsample, we fit our statistical model on the
remaining 90% of data and use the fitted model to
make predictions on the subsample. We repeat this
procedure to obtain 10 validation R-squareds and
take their average to be the cross-validated R-
squared. The cross-validated R-squared is very close
to the full-sample R-squared, indicating that our pre-
diction model performs with a high degree of stability
on this dataset. Indeed, the 10 validation R-squareds
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show a narrow range between 0.51 to 0.56, with a
standard deviation of just 0.012. The regression coef-
ficients show a high level of stability across valid-
ation folds.

If high correlations among the predictors lead to
multicollinearity issues, the statistical integrity of
the model may be compromised. While ordinary
least squares estimates remain unbiased, their
variances can be large. Ridge regression helps to
resolve multicollinearity by allowing for better
convergence of the variance-covariance matrix
and introducing a small degree of bias to produce
more reliable estimates. We check the robustness
of our prediction using ridge regression, whose

penalization parameter we select using 10-fold
cross-validation. We find that the optimal
penalization parameter is zero, indicating that the
optimally-selected ridge model is equivalent to
ordinary least squares. We further explore a range
of possible values for the penalization parameter,
and we confirm that the model with the lowest
mean squared error is the one with the penalization
parameter set to zero. These results suggest that
multicollinearity does not pose a major issue for
our model.15

Table 5 presents the smearing adjustment according
to Equation (6). As implied by the equation, this
second-stage regression does not include an inter-
cept term. The smearing adjustment indicates

E BEV½ � ¼ 1:03 eE log BEVð Þ½ �, consistent with the impli-

cations of Jensen’s Inequality eE log BEVð Þ½ � � E½BEV�:
This adjustment procedure shows a close
relationship between the predicted log breakeven
volatility values and actual BEV—the full-sample R-
squared is 0.90, and so is the adjusted R-squared.
The 10-fold cross-validated R-squared is somewhat
lower but still suggests that the majority of the
variation in breakeven volatility is captured by
our model.

Our approach attempts to estimate breakeven volatil-
ities as a fixed function of certain characteristics of
options, such as the current level of the underlying
and moneyness. If our model captures the data well,
its functional form should be relatively stable over
time, although the actual breakeven volatility predic-
tions can change over time or across strike prices if

Table 4. Predicting Logged
Breakeven Volatility

Estimate SE t-Stat

(Intercept) 1.85 0.02 116.7
VVIX 0.187 0.009 20.6
VIX.res 0.002 0.001 2.6
rt �0.59 0.03 �19.7
lsk 0.69 0.02 30.0
lsk2 �0.11 0.01 �7.6
ATM.IV 1.71 0.06 28.1
ImpliedVol (coef � 10) 2.08 0.04 52.7
ImpliedVol2 �0.01 0.00 �44.8
RR 0.15 0.01 15.5
RR2 0.90 0.03 26.8
RR3 1.29 0.06 22.3
vega 2.05 0.37 5.5
vega2 0.54 0.04 12.3
gamma �67.53 1.44 �46.8
vrt 4.33 0.20 21.7
vvt2 �33.74 0.85 �39.5
rv.res 0.43 0.01 34.1
R-squared 0.53
Adjusted R-squared 0.53
10-Fold CV R-squared 0.53
Number of observations 396,899

This table shows the first stage of the predictive model for
breakeven volatility. We use linear regression to predict the
logged values of breakeven volatility.

log BEVið Þ ¼ b0 þ
XM
m¼1

Xi,mbm þ ei

where BEVi is the breakeven volatility linked to a particular set
of parameters including time to expiration and moneyness, Xi,m
are the M predictors associated with BEVi, bm are regression
coefficients. The coefficients associated with VVIX, ATM.IV,
ImpliedVol, ImpliedVol2, vega, vega2, and rv.res are multiplied
by 100 for ease of exposition. Standard errors and t-statistics
adjusted for heteroskedasticity are shown.

Table 5. Smearing Adjustment of Breakeven
Volatility Prediction

Estimate SE t-Stat

FirstStagePrediction 1.03 0.001 1310
R squared 0.90
Adj. R squared 0.90
10-Fold CV R-squared 0.66
Number of observations 396,899

This table shows the second stage of the predictive model for
breakeven volatility. We regress breakeven volatility values on
the predictions from the first stage.

BEVi ¼ ceE½
dlog BEVið Þ� þ ei

where BEVi is the breakeven volatility and dlog BEVið Þ is the pre-
dicted value from the first-stage regression. c is an estimate of
the smearing adjustment. Standard errors and t-statistics are
adjusted for heteroskedasticity.
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the characteristics on which the prediction is based
on change.

Our predictive model takes a data-driven approach
to quantifying the value of an option, which stands
in contrast to commonly used structural approaches
to option pricing. Existing approaches typically spe-
cify key parameters necessary for calculating
options prices—volatility, time to expiration, volatil-
ity of volatility, etc., then use these parameters to
derive the value of an option. In comparison, a data-
driven approach learns the relationship between the
variables that are important for option valuation,
rather than specifying the model parameters
in advance.

Any pricing model must provide a link between a
set of input variables and output variables, typically
taken to be the option prices or volatilities. For
example, the Black-Scholes model provides a map-
ping between the model parameters (the price of
the underlying, volatility of the underlying, time to
expiration, strike price, and interest rate) and the
dollar value of an option. The Heston (1993) model
stipulates a different mapping for a set of model
parameters and the price of an option. Our
approach also establishes a link between the
predictor variables and the breakeven volatility,

a measure of the fair value of an option.
However, the relationship between the predictor
variables and BEV is learned from a large database
of historical BEV values and predictors, which
allows for more flexibility compared to the exam-
ples above.

Researchers have explored non-parametric option
pricing models in the past. Hutchinson, Lo, and
Poggio (1994) use neural networks to approximate
the Black-Scholes formula, but the paper does not
consider a non-parametric estimation of the relation-
ship between option characteristics and option pri-
ces. Ait-Sahalia and Lo (1998) propose a kernel
regression estimator of the risk-neutral distribution
conditional on option characteristics, such as the
price of the underlying, strike price, and time to
expiration. In the same spirit, we also try to capture
the relationship between predictor variables and
option values in a data-driven manner. Our approach
is different in that our target is breakeven volatility,
which serves as an estimate for the fair value of
an option.

Model Diagnostics. Although economic intu-
ition may guide us in thinking about the univariate
relationships among predictors and breakeven
volatility, it is much more difficult to determine

Figure 3. Probability Densities of Actual and Predicted Values

The figures below show density plots of the first and second-stage regressions. In each plot, kernel densities of the prediction target
and their predicted values are shown. In the first-stage regression, the prediction target is logged breakeven volatilities. In the
second stage, the target is the level of breakeven volatility.
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the signs of these relationships in a multivariate
setting. Rather than focus on the contribution of
individual predictors, we conduct model diagnostics
to identify the strengths and weaknesses of our
predictive model. We investigate the statistical val-
idity of the model, as well as the economic implica-
tions of the volatility predictions. To start, we
inspect the differences between the prediction tar-
get and the predicted values. In Figure 3, we plot
the kernel densities of the prediction target and the
predicted values in the same figure. A comparison
of the two densities can reveal where our model is
doing well and where it is failing. In the first-stage
regression, the prediction target is the logarithm of
breakeven volatilities. The predictions match the
target values reasonably well in the middle part of
the distribution but deviate from the target in the
tails. In both the left and right tails, there are too
few predicted values compared to the target distri-
bution, and there are too many predicted values
hovering in the center of the distribution. The mod-
el’s predictive power appears to be the strongest
when the breakeven volatility is between 5
and 50%.

In the second-stage regression, the left-hand vari-
able is breakeven volatility and the right-hand vari-
able is a transformation of logged BEV values. Like
the first-stage regression results, the centers of the
two distributions mostly overlap, although it is clear
that the predicted values are more concentrated in
the middle of its distribution than the tails. The
model predictions have the greatest difficulty with
the left tail; there are too few predicted values com-
pared to the actual breakeven volatility values,
especially if BEV is <5%. The predicted distribution
and the actual distribution of breakeven volatilities
are more closely matched in their right tails, albeit
we still observe too few predictions compared to
the target density.

We verify that the predicted volatilities do not
violate arbitrage conditions. Orosi (2015) derives
static no-arbitrage conditions for call options:
Prices must be a decreasing and convex function
of the strike price. We check the parallel
conditions for puts: Prices are an increasing and
convex function of the strike price. These
conditions can be verified by checking whether
put prices violate arbitrage conditions implied by
putting spreads and butterfly spreads. A put
spread combined buying and writing put options
with the same expiration but different strike prices.
Suppose we have two put options p1 and p2, with
the same expiration date but different strike

prices, K1 and K2: To prevent risk-free profits,
we need the following condition to hold:

p2 � p1 for K2 > K1 (8)

If the above condition were violated, risk-free profit
would be available. If p2 � p1, a portfolio that com-
bines a long position in p2 and short position in p1 is
costless to initiate, and will offer a non-negative pay-
off in all possible states of the world. The no-arbi-
trage condition for put spreads compels put prices to
be an increasing function of the strike price, an intui-
tive condition that keeps the volatility curve
well-behaved.

For put prices to be a convex function of the strike
price, the no-arbitrage condition for butterfly
spreads must be satisfied. A butterfly spread uses
three contracts: Buy a put at the lowest strike, buy
a put at the highest strike, and write two puts at an
intermediate strike. These positions form a portfolio
that earns the maximum payoff if the underlying
does not move—a short volatility position. The no-
arbitrage condition for butterfly spreads is the fol-
lowing:

p2 � p1
K3�K2

K3 � K1
þ p3

K2�K1

K3 � K1
(9)

for

K3 > K2 > K1

In the above expressions, K1, K2, and K3 are strike
prices of increasing value. p1, p2, and p3 are the put
prices associated with the respective strikes. This
condition states that the put price associated with
the intermediate strike, p2, must be less than a
weighted average of the put prices associated with
the highest and lowest strikes.16 The absence of arbi-
trage from butterfly spreads implies that put prices
must be a convex function of the strike price, such
that the shape of the volatility curve matches its
well-known empirical profile (Bollen and
Whaley 2004).

For each unique combination of date and time to
expiration, options with different strike prices
trace out a volatility curve. We examine the pre-
dicted BEV values using the above conditions, and
we find that none of the volatility curves
admit arbitrage.

Volatility Arbitrage
In the previous section, we built a predictive model
for breakeven volatility, the fair value of an option
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that does not admit any risk premia. Implied volatility
from market prices includes the risk attitudes of mar-
ket participants and therefore embeds risk premia.
To the extent our predictive model can make accur-
ate forecasts of breakeven volatility, we can poten-
tially convert the difference between implied and
breakeven volatility into trading profits. In this way,
the economic value of our model can be understood
through a simulated trading strategy. The purpose of
this section is to evaluate whether the difference
between implied volatility and predicted breakeven
volatility can generate profitable trading
opportunities.

Simulated option trading strategies have often been
used in the literature to determine the difference
between implied and realized volatility. Coval and
Shumway (2001) and Bakshi and Kapadia (2003)
find large returns to delta-hedged options and inter-
pret this result as a volatility risk premium. Bollen
and Whaley (2004) attempt to match the profits of
delta-hedged positions with net buying pressure in a
demand-based asset pricing framework. Zou and
Derman (1999) ask, “How is an investor to know
which strike and expiration provide the best
value? What metric can option investors use to
gauge their estimated excess return?” Existing
approaches to option strategies do not offer
answers to these questions, as they are not able to
determine which options offer relatively more
attractive investment opportunities or what
expected returns we should expect from delta-
hedged positions.

Our non-parametric option pricing model based on
the prediction of breakeven volatility readily
answers the above questions. The investor can
make breakeven volatility predictions for several
options and compare her predictions against implied
volatilities. If the predicted BEV and IV for an option
are different, the investor may initiate a position
with positive expected returns. If implied volatility
were lower than the predicted breakeven volatility,
the market price of the option is too low, and the
investor can “buy cheap” by taking a long delta-
hedged position. Conversely, if implied volatility
were higher than the predicted breakeven volatility,
the market price of the option is too high, and the
investor can “sell dear” by taking a short delta-
hedged position.

Simulated Trading Strategy. Trading the
difference between a volatility prediction and
implied volatility is commonly called “volatility
arbitrage” (Ammann and Herriger 2002). It is not

arbitrage in the strict sense, but rather refers to
whether the investor can make a sufficiently
accurate forecast for future realized volatility to
lock in a trading profit. To illustrate the
economic value of our predictive model, we
construct a trading strategy that exploits the
difference between our predicted breakeven
volatility values and implied volatility from mar-
ket prices.

We keep the trading strategy simple because we
want to test the accuracy of our statistical predic-
tions. If we were to proceed with a more complex
trading strategy—for example, adding in a layer of
portfolio optimization—it becomes more difficult to
evaluate the accuracy of our breakeven volatility
forecasts. In a strategy that combines BEV forecasts
with sophisticated portfolio optimization, we would
be testing the transformation of our trading signals
into portfolio positions as well as the accuracy of the
BEV forecasts, resulting in a “joint hypothesis prob-
lem.” By keeping the simulated trading strategy sim-
ple, we can test the accuracy of the BEV forecasts
with limited confounding factors. Therefore, our
empirical choices in the simulated trading strategy
closely mirror those we made in the construction of
our predictive model.

We use an initial training period from January
2013 to December 2014 to fit our model. We fix
the model parameters and make predictions for
breakeven volatilities throughout 2015, and we
refit the model at the end of 2015 using all the
data from 2013 through 2015. We then make new
predictions using the updated model parameters.
Each subsequent year, the model is refit using an
expanding window. These predictions only use the
information available at the time of the forecast, so
they can be made in real-time. The final set of pre-
dictions goes from January 2015 to
November 2020.

In the modeling section, we showed that our statis-
tical model achieves high in-sample R-squared.
However, good in-sample performance does not
always imply generalizable results. This point is
emphasized in return predictability studies where
the goal is to produce the best predictions of future
market returns (e.g., Welch and Goyal 2008;
Campbell and Thompson 2008). Our expanding win-
dow predictions constitute out-of-sample (OOS)
forecasts of breakeven volatility, and we evaluate
the out-of-sample predictive performance of our
model compared to the historical mean. We assess
the volatility forecasts using the mean squared
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forecast error (MSFE), calculated for our prediction
and the historical mean:

ê0, i ¼ BEVi � BEVi (10)

ê1, i ¼ BEVi � dBEVi (11)

where BEVi is the actual breakeven volatility, dBEVi is
the predicted value of breakeven volatility, and BEVi

is the historical mean estimated using the same infor-
mation set as dBEVi: The mean squared forecast error
is calculated as the sum of squared forecast errors
across the full set of N forecasts:

dMSFEk ¼ 1
N

XN
i¼1

ê2k, i, k ¼ 0, 1 (12)

Based on the Clark and West (2007) procedure,
Dong et al. (2022) develop a test for a difference in
the population of the MSFEs:

H0 : MSFE0 � MSFE1, H1 : MSFE0 > MSFE1 (13)

Campbell and Thompson (2008) propose an alterna-
tive method to evaluate competing forecasts via an
out-of-sample R-squared statistic:

R2
OS ¼ 1�

dMSFE1dMSFE0
(14)

Dong et al. (2022) show that the Clark and West
(2007) statistics to test Equation (13) is equivalent to
testing whether the out-of-sample R-squared of
Campbell and Thompson (2008) is positive or nega-
tive. We follow Dong et al. (2022) to evaluate the
predictive power of our model. If dBEVi captures more
variation of actual breakeven volatility than the his-
torical mean, the sum of squared errors in the
numerator would be smaller than the denominator,
indicating our predictive model forecasts BEV better
than its historical average. In this case, the out-of-
sample R-squared R2

OS would be positive, correspond-
ing to the alternative hypothesis in Equation (13). IfdBEVi captures less variation of BEVi than BEVi, the
out-of-sample R-squared would be negative, corre-
sponding to the null hypothesis in Equation (13).

Every OOS prediction of breakeven volatility allows
for a comparison with implied volatility. Starting in
January 2015, each day, we scan through all available
OTM options with time to expiration between five
and 74 days, and we identify those with a predicted
profit remaining >$1.17 Profit remaining is calculated
as the difference between the breakeven dollar value
and the midpoint between the bid and ask prices.
For a particular option, if the breakeven price were

lower than the mid-price, we sell one contract. If the
breakeven price were higher than the mid-price, we
purchase one contract. All trades are delta-hedged
and held until five days to expiration, at which time
the positions are closed out. Portfolio returns are cal-
culated by summing up the daily profit and loss and
dividing by the aggregate notional value of the
contracts.18

Results
In the simulated trading strategy, the predictive
model makes out-of-sample forecasts of breakeven
volatility. We first assess these OOS forecasts before
evaluating the trading strategy. The OOS forecasts
provide a valuable perspective for understanding the
validity of our predictive model. The out-of-sample
R-squared is 0.71, indicating that our predictive
model for breakeven volatility significantly outper-
forms the historical average estimate—the mean
squared forecast error is 71% smaller for our fore-
casting model compared to the historical mean.

Table 6 presents a confusion matrix of the implied
trading strategy from the breakeven volatility fore-
casts. The confusion matrix compares the number of
long and short investment decisions implied by the
model predictions with the decisions that an investor
would make if she could perfectly observe the actual
BEV values. For example, suppose an option with
30 days to expiration has an IV of 25% and BEV of
28%. With 30days to go, we would not observe the
true BEV value. Suppose our predicted BEV value is
24%. In this case, we would take a short position in
the option, whereas if we could observe the true
BEV value, we would have taken a long position.
Since the options literature has documented a robust

Table 6. Confusion Matrix of BEV
Predictions

Predicted

Short Long

Actual
Short 3002 1467
Long 0 2314

This table shows the out-of-sample BEV predictions for those
observations that show favorable trades. Each year, we retrain
our forecasting model for breakeven volatility using as much
historical data as possible, and we use this model to make pre-
dictions throughout the year. If the breakeven price were lower
than the mid-price, we sell one contract. If the breakeven price
were higher than the mid-price, we purchase one contract.
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variance risk premium (Carr and Wu 2009; Bollerslev,
Tauchen, and Zhou 2009), our trading strategy will
have a default bias towards short positions. In this
sense, the short positions are the “positive” class in
the confusion matrix, and the long positions are the
“negative” class.

Our out-of-sample predictions cover 6,783 observa-
tions that display an investing edge. Of these, 3,002
are true positives—the model short positions match
the actual BEV implied short positions, and 2,314
are true negatives. Therefore, the accuracy of the
model, measured as the total correct predictions
divided by the total number of observations, is 78%.
Precision measures the ratio of correctly predicted
positive observations to the total predicted positive
observations. This number comes out to be 100%—
in this particular sample, every predicted short pos-
ition with an expected profit remaining of more
than $1 turned out to be correct. Recall, that the
ratio of correctly predicted positive observations to
all the actual positive observations, is 67%, indicat-
ing that the number of correctly predicted short

positions is 67% of the total actual number of short
positions an investor would take if she could per-
fectly observe breakeven volatilities. F1 score, the
harmonic mean of precision and recall, provides a
holistic evaluation of the predictive power of the
model that balances false positives and false nega-
tives. The F1 score is 0.80 in our case. By looking at
the predictions from our regression model through
the lens of classification, we gain an additional per-
spective on its performance.

We provide a summary of the performance of our
BEV-based trading strategy in Table 7. We include
three additional options strategies for comparison: A
portfolio of delta-hedged short positions in all avail-
able options, a portfolio of delta-hedged short posi-
tions in all puts, and a portfolio of delta-hedged short
positions in all calls. Finally, we include a buy-and-
hold S&P 500 strategy. The BEV-based strategy
earns an annual return of 6.8% with a volatility of
4.5%, achieving the highest Sharpe ratio and the
highest ratio of expected to maximum drawdown
among all the options strategies. A buy-and-hold

Table 7. Strategy Performance

A. Raw values

BEV Short Options Short Puts Short Calls Buy-and-Hold S&P

Average returns 6.8% 4.2% 3.1% 1.1% 10.4%
Volatility 4.5% 4.3% 3.0% 1.6% 13.0%
Sharpe ratio 1.50 0.99 1.04 0.68 0.79
Max drawdown �3.2% �5.1% �4.7% �2.1% �19.8%

B. Option strategies scaled to the same volatility as the S&P 500

BEV Short Options Short Puts Short Calls Buy-and-Hold S&P

Average returns 19.6% 12.9% 13.5% 8.9% 10.4%
Volatility 13.0% 13.0% 13.0% 13.0% 13.0%
Sharpe ratio 1.50 0.99 1.04 0.68 0.79
Max drawdown �9.3% �15.7% �20.3% �17.7% �19.8%

C. Including transaction costs

One Tick Two Ticks Three Ticks

Average returns 4.4% 3.2% 2.1%
Volatility 4.5% 4.5% 4.5%
Sharpe ratio 0.98 0.72 0.46
Max drawdown �4.9% �7.2% �11.5%

This table presents the performance statistics of our simulated trading strategy and several other investment strategies. “BEV” is a
strategy that uses breakeven volatility forecasts to select and invest in options. “Short Options” is a strategy that takes short posi-
tions in all available options. “Short Puts” and “Short Calls” only invest in puts or calls separately. Panel A shows the statistics for
the raw returns of the strategies. Panel B scales the options strategies to have the same volatility as that of the S&P 500. Panel C
includes transaction costs for the BEV strategy (each tick is five cents, see text for details).
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strategy in the S&P 500 Index performed well in our
sample period, earning 10.4% per year with 13%
volatility. Its Sharpe ratio of 0.79 shows an attractive
risk-return tradeoff between 2015 and 2020, higher
than its historic longer-term value.

Due to the differences in volatility, it is difficult to com-
pare average returns and maximum drawdowns across
strategies. In Panel B of Table 7, we scale all the option
strategies such that their annual volatilities are all equal
to that of the S&P 500. Putting all the strategies on
the same scale makes clear the distinct investment
opportunities available to investors. At annual volatility
of 13%, the BEV strategy earns 19.6% per year with a
maximum drawdown of �9.3%, providing the highest
average return and the lowest tail risk. In comparison,
the other options strategies earn between 8.9% and
13.5%, with maximum drawdowns between �15.7 and
�20.3%. The buy-and-hold S&P strategy has a max-
imum drawdown of �19.8%.

Margins and transaction costs are major factors that
can impact the return of option strategies (Zhan
et al. 2022). While our return calculation makes a
conservative assumption about margin requirement—
fully collateralized positions—we did not include
transaction costs thus far. We explore the impact of
transaction costs for our BEV strategy in Panel C of
Table 7. The tick size for SPX options is five cents.
For far out-of-the-money options, the bid-ask spread
is often five cents. For at-the-money options, the
typical bid-ask spread ranges from 20 to 30 cents. To
incorporate costs, we assume we can trade the E-
mini futures contract (which we use to hedge) one
tick worse than the midpoint price, and we assume
three values for trading SPX options: One tick, two
ticks, and three ticks.19 According to Muravyev and
Pearson (2020), the average quoted bid-ask spread is
8.1 cents for stock index options, and the average
effective spread is 6.2 cents. For sophisticated trades
that take into account the expected future price
movement of the options, the average effective
spread is just 1.3 cents. The authors point out that
proprietary traders or institutional investors who
have algorithms or use brokerage firm execution
algorithms pay closer to 1.3 cents than 6.2 cents. In
light of the findings of Muravyev and Pearson (2020),
our transaction cost assumptions are on the conser-
vative side.

Panel C shows that if we trade one tick worse than
the midpoint price for SPX options, the average return
reduces to 4.4%, the Sharpe ratio reduces to 0.98,
and the maximum drawdown rises to �4.9%. Incurring
larger transaction costs further reduces the average

return and Sharpe ratio, and increases the maximum
drawdown. Unless the investor can limit her transac-
tion costs, a strategy based on breakeven volatility
will not offer attractive risk-adjusted returns.

Conclusion
In this paper, we build a non-parametric option pric-
ing model whose output is the fair value of an option
as measured by breakeven volatility, the value of
implied volatility that sets the profit and loss of a
delta-hedged option to zero. We compute breakeven
volatilities for a large set of S&P 500 index options,
and we use these historical values to construct a pre-
dictive model. A two-stage regression approach cap-
tures the majority of the variation in breakeven
volatility, and the resulting predictions satisfy no-
arbitrage conditions. The predictions from our model
can be used to formulate a volatility arbitrage strat-
egy that exploits the difference between implied
volatility and the predicted breakeven volatility.

There are several interesting future directions to
explore. A natural and immediate extension would be
a careful comparison of the different ways of delta
hedging. We used deltas associated with individual
options, but alternative choices may include using the
at-the-money delta or a delta calculated from a real-
ized volatility forecast. A deeper analysis of the rela-
tionship between breakeven volatility, realized
volatility, and realized skewness would contribute to
the existing literature on modeling and forecasting
higher moments of asset distributions. Garleanu,
Pedersen, and Poteshman (2009) show that option
prices are associated with demand pressure from
option end-users, which may serve as an additional
predictor variable in an option pricing model. An
investigation of the connection between breakeven
volatility and the Recovery Theorem of Ross (2015)
could shed light on the viability of Ross’s assumptions.

For a fixed time to expiration, the second derivative
of option prices with respect to strike prices gives
the risk-neutral distribution (Breeden and
Litzenberger 1978). To the extent breakeven volatil-
ities are different for options with different strike pri-
ces, the second derivative of the prices associated
with BEVs provides another distribution. Because pri-
ces associated with breakeven volatilities do not
admit any risk premia, this distribution does not
embed the risk attitudes of market participants. A
breakeven volatility surface that changes as a func-
tion of moneyness and time to expiration may be of
interest for additional investigation.
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Another interesting research direction is to expand
beyond equity indices to individual equity options. It
would be worth exploring whether one can use the
same predictive model for BEVs in different sectors,
and what sort of adjustments may be necessary.
Researchers have documented distinct patterns for
variance risk premium and option skewness for
equity index options compared to individual equity
options. Presumably, these discrepancies would
translate to differences between breakeven volatility
and implied volatility. One may also consider expand-
ing the analysis to options traded on other asset
classes, such as bond indices or commodity futures.
Consistent empirical findings across asset classes can
prevent overfitting and promote a common explan-
ation for the behavior of option prices.

Appendix A
The table below outlines some differences between
the closing price methodology for the SpiderRock
platform and OptionMetrics. We refer to the IvyDB
Europe Reference Manual v2.4 for OptionMetrics,
and we refer to the SpiderRock technical notes for
calculating volatility surfaces and forward rates.
While both firms capture market data and use volatil-
ity surface calculations to report these values, they
have different approaches. OptionMetrics has long
been the standard for academic and institutional
research, whereas SpiderRock is widely used by prac-
titioners to support valuation in live trading environ-
ments and recently started to provide full datasets
going back at 10 years.

Data Item OptionMetrics Approach SpiderRock Approach

Marking closing prices and
characteristics

Stock and option close: settlement/last/
bid/ask mid waterfall
Closing prices use the last trade or
closing prices for the close. Implied
volatility calculations use underlying
prices that are time synchronized with
options bid, ask, or last quotes

Stock close: bid/ask mid logic
Option: bid/ask/surface
SpiderRock closing prices include the
surface price are taken 1min before
the option market close. Implied
volatility is synchronized with the
underlying market

Closing theoretical surface
price for options

Option prices used to calculate the
implied volatility are selected as the
first available price in the following: (1)
settlement, (2) last trade, (3) bid-ask
average, (4) bid, (5) ask

Call and put bid and ask markets are
fitted directly as a component of the
volatility surface shape fitting process.
The instantaneous surface price is
determined by aligning the surface
shape with the underlying mid-price
and ATM volatility in real-time.

Surface-fitting approach to
determine the surface price

Vega-weighted kernel fit to options
implied volatility space. Standardized
options are interpolated from all
options (all terms and strikes) for
that day.

Price fits have an adaptive number of
spline points. The result is a multi-
point spline that describes a single
volatility curve for both calls and
puts for each expiry. Curves for
normalized maturities are also
generated as part of this process.

Alignment of call and
put surfaces

Surface fits for calls and puts are fit
independently. Calls and puts are
interpolated with a weighted scheme
that penalizes when option types
are different.

Call and put prices are fit
independently, and the price data
are transformed into a single
volatility curve for both calls
and puts.

Forward calculation and
dividend rate calibration

Forward fit to normalized maturities
using a forward rate curve.

Forward prices are calculated using a
continuous forward dividend rate
curve with an adjustment based on
aligning call and put volatility as part
of the curve fitting process.

Calculation of time
to expiration

Continuous calendar time A hybrid time convention that takes
both trading day and continuous
calendar time into account

Financial Analysts Journal | A Publication of CFA Institute

116



Appendix B
The figure shows a histogram of the difference
between breakeven volatility and implied volatility
for options on the S&P 500 Index. The sample is
from January 2013 to November 2020.

Appendix C
This table presents a predictive model for the differ-
ence between breakeven volatility and implied
volatility:

BEVi � IVi ¼ b0 þ
XM
k¼m

Xi,mbm þ ei

In this specification, rather than first predicting
log(BEV) followed by a transformation, we
directly try to predict whether an option is

overvalued or undervalued relative to its
breakeven volatility. We include the same
predictor variables used in the first stage
regression as shown in Table 4.

Editor's Note
Submitted 2 February 2022

Accepted 7 July 2022 by William N. Goetzmann

Notes

1. Traditional option pricing models typically try to match
the market price of options, whereas our pricing model
provides the fair value. In this sense, traditional models
are positive models that capture how the world is,
whereas our model is normative.

2. Parametric models, such as Black-Scholes can be
constrained in matching certain empirical patterns.
Stochastic volatility models may have difficulty eliminating
pricing errors in short-term option prices because the
distribution of the underlying does not have enough
kurtosis. Jump models may have issues with longer-term
options because they revert too quickly to the Black-
Scholes prices as the time to expiration increases.
Nonparametric models can be more flexible in capturing
the features of the data, which must be pre-specified and
built into parametric models.

3. For stock indices, deviation from put-call parity is
typically small. For individual stocks that are hard-to-
borrow, deviation from put-call parity could be
much larger.

4. This expression is approximate. To be precise, the
summation is missing a borrowing or lending term equal
to (Dt�1St�1 � ct�1Þ: At the daily frequency, this term is
very close to zero, especially in a low-interest
environment that our data span.

5. The iterative approach we take was used for a different
purpose by Dumas et al. (1998), who try to determine
whether the delta-hedging component matched the
changes in option prices. They show that the Black-
Scholes model provides the best approximation for option
price changes.

Left-Hand Variable: BEV-IV

Estimate SE t-Stat

(Intercept) �7.46 0.16 �47.0
VVIX 0.043 0.001 48.1
VIX.res �0.188 0.006 �30.3
rt �11.22 0.30 �37.3
lsk 24.99 0.24 106.0
lsk2 �8.82 0.14 �61.4
ATM.IV 0.53 0.01 88.4
ImpliedVol (coef � 10) �6.03 0.04 �156.8
ImpliedVol2 (coef � 100) 1.22 0.03 45.0
RR �0.75 0.10 �7.6
RR2 36.38 0.34 105.9
RR3 16.68 0.59 28.1
Vega 2.48 0.04 64.8
vega2 (coef � 10) �1.03 0.05 �22.4
gamma �137.00 14.23 �9.6
vrt 15.81 2.01 7.9
vvt2 �52.55 0.88 �60.0
rv.res (coef � 10) 2.11 0.01 146.0
R-squared 0.13
Adjusted R-squared 0.13
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6. Our calculation of breakeven volatility requires knowing
the future path of the option, so it cannot be
implemented in real time. To compute BEV in a real-time
implementation, we would require a predictive model that
uses currently available information to forecast the
eventual BEV values.

7. There are a number of alternatives ways of hedging. One
could choose to hedge at market open rather than at
market close, use delta calculated from the at-the-money
volatility or forecasted volatility, hedge only when the
net delta exceeds a certain threshold, or adjust the
hedge ratio depending on whether the order flow is
believed to be informed. Different hedging methods
correspond to different objectives, and there is no single
best method. On a practical note, the BEV calculation
should match the specific trading desks’ preferred
hedging policy.

8. More frequent delta hedging (i.e., intraday) can
alleviate the issue of large changes in gamma in the
volatility calculations near maturity, especially for
ATM options.

9. Extending our calculation to the expiration date will not
significantly change our results. We do find that
numerical computation of breakeven volatilities in the
last several days just before expiration to be more
difficult, as more volatility calculations do not converge
in the days immediately before expiration. More
frequent delta hedging can improve this
convergence issue.

10. Normalized Strike ¼ log SerðT�tÞ
K

� �
ATM:IV

ffiffiffiffiffiffi
T�t

p for underlying price S,
strike price K, the at-the-money implied volatility ATM:IV,
and time to expiration T � t: The annualized interest rate
r is set to 0.5%.

11. d1 in the Black-Scholes model is given by the following
expression:

d1 ¼ 1

r
ffiffiffiffiffiffiffiffiffiffiffi
T � t

p log
St
K

� �
þ r þ r2

2

� �
T � tð Þ

" #

where St is the price of the underlying, K is the strike

price, r is the interest rate, r is the volatility of the

underlying, and T � t is the time to expiration.

12. The exponential function, eð�Þ, is convex. Jensen’s
inequality states that for a convex function
f, f E X½ �ð Þ � E½f Xð Þ�:

13. We compare our supervised approach with the parametric
methods of Duan (1983) and we find that our approach
achieves the lowest mean squared error.

14. With 396,899 observations and 17 predictors, the
adjusted R-squared is 1.00004 times larger compared to
the unadjusted R-squared.

15. We thank an anonymous referee for this suggestion.

16. If Equation (9) were violated, a costless arbitrage profit
may be earned by writing a put with strike price K2,

buying K3�K2
K3�K1

units of the put with strike price K1, and

buying K2�K1
K3�K1

units of the put with strike price K3:

17. We also explore thresholds of $0.50, $2, and $3, and we
find our results are qualitatively unchanged. A higher
trading threshold has two offsetting effects: We have
more conviction on each trade, but we may miss some
profitable opportunities that do not exceed the threshold.
In our sample, these two effects apparently have similar
magnitudes such that changing the threshold has only a
marginal effect on the strategy performance.

18. Our return calculation is on the conservative side. By
taking the notional value as the denominator, we have
made the implicit assumption that the option positions
are fully collateralized with 100% margin requirement. In
practice, margin requirements typically range between 5
and 30% for puts and calls on the S&P 500 Index.

19. Private correspondence with option traders indicates that
unless one wants immediate execution, transacting one
tick from the midpoint price is achievable with very high
probability.
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