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Abstract

As one of the state-of-the-art parameter-efficient fine-tuning (PEFT) methods, Low-
Rank Adaptation (LoRA) enables model optimization with reduced computational
cost through trainable low-rank matrix. However, the low-rank nature makes it
prone to produce a decrease in the representation ability, leading to suboptimal per-
formance. In order to break this limitation, we propose RidgeL.oRA, a lightweight
architecture like LoRA that incorporates novel architecture and matrix ridge en-
hanced full-rank approximation, to match the performance of full-rank training,
while eliminating the need for high memory and a large number of parameters to
restore the rank of matrices. We provide a rigorous mathematical derivation to
prove that RidgeLLoRA has a better upper bound on the representations than vanilla
LoRA. Furthermore, extensive experiments across multiple domains demonstrate
that RidgeLLoRA achieves better performance than other LoRA variants, and can
even match or surpass full-rank training.

1 Introduction

Large Language Models (LLMs) with large number of parameters [[1H8] have demonstrated ex-
ceptional performance in natural language generation tasks. These models acquire their primary
knowledge during the pre-training phase, through training on massive high-quality datasets from
both real-world corpora or model-generated synthetic data. To align with real-world scenarios [9],
LLMs also require supervised fine-tuning (SFT). Traditionally, this fine-tuning process employs
full-parameter (also full-rank) training (FFT) to achieve optimal performance. However, this approach
demands substantial computational resources.

When adapting LLMs for downstream tasks, training is often constrained by limited computational
resources, calling for efficient and lightweight solutions. Parameter-Efficient Fine-Tuning (10, [11}
PEFT) methods achieve comparable performance to full-parameter fine-tuning with minimal cost.
Low-rank adaptation (LoRA, [12), as a representative PEFT method, is widely adopted due to the fact
that downstream tasks largely rely on the generic capabilities developed in pre-training. To maintain
model performance, LoRA’s initial state should also align with the original model’s output, which we
refer to as “the transform-calibrating restriction”.

However, vanilla LoRA, while significantly reducing the number of trainable parameters, is often
criticized for its lower performance ceiling [13H15]]. Its low-rank nature results in significantly lower
representation capability compared to full-parameter fine-tuning, making it prone to underfitting in
downstream tasks [14]]. Existing LoRA variants [[16521] primarily focus on matrix decomposition or
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Figure 1: Differences between LoRA (left) and RidgeL.oRA (right): As is depicted, though LoRA
reduces the number of parameters to be trained, the matrix rank severely shrinks. In order to be
comparable with full rank training, the proposed RidgeLoRA introduces a matrix ridge (formalized
as AY) to complement the rank of the trainable parameters.

numerical stability, proposing better parameter initialization methods or updating strategies. However,
these methods lack theoretical investigation on full-rank matrix approximation and the fundamen-
tal challenges of representation ability in low-rank settings. Additionally, exploring architectural
alternatives beyond the vanilla LoRA framework could potentially unlock new opportunities for
improvement.

Unlike existing works, RidgeLLoRA incorporates a full-rank module to achieve performance compa-
rable to full-parameter training. We redesign the architecture by replacing the parallel connection
in vanilla LoRA with a series connection module. Inspired by the Matrix Ridge algorithm [22]], we
enhance vanilla LoRA by incorporating a ridge term, thus introducing RidgeL.oRA. The architectural
differences between RidgeLoRA and vanilla LoRA are illustrated in Figure[I] Based on observations
from previous works [[17,|18]] and our experiments, appropriate initialization methods can significantly
improve low-rank training performance. As Ridgel.LoRA adopts a series connection architecture,
it enables different parameter initialization approaches even under “the transform-calibrating re-
striction”. RidgeLoRA achieves comparable performance to full-parameter training at minimal cost
without introducing additional computation and parameters. Our main contributions are summarized
as three-fold:

* We propose RidgeLoRA, a novel LoRA variant that replaces parallel connection with series
connection, enabling better parameter initialization and enhanced representation capability.

* We introduce a diagonal ridge term alongside the low-rank matrices, inspired by the matrix
ridge algorithm [22], which improves approximation flexibility while maintaining computa-
tional efficiency, to better represent the high-rank updates of LLM training.

* We provide theoretical analysis of RidgeLoRA’s representation capability and demonstrate
its superior performance through extensive experiments across multiple datasets.

2 Related Works

2.1 Matrix Low-Rank Decomposition and LL.Ms

Matrix decomposition aims at optimizing the following objective:
min [|W — W,.||%,

where W € R%n*dout is the target matrix, IV, represents its low-rank approximation with rank
r < min(d;n, dout) and || - || denotes the Frobenius norm. Given a restricted rank r, Singular
value decomposition (SVD, 23)) has a bounded (also the minimum) error, which justifies its wide
application, whose details can be found in Appendix In order to accelerate the inference



LoRA Method Number of Parameters Weight Initialization Complexity Forward Formalization Computation Complexity

FFT din % dout o() XinW' O(d2,dour)
LoRA [12 7 X (din + dout) O(rdiy) Xin(W + 2AB) O(d?,dout)
DoRA [16 7% (din + dout) + dout O(rdindout) (it - DXW + il xaB- 2 O(d?,dour)
PiSSA [17 7 X (din + dout) O[max(din, dout) - min(d?,, d?,,)] Xin(WE, + 2AB) O(d?,dout)
KaSA [18 7 X (din + dout + 1) Olmax(din, doyt) - min(d2,, d2,,)] Xin(WE, + LAY, B) O(d?,dout)
RidgeLoRA r X 2din + (din + 1) O(rtd;y) Xin(AZ + SAB)W O(d?,dout)

Table 1: Comparisons between FFT and other LoRA methods, here we focus on analyzing the
number of parameters from the perspective of a single matrix. The comparison here also considers the
complexity of weight initialization, where some methods may conduct SVD or matrix multiplications.
WP and WX, denote different ways to initialize W, in their works. RidgeLoRA is showcased
with simple initialization method, small number of parameters, and will not increase the computation
and memory requirements during training.

speed, SVD-LLM [24] utilizes SVD compression method together with data whitening [25] to
minimize | XW — XW,||% to compress LLMs. MoDeGPT [26] conducts detailed analysis of each
matrix calculation operation inside an LLM and selects the corresponding decomposition method
accordingly, namely SVD, Nystrom approximation [27]] and CR decomposition [28]. As an inspiration
of this paper, Matrix Ridge [22] proposes an algorithm that approximates a positive semi-definite
matrix using a combination of an incomplete matrix decomposition and a ridge term. This achieves
tighter approximation than both incomplete Cholesky decomposition [29] and incomplete spectral
decomposition, while ensuring that the condition number of the approximated matrix does not exceed
that of the original matrix.

2.2 Parameter-Efficient Fine-Tuning

LoRA and its Variants LoRA and its variants [12} [16521}[30+35] train extra low-rank weights on
top of the model, which makes low-rank matrix decomposition naturally suitable for the improvement
of it. Considering “the transform-calibrating restriction”, advanced LoRA variants like PiSSA [17],
LoRA-GA [30], MiLoRA[31]], LoRA-XS [32] and KaSA [18]] conduct SVD on the original matrices
to endow the low-rank matrices with better initializations, thus achieving better performance. Fur-
thermore, some works focus more on the numerical stability of matrices, rsLoRA [34] and proposes
a better setup of the scaling factor from a statistical point of view. To achieve training stability,
DoRA [16] decomposes the updates of matrices to magnitude factor and direction factor, hereby
adding a scaling factor during training. VeRA [35]] adds learnable scaling vectors which can be
updated and tune frozen random matrices across layers, which changes a bit of the architecture.

Apart from parameter-based methods, LoRA+ [20] assigns the matrix B initialized with all zeros
with larger learning rate, LoORA-Pro [19] updates the matrices from the perspective of transformation
invariance. These works all focus on how to deal with the gradients in the optimization stage.

Other PEFT Methods LoRA-based methods and variants can be attributed to one type of
PEFT [36] method, which also includes (1) Selective training: BitFit [37]; (2) Soft prompt: Prefix
Tuning [38]] and P-Tuning [39} 40[]; (3) Adapter-based method: Serial AdapterE] [41]] and Parallel
Adapter [42]]. The latter two types also insert extra trainable modules while keeping the pre-trained
matrices frozen like LoRA does.

3 RidgeLoRA: Matrix Ridge Enhanced LoRA

3.1 Architecture of RidgeLoRA

RidgeLLoRA switches the computation graph to the following formalization:

Xout = Xin(AD + %AB)W, (1)

The biggest difference between RidgeLoRA’s series connection and serial adapter is that the training
parameters of RidgeLoRA can be absorbed into the original weights after the training is completed, whereas the
extra modules inserted by serial adapter cannot be absorbed due to the presence of activation values inside of it.



where ¥ is a diagonal matrix (referred to as the Ridge) that requires gradient descent. It has d;,
learnable parameters on the matrix diagonal, with its matrix rank d;,,. A denotes the “Ridge Intensity”
which can be updated. Specifically, RidgeL.oRA inserts additional trainable ridge beside the matrix
and novelly converts the extra modules into series connections, as opposed to the parallel connections
used in LoRA variants. Moreover, the newly trained part can also be absorbed back to the original
weight as described in the following formalization:

W' = (\S + %AB)W, )

where the trained matrix W’ is the product of two full-rank matrices. This absorption recovers the
original architecture while endowing the model with brand new optimized weights during inference,
which provides the same advantage as LoRA and its variants. Moreover, in order to provide a clear
comparison to main-stream tuning methods, we further list the properties of them in Table[T]

3.2 Theoretical Analysis of RidgeLoRA

According to the setups of RidgeLoRA, A\X is initialized from a part of a diagonal matrix, thus
enabling it to dominate the spectrum of A¥ + = AB and achieve a high rank of d;,,. Here we
conduct derivations on how closely the enhanced RidgeLoRA architecture can approximate the
full-rank weight update AW. By introducing this ridge term, we effectively increase the model’s
rank expressiveness and improve the overall performance.

Theorem 3.1. Let K € R4 pe q rank-k matrix (k < d), D € R4 pe g diagonal matrix,
M € R¥? pe an arbitrary matrix. Given that M has a Singular Value Decomposition (SVD)

M = UXV'. Let A € R*"=U*k be q matrix whose rows are indexed by ordered pairs (p,q)
where p,q € {1,2,...,n} and p # q. Each row A(pq) € Rk of A has entries given by Up;jVyj for
j€{1,2,....,k}. Let c € R™"=D*1 pe q vector whose entries are cpq = > ki1 UpjsiVyj, where

s; denotes the corresponding entries in Y. We have that

min K + D — M|[7 < ||(I - A(ATA) AT)e| 7, ©)

where (-)T denotes the pseudo inverse of matrix.

This demonstrates the advantages of adding Ridge. Specifically, the right side of the above expression
is less than or equal to the LoRA case. For the detailed proof, please refer to Appendix[A.T] Next, we
will elaborate on this point.

In the case of LoRA, D is a zero matrix, and the minimization objective becomes

min ||K — M3,

Let K be a rank-k matrix. According to the Eckart—Young—Mirsky theorem [43]], the optimal choice
K = UX;V T minimizes the Frobenius norm || K — M||%.. Substituting this optimal K, we obtain

1K =M% = |UE -2V |,

where Y;; denotes the best rank-% approximation of X, obtained by retaining the top-k largest singular
values (ordered in descending magnitude) and zeroing out the rest.

In the proof of Theorem [3.1} after introducing the diagonal matrix D, if keeping K fixed as K =
UYL VT, the problem reduces to a least squares optimization with respect to the entries of D. Clearly,
D = 0 is not the optimal solution. The bound we established demonstrates that our method is more
effective, detailed analysis can be found in Appendix [A.T]to illustrate a theoretical measure.

3.3 Detailed Designs of RidgeLLoRA

On top of the theoretical analysis of how RidgeLoRA facilitates full-rank training, additional mecha-
nisms are introduced to optimize performance. Specifically, it incorporates a novel weight initializa-
tion strategy and an auxiliary loss function for the efficient updates of parameters.



Algorithm 1 Weight Initialization of RidgeLoRA

Input: Input dimension d;,, Target low rank r, Scaling factor v

Output: )\, > A, B
1: Initialize A + 1. > Initialize the intensity of ridge term.
2: Sample noise vector N € R" using

N = o[N(un, %))

where o (+) is the sigmoid function. > Split a small portion to initialize low-rank matrices.
3: Construct matrix ¥ € Rdin*din a5

where diag(N) is an r x r diagonal matrix, and I, _, is an identity matrix.
4: Initialize low-rank matrix A € R%»*" with Gaussian Noise A'(0,1/7)
Conduct SVD on matrix A: UAEAVAT = A.
6: To ensure the condition > This ensures the “transform-calibrating restriction”.

bl

AX + gAB =1,
r
B is initialized with

i

B="VyS7'UJ (I, — %)
(0%

> Note that (,'T(TA\ = V\T‘”i\ = 1.

Weight Initialization In the field of deep learning, matrices are usually initialized with well-
designed methods [44-46] for a better starting point. However, vanilla LoRA is constrained by the
“transform-calibrating restriction” [12]], which allows only the initialization of matrix A with such
methods, while B is initialized as an all-zero matrix. This limitation hinders the ability of LoRA to
fully explore the parameter space. With the novel series connection, this restriction can be fulfilled
with AY + #AB = [, eliminating the strong constraint that requires B = 0. This ensures good
initializations can be adopted on all matrices, endowing them with the possibility to get efficiently
updated. In practice, given AB’s target low rank r, a small portion (r x ) of the identity matrix is
initialized with a diagonal matrix diag(IN'). This leads to be both part (the Ridge and the low-rank
matrices) to be non-zero, allowing for good initialization of AB while ensuring A3} dominates the
spectrum. Subsequently, RidgelLoRA initializes the matrix A (with a Gaussian distribution, by
default), and then compute matrix B to ensure the sum of these modules equal to the identity matrix.
The whole procedure is also demonstrated in Alg.|l|for a clear presentation.

It is noteworthy that this process also differs from SVD-based methods [[17,[18] that initialize matrices
with the eigenvalues and eigenvectors of the pre-trained matrix. They require massive computation
to conduct SVD on the full-rank original matrices and split corresponding portion to initialize the
low-rank matrices, while RidgeLoRA only requires SVD on the low-rank matrix A, quantitative
comparisons can also be found at Table[]

Ridge Squashing Loss The initialization of the low-rank modules ensures that their sum equals
an identity matrix I, hereby adhering to the “transform-calibrating restriction”. Furthermore, to
encourage the matrix to explore a broader space, RidgeLoRA adds a loss term Lgrg, pushing the
weight update towards higher rank:

L B
1 ZZ a
frs = LB =1 b=1 H)\l’bzl’b + ?Al’bBl’b -1

where L is the total number of layers in the model, B denotes the number of matrix blocks in each
layer, and || - || is the nuclear norm [47]], which measures the rank of the weight updates. Notably,
Brs is set to a negative value, which encourages rank updates in the non-diagonal portions, hereby
increasing the effectiveness of training the matrices A and B. We further incorporate this loss into
the original objective:

; “

*

L = Lmodel + BRSLRS, (5)



Method | Trainable BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA | Avg.

Parameters (%) | (Acc.) (Acc.) (Acc.) (Acc.) (Acc.) (Acc.) (Acc.) (Acc.) | (Acc.)
Llama-2-7B
FFT 100% (6.74B) 71.76  83.84 80.81 92.45 83.66 82.87 72.35 84.40 | 81.52
LoRA 0.30% (20.02M) | 66.92 81.66 77.43 90.68 75.53 84.01 66.55 7440 | 77.15
DoRA 0.32% (21.37M) | 67.50 81.23 77.48 90.78 76.16 84.34 67.06 7420 | 77.35
PiSSA 0.30% (20.02M) | 69.81 83.68 79.94 93.60 80.51 85.94 71.42 79.20 | 80.51
KaSA 0.30% (20.05M) | 66.52 80.85 76.77 90.28 75.37 83.54 65.87 73.60 | 76.60
RidgeLoRA  0.29% (19.42M) | 71.43 83.08 81.27 93.24 81.53 86.66 71.76 82.00 | 81.37
Llama-3.1-8B
FFT 100% (8.03B) 70.88  83.62 79.02 90.93 83.11 85.10 75.34 83.20 | 81.40
LoRA 0.26% (21.00M) | 71.67 88.08 79.94 94.87 83.82 92.89 80.20 84.80 | 84.53
DoRA 0.28% (22.37M) | 7143  88.63 80.45 94.92 83.66 93.27 80.80 85.20 | 84.80
PiSSA 0.26% (21.00M) | 73.56 89.39  82.65 95.16 87.61 93.73 83.36 88.00 | 86.68
KaSA 0.26% (21.03M) | 71.79  88.57  79.99 94.63 83.19 92.89 80.89 84.00 | 84.49
RidgeLoRA  0.26% (21.23M) | 73.90 89.34  83.67 95.79 86.98 93.52 83.87 87.00 | 86.76
Mistral-v0.3-7B

FFT 100% (7.25B) 7192  85.64 79.73 92.19 85.08 83.46 73.63 84.00 | 81.96
LoRA 0.29% (21.00M) | 74.47 90.26  82.50 96.18 87.45 92.72 82.00 88.89 | 86.81
DoRA 0.31% (22.37M) | 7496 90.32 81.93 96.43 88.56 92.72 82.25 89.60 | 87.10
PiSSA 0.29% (21.00M) | 75.18 90.48 82.86 96.61 87.77 93.10 82.34 91.00 | 87.42
KaSA 0.29% (21.03M) | 73.74 89.61 81.53 96.21 87.61 92.47 81.66 89.20 | 86.50
RidgeLoRA  0.29% (21.23M) | 74.63 9135 81.88 96.38 88.63 93.18 82.59 90.80 | 87.43

Table 2: Accuracy comparison of Llama-2-7B (MHA), Llama-3.1-8B (GQA) and
Mistral-v0.3-7B (GQA) with various tuning methods on eight commonsense reasoning datasets. The
numbers of trainable parameters of different methods are also included for a clear comparison. The
highest accuracy scores achieved by low-rank methods are marked as Bold.

where L,,04e; 1S the task-related loss for the PEFT-enhanced base model, and Sgrs is a hyper-
parameter controlling the influence of the rank-decreasing penalty. Our experimental results and
ablation study also indicate that selecting a negative value further improves performance.

4 Experiments

4.1 Experimental Setup

Datasets In order to showcase the validity of RidgeLoRA and demonstrate its good performance. In
comparisons with state-of-the-art low rank methods, we conduct comprehensive experiments across
different tasks, which are widely utilized for evaluation in previous works: namely, (i) Commonsense
Reasoning, (ii) Math & Code Problems and (iii) Multi-modal Understanding tasks. We adopted
all of its training split for fine-tuning for fixed number of steps to ensure fair comparisons. Reported
metrics are evaluated on the official test splits.

Baselines Across all of our experiments, we mainly compare RidgeLoRA with low-rank based tuning
methods, namely vanilla LoRA [[12], DoRA [16] and SVD-based PiSSA [[17]] and KaSA [18]. To
further demonstrate the comparable performance of RidgeLLoRA on par with FFT, we also include
FFT in our main results. Details of the experiments can be found at Appendix [B.4]

Detailed Setups Throughout our experiments, we adopt a cosine learning rate schedule and use
AdamW [48] as the optimizer. Unless otherwise specified, all LORA variants share the same maximum
learning rate for a given task. Concretely, we use a learning rate of 2 x 10~5 for Math & Code
tasks, and 3 x 107° for Commonsense tasks. The rank of the low-rank matrices is set to 64 for
Math & Code tasks, and 8 for Commonsense tasks. For multi-modal understanding, we follow the
configuration proposed in DoRA [16] for a fair comparison.

4.2 Main Experimental Results

Commonsense Reasoning As is showcased in Table[2] across eight commonsense reasoning datasets,
the average scores achieved by our proposed RidgeLoRA outperforms most of LoORA variants. When
choosing Llama-2-7B as the base model, RidgeLoRA outperforms state-of-the-art baseline, i.e.,
PiSSA, by an improvement of 0.86% in the average accuracy. When analyzing each single dataset,
we observe that RidgeLoRA surpasses most of the tuning methods including FFT by large margins.
For example, RidgeLoRA outperforms LoRA by a 6.0% accuracy improvement on WinoGrande with



Llama-2-7B as the base model, and is generally better on every dataset than KaSA across different
base models. From the results we can observe that only in few datasets that RidgeLoRA may not
surpass baselines, with the performance drops usually do not exceed 1%.

As for low-rank methods’ performance in calibrating FFT, our proposed RidgelLoRA is the closest
to the performance of FFT when selecting Llama-2-7B as the base model, which demonstrates the
advantages of full-rank training of RidgeLoRA, with a performance drop of only 0.15%. We also
observe that when selecting Llama-3.1-8B and Mistral-v0.3-7B as the base model, the performances
of FFT are commonly exceeded by low-rank based methods, which are also observed by many
previous works [[17, [18} [15]], that base model may find it harder to converge given limited data in
some tasks comparing to low-rank methods.

Math & Code Problems We also

evaluate RidgeL.oRA together with Method | Trainable  GSMS8K MATH HumanEval (+) MBPP (+)

its baselines on math and code prob_ Parameters (%)  (Acc.) (Acc.) (Pass@1) (Pass@1])
lem solving datasets, where mod- Llama-2-7B

’ FET 100% (6.74B) 6632 1772 37.8(354)  45.2(36.8)

els are usually required to gener-  rora 232% (159.9M) 5344  8.94 226(183)  37.0 3L0)

] : : ; DoRA 234% (161.3M) 5225  8.08 244(20.1) 362 (3L0)

ate long-form arithmetic reasoning e 232% (159.9M) 5629  9.28 250(20.1) 368 (29.4)

trace (math) and complete executable  kasa 233% (160.8M) 4918 7.20 220(19.5)  354(29.4)

program (code), to further test the _RideeloRA 213%(470M) 5644 96 262(238)  37.3(29.9)
1 Llama-3.1-8B

perfomlance.' As is demonstrated SN 100% (8.03B) 7777 2884  58.5(55.5  64.0(55.6)

in Table EI, RidgeLoRA surpasses al-  Lora 2.05% (167.8M) 7597 2830 51.2(47.0)  67.5(56.6)

. . : - DoRA 206% (1692M) 7605  27.82  S512(482)  67.7(56.6)

most all of its baselines with differ-  piqy 205% (1678M) 7792 3026  537(500)  65.1(56.1)

ent LLLMSs as base models. Taklng the KaSA 2.06% (168.7M)  75.82 27.52 53.0 (50.6) 68.5 (58.2)

. RidgeLoRA  196% (160.7M) ~ 78.07  30.12 537 (518)  69.8(59.8

math benchmarks with Llama-2-7B as 1egeno o ) GL8) 598)

Mistral-v0.3-7B

the base model as an example, except  “prr 100% (725B)  68.11  21.68  49.4(47.0)  50.3(43.1)

for FFT, RidgeLoRA outperforms all ~ LokA 226% (167.8M) 7156 2156  457(39.0) 622 (5L.1)

. k DoRA 228% (1692M)  72.83  22.08  45.1(39.0)  60.8(51.3)

of its low-rank baselines, even outper-  pissa 226% (167.8M)  72.53 2296  47.6(409)  62.7(51.3)

forms KaSA by 7.26% on GSM8K.  Kash 228% (168.7M) 7433  23.06  47.6(402)  62.2(50.5)

RidgeLoRA  2.17% (160.7M) 73.88 24.02 48.2 (41.5) 63.2 (53.7)

Similar results hold for Llama-3.1-
8B and Mistral-0.3-7B models, where
RidgeLoRA outperforms its baselines
by 0.56% in average and even sur-
passes FFT by an improvement of
2.42% in the result accuracy. In
few datasets, RidgeLoRA may get
surpassed by SVD-based PiSSA or
KaSA, but with an average margin of
only 0.30%.

Similar results hold for the code benchmarks. On the datasets with original test cases, RidgeLoRA
surpasses every low-rank method and outperforms the best of its baseline performances with a
0.65% improvement. As for datasets with enhanced test cases, i.e., the ones with (+), RidgeLoRA
outperforms the low-rank methods by a 1.4% improvement, showcasing its good performance and
generalizability on hard cases. Like Commonsense Reasoning, we also observe several low-rank
methods even achieve better performance than FFT, the reason is that the base models already possess
enough capabilities, thus possible to achieve good results by tuning fewer parameters on the training
set with less data.

Table 3: Performances of different models on math & code
problem benchmarks. For the code benchmarks, (+) denotes
the enhanced datasets with more difficult test cases, whose
metrics are in the parentheses, best performances of low-rank
methods are marked as Bold.

Multi-modal Understanding In or-

der to expand the applicable domain : T
. Trainable  GQA SQA VQA" POPE Avg
of RidgeLoRA, we further evaluate =~ Method Paf-ameters(%) &

RidgeLoRA’s performance in align-  “ppr 100% 619 668 582 859 6820
ing a pre-trained a language model = oy 4.61% 629 684 582 864 6898
with a multi-modal projector. The  Dora 4.63% 629 699 570 872 6925
evaluation results can be found at Ta-  RidgeLoRA 4.26% 619 692 584 876 6928

ble @ As is showcased, it is show-

cased that language model tuned with Table 4: Multi-modal understanding evaluation results of
RidgeLoRA achieves better perfor- different tuning methods on 4 vision-language tasks follow-
mances than DoRA, with an improve- ing the setups of DoRA [16]], best performances are marked
ment of at most 1.4% comparing to Bold.



BoolQ PIQA SIQA HellaSwag  WinoGrande ARC-e ARC-c OBQA Avg.(C)
(Acc.) (Acc.) (Acc.) (Acc.) (Acc.) (Acc.) (Acc.) (Acc.) (Acc.)

Ridge Enhanced Parallel Connections

Method

LoRA+Ridge 67.5310.61) 82371071y  78.25(10.82) 91.77(11.00) 76401087y  84.97(10.96) 68.00(11.45)  74.40(10.00) | 77.96(10.81)
DoRA+Ridge 67.23(10.07) 8243(11.20) 78.71(11.23) 92.03(10.25)  76.80(10.64)  85.23(r0.89) 68.09(11.03) 76.20(12.00) | 78.34(10.99)
PiSSA+Ridge 70. 64(10 83) 33-57@0.11) 80. 55(1(1 61) 93-43@(1.17) 30-66(7‘0.15) 86-24(7‘0.3(1) 71-33(w.1)9) 30-60(7‘1.4(1) 30-33(10.37)
KaSA+Ridge 68.41(11.80) 83.13(12.28) 79.84(13.07) 92.57(12.20)  T7.T4(1237)  85.14(1160) 68.52(12.65) 79-20(15.60) | 79-32(12.72)
‘Weight Initialization
Diagonal 66.59 80.30 76.61 91.03 75.14 83.96 64.33 73.40 76.42
Gaussianaetault) 71.43 83.08 81.27 93.24 81.53 86.66 71.76 82.00 81.37
Kaiming (N') 70.88 83.08 80.50 93.77 82.00 85.48 72.10 83.80 81.45
Kaiming (U) 70.02 82.48 79.48 93.67 82.40 85.65 71.59 81.60 80.86
Xavier (N) 68.63 82.04 78.35 91.98 78.22 85.10 68.09 76.00 78.55
Xavier (U) 67.99 82.21 78.45 91.86 77.74 85.44 68.43 75.20 78.42

Table 5: Experimental results of Commonsense Dataset from two ablation studies, namely: (1) Parallel
Connection; (2) Weight Initialization. N denotes the normal distribution while ¢/ is the uniform
distribution of corresponding method. Avg.(C) denotes the average accuracy score of Commonsense
datasets. The subscripts represent the performance change of adding the Ridge enhancement compared
to itself. Best scores of initialization methods are marked Bold.

DoRA on VQAT™. Consistent with the
training of language-only models, the ratio of trainable parameters remains lower than low-rank
baselines, demonstrating the lightweight advantages of RidgeLoRA.

4.3 Ablation Study

Apart from comprehensive evaluation with various types of model and different tasks comparing with
baselines, which provides solid evidences that the RidgeLoRA surpasses vanilla LoRA together with
its state-of-the-art variants, we also conduct ablation study to demonstrate the validity of different
parts of RidgelLoRA at a fine-grained level.

Ridge Enhanced Parallel Connections Since we modify

th(? (.:onnectio.n between the newily t?ained modules.and the GSMSK MATH
original matrix, in order to provide in-depth analysis about =~ Method (Acc.) (Acc.)
the necessity of series connection, we also conduct abla- -

tion study with different LoRA variants enhanced with a IL)OOI;;ZTFI;;‘Z gi?g”i:? g;g“gig’
Ridge alongside. The experimental results can be foundin ~ p;gea4 Ridge 56.36&)57; 9-56210:28;
the first group of TableE]and Table@ where performance KaSA+Ridge 51421294 7.98(10.75)
improvements can be observed on each method comparing
to itself without the Ridge. On the average score of Com-
monsense Dataset, KaSA is observed to get enhanced with
Ridge by a 2.72% improvement. PiSSA is also enhanced,
with an average improvement of 0.37% on Commonsense
and a 0.18% improvement on math datasets. These results
prove that RidgeLoRA can better approximate a full-rank weight update, thus leading to better
performances. It is noteworthy that here we prove that the series connection RidgeLoRA not only
surpasses the parallel connection, but also outperforms the other LoRA variants enhanced by Ridge,
validating the effectiveness of series connection.

Table 6: Performances on math datasets
existing LoRA variants enhanced with
parallel Ridge.

Weight Initialization Methods Here we remain the series
connection setup and further compare the performances of

GSMSK MATH

different initialization methods of matrix A, namely Gaus- Method (Acc.) (Acc.)
sian [44), Xavier [43]), and Kaiming [46] initialization, the ; )
results can be found at the second group in Table [5 and Diagonal 54.04 8.98
Table[Zl We also include an initialization where matrix A~ Gaussianetaury ~ 56.44 9.76
Kaiming (N) 56.14 9.62

only has diagonal values before training, termed as Diag-

onal. From the results we can observe that randomized ~ K@iming (U) 2384 946
matrix initialization always leads to better performances Xavier (N) 2346 2.08
’ Xavier (U) 55.09 8.92

which is demonstrated by the fact that Diagonal gets sur-
passed by others by a margin of at least 0.78%. As for the
normal distribution initialized methods, we can observe
that Gaussian, with a higher variance % in our default

setup, has better performances than Kaiming and Xavier,

Table 7: Performances on math datasets
of RidgeLoRA with different initializa-
tions.
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Figure 2: Analysis on the weight update patterns of the Self-Attention module of Llama-3.1-
8B (GQA). Norm here denotes the norm of weight updates, error lines come from variances between
different layers.

with a 0.64% improvement on GSM8K. Moreover, ini-

tializing with uniform distributions won’t lead to good performances when compared to normal
distributions, their performance drop can achieve up to 2.20% on OBQA if taking Kaiming (U) as an
example.

Pattern Analysis of Weight Updates As an auxiliary analysis, we also performed a visualization
of the equivalent parameter updates of different methods. As is illustrated in Figure 2] constrained
with the low-rank nature, the update norms of other LoRA variants are always lower than those of
FFT, especially the vanilla LoRA. Benefit from the full-rank nature of RidgeLoRA, its updates are
comparable or sometimes larger than that of FFT, showcasing its good representation capability.

Ridge Squashing Loss Fusion As we fuse Ridge Squashing Loss with the original loss to facilitate
the training process, in order to prove its validity, we conduct ablation study with different hyper-
parameter setups. From the evaluation results from Table[8] we can observe that on all eight datasets,
a negative value of Srg tends to lead to better model performances, with a gap of at most 1.21% in
average score across two groups. Comparing to the baseline group (w/o Lgs), selecting a negative
values always bring about better performance, with its scores all above baseline accuracy. Furthermore,
we conduct Student’s t-test [49] to showcase that selecting a negative value for Srs significantly
improves the performance, which means increasing the rank of weight updates is favorable for good
performances. Details can be found at Appendix [B.1]

5 Conclusion

In this paper, we propose RidgelLoRA, a novel PEFT approach that enhances the vanilla LoRA
architecture through two key innovations: replacing the conventional parallel structure with series
connection and incorporating a diagonal ridge term. Combined with the well designed initializa-
tion strategy and ridge squashing loss, RidgeLoRA achieves superior capability while maintaining
computational efficiency. Through rigorous theoretical analysis and comprehensive experimental
evaluations, we demonstrated that RidgeLoRA consistently outperforms existing approaches. Our
work opens up new possibilities for PEFT and provides valuable insights into PEFT methods.

6 Limitations

While RidgeLLoRA is supported by comprehensive experiments and rigorous mathematical derivations.
However, several limitations remain: 1) Its potential in scenarios such as continual learning [50, [51]]
and model editing [52] where vanilla LoRA is commonly applied has not yet been explored. Future
work could investigate how RidgeLLoRA extends to these settings and whether it offers advantages
in such contexts. 2) Due to computational constraints, we do not include experiments on very large
models (e.g., those with more than 70B parameters). Nonetheless, the reported results, along with
detailed ablations, provide a compelling demonstration of the method’s effectiveness on a range of
models.
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A Theorems and Math Derivations

A.1 Proof of Theorem 3.1

Theorem A.l. Let K € R¥*? be a rank-k matrix (k < d), D € R**? be a diagonal matrix,
M € R¥? pe an arbitrary matrix. Given that M has a Singular Value Decomposition (SVD)
M = UXV'. Let A € R*""=U*k be q matrix whose rows are indexed by ordered pairs (p,q)

where p,q € {1,2,...,n} and p # q. Each row ag,q € RY* has entries given by Up;Vy; for

J € {1,2,....,k}. Let ¢ € R""= X1 be avector whose entries are cpq = 35— Upjs;Vyj, where

s; denotes the corresponding entries in Y. We have that

min |K + D — M5 < [[(I - A(ATA) AT)c|[3, ©)

Proof. We construct an upper-bound objective function via a relaxation of the original problem.
PerforrE the singular value decomposition (SVD) of M as M = U YVT. Define K = UL, V',
where Xy, is a rank-k diagonal matrix which is left for optimization. Then we have

min |K + D — M|% < min |[US,VT +D - USV |2
K,D Sk, D
= min |D - U(S - SV, ™
Sk, D
which serves as a tractable upper bound of the original objective.

Subsequently, we conduct two steps to find the upper bound of (7). The first step is to get the analystic
value of D to minimize (/) while fixing X;,. Then D can be represented in terms of Y. In the second
step, we substitute D with its expression in terms of X, and then minimize (7)) with respect to Xj.

Derivation of the optimal D. Fix 1, here we denote A = U (- ) )V 7. We need to minimize
|D — A||% with respect to D. Since D is diagonal, i.e., D;; = 0 where i # j. We have that

ID = A% = (Dij — Aij)?
J
= (Dii—Ai)*+ > A7
i i#j
The objective above is minimized when D, ; = A; ;. Therefore, problem reduces to minimizing

3 (U(E - ik)vT)

i#]

2
.. ?
2Y)

with respect to the rank-% diagonal matrix Sk

Derivation of the optimal ¥ e LetY =% — ¥ k- Sin~ce Yand ¥ k are diagonal matrices, Y is also
a diagonal matrix. Let ¥ = diag(sy, s, ..., $n) and Xy = diag(ty, to, ..., t,,). Note that there are

exactly k non-zero diagonal entries in 3. Let Jy C {1,...,n} be the set of n — k indices where
t; = 0. Let J, C {1,2,...,n} be the set of k indices where ¢; # 0. The target objective can be
rewritten as follows

2

min Z ([UYVT]M)2 =  min Z Z UpjyiVei | - 8)
j=1

T {ti}; T dti}s
K{J}JEJk p;éq K{J}JEJk p;éq

For a fixed choice of the index set .Ji, this is a linear least square problems with respect to k variables
{ti}ic-

Let = denote the k x 1 vector whose elements are s; — t; for j € Jj.There are n(n — 1) pairs of
(p,q) with p # q. For each pair (p, q), let ag,q), s, be a 1 x k row vector with entries U,;V,; for
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J € Jks Cpg,do = D je g, UpisjVaj- Let Ajy beann(n — 1) x k matrix whose rows are a(,q), s, , and
let ¢z, be an n(n — 1) x 1 vector with entries c,q, 7, -

For a fixed index set .J;, the minimization objective (8) can be rewritten as

min ||Ajk$ +cy, ||§7
J)C,LE

The solution to this least squares problem is given by z* = —(A ] Ay, )TA] c¢y,. The minimum
value for a fixed Jy is

G(Jr) = (I — Ay (A], Az ) A] Ves |3

Each choice of Ji is an upper bound of the target objective. The final step is to find the optimal
set of k indices Jj, that minimize G(J;). There are (Z) possible choices for the set Ji,. The overall
minimum value of the above objective function is

: _ T AT 2
e N = A (A5 AT, e ©)

The upper bound in the theorem can be obtained by setting J = {1,2, ..., k}.

A.2 Weight Updates of FFT

Here we present two perspectives on the weight updates during FFT. While low-rank matrices are
usually used to approximate full-rank matrices, we propose enhancing this approximation with a
ridge term, which provides better calibration to the original full-rank update scheme. There are two
equivalent ways to view the weight updates of the original matrix W:

 Additive update (Parallel connection): W + AW

* Multiplicative update (series connection): W - AW”.

The full equivalence of additive update and full-rank training is derived further at Appendix
If freezing the original matrix W, these two representations are equivalent, as we can establish a
bi-directional mapping between them:

* Given any additive update AW, we can find its multiplicative counterpart as AW’ =
W= W + AW);

* Given any multiplicative update AW’, we can find its additive counterpart as AW =
W-AW' —W.

In both cases, theoretically W + AW = W - AW, It is noteworthy that vanilla LoRA can be viewed
as a low-rank approximation to the parallel connection, where AW is constrained to be the product
of two low-rank matrices. We will also demonstrate the experimental results of series and parallel
connections with the setup of RidgeL.oRA.

A.3 Singular Value Decomposition with Math Bounded Error

According to Eckart-Young-Mirsky Theorem [43]], when conducting low-rank decomposition with
SVD on a matrix W to obtain a low-rank matrix W}, with rank k. The decomposition error, calculated
with Frobenius Norm [53]], is equal to the sum of the squares of the singular values of the compressed
part of the matrix, which can be formalized as

min(din,dowt)

W -Wilz= > o
i=k+1

where W = USVT and W, = U, VT, o, is the singular value calculated with SVD, rearranged
by descending order. This theorem also gives a math bound to the error of a low-rank decomposition
approximating the original full-rank matrix, any matrix W}, with rank £ won’t better approximate
the matrix W. However, if breaking the low-rank restrictions with a full-ranked ridge, though with
limited parameters, the approximation error gets way lower compared to SVD-based methods. This
justifies the necessity of restoring the rank of low-parameter modules to gain better performances.
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A.4 Weight Updates of Vanilla LoORA

LoRA achieves efficient fine-tuning with the low-rank matrices, which is particularly effective when
the target task requires capabilities that are closely related to those acquired during pre-training,
necessitating only minimal weight adjustments. In the implementation of vanilla LoRA [12]], an input
signal X, is computed in the following way:

(0%
Xout = XML(W + ?AB% (10)

where A € R%n*" B ¢ R"*%ut ¢ denotes the preset low rank of the two matrices and « acts as
the scaling hyper-parameter. The low-rank setup freezes the original matrix W, making the weights
to be updated lightweight. The architecture enables the extra matrices: A and B to be absorbed by
the pre-trained weights, thus feasible to reorganized into a model with exactly the same structure as
the original one. The weights can be reorganized as follows:

W' =w + 2 AB. (11)
'

Here we take a look at the weight update AW, it is an item-wise weight difference between fine-tuned
weight W’ and the original weight W:

AW =W —W = 2 4B, (12)
r
where A and B are low-rank matrices, making this module short of representation capabilities.

According to Biderman et al. [[14]], Shuttleworth et al. [15], LoRA can not fully calibrate full-rank
training and may entail intruder dimensions for the existence of low-rank matrices.

A.5 Gradient Analysis of Full-Rank Training

Xin ” Xout

Figure 3: Schematic of matrix computation with input matrix X;,, and output X ;.

Here we analyze the matrix computation in detail and the difference between the weight updates
of FFT and LoRA training. Specifically, as is depicted in Figure [3} X,,; is obtained by matrix
computation from X,,, which results in the following computation path:

Xout = XinW
a)(out (13)
o~ Y

Theorem A.2. FFT is equivalent to adding a full-rank matrix through parallel connection while
freezing the original matrix.

> Gradient of FFT: Suppose that the gradient gﬁ - has been backpropagated [54)] from subsequent

modules. Our goal is to compute the corresponding gradient w.r.t. the input, aaTé’ through applying
the chain rule. Specifically, given the transformation X s = X;, W, the gradient can be calculated

as:
oL oL  0X,ut oL
gW = —_— = . = X’in’
ow 8Xout ow a)(out
from which we can observe that the gradient is calculated by the product of input activation and
gradients from subsequent modules, which can be further utilized by optimizers like AdamW [48] to

compute the weight updates.

(14)

> Gradient of an Additive (Parallel) Matrix: Here we derive how parameters of an extra inserted
parallel matrix W' update during training, where the computation is transformed to the formalization
below:

Xout = Xin(W + AW), 15)
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where AW is full-rank while W is kept frozen during training. The gradient of the inserted matrix
can be calculated from:

oL o OXows  O(W + AW)

IAW =AW ~ 0Xg O(W + AW) — OAW o

0L 0Xew 0L o (16)
DX O(W + AW) DXy i

where the gradient is exactly the same as conducting full-rank training. If the original matrix W
is frozen during training while the inserted matrix is initialized as (O)d” Xdout 45 ensure the output
at starting point calibrate the original outputs, every optimization step of parallel added matrix is
exactly the same as FFT, hereby leading to the same results.

B Details and Analysis of Experiments

B.1 Hypothesis Test of Srg Selection

In order to complement the analysis of our ablation study in Section[4.3] we conduct t-test [49] on
the accuracy scores to analyze the impact of Srg and compare the statistical significance to prove the
validity of the proposed ridge squashing loss. Data points across different datasets and Srg values
are from Table[8] In the hypothesis test, we refer to 11, and po as the means of the two experimental
groups, negative value group and positive value group, respectively, while 1o represents a reference
data point in which ridge squashing loss is not in effect for comparison in our t-test. The results of the
hypothesis tests, including the t-statistics and p-values for each dataset, are summarized in Table[9]

Brs BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA | Avg.

‘ (Acc.) (Acc.) (Acc.) (Acc.) (Acc.) (Acc.) (Acc.) (Acc.) | (Acc.)

Negative Values
-1.0 71.12  83.68 80.81 93.22 79.87 85.82 73.21 81.40 | 81.14
—5x 107! 7143  83.08 81.27 93.24 81.53 86.66 71.76 82.00 | 81.37
—2x 1071 70.55 8270 80.50 93.59 81.22 86.28 70.90 81.80 | 80.94
—1x 107! 7140 8341 80.81 93.54 81.45 86.28 72.01 81.60 | 81.31
—5x 1072 71.00 83.62 80.66 93.59 82.16 85.98 70.82 80.80 | 81.08
—2x 1072 70.94  83.68 80.30 93.43 80.51 87.04 72.44 81.60 | 81.24
—1x1072 71.73  83.03 82.29 93.37 80.03 86.36 72.18 81.40 | 81.30
—5x 1073 7143 8281 80.55 93.52 80.19 86.20 72.35 81.80 | 81.11
—1x1073 70.82  83.19 80.55 93.26 79.87 85.82 71.08 79.20 | 80.47
0(w/o Lrs) | 70.61 8221 80.25 93.49 80.35 85.77 71.33 82.20 | 80.78
Positive Values

1x1073 70.61 8221 80.04 92.71 80.03 85.48 72.01 79.60 | 80.34
5x 1073 70.58  82.64 80.25 92.60 80.82 86.28 71.84 79.80 | 80.60
1x1072 71.12  82.54 80.04 92.83 80.74 85.56 71.33 80.8 80.62
2 x 1072 70.64 82775 80.19 92.99 80.82 85.35 72.53 80.40 | 80.71
5x 1072 7042 81.66 80.45 92.73 80.82 85.56 71.84 80.80 | 80.54
1x 1071 70.51 82.10 79.94 92.84 80.03 85.77 71.59 81.00 | 80.47
2x 107! 71.15  81.77 80.14 92.91 79.87 85.56 71.25 80.20 | 80.36
5x 1071 70.30  81.72  79.68 92.73 80.19 85.19 70.82 80.60 | 80.15
1.0 69.81 8221 80.40 92.79 80.27 84.93 71.67 79.80 | 80.24

Table 8: Ablation study with different Srg values with Llama-2-7B as base model on Commonsense
Datasets. Hyper-parameters, except for Srg, are set to align with the main experiment. We evaluate
across positive and negative in comparison with the frg = 0 test, i.e., the one without fSrg, to
obtain conclusions about how the loss takes effect. Observations from metrics above can be used for
hypothesis test.

Test 1: Will fusing losses by a negative Srgs lead to better performance?

Here we conduct t-test with accuracy scores from negative value group and i to prove the validity
of fusing losses by a negative Srgs. This is a right-tailed mean test, the null hypothesis and the
alternative hypothesis can be expressed as

Hy : py < po  (Null Hypothesis)
H, : p1 > po  (Alternative Hypothesis)
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where the test statistic is given by t; = S””; L /7% where n denotes the number of data points and S? is

the variance, Z is the mean of all data points from the same group. The null hypothesis is rejected if
t1 > ton,—1,1.€., p < a, where the degree of freedom df; is n; — 1. We set the significance level
at p < 0.10. From the left of Table[9] the differences are significant across five of eight datasets,
which proves the validity of Lrs and indicates that setting Srg a negative value will improve the
performance.

Dataset t1 (u1 > po) pi-value  Significant Dataset ta (o < p11)  po-value  Significant
BoolQ 4.4488 0.0021 4 BoolQ -3.2042 0.0056 v
PIQA 8.3350 0.0000 '4 PIQA -5.8022 0.0000 v
SIQA 3.0429 0.0160 4 SIQA -3.4093 0.0063 v
HellaSwag -1.4335 0.8104 X HellaSwag -9.8413 0.0000 v
Winogrande 1.4475 0.0912 '4 Winogrande -1.1541 0.2722 X
ARC-Easy 3.8073 0.0052 4 ARC-Easy -4.1315 0.0008 v
ARC-Challenge 1.9867 0.0822 4 ARC-Challenge -0.6627 0.5188 X
OpenBookQA -3.1967 0.9937 X OpenBookQA -2.8795 0.0129 v

Table 9: Hypothesis test results for p; > o (left) and po < pg (right). Across six out of eight
datasets, the average accuracy scores from the negative group p; is significantly greater than .
Meanwhile, pq is significantly higher than ps in six out of eight datasets, showcasing the necessity of
selecting a negative Srs.

Test 2: Will fusing losses by a positive Srs worsen the performance compared to the negative
group?

In order to fully perform ablation study to facilitate hyper-parameter selection, we also conduct
Welch’s t-test [55]] to make a comparison between the positive and negative group for the uncertainty

in the variance of the two groups. This is a left-tailed mean test, where the hypotheses can be
expressed as

Hy : po > pp (Null Hypothesis)
H, : ps < p1 (Alternative Hypothesis)

In this case, using the Welch-Satterthwaite formula [56,55], the ¢ value and the degree of freedom df
are calculated as follows:

To — 1
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The null hypothesis is rejected if t; < —t, 4¢, i.., p < . From the right table of Table[J] six out of
eight datasets are witnessed with a high significance, which illustrates selecting a negative Srg can
be much better than picking a positive value for it. Furthermore, this proves that increasing the rank
of the non-diagonal part of the weight update is more beneficial to obtain better performances.

B.2 Results of Natural Language Understanding Benchmark

We also evaluate RidgeLoRA with BERT [57]-like encoder models on Natural Language Un-
derstanding datasets from the GLUE [58]] benchmark. We selected encoder-based discriminative
models, RoOBERTa [59] and DeBERTaV3 [60], to evaluate RidgeLoRA on NLU tasks on the GLUE
benchmarks. Here we present the results from the NLU datasets in Table [I0]

From the results in the table, we can observe that the performance improvements hold for small
encoder models whose model sizes are usually less than 1B. The Ridge-enhanced model achieved
the best results in almost all of the datasets, with its average scores also the highest amongst its
baselines. On datasets where Ridge doesn’t perform that well, the accuracy drop compared to
other well-performed LoRA variants is usually less than 1%, showcasing the scalability and good
performance of RidgeLoRA.
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MNLI SST-2 MRPC CoLA OQNLI RTE STS-B QQP Avg.
(Acc.) (Acc.) (Acc.) (Mcc.) (Acc.)  (Acc.) (Pcc.) (Acc.)

RoBERTa-base

Method

FFT 87.6 94.8 90.2 63.6 92.8 78.7 91.2 91.5 86.3
LoRA 87.2 94.4 87.3 61.8 92.9 78.0 90.8 90.7 85.4
DoRA 874 94.4 87.5 61.6 93.1 78.3 90.6 87.9 85.1
PiSSA 87.1 94.0 88.0 62.8 92.2 74.4 90.3 89.3 84.8
KaSA 87.0 94.4 88.7 61.9 92.4 71.3 90.9 90.6 85.4

Ridge' 87.3 94.4 88.1 62.2 92.8 717.9 90.8 90.7 85.5

RoBERTa-large

FFT 90.2 96.4 90.9 68.0 94.7 86.6 92.4 92.2 88.9
LoRA 90.8 96.2 89.8 65.1 94.7 85.2 91.6 91.8 88.2
DoRA 90.8 96.2 90.0 64.6 94.7 83.8 91.7 91.7 87.9
PiSSA 90.8 96.0 90.1 66.3 94.7 85.9 91.4 91.5 88.3
KaSA 89.7 96.1 90.7 67.3 94.9 84.8 91.2 91.8 88.3

Ridge' 90.9 96.3 91.1 68.3 94.8 86.2 91.4 92.0 88.9

DeBERTa-v3-base

FFT 90.7 96.0 88.7 69.0 93.7 86.2 90.8 92.5 88.5
LoRA 89.5 95.5 89.0 68.2 94.0 84.5 90.1 91.2 87.8
DoRA 89.6 95.4 89.0 68.2 94.0 84.5 90.3 87.2 87.3
PiSSA 89.7 95.5 88.5 71.6 93.8 83.4 90.6 91.5 88.1
KaSA 89.6 95.3 89.5 68.7 94.1 84.8 90.5 91.0 87.9

Ridge' 89.7 96.1 88.5 70.2 94.3 85.0 90.7 91.4 88.2
DeBERTa-v3-large

FFT 91.8 96.9 922 75.3 96.0 92.7 93.0 93.0 91.4
LoRA 91.8 95.8 89.7 71.9 95.7 90.5 92.1 91.6 89.9
DoRA 91.7 95.8 89.5 71.7 95.7 91.2 92.0 91.8 89.9
PiSSA 91.6 95.9 88.5 71.3 95.8 91.5 922 91.9 89.8
KaSA 91.7 95.7 88.6 71.7 95.7 92.1 91.8 92.4 90.0

Ridge' 91.7 96.0 90.2 72.2 96.0 92.5 92.3 92.0 90.4

Table 10: Performance of NLU tasks with BERT-like models. The best results for each model on
each dataset are highlighted with a Gray background, and the highest scores achieved by low-rank
methods are marked as Bold. ' denotes a parallel connected module with Ridge.

B.3 Resource Consumption of LoRA Variants

In addition to the theoretical analysis as presented in Table [I] we also conduct real-world test of
different LoRA variants on its memory cost and time consumed for initialization. The results are as
reported in Table[TT] As is depicted, the proposed RidgeLoRA hardly increases the computation and
memory requirements during training. Consistent with the theoretical results, conducting SVD on
original weights in order to initialize LoRA weights (like PiSSA or KaSA) takes way more time than
LoRA, DoRA and RidgeLoRA. DoRA always consumes more FLOPs and memory for its decoupling
the updates of magnitude and direction.

B.4 Details Descriptions of Experiments

Base Models As we select language generation tasks for evaluation, we choose our base models
from state-of-the-art LLMs and select Llama-2-7B [4]], Llama-3.1-8B [6] and Mistral-v0.3-7B
models. The reason for this selection is that we want to confirm the validity of RidgeLoRA on more
models. Also, since the Llama-2 model follows the Multi-Head Attention (61, MHA) architecture,
unlike the Grouped-Query Attention (62, GQA) that is adopted by the latter two models, it is beneficial
to further prove the generalizability of our effects considering this variation in the architecture.

For multi-modal understanding, following DoRA’s [16] setup, we adopt vicuna-7b-1.5 [63] as

31t is noteworthy that following the experimental setups of previous LoRA variants, we have chosen the base
versions of the models (not the instruction or the chat version) in all of our experiments, from which we assessed
the capability of different tuning methods.
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Method Rank Total Par ters Trainable Par ters  Weight M y/MB  Computation/FLOPs Initialization Time/s
Llama-2-7B

LoRA 8 6,758,404,096 19,988,480 13556.79 14,121,986,818,048 0.7296
DoRA 8 6,759,763,968 21,348,352 13562.22 14,339,184,656,384 0.9264
PiSSA 8 6,758,404,096 19,988,480 13556.79 14,121,986,818,048 269.7828
KaSA 8 6,758,418,432 20,002,816 13556.79 14,122,016,178,176 269.4534
RidgeLoRA 8 6,757,773,536 19,357,920 13554.26 14,118,362,939,392 1.4136
LoRA 64 6,898,323,456 159,907,840 14116.46 14,408,541,667,328 3.0530
DoRA 64 6,899,683,328 161,267,712 14121.90 16,146,124,374,016 3.2561
PiSSA 64 6,898,323,456 159,907,840 14116.46 14,408,541,667,328 270.2638
KaSA 64 6,899,240,960 160,825,344 14116.46 14,410,420,715,520 269.9754
RidgeLoRA 64 6,885,306,592 146,890,976 14064.40 14,379,550,638,080 7.5198
Llama-3.1-8B
LoRA 8 8,051,232,768 20,971,520 16144.41 15,962,246,086,656 1.0216
DoRA 8 8,052,609,024 22,347,776 16149.91 16,230,681,542,656 0.9259
PiSSA 8 8,051,232,768 20,971,520 16144.41 15,962,246,086,656 200.8085
KaSA 8 8,051,247,104 20,985,856 16144.41 15,962,275,446,784 200.6371
RidgeLoRA 8 8,051,429,600 21,168,352 16145.20 15,960,098,603,008 1.6557
LoRA 64 8,198,033,408 167,772,160 16731.61 16,262,893,797,376 3.0531
DoRA 64 8,199,409,664 169,148,416 16737.12 18,410,377,445,376 3.3537
PiSSA 64 8,198,033,408 167,772,160 16731.61 16,262,893,797,376 202.0986
KaSA 64 8,198,950,912 168,689,664 16731.61 16,264,772,845,568 202.9946
RidgeLoRA 64 8,190,890,208 160,628,960 16703.04 16,245,713,928,192 7.5247
Mistral-v0.3-7B
LoRA 8 7,268,995,072 20,971,520 14579.93 15,161,234,685,952 0.8190
DoRA 8 7,270,371,328 22,347,776 14585.44 15,429,670,141,952 1.0500
PiSSA 8 7,268,995,072 20,971,520 14579.93 15,161,234,685,952 201.1598
KaSA 8 7,269,009,408 20,985,856 14579.93 15,161,264,046,080 202.1278
RidgeLoRA 8 7,269,191,904 21,168,352 14580.72 15,159,087,202,304 1.6571
LoRA 64 7,415,795,712 167,772,160 15167.14 15,461,882,396,672 3.0997
DoRA 64 7,417,171,968 169,148,416 15172.64 17,609,366,044,672 3.2655
PiSSA 64 7,415,795,712 167,772,160 15167.14 15,461,882,396,672 202.0486
KaSA 64 7,416,713,216 168,689,664 15167.14 15,463,761,444,864 204.0085
RidgeLoRA 64 7,408,652,512 160,628,960 15138.56 15,444,702,527,488 8.2065

Table 11: Test results of the resources (time, computation and memory) consumed of different LoORA
variants. This corroborates the theoretical results from Table[I]

the language model and adopt the CLIP [64]-based vision projector in LLaVA [63] to obtain the
representations of images.

Datasets We used comprehensive datasets to evaluate the performance of RidgeLoRA in adapting
the language models to different down-stream tasks. Starting from where LoRA is most widely used,
we perform supervised fine-tuning (SFT,[9) on the Commonsense Reasoning datasets and evaluate
it on eight corresponding datasets. In order to further evaluate the performances of RidgeLoRA on
long-form generation tasks, we also include Math & Code Problems, which require the model to
have a strong reasoning and generation ability; Furthermore, besides language-only evaluation, we
extend our experiments to Natural Language Understanding datasets, where language models are
aligned to visual projectors to understand images.

i. For the Commonsense Reasoning datasets, following previous works, we conduct multi-task train-
ing with the training split of eight related datasets, namely BoolQ [66], PIQA [67]], SocialIQA [68],
HellaSwag [69], WinoGrande [70], ARC-Easy, ARC-Challenge and OpenbookQA [72].
These datasets require the large models to fully utilize the real-world commonsense knowledge to
answer a question.

ii. As for Math&Code problems, we evaluate LLMs with GSM8K and MATH for math,
HumanEval [73] and MBPP [76] for code capability. We conduct supervised fine-tuning with
MetaMath [[77]] and Code-Feedbackﬂfor math and code, respectively, to ensure there is no data
leakage.

iii. For the multi-modal understanding datasets, we include GQA [78], ScienceQA (79, SQA in
Table , TextVQA (80, VQAT in Table and POPE [81]] to test how well the trained model fits
with the vision projector and understands the images.

iv. We also adopt the GLUE benchmarkﬂfor the NLU tasks, which consists of the following datasets:

*nttps://huggingface.co/datasets/HuggingFaceH4/Code-Feedback
https://huggingface.co/datasets/nyu-mll/glue
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a) Single Sentence Classification Tasks: SST-2 [82]] or the Stanford Sentiment Treebank’s goal
is to predict the sentiment (positive/negative) of reviews on different movies, which is a binary
classification task. CoLA [83]] or the Corpus of Linguistic Acceptability consists of sentences each
annotated with whether it is a grammatical English sentence.

b) Similarity or Paraphrase Tasks: MRPC [84] or the Microsoft Research Paraphrase Corpus is
to identify if a sentence pair consists of sentences paraphrases of each other. QQP or Quora Question
Pairsﬂis to determine whether two questions are semantically equivalent, question pairs are collected
from the website Quora. STS-B [85] or the Semantic Textual Similarity Benchmark is a collection of
sentence pairs drawn from news headlines, video and image captions, and natural language inference
data. The task is to evaluate how similar two chunks of texts are with a score from 1 to 5.

c¢) Language Entailment Tasks: MINLI [86] or the Multi-Genre Natural Language Inference is a
crowdsourced dataset of sentence pairs with entailment annotations, sourced from diverse materials
like speech, fiction, and reports, evaluated on both in-domain and cross-domain sections using private
labels. QNLI or the Question Natural Language Inference consists of question-paragraph pairs from
Wikipedia, originally from the SQuAD [87] and post processed when building GLUE. RTE or the
Recognizing Textual Entailment is a binary entailment task with a small training dataset, which
consists of sentence pairs from four annual textual entailment challenges [88HI1]].

Shttps://www.kaggle.com/datasets/quora/question-pairs-dataset
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to point out that an improvement in the quality of generative models could be used to
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from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
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Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This research poses no such risks.
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* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
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should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
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Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
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in this research are properly cited and discussed.

Guidelines:

* The answer NA means that the paper does not use existing assets.
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This research does not involve crowdsourcing nor research with human
subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs are only adopted for grammar checking at sentence level.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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