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ABSTRACT

We study differentially private (DP) optimization algorithms for stochastic and
empirical objectives which are neither smooth nor convex, and propose meth-
ods that return a Goldstein-stationary point with sample complexity bounds that
improve on existing works. We start by providing a single-pass (ε, δ)-DP al-
gorithm that returns an (α, β)-stationary point as long as the dataset is of size
Ω̃
(
1/αβ3 + d/εαβ2 + d3/4/ε1/2αβ5/2

)
, which is Ω(

√
d) times smaller than the

algorithm of Zhang et al. (2024) for this task, where d is the dimension. We then
provide a multi-pass polynomial time algorithm which further improves the sam-
ple complexity to Ω̃

(
d/β2 + d3/4/εα1/2β3/2

)
, by designing a sample efficient

ERM algorithm, and proving that Goldstein-stationary points generalize from the
empirical loss to the population loss.

1 INTRODUCTION

We consider optimization problems in which the loss function is stochastic or empirical, of the form

F (x) := Eξ∼P [f(x; ξ)] , (stochastic)

F̂D(x) :=
1

n

n∑
i=1

f(x; ξi), (ERM)

where P is the population distribution from which we sample a dataset D = (ξ1, . . . , ξn) ∼ Pn,
and the component functions f( · ; ξ) : Rd → R may be neither smooth nor convex. Such problems
are ubiquitous throughout machine learning, where losses given by deep-learning based models give
rise to highly nonsmooth nonconvex (NSNC) landscapes.

Due to its fundamental importance in modern machine learning, the field of nonconvex optimization
has received substantial attention in recent years. Moving away from the classical regime of con-
vex optimization, many works aimed at understanding the complexity of producing approximate-
stationary points, namely with small gradient norm (Ghadimi & Lan, 2013; Fang et al., 2018; Car-
mon et al., 2020; Arjevani et al., 2023). As it turns out, without smoothness, it is impossible to
directly minimize the gradient norm without suffering from an exponential-dimension dependent
runtime in the worst case (Kornowski & Shamir, 2022). Nonetheless, a nuanced notion coined as
Goldstein-stationarity (Goldstein, 1977), has been shown in recent years to enable favorable guar-
antees. Roughly speaking, a point x ∈ Rd is called an (α, β)-Goldstein stationary point (or simply
(α, β)-stationary) if there exists a convex combination of gradients in the α-ball around x whose
norm is at most β.1 Following the groundbreaking work of Zhang et al. (2020), a surge of works
study NSNC optimization through the lens of Goldstein stationarity, with associated finite-time guar-
antees (Davis et al., 2022; Lin et al., 2022; Cutkosky et al., 2023; Jordan et al., 2023; Kong & Lewis,
2023; Grimmer & Jia, 2023; Kornowski & Shamir, 2024; Tian & So, 2024).

In this work, we study NSNC optimization problems under the additional constraint of differential
privacy (DP) (Dwork et al., 2006). With the ever-growing deployment of ML models in various
domains, the privacy of the data on which models are trained is a major concern. Accordingly, DP

1Previous works typically use the notational convention (δ, ε)-stationarity instead of (α, β), namely where
δ is the radius (instead of α) and ε is the norm bound (instead of β). We depart from this notational convention
in order to avoid confusion with the standard privacy notation of (ε, δ)-DP.
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optimization is an extremely well-studied problem, with a vast literature focusing on functions that
are assumed to be either convex or smooth (Bassily et al., 2014; Wang et al., 2017; Bassily et al.,
2019; Wang et al., 2019; Feldman et al., 2020; Gopi et al., 2022; Arora et al., 2023; Carmon et al.,
2023; Liu et al., 2024). The fundamental investigation in this literature is the privacy-utility trade-
off, that is, assessing the minimal dataset size n (referred to as the sample complexity) required in
order to optimize the loss up to some error, using a DP algorithm.

For NSNC DP optimization, Zhang et al. (2024) recently provided a zero-order algorithm, namely
that utilizes only function value evaluations of f( · ; ξ), which preforms a single pass over the dataset
and returns an (α, β)-stationary point of F under (ε, δ)-DP as long as

n = Ω̃

(
d

αβ3
+

d3/2

εαβ2

)
. (1)

To the best of our knowledge this is the only existing result in this realm.

1.1 OUR CONTRIBUTIONS.

In this paper, we provide new algorithms for NSNC DP optimization, which improve the previously
best-known sample complexity for this task. For consistency with the previous result by Zhang et al.
(2024), our algorithms will be zero-order, yet in Appendix C we provide first-order algorithms (i.e.,
gradient-based) with the same sample complexities, and better oracle complexity. Our contributions,
summarized in Table 1, are as follows:

1. Improved single-pass algorithm (Theorem 3.1): We provide an (ε, δ)-DP algorithm that pre-
forms a single pass over that dataset, and returns an (α, β)-stationary point as long as

n = Ω̃

(
1

αβ3
+

d

εαβ2
+

d3/4

ε1/2αβ5/2

)
, (2)

which is always at least Ω(
√
d) times smaller than (1).2 Notably, the “non-private” term 1/αβ3

is dimension-independent, as opposed to Eq. (1), which is the first result of this sort for NSNC
DP optimization, and was erroneously claimed impossible by previous work (see Remark 3.2).

2. Better multi-pass algorithm (Theorem 4.1): In order to further improve the sample complexity,
we move to consider ERM algorithms that go over the data multiple times (polynomially), which
we will later argue generalize to the population loss. To that end, we provide an (ε, δ)-DP ERM
algorithm, that returns an (α, β)-Goldstein stationary point of F̂D as long as

n = Ω̃

(
d3/4

εα1/2β3/2

)
. (3)

Notably, Eq. (3) substantially improves Eq. (2) (and thus, Eq. (1)) in parameter regimes of interest
(small ε, α, β, large d) with respect to the dimension and accuracy parameters, and in particu-
lar is the first algorithm to preform private ERM with sublinear dimension-dependent sample
complexity for NSNC objectives.

In order to utilize our empirical algorithm for stochastic objectives, one must argue that Goldstein-
stationarity generalizes from the ERM to the population. As no such argument is currently pointed
out in the literature, we provide a result that ensures this:

• Additional contribution: generalizing from ERM to population (Proposition 5.1). We
show that with high probability, any (α, β̂)-stationary point of F̂D is an (α, β)-stationary
point of F , for β = β̂ + Õ(

√
d/n). Hence, the empirical guarantee Eq. (3) generalizes to

stochastic losses with an additional d/β2 additive term in n (up to log terms).

2Note that d3/4

ε1/2αβ5/2 ≲ 1√
d
( d
αβ3 + d3/2

εαβ2 ) by the AM-GM inequality

2
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Sample complexity summary empirical stochastic

(Zhang et al., 2024) (single-pass) d
αβ3 + d3/2

εαβ2

Theorem 3.1 (single-pass) 1
αβ3 + d

εαβ2 + d3/4

ε1/2αβ5/2

Theorem 4.1 (multi-pass) d3/4

εα1/2β3/2
d
β2 + d3/4

εα1/2β3/2

Table 1: Main results (ignoring dependence on Lipschitz constant, initialization, and log terms).

2 PRELIMINARIES

Notation. We denote by ⟨·, ·⟩ , ∥ · ∥ the standard Euclidean dot product and its induced norm. For
x ∈ Rd and α > 0, we denote by B(x, α) the closed ball of radius α centered at x, and further
denote Bα := B(0, α). Sd−1 ⊂ Rd denotes the unit sphere. We make standard use of O-notation to
hide absolute constants, Õ, Ω̃ to hide poly-logarithmic factors, and also let f ≲ g denote f = O(g).

Nonsmooth optimization. A function h : Rd → R is called L-Lipschitz if for all x, y ∈ Rd :
|h(x)− h(y)| ≤ L∥x− y∥. We call h H-smooth, if h is differentiable and ∇h is H-Lipschitz with
respect to the Euclidean norm. For Lipschitz functions, the Clarke subgradient set (Clarke, 1990)
can be defined as

∂h(x) := conv{g : g = lim
n→∞

∇h(xn), xn → x},

namely the convex hull of all limit points of∇h(xn) over sequences of differentiable points (which
are a full Lebesgue-measure set by Rademacher’s theorem), converging to x. For α ≥ 0, the Gold-
stein α-subdifferential (Goldstein, 1977) is further defined as

∂αh(x) := conv(∪y∈B(x,α)∂h(y)),

and we denote the minimum-norm element of the Goldstein α-subdifferential by

∂αh(x) := argming∈∂αh(x) ∥g∥ .

Definition 2.1. A point x ∈ Rd is called an (α, β)-Goldstein stationary point of h if
∥∥∂αh(x)

∥∥ ≤ β.

Throughout the paper we impose the following standard Lipschitz assumption:

Assumption 2.2. For any ξ, f(· ; ξ) : Rd → R is L-Lipschitz (hence, so is F ).

Randomized smoothing. Given any function h : Rd → R, we denote its randomized smoothing
hα(x) := Ey∼Bα

h(x + y). We recall the following standard properties of randomized smoothing
(Flaxman et al., 2005; Yousefian et al., 2012; Duchi et al., 2012; Shamir, 2017).

Fact 2.3 (Randomized smoothing). Suppose h : Rd → R is L-Lipschitz. Then

• hα is L-Lipschitz.

• |hα(x)− h(x)| ≤ Lα for any x ∈ Rd.

• hα is O(L
√
d/α)-smooth.

• ∇hα(x) = Ey∼Bα
[∇h(x+ y)] = Ey∼Sd−1 [ d

2α (h(x+ αy)− h(x− αy))y].

The following result shows that in order to find a Goldstein-stationary point of a function, it suffices
to find a Goldstein-stationary point of its randomized smoothing:

Lemma 2.4 (Kornowski & Shamir, 2024, Lemma 4). Any (α, β)-stationary point of hα is a (2α, β)-
stationary point of h.

3
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Differential privacy. Two datasets D,D′ ∈ supp(P)n are said to be neighboring if they differ in
only one data point. A randomized algorithm A : Zn → R is called (ε, δ) differentially private
(or (ε, δ)-DP) for ε, δ > 0 if for any two neighboring datasets D,D′ and measurable E ⊆ R in the
algorithm’s range, it holds that Pr[A(D) ∈ E] ≤ eε Pr[A(D′) ∈ E] + δ (Dwork et al., 2006).

Next, we recall the well-known tree mechanism given by Algorithm 1, and its associated guarantee
presented below.
Proposition 2.5 (Tree Mechanism Dwork et al., 2010; Chan et al., 2011; Zhang et al., 2024).
Let Z1, · · · ,ZΣ be dataset spaces, and X be the state space. Let Mi : X i−1 × Zi → X
be a sequence of algorithms for i ∈ [Σ]. Let ALG : Z(1:Σ) → XΣ be the algorithm that
given a dataset Z1:Σ ∈ Z(1:Σ), sequentially computes Xi =

∑i
j=1Mi(X1:j−1, Zi) + TREE(i)

for i ∈ [Σ], and then outputs X1:Σ. Suppose for all i ∈ [Σ], and neighboring Z1:Σ, Z
′
1:Σ ∈

Z(1:Σ), ∥Mi(X1:i−1, Zi) − Mi(X1:i−1, Z
′
i)∥ ≤ s for all auxiliary inputs X1:i−1 ∈ X i−1.

Then setting σ = 4s
√
log Σ log(1/δ)/ε, Algorithm 1 is (ε, δ)-DP. Furthermore, for all t ∈

[Σ] : E[TREE(t)] = 0 and E ∥TREE(t)∥2 ≲ d log(Σ)σ2.

Algorithm 1 Tree Mechanism

1: Input: Noise parameter σ, sequence length Σ
2: Define T := {(u, v) : u = j ·2ℓ−1+1, v = (j+1) ·2ℓ−1, 1 ≤ ℓ ≤ log Σ, 0 ≤ j ≤ Σ/2ℓ−1−1}
3: Sample and store ζ(u,v) ∼ N (0, σ2) for each (u, v) ∈ T
4: for t = 1, · · · ,Σ do
5: Let TREE(t)←

∑
(u,v)∈NODE(t) ζ(u,v)

6: end for
7: Return: TREE(t) for each t ∈ [Σ]
8:
9: Function NODE:

10: Input: index t ∈ [Σ]
11: Initialize S = {} and k = 0
12: for i = 1, · · · , ⌈log Σ⌉ while k < t do
13: Set k′ = k + 2⌈log Σ⌉−i

14: if k′ ≤ k then
15: S ← S ∪ {(k + 1, k′)}, k ← k′

16: end if
17: end for

2.1 BASE ALGORITHM: O2NC

Similar to Zhang et al. (2024), our general algorithm is based on the so-called “Online-to-Non-
Convex conversion” (O2NC) of Cutkosky et al. (2023). We slightly modify previous proofs by
disentangling the role of the variance of the gradient estimator vs. its second order moment, as
follows:
Proposition 2.6 (O2NC). Suppose that O( · ) is a stochastic gradient oracle of some differentiable
function h : Rd → R, so that for all z ∈ Rd : E∥O(z) − ∇h(z)∥2 ≤ G2

0 and E∥O(z)∥2 ≤ G2
1.

Then running Algorithm 2 with η = D
G1

√
M
, MD ≤ α, uses T calls to O( · ), and satisfies

E
∥∥∂αh(x

out)
∥∥ ≤ h(x0)− inf h

DT
+

3G1

2
√
M

+G0.

We provide a proof of Proposition 2.6 in Appendix B. Recalling that by Lemma 2.4 any (α, β)-
stationary point of Fα is a (2α, β)-stationary point of F , we see that it is enough to design a private
stochastic gradient oracle O of ∇Fα, while controlling its variance G0 and second moment G1.
In the next sections, we show how to construct such private oracles and derive the corresponding
guarantees through Proposition 2.6. As previously remarked, in the main text, our oracles will be
based on zero-order queries of the component functions f( · , ξ), yet in Appendix C, we also show
we can construct oracles with the same sample complexity using first-order queries with a lower
oracle complexity.

4
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Algorithm 2 Nonsmooth Nonconvex Algorithm (based on O2NC (Cutkosky et al., 2023))

1: Input: Oracle O : Rd → Rd, initialization x0 ∈ Rd, clipping parameter D > 0, step size
η > 0, averaging length M ∈ N, iteration budget T ∈ N.

2: Initialize: ∆1 = 0
3: for t = 1, . . . , T do
4: Sample st ∼ Unif[0, 1]
5: xt = xt−1 +∆t

6: zt = xt−1 + st∆t

7: g̃t = O(zt)
8: ∆t+1 = clipD (∆t − ηg̃t) ▷ clipD(z) := min{1, D

∥z∥} · z
9: end for

10: K = ⌊ T
M ⌋

11: for k = 1, . . . ,K do
12: xk = 1

M

∑M
m=1 z(k−1)M+m

13: end for
14: Sample xout ∼ Unif{x1, . . . , xK}
15: Output: xout.

3 SINGLE-PASS ALGORITHM

Algorithm 3 Single-pass instantiation of O(zt) in Line 7 of Algorithm 2

1: Input: Current iterate zt, time t ∈ N, period length Σ ∈ N, accuracy parameter α > 0, batch
sizes B1, B2 ∈ N, gradient validation size m ∈ N, noise level σ > 0.

2: if t mod Σ = 1 then
3: Sample minibatch St of size B1 among unused samples
4: for each sample ξi ∈ St do
5: Sample y1, . . . , ym

iid∼ Unif(Sd−1)

6: ∇̃f(zt; ξi) = 1
m

∑
j∈[m]

d
2α (f(zt + αyj ; ξi)− f(zt − αyj ; ξi))yj

7: end for
8: gt =

1
B1

∑
ξi∈St

∇̃f(zt; ξi)
9: else

10: Sample minibatch St of size B2 among unused samples
11: for each sample ξi ∈ St do
12: Sample y1, . . . , y2m

iid∼ Unif(Bα)

13: ∇̃f(zt; ξi) = 1
m

∑
j∈[m]

d
2α (f(zt + αyj ; ξi)− f(zt − αyj ; ξi))yj

14: ∇̃f(zt−1; ξi) =
1
m

∑2m
j=m+1

d
2α (f(zt−1 + αyj ; ξi)− f(zt−1 − αyj ; ξi))yj

15: end for
16: gt = gt−1 +

1
B2

∑
ξi∈St

(∇̃f(zt; ξi)− ∇̃f(zt−1; ξi))
17: end if
18: Return g̃t = gt +TREE(σ,Σ)(t mod Σ)

In this section, we consider Algorithm 3, which provides an oracle to be used in Algorithm 2.
Algorithm 3 is such that throughout T calls, it uses each data point once, and hence, privacy is
maintained with no need for composition. Before getting into the details, we will provide the main
underlying idea. We consider the zero-order gradient estimator

∇̃fα(x; ξ) =
1

m

m∑
j=1

d

2α
(f(x+ αyj ; ξ)− f(x− αyj ; ξ)), y1, . . . , ym

iid∼ Unif(Sd−1), (4)

which is an unbiased estimator of ∇fα(x; ξ), to which we then apply variance reduction. Zhang
et al. (2024) considered the oracle above specifically with m = d, for which it is easy to bound the

5
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sensitivity of this estimator over neighboring minibatches ξ1:B , ξ′1:B of size B by∥∥∥∥∥ 1

B

B∑
i=1

∇̃fα(x; ξi)−
1

B

B∑
i=1

∇̃fα(x; ξ′i)

∥∥∥∥∥ ≤ Ld

B
. (5)

Our key observation is that while this is indeed the worst-case sensitivity, we can get substantially
lower sensitivity with high probability. For sufficiently large m, standard sub-Gaussian concentra-
tion properties ensure that ∇̃fα(x; ξi) ≈ ∇fα(x; ξi) with high probability, and hence under this
event we show the sensitivity over a mini-batch can be decreased to an order of L

B . As this is a factor
of d smaller than Eq. (5), we can add significantly less noise in order to privatize, therefore leading
to faster convergence to stationarity.

The main theorem in this section is the following:
Theorem 3.1 (Single-pass algorithm). Suppose F (x0) − infx F (x) ≤ Φ, that Assumption 2.2
holds, and let α, β, δ, ε > 0 such that α ≤ Φ

L . Then setting B1 = Σ, B2 = 1, M =

α/4D, m = Õ(d2B2
1 +

dα2B2
2

D2 ), σ = Õ( L
B1ε

+ LD
√
d

αB2ε
), Σ = Θ̃(( α

εD )2/3), D =

Θ̃(min{( Φ2α
L2T 2 )

1/3, (Φαε
dLT )

1/2, ( Φ3α2ε
d3/2L3T 3 )

1/5}), T = Θ(n), and running Algorithm 2 with Algo-
rithm 3 as the oracle subroutine, is (ε, δ)-DP. Furthermore, its output satisfies E∥∂2αF (xout)∥ ≤ β
as long as

n = Ω̃

(
ΦL2

αβ3
+

ΦLd

εαβ2
+

ΦL3/2d3/4

ε1/2αβ5/2

)
.

Remark 3.2. It is interesting to note that the “non-private” term ΦL2/αβ3 in Theorem 3.1 is inde-
pendent of the dimension d. Not only is this the first result of this sort, this was even (erroneously)
claimed impossible by Zhang et al. (2024). The reason for this confusion is that while the optimal
zero-order oracle complexity is d/αβ3 (Kornowski & Shamir, 2024), and in particular must scale
with the dimension (Duchi et al., 2015), the sample complexity might not.

In the rest of the section, we will present the basic properties of this oracle in terms of sensitivity
(implying the privacy), variance and second moment. We will then plug these into Algorithm 2,
which enables proving Theorem 3.1. Corresponding proofs are deferred to Appendix A.
Lemma 3.3 (Sensitivity). Consider the gradient oracle O(·) in Algorithm 3 when acting on two
neighboring minibatches St and S′

t, and correspondingly producing gt and g′t, respectively. If
tmod Σ = 1, then it holds with probability at least 1− δ/2 that

∥gt − g′t∥ ≲
L

B1
+

Ld
√
log(dB1/δ)√

m
.

Otherwise, conditioned on gt−1 = g′t−1, we have with probability at least 1− δ/2 :

∥gt − g′t∥ ≲
L
√
dD

αB2
+

Ld
√

log(dB1/δ)√
m

.

With the sensitivity bound given by Lemma 3.3, we easily derive the privacy guarantee of our oracle
from the Tree Mechanism (Proposition 2.5).

Lemma 3.4 (Privacy). Running Algorithm 3 with m = O
(
log(dB2/δ)(d

2B2
1 +

dα2B2
2

D2 )
)

and σ =

O

(
L
√

log(1/δ)

B1ε
+

LD
√

d log(1/δ)

αB2ε

)
is (ε, δ)-DP.

We next analyze the variance and second moment of the gradient oracle.
Lemma 3.5 (Variance). In Algorithm 3, for all t ∈ [T ] it holds that

E∥g̃t −∇Fα(zt)∥2 ≲
L2

B1
+

L2d2

B1m
+

L2dD2Σ

α2B2
+ σ2d log Σ +

L2d2Σ

mB2
,

E∥g̃t∥2 ≲ L2 +
L2d2

B1m
+

L2dD2Σ

α2B2
+ σ2d log Σ +

L2d2Σ

mB2
.

6
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Combining the ingredients that we have set up, we can derive Theorem 3.1.

Proof of Theorem 3.1. The privacy guarantee follows directly from Lemma 3.4, by noting that our
parameter assignment implies B1T/Σ+B2T = O(n), which allows letting T = Θ(n) while never
re-using samples (hence no privacy composition is required). Therefore, it remains to show the
utility bound. By applying Lemma 2.4 and Proposition 2.6, we get that

E∥∂2αF (xout)∥ ≤ E∥∂αFα(x
out)∥ ≤ Fα(x0)− inf Fα

DT
+

3G1

2
√
M

+G0

≤ 2Φ

DT
+

3G1

2
√
M

+G0, (6)

where the last inequality used the fact that Assumption 2.2 and Fact 2.3 together imply that Fα(x0)−
inf Fα ≤ F (x0) − inf F + Lα ≤ Φ + Lα ≤ 2Φ. Under our parameter assignment, Lemma 3.5
yields

G1 ≲ G0 + L, (7)

which plugged into Eq. (6) gives

E∥∂2αF (xout)∥ = O

(
Φ

DT
+

L√
M

+G0

)
. (8)

Moreover, under our parameter assignment Lemma 3.5 also gives the bound

G0 ≲
L

B1
+

LD
√
dΣ

αB2
+ σ

√
d log Σ = Õ

(
LDd1/2Σ1/2

α
+

Ld1/2

Σε
+

LDd

αε

)
, (9)

which propagated into Eq. (8) and recalling that M = Θ(α/D) shows that

E∥∂2αF (xout)∥ = Õ

(
Φ

DT
+

LD1/2

α1/2
+

LDd1/2Σ1/2

α
+

Ld1/2

Σε
+

LDd

αε

)
.

Plugging our assignments of Σ and D, and recalling that n = Θ(T ), a straightforward calculation
simplifies the bound above to

E∥∂2αF (xout)∥ = Õ

((
ΦL2

Tα

)1/3

+

(
ΦdL

Tαε

)1/2

+

(
Φ2L3d3/2

T 2α2ε

)1/5
)

= Õ

((
ΦL2

nα

)1/3

+

(
ΦdL

nαε

)1/2

+

(
Φ2L3d3/2

n2α2ε

)1/5
)
. (10)

Bounding the latter by β and solving for n completes the proof.

4 MULTI-PASS ALGORITHM

In this section, we consider a different oracle construction given by Algorithm 4, to be used in
Algorithm 2. The main difference from the previous section is that this oracle reuses data points a
polynomial number of times, and therefore cannot directly guarantee generalization to the stochastic
objective. Instead, in this section we analyze the empirical objective F̂D(x) := 1

n

∑n
i=1 f(x; ξi).

After establishing ERM results, in Section 5, we will show that any empirical Goldstein-stationarity
guarantee generalizes to the population loss.

Similarly to the single-pass oracle (Algorithm 3), we use randomized smoothing and variance re-
duction. A difference in the oracle construction is that we replace the tree mechanism with the
Gaussian mechanism and apply advanced composition for the privacy analysis (since now samples
are reused). The main theorem for this section is the following:

7
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Algorithm 4 Multi-pass instantiation of O(zt) in Line 7 of Algorithm 2

1: Input: Current iterate zt, time t ∈ N, period length Σ ∈ N, accuracy parameter α > 0, gradient
validation size m ∈ N, noise levels σ1, σ2 > 0.

2: if t mod Σ = 1 then
3: for each sample ξi ∈ D do
4: Sample y1, . . . , ym

iid∼ Unif(Sd−1)

5: ∇̃f(zt; ξi) = 1
m

∑
j∈[m]

d
2α (f(zt + αyj ; ξi)− f(zt − αyj ; ξi))yj

6: end for
7: gt =

1
n

∑
ξi∈D ∇̃f(zt; ξi)

8: Return: g̃t = gt + χt, where χt ∼ N (0, σ2
1Id)

9: else
10: for each sample ξi ∈ D do
11: Sample y1, . . . , y2m

iid∼ Unif(Bα)

12: ∇̃f(zt; ξi) = 1
m

∑m
j=1

d
2α (f(zt + αyj ; ξi)− f(zt − αyj ; ξi))yj

13: ∇̃f(zt−1; ξi) =
1
m

∑2m
j=m+1

d
2α (f(zt−1 + αyj ; ξi)− f(zt−1 − αyj ; ξi))yj

14: end for
15: gt = g̃t−1 +

1
n

∑
ξi∈D(∇̃f(zt; ξi)− ∇̃f(zt−1; ξi))

16: Return: g̃t = gt + χt, where χt ∼ N (0, σ2
2Id).

17: end if

Theorem 4.1 (Multi-pass ERM). Suppose F̂D(x0)− infx F̂
D(x) ≤ Φ, Assumption 2.2 holds, and

let α, β, δ, ε > 0 such that α ≤ Φ
L . Then setting m = L2dΣ

nσ2
1

+ L2d
nσ2

2
, σ1 = O(

L
√

T log(1/δ)/Σ

nε ),

σ2 = O(
LD
√

Td log(1/δ)

αnε ), Σ = Θ̃( α
D
√
d
), D = Θ̃(α

2β2

L2 ), T = Θ̃( ΦL2

α2β3 ), and running Algo-
rithm 2 with Algorithm 4 as the oracle subroutine is (ε, δ)-DP. Furthermore, its output satisfies
E∥∂2αF̂

D(xout)∥ ≤ β as long as

n = Ω̃

(√
ΦLd3/4

εα1/2β3/2

)
.

Remark 4.2. As we will show in Section 5, Theorem 4.1 also provides the same population guaran-
tee for ∥∂2αF (xout)∥ with an additional L2d/β2 term (up to log factors) to the sample complexity.

To prove Theorem 4.1, we analyze the properties of the oracle given by Algorithm 4. The sensitivity
of gt in Algorithm 4 directly follows from Lemma 3.3.3 By the standard composition results of the
Gaussian mechanism (e.g., Mironov 2017), we have the following privacy guarantee:

Lemma 4.3 (Privacy). Calling Algorithm 4 T times with m = L2dΣ
nσ2

1
+ L2d

nσ2
2

, σ1 =

O(
L
√

T log(1/δ)/Σ

nε ) and σ2 = O(
LD
√

Td log(1/δ)

αnε ) is (ε, δ)-DP.

In terms of the oracle’s variance, we show:

Lemma 4.4 (Variance). In Algorithm 4, for any t ∈ [T ], we have

E∥g̃t −∇FD
α (zt)∥2 ≲

L2d2Σ

mn
+ σ2

1d+ σ2
2dΣ,

E∥g̃t∥2 ≲ L2 +
L2d2Σ

mn
+ σ2

1d+ σ2
2dΣ.

The proof of Theorem 4.1, which we defer to Appendix A, is a combination of the two previous
lemmas and Proposition 2.6.

3In this section we use full-batch size for simplicity, but using smaller batches (of arbitrary size) and apply-
ing privacy amplification by subsampling, yields the same results up to constants.
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5 EMPIRICAL TO POPULATION GOLDSTEIN-STATIONARITY

In this section, we provide a generalization result, showing that our ERM algorithm from the pre-
vious section also guarantees Goldstein-stationarity in terms of the population loss. We prove the
following more general statement:

Proposition 5.1. Under Assumption 2.2, suppose D ∼ Pn, and consider running an algorithm on
F̂D whose (possibly randomized) output xout ∈ X ⊂ Rd is supported over a setX of diameter≤ R.
Then with probability at least 1− ζ : ∥∂αF (xout)∥ ≤ ∥∂αF̂

D(xout)∥+ Õ
(
L
√
d log(R/ζ)/n

)
.

We remark that in all algorithms of interest, the output is known to lie in some predefined set, such
as a sufficiently large ball around the initialization. As long as the diameter R is polynomial in the
problem parameters, the log(R) in the result above is therefore negligible. For instance, Algorithm 2
is easily verified to output a point xout ∈ B(x0, DT ) (since ∥xt+1 − xt∥ ≤ D). Hence, in our use
case, Proposition 5.1 ensures ∥∂2αF (xout)∥ ≤ ∥∂2αF̂

D(xout)∥+ β for n = Õ(d/β2).

6 DISCUSSION

In this paper, we studied nonsmooth nonconvex optimization, and proposed differentially private
algorithms for this task which return Goldstein-stationary points, improving the previously known
sample complexity for this task.

Our single-pass algorithm reduces the sample complexity by at least a Ω(
√
d) factor (and sometimes

more, depending on the parameter regime of interest), compared to the previous such result by
Zhang et al. (2024). Furthermore, our result has a dimension-independent “non-private” term, which
was previously claimed impossible. Moreover, we propose a multi-pass algorithm which preforms
sample-efficient ERM, and show that it further generalizes to the population.

It is interesting to note that our guarantees are in terms of so-called “approximate” (ε, δ)-DP, whereas
Zhang et al. (2024) derive a Rényi-DP guarantee (Mironov, 2017). This is in fact inherent to our
techniques, since we condition on a highly probable event in order to substantially decrease the
effective sensitivity of our gradient estimators. Further examining this potential gap in terms of
sample complexity between approximate- and Rényi-DP for nonsmooth nonconvex optimization is
an interesting direction for future research.

Another important problem that remains open is establishing tight lower bounds for DP nonconvex
optimization and perhaps further improving the sample complexities obtained in this paper. We
note that the current upper and lower bounds do not fully match even in the smooth setting. In
Appendix D, we provide evidence that our upper bound can be further improved, by proposing
a computationally-inefficient algorithm, which converges to a relaxed notion of stationarity, using
even fewer samples than the algorithms we presented in this work.
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linéaire, volume 10, 3, pp. 289–312. Elsevier, 1993.

Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization: Efficient
algorithms and tight error bounds. In 2014 IEEE 55th annual symposium on foundations of
computer science, pp. 464–473. IEEE, 2014.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Raef Bassily, Vitaly Feldman, Kunal Talwar, and Abhradeep Guha Thakurta. Private stochastic
convex optimization with optimal rates. Advances in neural information processing systems, 32,
2019.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
points i. Mathematical Programming, 184(1):71–120, 2020.

Yair Carmon, Arun Jambulapati, Yujia Jin, Yin Tat Lee, Daogao Liu, Aaron Sidford, and Kevin
Tian. Resqueing parallel and private stochastic convex optimization. In 2023 IEEE 64th Annual
Symposium on Foundations of Computer Science (FOCS), pp. 2031–2058. IEEE, 2023.

T-H Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of statistics. ACM
Transactions on Information and System Security (TISSEC), 14(3):1–24, 2011.

F. H. Clarke. Optimization and Nonsmooth Analysis. SIAM, 1990.

Ashok Cutkosky, Harsh Mehta, and Francesco Orabona. Optimal stochastic non-smooth non-convex
optimization through online-to-non-convex conversion. In International Conference on Machine
Learning, pp. 6643–6670. PMLR, 2023.

Damek Davis, Dmitriy Drusvyatskiy, Yin Tat Lee, Swati Padmanabhan, and Guanghao Ye. A gra-
dient sampling method with complexity guarantees for lipschitz functions in high and low dimen-
sions. Advances in neural information processing systems, 35:6692–6703, 2022.

John C Duchi, Peter L Bartlett, and Martin J Wainwright. Randomized smoothing for stochastic
optimization. SIAM Journal on Optimization, 22(2):674–701, 2012.

John C Duchi, Michael I Jordan, Martin J Wainwright, and Andre Wibisono. Optimal rates for
zero-order convex optimization: The power of two function evaluations. IEEE Transactions on
Information Theory, 61(5):2788–2806, 2015.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of Cryptography Conference, pp. 265–284. Springer, 2006.

Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N Rothblum. Differential privacy under con-
tinual observation. In Proceedings of the forty-second ACM symposium on Theory of computing,
pp. 715–724, 2010.

Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-convex
optimization via stochastic path-integrated differential estimator. Advances in neural information
processing systems, 31, 2018.

Vitaly Feldman, Tomer Koren, and Kunal Talwar. Private stochastic convex optimization: optimal
rates in linear time. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, pp. 439–449, 2020.

Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. Online convex optimization
in the bandit setting: gradient descent without a gradient. In Proceedings of the sixteenth annual
ACM-SIAM symposium on Discrete algorithms, pp. 385–394, 2005.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochas-
tic programming. SIAM journal on optimization, 23(4):2341–2368, 2013.

Allen A Goldstein. Optimization of lipschitz continuous functions. Mathematical Programming,
13:14–22, 1977.

Sivakanth Gopi, Yin Tat Lee, and Daogao Liu. Private convex optimization via exponential mecha-
nism. In Conference on Learning Theory, pp. 1948–1989. PMLR, 2022.

Benjamin Grimmer and Zhichao Jia. Goldstein stationarity in lipschitz constrained optimization.
arXiv preprint arXiv:2310.03690, 2023.

Elad Hazan. Introduction to online convex optimization. Foundations and Trends® in Optimization,
2(3-4):157–325, 2016.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M Kakade, and Michael I Jordan. A short
note on concentration inequalities for random vectors with subgaussian norm. arXiv preprint
arXiv:1902.03736, 2019.

Michael Jordan, Guy Kornowski, Tianyi Lin, Ohad Shamir, and Manolis Zampetakis. Deterministic
nonsmooth nonconvex optimization. In The Thirty Sixth Annual Conference on Learning Theory,
pp. 4570–4597. PMLR, 2023.

Siyu Kong and AS Lewis. The cost of nonconvexity in deterministic nonsmooth optimization.
Mathematics of Operations Research, 2023.

Guy Kornowski and Ohad Shamir. Oracle complexity in nonsmooth nonconvex optimization. Jour-
nal of Machine Learning Research, 23(314):1–44, 2022.

Guy Kornowski and Ohad Shamir. An algorithm with optimal dimension-dependence for zero-order
nonsmooth nonconvex stochastic optimization. Journal of Machine Learning Research, 25(122):
1–14, 2024.

Jean-Michel Lasry and Pierre-Louis Lions. A remark on regularization in hilbert spaces. Israel
Journal of Mathematics, 55:257–266, 1986.

Tianyi Lin, Zeyu Zheng, and Michael Jordan. Gradient-free methods for deterministic and stochastic
nonsmooth nonconvex optimization. Advances in Neural Information Processing Systems, 35:
26160–26175, 2022.

Daogao Liu, Arun Ganesh, Sewoong Oh, and Abhradeep Guha Thakurta. Private (stochastic) non-
convex optimization revisited: Second-order stationary points and excess risks. Advances in
Neural Information Processing Systems, 36, 2024.

Andrew Lowy, Jonathan Ullman, and Stephen Wright. How to make the gradients small privately:
Improved rates for differentially private non-convex optimization. In Forty-first International
Conference on Machine Learning, 2024.

Song Mei, Yu Bai, and Andrea Montanari. The landscape of empirical risk for nonconvex losses.
The Annals of Statistics, 46(6A):2747–2774, 2018.
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A PROOFS

A.1 PROOFS FROM SECTION 3

Proof of Lemma 3.3. Note that for any y ∈ Unif(Sd−1) : ∥ d
2α (f(z + αy; ξ) − f(z − αy; ξ))y∥ ≤

Ld due to the Lipschitz assumption. Hence, for any ξ ∈ St, by a standard sub-Gaussian bound
(Theorem E.2) we have

Pr

[
∥∇̃f(zt; ξ)−∇fα(zt; ξ)∥ ≤

Ld
√

log(8dB1/δ)√
m

]
≥ 1− δ/8B1. (11)

If t mod Σ = 1, then

∥gt − g′t∥ =

∥∥∥∥∥∥ 1

B1
(
∑
ξ∈St

∇̃f(zt; ξ)−
∑
ξ′∈S′

t

∇̃f(zt; ξ′))

∥∥∥∥∥∥
≤

∥∥∥∥∥∥ 1

B1
(
∑
ξ∈St

∇̃f(zt; ξ)−∇fα(zt; ξ))

∥∥∥∥∥∥+
∥∥∥∥∥∥ 1

B1
(
∑
ξ∈St

∇fα(zt; ξ)−
∑
ξ′∈S′

t

∇fα(zt; ξ′))

∥∥∥∥∥∥
+

∥∥∥∥∥∥ 1

B1
(
∑
ξ′∈S′

t

∇̃f(zt; ξ′)−∇fα(zt; ξ′))

∥∥∥∥∥∥ .
Further note that ∥ 1

B1
(
∑

ξ∈St
∇fα(zt; ξ) −

∑
ξ′∈S′

t
∇fα(zt; ξ′))∥ ≤ 2L/B1, hence by Equa-

tion Eq. (11) and the union bound,

Pr

∥∥∥∥∥∥ 1

B1
(
∑
ξ∈St

∇̃f(zt; ξ)−
∑
ξ′∈S′

t

∇̃f(zt; ξ′))

∥∥∥∥∥∥ ≥ Ld
√

log(8dB1/δ)√
m

 ≤ 1− δ/8,

which proves the claim in the case when t mod Σ = 1. The other case follows from the same
argument.

Proof of Lemma 3.4. By Lemma 3.3 and our assignment of m, we know that with probability at
least 1− δ/2, the sensitivity of all t is bounded by O( L

B1
+ L

√
dD

αB2
), namely for all t :

∥gt − g′t∥ ≲
L

B1
+

L
√
dD

αB2
.

Then the privacy guarantee follows from the Tree Mechanism (Proposition 2.5).

Proof of Lemma 3.5. First, note that by Proposition 2.5 and the facts that E[gt] = ∇Fα(zt) and
∥∇Fα(zt)∥ ≤ L, we get

E∥g̃t∥2 ≲E∥gt∥2 + dσ2 log Σ ≲ E∥gt −∇Fα(zt)∥2 + L2 + dσ2 log Σ,

and also

E∥g̃t −∇Fα(zt)∥2 ≲ E∥g̃t − gt∥2 + E∥gt −∇Fα(zt)∥2 ≲ dσ2 log Σ + E∥gt −∇Fα(zt)∥2.

Therefore, we see that in order to obtain both claimed bounds, it suffices to bound E∥gt−∇Fα(zt)∥2.
To that end, denote by t0 ≤ t the largest integer such that t0 mod Σ = 1, and note that t− t0 < Σ.
Further denote ∆j := gj − gj−1. Then we have

E∥gt −∇Fα(zt)∥2 = E

∥∥∥∥∥∥gt0 +
t∑

j=t0+1

∆j −

 t∑
j=t0+1

(∇Fα(zj)−∇Fα(zj−1)) +∇Fα(zt0)

∥∥∥∥∥∥
2

= E∥gt0 −∇Fα(zt0)∥2︸ ︷︷ ︸
(I)

+

t∑
j=t0

E∥∆j − (∇Fα(zj)−∇Fα(zj−1))∥2︸ ︷︷ ︸
(II)

, (12)
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where the last equality is due to the cross terms having zero mean. We further see that

(I) ≲ E

∥∥∥∥∥∥gt0 − 1

B1

∑
ξ∈St0

∇fα(zt0 ; ξi)

∥∥∥∥∥∥
2

+ E

∥∥∥∥∥∥ 1

B1

∑
ξ∈St0

∇fα(zt0 ; ξi)−∇Fα(zt0)

∥∥∥∥∥∥
2

≲
L2d2

B1m
+

L2

B1
, (13)

as well as

(II) = E

∥∥∥∥∥∥ 1

B2

∑
ξ∈St

(∇̃f(zj ; ξ)− ∇̃f(zj−1; ξ))− (∇Fα(zj)−∇Fα(zj−1))

∥∥∥∥∥∥
2

=
1

B2
2

∑
ξ∈St

E∥(∇̃f(zj ; ξ)− ∇̃f(zj−1; ξ))− (∇Fα(zj)−∇Fα(zj−1))∥2

≲
1

B2
2

∑
ξ∈St

(
E∥∇̃f(zj ; ξ)−∇fα(zj ; ξ)∥2 + E∥∇̃f(zj−1; ξ)−∇fα(zj−1; ξ)∥2

+ E∥(∇fα(zj ; ξ)−∇fα(zj−1; ξ))− (∇Fα(zj)−∇Fα(zj−1))∥2
)

≲
L2d2

mB2
+

dL2D2

α2B2
. (14)

Plugging Eq. (13) and Eq. (14) into Eq. (12) and recalling that t− t0 < Σ completes the proof.

A.2 PROOFS FROM SECTION 4

Proof of Lemma 4.4. First, it suffices to prove the first bound, as

E∥g̃t∥2 ≲ E∥g̃t −∇FD
α (zt)∥2 + E∥∇FD

α (zt)∥2 ≤ E∥g̃t −∇FD
α (zt)∥2 + L2.

To that end, let t0 ≤ t be the largest integer such that t0 mod Σ ≡ 1, and note that t − t0 < Σ.
Define ∆j :=

1
n

∑
ξ∈D(∇̃f(zj ; ξ)− ∇̃f(zj−1; ξ)). It holds that

E∥g̃t −∇FD
α (zt)∥2 ≤ E∥gt0 −∇FD

α (zt0)∥2︸ ︷︷ ︸
(I)

+

t∑
j=t0

E∥∆j − (∇FD
α (zj)−∇FD

α (zj−1))∥2︸ ︷︷ ︸
(II)

+

t∑
j=t0

E∥χj∥2︸ ︷︷ ︸
(III)

.

Similar to the proof of Lemma 3.5, we have that

(I) = E

∥∥∥∥∥∥gt0 − 1

n

∑
ξ∈D

∇fα(zt0 ; ξi)

∥∥∥∥∥∥
2

≲
L2d2

nm
,

(II) =
1

n2
E∥
∑
ζ∈D

(∇̃f(zj ; ξ)− ∇̃f(zj−1; ξ))− (∇F̂D
α (zj)−∇F̂D

α (zj−1))∥2

≲
1

n2

∑
ξ∈D

(
E∥∇̃f(zj ; ξ)−∇fα(zj ; ξ)∥2 + E∥∇̃f(zj−1; ξ)−∇fα(zj−1; ξ)∥2

)
≲

L2d2

mn
,

(III) ≤ σ2
1d+ σ2

2(Σ− 1),

overall completing the proof.
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Proof of Theorem 4.1. Setting m = L2dΣ
nσ2

1
+ L2d

nσ2
2

, σ1 = O(
L
√

T log(1/δ)/Σ

nε ) and σ2 =

O(
LD
√

Td log(1/δ)

αnε ), the privacy guarantee follows from Lemma 4.3. Moreover, by our parameter
settings, we have

G2
0 := E∥g̃t −∇FD

α (zt)∥2 ≲
L2dT log(1/δ)/Σ

n2ε2
+

L2D2Td2Σ log(1/δ)

α2n2ε2
,

G2
1 := E∥g̃t∥2 ≲ L2 +

L2dT log(1/δ)/Σ

n2ε2
+

L2D2Td2Σ log(1/δ)

α2n2ε2
.

Therefore, setting Σ = Θ̃( α
D
√
d
), we see that G0 = Õ(L

√
DTd3/4

nε
√
α

) and G1 ≲ L+G0. By Proposi-
tion 2.6, we also know that

E∥∂2αF̂
D(xout)∥ ≤ E∥∂αF̂

D
α (xout)∥ ≤ Fα(x0)− inf Fα

DT
+

3G1

2
√
M

+G0

≤ 2Φ

DT
+

3G1

2
√
M

+G0.

Recalling that M = Θ(α/D) and setting D = Θ̃(α
2β2

L2 ), T = Θ̃( ΦL2

α2β3 ), we have

E∥∂αF̂
D
α (xout)∥ = Õ

(
Φ

DT
+

L
√
D√
α

+
L
√
DTd3/4

nε
√
α

)

=
β

2
+ Õ

(
Ld3/4

√
Φ

nε
√
αβ

)
.

The latter is bounded by β for n = Ω̃
(

L
√
Φd3/4

εα1/2β3/2

)
, hence completing the proof.

A.3 PROOFS FROM SECTION 5

Proof of Proposition 5.1. Applying a gradient uniform convergence bound for Lipschitz objectives
over a bounded domain (Mei et al., 2018, Theorem 1), shows that with probability at least 1− ζ, for
any differentiable x ∈ X :∥∥∥∇F̂D(x)−∇F (x)

∥∥∥ = Õ

(
L

√
d log(R/ζ)

n

)
. (15)

Therefore, given any x ∈ X , let y1, . . . , yk ∈ B(x, α) be points satisfying ∂αF̂
D(x) =∑k

i=1 λi∇F̂D(yi) for coefficients (λi)
k
i=1 ≥ 0,

∑k
i=1 λi = 1 — note that such points exist by

definition of the Goldstein subdifferential. Noting that
∑k

i=1 λi∇F (yi) ∈ ∂αF (x), and recalling
that ∂αF (x) is the minimal norm element of ∂αF (x), we get that∥∥∂αF (x)

∥∥ ≤ ∥∥∥∥∥
k∑

i=1

λi∇F (yi)

∥∥∥∥∥ =

∥∥∥∥∥
k∑

i=1

λi(∇F̂D(yi) + υi)

∥∥∥∥∥ = (⋆)

where υi := ∇F (yi) − ∇F̂D(yi) satisfy ∥υi∥ = Õ

(
L
√

d log(R/ζ)
n

)
for all i ∈ [k] by Eq. (15).

Hence

(⋆) ≤

∥∥∥∥∥
k∑

i=1

λi∇F̂D(yi)

∥∥∥∥∥+
∥∥∥∥∥

k∑
i=1

λiυi

∥∥∥∥∥
≤
∥∥∥∂αF̂

D(x)
∥∥∥+ k∑

i=1

λi ∥υi∥

≤
∥∥∥∂αF̂

D(x)
∥∥∥+ Õ

(
L

√
d log(R/ζ)

n

)
.
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B PROOF OF PROPOSITION 2.6 (O2NC)

We start by noting that the update rule for ∆t which is given by

∆t+1 = clipD (∆t − ηg̃t) = min
{
1, D

∥∆t−ηg̃t∥

}
· (∆t − ηg̃t)

is precisely the online project gradient descent update rule, with respect to linear losses of the form
ℓt(·) = ⟨g̃t, ·⟩, over the ball of radius D around the origin. Accordingly, recalling that E∥g̃t −
∇h(zt)∥2 ≤ G2

1, combining the linearity of expectation with the standard regret analysis of online
linear optimization (cf. Hazan, 2016) gives the following:

Lemma B.1. By setting η = D
G1

√
M

, for any u ∈ Rd with ∥u∥ ≤ D it holds that

Eg̃1,...,g̃M

[
M∑

m=1

⟨g̃m,∆m − u⟩

]
≤ 3

2DG1

√
M.

Back to analyzing Algorithm 2, since xt = xt−1 +∆t it holds that

h(xt)− h(xt−1) =

∫ 1

0

⟨∇h(xt−1 + s∆t),∆t⟩ ds

= Est∼Unif[0,1] [⟨∇h(xt−1 + st∆t),∆t⟩] = Est [⟨∇h(zt),∆t⟩] .

Note that ⟨∇h(zt),∆t⟩ = ⟨∇h(zt), u⟩ + ⟨g̃t,∆t − u⟩ + ⟨∇h(zt) − g̃t,∆t − u⟩, so by summing
over t ∈ [T ] = [K ×M ], we get for any fixed sequence u1, . . . , uK ∈ Rd :

inf h ≤ h(xT ) ≤ h(x0) +

T∑
t=1

E [⟨∇h(zt),∆t⟩]

= h(x0) +

K∑
k=1

M∑
m=1

E
[〈
g̃(k−1)M+m,∆(k−1)M+m − uk

〉]
+

K∑
k=1

M∑
m=1

E
[〈
∇h(z(k−1)M+m), uk

〉]
+

T∑
t=1

E[⟨∇h(zt)− g̃t,∆t − u⟩]

≤ h(x0) +
3
2KDG1

√
M +

K∑
k=1

M∑
m=1

E
[〈
∇h(z(k−1)M+m), uk

〉]
+G0DT,

where the last inequality follows from applying Lemma B.1 to each M consecutive iterates, and
combining the bias bound E ∥g̃t −∇h(zt)∥ ≤ G0 with Cauchy-Schwarz.

Letting uk := −D
∑M

m=1 ∇h(z(k−1)M+m)

∥∑M
m=1 ∇h(z(k−1)M+m)∥ , rearranging and dividing by DT = DKM , we obtain

1

K

K∑
k=1

E

∥∥∥∥∥ 1

M

M∑
m=1

∇h(z(k−1)M+m)

∥∥∥∥∥ ≤ h(x0)− inf h

DT
+

3G1

2
√
M

+G0. (16)

Finally, note that for all k ∈ [K],m ∈ [M ] :
∥∥z(k−1)M+m − xk

∥∥ ≤ MD ≤ α since the
clipping operation ensures each iterate is at most of distance D to its predecessor, and therefore
∇h(z(k−1)M+m) ∈ ∂αh(xk). Since the set ∂αh(·) is convex by definition, we further see that

1

M

M∑
m=1

∇h(z(k−1)M+m) ∈ ∂αh(xk) ,

and hence by Eq. (16) we get

E
∥∥∂αh(x

out)
∥∥ =

1

K

K∑
k=1

E
∥∥∂αh(xk)

∥∥ ≤ h(x0)− inf h

DT
+

3G1

2
√
M

+G0.
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C FIRST-ORDER ALGORITHM

In this appendix, our goal is to show that the zero-order algorithms presented in the main text can be
replaced by first-order algorithms with the sample complexity, and reduced oracle complexity.

The simple idea is to replace the zero-order gradient estimator from Eq. (4) by the first-order esti-
mator

∇̃fα(x; ξ) =
1

m

m∑
j=1

∇f(x+ αyj ; ξ), y1, . . . , ym
iid∼ Unif(Sd−1). (17)

While this estimator has the same expectation as the zero-order variant, the key difference lies in the
fact that its subGaussian norm is substantially smaller (as it does not depend on d), hence smaller m
suffices for concentration. This observation enables reducing the oracle complexity, while ensuring
the same sample complexity guarantee as in the main text.

We fully analyze here a single-pass first-order oracle, presented in Algorithm 5, which can be used in
Algorithm 2, similarly to Section 3. We note that a similar analysis can be applied to the multi-pass
oracle of Section 4, once again by replacing Eq. (4) by Eq. (17).

As in Section 3, we will present the basic properties of this oracle. We will then plug these into
Algorithm 2, leading to the main result of this section, Theorem C.4.

Algorithm 5 First-order instantiation of O(zt) in Line 7 of Algorithm 2

1: Input: Current iterate zt, time t ∈ N, period length Σ ∈ N, accuracy parameter α > 0, batch
sizes B1, B2 ∈ N, gradient validation size m ∈ N, noise level σ > 0.

2: if t mod Σ = 1 then
3: Sample minibatch St of size B1 among unused samples
4: Sample y1, . . . , yB1

iid∼ Unif(Bα)
5: gt =

1
B1

∑
ξi∈St

∇f(zt + yi; ξi)
6: else
7: Sample minibatch St of size B2 among unused samples
8: for each sample ξi ∈ St do
9: Sample y1, . . . , y2m

iid∼ Unif(Bα)

10: ∇̃f(zt; ξi) = 1
m

∑m
j=1∇f(zt + yj ; ξi)

11: ∇̃f(zt−1; ξi) =
1
m

∑2m
j=m+1∇f(zt−1 + yj ; ξi)

12: end for
13: gt = gt−1 +

1
B2

∑
ξi∈St

(∇̃f(zt; ξi)− ∇̃f(zt−1; ξi))
14: end if
15: Return g̃t = gt +TREE(σ,Σ)(t mod Σ)

Lemma C.1 (Sensitivity). Consider the gradient oracle O(·) in Algorithm 5 when acting on two
neighboring minibatches St and S′

t, and correspondingly producing gt and g′t, respectively. If
tmod Σ = 1, then

∥gt − g′t∥ ≤
L

B1
.

Otherwise, conditioned on gt−1 = g′t−1, we have with probability at least 1− δ/2 :

∥gt − g′t∥ ≲
L
√
dD

αB2
+

L
√
log(dB2/δ)√

m
.

With the sensitivity bound given by Lemma C.1, we easily derive the privacy guarantee of our
algorithm from the Tree Mechanism (Proposition 2.5).

Lemma C.2 (Privacy). Running Algorithm 5 with m = O(log(dB2/δ)
B2

2α
2

D2d ) and σ =

O(
L
√

log(1/δ)

B1ε
+

LD
√

d log(1/δ)

αB2ε
) is (ε, δ)-DP.
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Proof. By Lemma C.1 and our assignment of m, we know that with probability at least 1− δ/2, for
any t, we have

∥gt − g′t∥ ≲
L

B1
+

L
√
dD

αB2
.

Then the privacy guarantee follows from the Tree Mechanism (Proposition 2.5).

We next provide the required variance bound on the gradient oracle.
Lemma C.3 (Variance). In Algorithm 5, for all t it holds that

E∥g̃t −∇Fα(zt)∥2 ≲
L2

B1
+

L2dD2Σ

α2B2
+ σ2d log Σ +

L2Σ

mB2
,

E∥g̃t∥2 ≲ L2 +
L2dD2Σ

α2B2
+ σ2d log Σ +

L2Σ

mB2
.

Having set up the required bounds, we can prove our main result for the first-order setting.
Theorem C.4 (First-order). Suppose F (x0) − infx F (x) ≤ Φ, that Assumption 2.2 holds, and let
α, β, δ, ε > 0 such that α ≤ Φ

L . Then setting B1 = Σ, B2 = 1, M = α/4D, m = Õ(
B2

2α
2

D2d ), σ =

Õ( L
B1ε

+ LD
√
d

αB2ε
), Σ = Θ̃(( α

εD )2/3), D = Θ̃(min{( Φ2α
L2T 2 )

1/3, (Φαε
dLT )

1/2, ( Φ3α2ε
d3/2L3T 3 )

1/5}), T =

Θ(n), and running Algorithm 2 with Algorithm 5 as the oracle subroutine, is (ε, δ)-DP. Furthermore,
its output satisfies E∥∂2αF (xout)∥ ≤ β as long as

n = Ω̃

(
ΦL2

αβ3
+

ΦLd

εαβ2
+

ΦL3/2d3/4

ε1/2αβ5/2

)
.

Remark C.5 (Oracle complexity). Compared to the zero-order result given by Theorem 3.1, we see
that the number of calls toO( · ), namely T , is on the same order, and that in both cases the amortized
oracle complexity ofO( · ) is O(m). The difference between the settings is that the first-order oracle
instantiation sets m to be Ω̃(d2) times smaller than its zero-order counterpart, and hence we gain
this multiplicative factor in the overall oracle complexity.

Proof of Theorem C.4. The privacy guarantee follows directly from Lemma C.2, by noting that our
parameter assignment implies B1T/Σ + B2T = O(n), hence it allows letting T = Θ(n) while
never re-using samples.

As to the sample complexity, note that our parameter assignment ensures that

G1 = O (G0 + L) ,

G0 = Õ

(
LDd1/2Σ1/2

α
+

Ld1/2

Σε
+

LDd

αε

)
,

similarly to Eq. (7) and Eq. (9) in the proof of Theorem 3.1. The rest of the proof is therefore exactly
the same as for Theorem 3.1.

C.1 PROOFS FROM APPENDIX C

Proof of Lemma C.1. The case when t mod Σ = 1 trivially follows the Lipschitz assumption. Thus
we will consider the more involved case. For any ξ ∈ St, by a standard sub-Gaussian bound
(Theorem E.2) we have

Pr

[
∥∇̃f(zt; ξ)−∇fα(zt; ξ)∥ ≤

L
√

log(8dB2/δ)√
m

]
≥ 1− δ/8B2,

so by the union bound, we get that with probability at least 1− δ/8, for all ξi ∈ St :

∥∇̃f(zt; ξ)−∇fα(zt; ξ)∥ ≤
L
√
log(8dB2/δ)√

m
. (18)
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Hence,

∥gt − g′t∥ ≤

∥∥∥∥∥∥ 1

B2

∑
ξ∈St

(
(∇̃f(zt; ξ)− ∇̃f(zt−1; ξi))− (∇fα(zt; ξ))−∇fα(zt−1; ξ))

)∥∥∥∥∥∥
+

∥∥∥∥∥∥ 1

B2

∑
ξ∈St

(
(∇fα(zt; ξ)−∇fα(zt−1; ξ))−

∑
ξ′∈S′

t

(∇fα(zt; ξ′)−∇fα(zt; ξ′))
)∥∥∥∥∥∥

+

∥∥∥∥∥∥ 1

B2

∑
ξ′∈S′

t

(
(∇̃f(zt; ξ′)− ∇̃f(zt−1; ξ

′))− (∇fα(zt; ξ′)−∇fα(zt−1; ξ
′))
)∥∥∥∥∥∥

≲
L
√
dD

αB2
+

L
√
log(dB2/δ)√

m
,

where the last inequality step is due to the smoothness of fα (Fact 2.3) combined with the fact that
∥zt − zt−1∥ ≤ 2D, and Eq. (18).

Proof of Lemma C.3. Applying by Proposition 2.5, we have

E∥g̃t −∇Fα(zt)∥2 ≲ E∥g̃t − gt∥2 + E∥gt −∇Fα(zt)∥2 ≲ dσ2 log Σ + E∥gt −∇Fα(zt)∥2,
and also since E[gt] = ∇Fα(zt) and ∥∇Fα(zt)∥ ≤ L, we have

E∥g̃t∥2 ≲ E∥gt∥2 + dσ2 log Σ ≲ E∥gt −∇Fα(zt)∥2 + L2 + dσ2 log Σ.

We therefore see that both claimed bounds will follow from bounding E∥gt −∇Fα(zt)∥2.

To that end, denote by t0 ≤ t the largest integer such that t0 mod Σ = 1, and note that t− t0 < Σ.
Further denote ∆j := gj − gj−1. Then we have

E∥gt −∇Fα(zt)∥2 = E

∥∥∥∥∥∥gt0 +
t∑

j=t0+1

∆j −
( t∑
j=t0+1

(∇Fα(zj)−∇Fα(zj−1)) +∇Fα(zt0)
)∥∥∥∥∥∥

2

= E∥gt0 −∇Fα(zt0)∥2 +
t∑

j=t0

E∥∆j − (∇Fα(zj)−∇Fα(zj−1))∥2,

≲
L2

B1
+

t∑
j=t0

E∥∆j − (∇Fα(zj)−∇Fα(zj−1))∥2︸ ︷︷ ︸
(⋆)

(19)

where the second equality is due to the cross terms having zero mean. Moreover, we have

(⋆) = E

∥∥∥∥∥∥ 1

B2

∑
ξ∈St

(∇̃f(zj ; ξ)− ∇̃f(zj−1; ξ))− (∇Fα(zj)−∇Fα(zj−1))

∥∥∥∥∥∥
2

=
1

B2
2

∑
ξ∈St

E∥(∇̃f(zj ; ξ)− ∇̃f(zj−1; ξ))− (∇Fα(zj)−∇Fα(zj−1))∥2

≲
1

B2
2

∑
ξ∈St

(
E∥∇̃f(zj ; ξ)−∇fα(zj ; ξ)∥2 + E∥∇̃f(zj−1; ξ)−∇fα(zj−1; ξ)∥2

+ E∥(∇fα(zj ; ξ)−∇fα(zj−1; ξ))− (∇Fα(zj)−∇Fα(zj−1))∥
)2

≲
L2

mB2
+

dL2D2

α2B2
,

which plugged into Eq. (19) completes the proof by recalling that t− t0 ≤ Σ.

18
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D EVEN BETTER SAMPLE COMPLEXITY VIA OPTIMAL SMOOTHING

In this Appendix, our aim is to provide evidence that the sample complexities of NSNC DP op-
timization obtained in our work are likely improvable, at least with a computationally inefficient
method. This approach is inspired by Lowy et al. (2024), which in the context of smooth optimiza-
tion, showed significant sample complexity gains using algorithms with exponential runtime. As
as we will show, a similar phenomenon might hold for nonsmooth optimization. To that end, we
propose a slight relaxation of Goldstein-stationarity, and show it can be achieved using less samples
via an exponential time algorithm.

D.1 RELAXATION OF GOLDSTEIN-STATIONARITY

Recall that x ∈ Rd is called an (α, β)-Goldstein stationary point of an objective F (x) =
Eξ[f(x; ξ)] if there exist y1, . . . , yk ∈ B(x, α) and convex coefficients (λi)

k
i=1 so that

∥
∑

i∈[k] λiEξ[∇f(yi; ξ)]∥ ≤ β. Arguably, the two most important properties satisfied by this defi-
nition are that

(i) If f(x; ξ) are L-smooth, any (α, β)-stationary point is O(α+ β)-stationary.

(ii) If
∥∥∂αF (x)

∥∥ ̸= 0, then F

(
x− α

∥∂αF (x)∥∂αF (x)

)
≤ F (x)− α

∥∥∂αF (x)
∥∥.

The first property shows that Goldstein-stationarity reduces to (“classic”) stationarity under smooth-
ness. The second, known as Goldstein’s descent lemma (Goldstein, 1977), is a generalization of the
classic descent lemma for smooth functions.

It is easy to see that Goldstein-stationarity is equivalent to the existence of a distribution P supported
over B(x, α), such that ∥Eξ, y∼P [∇f(y; ξ)]∥ ≤ β. We will now define a relaxation of Goldstein-
stationarity that is easily verified to satisfy both of the aforementioned properties.
Definition D.1. We call a point x ∈ Rd an (α, β)-component-wise Goldstein-stationary point
of F (x) = Eξ[f(x; ξ)] if there exist distributions Pξ supported over B(x, α), such that
∥Eξ, y∼Pξ

[∇f(y; ξ)]∥ ≤ β.

In other words, the definition above allows the sampled points y1, . . . , yk in the vicinity of x to vary
for different components, and as before, the sampled gradient must have small expected norm. We
next show that this relaxed stationarity notion allows improving the sample complexity of DP NSNC
optimization.

D.2 OPTIMAL SMOOTHING AND FASTER ALGORITHM

In the previous sections, given an objective f , we used the fact that Goldstein-stationary points of the
randomized smoothing fα correspond to Goldstein-stationary point of f , and therefore constructed
private gradient oracles of fα, which is O(

√
d/α)-smooth. Consequently, the sensitivity of the

gradient oracle had a
√
d dimension dependence (as seen in Lemma 3.3), thus affecting the overall

sample complexity.

Instead of randomized smoothing, we now consider the Lasry-Lions (LL) smoothing (Lasry & Li-
ons, 1986), a method that smooths Lipschitz functions in a dimension independent manner, which
we now recall. Given h : Rd → R, denote the so-called Moreau envelope

Mλ(h)(x) := min
y

[
h(y) +

1

2λ
∥y − x∥2

]
,

and the Lasry-Lions smoothing:

h̃λLL(x) := −Mλ(−M2λ(h))(x) = max
z

min
y

[
h(z) +

1

4λ
∥z − y∥2 − 1

2λ
∥y − x∥2

]
. (20)

Fact D.2. [Lasry & Lions, 1986; Attouch & Aze, 1993] Suppose h : Rd → R is L-Lipschitz. Then:
(i) h̃λLL is L-Lipschitz; (ii) |h̃λLL(x)−h(x)| ≤ Lλ for any x ∈ Rd; (iii) argmin h̃λLL = argminh;
(iv) h̃λLL is O(L/λ)-smooth.
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The key difference between LL-smoothing and randomized smoothing is that the smoothness con-
stant of LL-smoothing is dimension independent. By solving the optimization problem in Eq.
Eq. (20), it is clear that the values, and therefore gradients, of f̃λLL(x; ξi) can be obtained up to
arbitrarily high accuracy. Notably, it was shown by Kornowski & Shamir (2022) that solving this
problem requires, in general, an exponential number of oracle calls to the original function.

Nonetheless, computational considerations aside, it is not even clear that the LL smoothing helps in
terms of finding Goldstein-stationary points of the original function, which was previously shown
for randomized smoothing (Lemma 2.4). This is the purpose of the following result, which we
prove:

Lemma D.3. If h is L-Lipschitz, then any β-stationary point of h̃λLL is a (3λL, β)-Goldstein sta-
tionary point of h.

Given the lemma above, we are able to utilize smooth algorithms for finding stationary points, and
convert the guarantee to Goldstein-stationary points of our objective of interest. Specifically, we will
invoke the following result.

Proposition D.4 (Lowy et al., 2024). Given an ERM objective F̃ (x) = 1
n

∑n
i=1 f̃(x; ξi)

with L0-Lipschitz and L1-smooth components, and an initial point x0 ∈ Rd such that
dist(x0, argmin F̃ ) ≤ R, there’s an (ε, δ)-DP algorithm that returns x̃out with E∥∇F̃ (x̃out)∥ =

Õ

(
R1/3L

2/3
0 L

1/3
1 d2/3

nε + L0

√
d

nε

)
.

We remark that we assume for simplicity that dist(x0, argmin F̂D) = dist(x0, argmin F̃ ) ≤ R,
though the analysis extends to that case where R is the initial distance to a point with sufficiently
small loss (e.g., if the infimum is not attained). Overall, by setting λ = α/3L, and combining
Fact D.2, Lemma D.3 and Proposition D.4, we get the following:

Theorem D.5. Under Assumption 2.2, suppose dist(x0, argmin F̂D) ≤ R. Then there is an (ε, δ)-
DP algorithm that outputs xout satisfying (α, β)-component-wise Goldstein-stationarity (in expec-
tation) as long as

n = Ω̃

(
R1/3L4/3d2/3

εα1/3β

)
.

D.3 PROOFS FROM APPENDIX D

Proof of Lemma D.3. Suppose x is a β-stationary point of h̃λLL. Let z∗ ∈ Rd be the solution of the
maximization problem defining the LL smoothing. By (Attouch & Aze, 1993, Remark 4.3.e), z∗ is
uniquely defined, and satisfies

∇h̃λLL(x) ∈ ∂(M2λ(h))(z
∗). (21)

Further denote Y∗ := argminy

[
h(y) + 1

4λ ∥z
∗ − y∥2

]
⊆ Rd. Rearranging the definition of the

Moreau envelope by expanding the square, we see that

M2λ(h)(z
∗) =

1

4λ
∥z∗∥2 − 1

2λ
max

y

[
⟨z∗, y⟩ − 2λh(y)− 1

2
∥y∥2

]
,

from which we get

∂M2λh(z
∗) =

1

2λ
z∗ − 1

2λ
conv {y∗ : y∗ ∈ Y∗} = conv

{
1

2λ
(z∗ − y∗) : y∗ ∈ Y∗

}
. (22)

Furthermore, for any y∗ ∈ Y∗, by first-order optimality it holds that

0 ∈ ∂

[
h(y∗) +

1

4λ
∥y∗ − z∗∥2

]
⊆ ∂h(y∗) +

1

2λ
(y∗ − z∗),

and therefore
1

2λ
(z∗ − y∗) ∈ ∂h(y∗). (23)
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By combining Eq. (21), Eq. (22) and Eq. (23) we conclude that

∇h̃λLL(x) ∈ ∂M2λh(z
∗) ⊆ conv {∂h(y∗) : y∗ ∈ Y∗} ⊆ ∂rh(x),

where the last holds for r := maxy∗∈Y∗ ∥x − y∗∥. Therefore, recalling that ∥∇h̃λLL(x)∥ ≤ β, all
that remains is to bound r.

To that end, it clearly holds that r ≤ ∥x− z∗∥+maxy∗∈Y∗ ∥z∗− y∗∥. Furthermore, by (Attouch &
Aze, 1993, Remark 4.3.e) it holds that z∗−x = λ∇h̃λLL(x) which implies ∥x−z∗∥ = λβ. As to the
second summand, by Eq. (22) it holds that maxy∗∈Y∗ ∥z∗−y∗∥ ≤ 2λ·maxg∈∂M2λh(z∗) ∥g∥ ≤ 2λL,
by the fact that M2λ(h) is L-Lipschitz. Overall r ≤ λβ+2λL, and as we can assume without loss of
generality that β ≤ L since otherwise the claim is trivially true (note that all points are L stationary),
this completes the proof.

E CONCENTRATION LEMMA FOR VECTORS WITH SUB-GAUSSIAN NORM

Here we recall a standard concentration bound for vectors with sub-Gaussian norm, which notably
applies in particular to bounded random vectors.
Definition E.1 (Norm-sub-Gaussian). We say a random vector X ∈ Rd is ζ-norm-sub-Gaussian for
ζ > 0, if Pr[∥X − EX∥ ≥ t] ≤ 2e−t2/2ζ2

for all t ≥ 0.
Theorem E.2 (Hoeffding-type inequality for norm-subGaussian, Jin et al., 2019). Let
X1, · · · , Xk ∈ Rd be random vectors, and let Fi = σ(X1, · · · , Xi) for i ∈ [k] be the corre-
sponding filtration. Suppose for each i ∈ [k], Xi | Fi−1 is zero-mean ζi-norm-sub-Gaussian. Then,
there exists an absolute constant c > 0, such that for any γ > 0 :

Pr

∥∥∥∥∥∥
∑
i∈[k]

Xi

∥∥∥∥∥∥ ≥ c

√
log(d/γ)

∑
i∈[k]

ζ2i

 ≤ γ.
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