
Under review as submission to TMLR

Log-normal Mutations and their Use in Detecting Surrepti-
tious Fake Images

Anonymous authors
Paper under double-blind review

Abstract

In many cases, adversarial attacks against fake detectors employ algorithms specifically
crafted for automatic image classifiers. These algorithms perform well, thanks to an excel-
lent ad hoc distribution of initial attacks. However, these attacks are easily detected due
to their specific initial distribution. Consequently, we explore alternative black-box attacks
inspired by generic black-box optimization tools, particularly focusing on the log-normal
algorithm that we successfully extend to attack fake detectors. Moreover, we demonstrate
that this attack evades detection by neural networks trained to flag classical adversarial
examples. Therefore, we train more general models capable of identifying a broader spec-
trum of attacks, including classical black-box attacks designed for images, black-box attacks
driven by classical optimization, and no-box attacks. By integrating these attack detection
capabilities with fake detectors, we develop more robust and effective fake detection systems.

1 Introduction and outline

In the context of fake image detection, adversarial attacks such as Square Attack (SA) (Andriushchenko
et al., 2020) or no-box techniques like diffusion-based purifiers (Saberi et al., 2024) can be used to subtly
alter fake images while enabling them to effectively bypass certain fake detectors. Therefore, detecting these
attacks is necessary for enhancing the reliability of fake detectors. In the present paper, we analyze lesser
known attacks inspired by the black-box optimization community: their algorithms perform well, and are
sufficiently different for being undetected by detectors trained on classical attacks only. 1

Over the past decades, iterative optimization heuristics like Evolutionary Algorithms (EAs) have proven
effective in tackling challenging optimization problems. While specialized methods have emerged for specific
domains—such as Genetic Algorithms for discrete optimization and Evolution Strategies (ES) for contin-
uous optimization—various adaptations of these techniques have been proposed and successfully applied
across diverse domains. Regarding the topic of borrowing ideas across different domains, there exists much
work in exchanging ideas between discrete and continuous optimization domains. For example, variants
of Covariance Matrix Adaptation ES (CMA-ES) and Differential Evolution (DE) have been proposed for
specific problems (Hansen & Ostermeier, 2003; Hamano et al., 2022; Das et al., 2016). More recently, a
study has investigated the ways of discretizing CMA-ES and its performance on different discrete BBOB
problems (Thomaser et al., 2023). In this work, we investigate the advantage of borrowing an idea from a
self-adaptive pseudo-Boolean optimization algorithm to the continuous domain. One of EAs’ key algorithmic
components is the utilization of a probability distribution for generating new search points, including an iter-
ative adaptation of this distribution based on the objective function values of the newly generated solutions
(Doerr et al., 2020; Doerr & Neumann, 2020). A wide range of such update strategies has been proposed
over the past decades, for example, for multivariate Gaussian distributions in the context of covariance ma-
trix adaptation in evolution strategies for continuous optimization problems (Hansen & Ostermeier, 2003)
and for binomial and a variety of other mutation strength distributions in the context of mutation rates
in evolutionary algorithms for pseudo-Boolean optimization (Doerr et al., 2020). Among those adaptation
methods for the mutation strength in pseudo-Boolean optimization, the so-called log-normal mutation

1All data collection and experiments were conducted on university servers by people with corresponding affiliations.

1

Under review as submission to TMLR

was developed almost thirty years ago as a method for allowing the mutation strength to quickly shift from
exploration to exploitation (Bäck & Schütz, 1995; Bäck & Schütz, 1996; Kruisselbrink et al., 2011). As
shown in (Doerr et al., 2020), on a set of 23 pseudo-Boolean test functions, log-normal mutation shows an
empirical cumulative distribution functions (ECDF) performance across all 23 functions that are very close
to the best-performing algorithm. In this paper, we compare the log-normal (LN) mutation with various
algorithms for continuous optimization problems selected from the Nevergrad benchmarks (Rapin & Tey-
taud, 2018). Experimental results indicate that the log-normal strategy is competitive for problems that
are particularly difficult, i.e., multi-modal and highly-deceptive. Inspired by the mentioned benchmarking
results, we test the log-normal mutation for a practical scenario, namely the attack of fake detectors.

Outline: Section 2 presents the state of the art in fake detectors (section 2.1) and Black-Box Optimization
(BBO, section 2.2). Section 3 present our tools: section 3.1 for the log-normal mutations and section 3.2
for the extension of log-normal to continuous domains. Then section 4 presents the experimental results,
including an ablation (section 4.1), results on the Nevergrad benchmark suite (Section 4.2) and discussing
specific results (Section 4.3). Section 5 focuses on the application to fake detectors: comparing various
algorithms on this application, we observe particularly good performance of log-normal mutation.

Contributions: (1) We present an extension of log-normal mutation (usually applied in the context of
discrete domains) to arbitrary discrete, continuous and mixed search spaces (Section 3.2). (2) We present
a comparison between log-normal mutation and a state-of-the-art algorithm selector (Meunier et al., 2022),
illustrating a particular strength of log-normal for deceptive and multimodal problems (Section 4.2, 4.3). (3)
We show that log-normal mutation is particularly well suited for attacking fake image detectors: log-normal
mutation performs well (Section 5.1), and the created fake images go undetected by detectors based on
existing attacks (Section 5.2.2). For converting the attacks into defense, we then add a detector of these
attacks (Section 5.2.2), and study its robustness.

2 State of the art

In this section, we briefly discuss the state-of-the-art in fake detection methods, to set the stage for using
those as a specific application domain for black-box-optimization (section 2.1). Then, we introduce the
general setup of the black-box optimization problem, and the set of algorithms that are used in the empirical
comparison presented in this paper (section 2.2).

2.1 Fake detectors

Due to the many AI-generated images on internet, it becomes important to be able to detect them.
DIRE (Wang et al., 2023) is a method to detect images generated by Latent Diffusion Models (LDM) (Rom-
bach et al., 2022). It focuses on the error between an input image and its reconstruction counterpart using a
pre-trained diffusion model. This method is based on the observation that the generated images can be ap-
proximately reconstructed by a diffusion model, while real images cannot. Several papers already mentioned
artifacts making DIRE unreliable in a real-world scenario, in particular the impact of the image format on
the prediction (Moskowitz et al., 2024). Another line of work (Coccomini et al., 2023) explores the task
using simpler, more traditional machine learning algorithms like Multi-Layer Perceptrons (MLPs), features
extracted by Contrastive Language-Image Pretraining (CLIP, (Radford et al., 2021)), or traditional Convo-
lutional Neural Networks (CNNs). Generalization to unseen image generators is known as a critical issue
for such supervised learning approaches: Universal Fake Detector (Ojha et al., 2023) uses a linear model
trained on top of a generic feature extractor, for the sake of generalization and transfer, and GenDet (Zhu
et al., 2023) uses an adversarial method aimed at solving the problem of unknown fake generators. Another
method that helps to detect LDM-generated images is the Local Intrinsic Dimensionality (LID) method
(Lorenz et al., 2023). LID is employed to estimate the intrinsic dimensionality of a learned representation
space, measuring the average distance between a point and its neighboring points. This approach is vital in
characterizing the distinct properties of adversarial and natural samples in the latent space of a classifier.
The multiLID method (Lorenz et al., 2023) extends this concept, combining locally discriminative informa-
tion about growth rates in close proximity, which proves effective in detecting adversarial examples as well
as images generated by diffusion models. Watermarking (Cox et al., 2007) and on-device certification (Nagm

2

Under review as submission to TMLR

et al., 2021) are alternative methods for distinguishing between fake and real images. Watermarking is de-
signed to create imperceptible alterations to the images. These alterations, however, can be detected and
decoded with the appropriate algorithms. The primary purpose of watermarking is to ensure traceability of
the images back to the model. Many of the current generation models already use built-in watermarking
techniques. For instance, in Stable Diffusion (Rombach et al., 2022) the authors use Discrete Wavelet Trans-
form (DWT) together with Discrete Cosine Transform (DCT) (Al-Haj, 2007). While these transformations
provide some protection from minor generative image alterations, they are not resistant, for example, to
image resizing. Furthermore, one can easily disable the watermarking in the Stable Diffusion code. More
advanced watermarking methods, as proposed, for example, by Fernandez et al. (2023), merge watermarking
into the generation process. Watermarking methods are brittle to adversarial attacks. They include no-box
attacks which do not need any knowledge about the method, e.g., using perceptual auto-encoders (Fernan-
dez et al., 2023) or noising/denoising with a diffusion model (Nie et al., 2022); and white-box or black-box
attacks (in particular, SA) which employs the watermark extractor or an API access to it (Jiang et al.,
2023). Fortunately, there are effective detectors for both no-box attacks and for SA. We investigate how
generic black-box optimization methods can be turned into adversarial attacks that are not detected by these
detectors: therefore, we need detectors for this family of attacks.

2.2 Black-box optimization

An unconstrained optimization problem can be generally formulated as follows, min f(x), x ∈ Ω. where Ω
denotes the search space, f : Ω→ Rm, and m is the number of objectives. Note that we consider m = 1 in this
work, and without loss of generality, we assume a minimization problem. According to the domain of Ω, we
can consider problems as continuous optimization when Ω ⊂ Rn, as discrete optimization when Ω ⊂ Zn, and
pseudo-Boolean optimization (PBO) when Ω = {0, 1}n, where n is the dimensionality of the problem. We deal
with black-box optimization (BBO), in which algorithms can not obtain the exact definition of the objective
function f and constraint definitions regarding the structure of f . Evolutionary computation has been
widely applied to solve BBO. For example, Evolution Strategies (ES), Differential Evolution (DE), etc., have
achieved success in solving continuous BBO problems (Bäck et al., 2023). The variants of these methods have
also been applied for discrete BBO based on relaxation to a continuous problem (Pan et al., 2008; Hamano
et al., 2022). Moreover, EAs have been well-studied for pseudo-Boolean optimization (PBO) (Doerr et al.,
2020). Some strategies have been commonly applied with specific adjustments when solving different types of
optimization problems. A recent study has investigated the performance of a discretized Covariance Matrix
Adaptation Evolution Strategy (CMA-ES), addressing the adaptation of continuous optimization algorithms
for the discrete domain (Thomaser et al., 2023).

In this work, we work on continuous optimization by utilizing discrete optimization algorithms. Specifically,
we investigate utilizing the techniques of the (1 + λ) EAs that are designed for PBO for continuous opti-
mization (Doerr et al., 2020). The (1 + λ) EAs flip a number ℓ of variables to generate λ new solutions from
a single parent solution iteratively, and self-adaptive methods have been proposed to adjust the value of ℓ
online, essentially detecting the optimal number of variables to be altered dynamically. We consider various
black-box optimization methods, which can all be found in (Rapin & Teytaud, 2018). We include many
algorithms, specified in Section D.1. We selected, for readability, a sample of methods covering important
baselines (such as random search), one representative method per group of related methods, and the overall
best methods. We refer to (Rapin & Teytaud, 2018) for the details about other algorithms.

3 Methodology

3.1 Log-normal mutations

We introduce in this section the general framework of the (1 + λ) EA with log-normal mutation, which was
proposed for the pseudo-Boolean optimization task, and illustrate a straightforward generalization of this
algorithm to continuous and integer domains.

The log-normal mutation was first described in (Bäck & Schütz, 1995; Bäck & Schütz, 1996), later refined in
(Kruisselbrink et al., 2011). It stands out for its robust performance across various problem landscapes (Doerr

3

Under review as submission to TMLR

Algorithm 1: (1 + λ) EAlog−n with log-normal mutation.
1 Input: A given problem f : Ω→ R, where n denotes the dimensionality of the problem, an initial value

of the mutation rate p ∈ (0, 1), population size λ > 0, and a learning rate γ = 0.22;
2 Initialization: Sample x ∈ Ω u.a.r. and evaluate f(x);
3 Optimization: for t = 1, 2, 3, . . . do
4 for i = 1, . . . , λ do
5 q ∼ N (0, 1);

6 p(i) =
(

1 + 1−p
p · exp(γ · q)

)−1
;

7 Sample ℓ(i) ∼ Bin>0(n, p(i));
8 create y(i) ←Mutate(ℓ(i), x); evaluate f(y(i)) ; // See Alg.2

9 i← min
{

j | f(y(j)) = max{f(y(k)) | k ∈ [λ]}
}

;
10 p← p(i);
11 x∗ ← arg max{f(y(1)), . . . , f(y(λ))} ; // ties broken by favoring the smallest index
12 if f(x∗) ≤ f(x) then x← x∗;
13 Output: x, f(x)

Algorithm 2: Mutate(ℓ, x)
1 Input: a solution x ∈

�n
i=1 Xi, and the mutation strength ℓ ∈ {1, 2, . . . , n}, where n is the

dimensionality of the problem;
2 Sample ℓ pairwise different positions i1, . . . , iℓ ∈ [n] u.a.r.;
3 y ← x;
4 for j = 1, . . . , ℓ do
5 repeat
6 k ∼ U(Xij

) ; // Sample k u.a.r. from domain Xij

7 until k ̸= xij
;

8 yij
← k;

9 Output: y;

et al., 2020). Although it may not surpass other self-adjusting methods, such as the two-rate (Doerr et al.,
2019b) and the normalized bit mutation (Ye et al., 2019), which are good at converging to small mutation
strength ℓ = 1 for the classic theory-oriented problems OneMax, LeadingOnes, etc., log-normal mutation
consistently delivers competitive results for complex practical problems such as Ising models and Maximum
Independent Vertex Set (Doerr et al., 2020). Following the setup in recent work (Doerr et al., 2020) on pseudo-
Boolean optimization, we provide a concise formulation of a (1 + λ) EA with the log-normal mutation in
Algorithm 1. The algorithm starts from a randomly initialized point (line 2) and generates λ offspring by the
Mutate function in the for-loop (lines 4-8). We denote the mutation strength ℓ as the number of variables
to be altered, and this number is generated for each newly generated solution candidate, i.e., offspring, by
first mutating the mutation rate p. In practice, p is mutated according to a log-normal distribution (line
6, where N (0, 1) is a normally distributed random variable with expectation zero and standard deviation
one, from which q is sampled in line 5), and this rule maintains that the median of the distribution of
new mutation rates p(i) is equal to the current mutation rate p. p(i) then determines the value of l(i) (line
7), and the corresponding offspring is created and evaluated in line 8. Specifically, ℓ(i) is sampled from a
binomial distribution Bin>0(n, p(i)) (line 7), where n is the dimensionality, and the sampling is repeated
until obtaining ℓ(i) > 0. In case of ties in the objective function values, the mutation rate used for the first
best of the newly generated solutions (line 9) is taken for the next iteration (line 10). The best solution x∗

is updated in line 12 if the best offspring is equal to or better than the current parent solution.

4

Under review as submission to TMLR

Name Initial p λ Name Initial p λ

Lognormal (Standard setting) 0.2 12 SmallLognormal 0.2 4
BigLognormal 0.2 120 XLognormal 0.8 12

HugeLognormal 0.2 1200 XSmallLognormal 0.8 4
OLN(Combined with bandits) 0.2 12

Table 1: Variants of log-normal mutations used in the experiments. OLN is a combination with bandits,
for managing reevaluations in a noisy optimization context.

3.2 Modifications of the original log-normal algorithm

Note that in Algorithm 1 we do not specify the domain Ω of x. The log-normal mutation has been commonly
applied for the pseudo-Boolean optimization, i.e., Ω = {0, 1}n, and the Mutate-operator flips l(i) bits that
are selected uniformly at random. In this work, we introduce a generalization of the Mutate-operator, as
presented in Algorithm 2, to extend the log-normal mutation to other domains. This generalized Mutate is
applicable for arbitrary search domains Ω = �n

i=1 Xi, where Xi ∈ {{0, 1},Z,R,N}. It samples a new value
that is distinct from the current one at random from the respective domain for each of ℓ variables, which are
selected (uniformly at random) for mutation. This technique has also been adopted by Nevergrad (Rapin
& Teytaud, 2018), which automatically adapts algorithms designed for continuous domains to also work for
discrete domains and vice versa.

4 Experimental results on the Nevergrad Black-box optimization benchmarks

4.1 Parameter settings & Ablation

While the log-normal mutation can control mutation rates of the (1+λ) EA online, Algorithm 1 still comprises
three hyperparameters, i.e., the initial value of p, population size λ, and γ, that can affect the algorithm’s
performance. We set γ = 0.22 following the suggestion in previous studies (Kruisselbrink et al., 2011; Doerr
et al., 2020). For the other two hyperparameters, we test two values 0.2 and 0.8 for p and various population
sizes λ. The detailed combinations are presented in Table 1.

We denote log-normal as the standard setting. BigLognormal experiments are performed with an increase in
population size (respectively, large increase for HugeLognormal, and decrease for SmallLognormal). XLog-
normal obtains a greater initial mutation rate. OLN (Optimistic Lognormal) experiments the combination
with Optimism as performed in Nevergrad for making deterministic algorithms compatible with noisy opti-
mization (see appendix D.3).

We compare the settings of Algorithm 1 with several algorithms, such as random search, CMA, and the
anisotropic adaptive algorithm (Doerr et al., 2016; 2017) provided by Nevergrad. log-normal with the stan-
dard parameterization from (Bäck & Schütz, 1996) performs essentially well across the 14 tested problems
(see Appendix F), though the “Big” variant is an interesting outsider. We note that the default parametriza-
tion of log-normal fails mainly on topology optimization (for which anisotropic methods perform great) and
on noisy problems (which are irrelevant for our context of attacking deterministic fake detectors, and we note
that a good solution in that setting is to use a combination with optimism in front of uncertainty as proposed
in (Rapin & Teytaud, 2018)). We therefore keep the standard log-normal and some “Big” counterparts for
our application to fake detectors.

4.2 Robust performance of log-normal

The log-normal algorithm has already shown competitive results in existing benchmark studies (Doerr et al.,
2019b), and in the present paper we examine its performance by comparing it on extensive benchmarks
provided by Nevergrad. Table 10 shows the diversity of the benchmarks in Nevergrad, where each benchmark
is accompanied with a list of baselines.

5

Under review as submission to TMLR

Cases in which log-normal outperforms NGOpt

Problem Rank of log-normal Num algorithms Rank of NGOpt

deceptive** 0 61 6
fishing** 0 63 56
multiobj-example-many-hd 1 67 48
yatuningbbob 4 93 54
multiobj-example-hd 5 69 55
multiobj-example 9 63 29
yaonepensmallbbob 9 79 15
nano-seq-mltuning 10 23 11
yasmallbbob 10 96 19
nano-naive-seq-mltuning 11 23 14
zp-pbbob 13 41 26
nano-veryseq-mltuning 14 26 16
pbo-reduced-suite* 16 156 20
verysmall-photonics** 26 64 30
verysmall-photonics2** 33 67 37
pbbob 35 63 42
ultrasmall-photonics2** 44 83 72

Table 2: Results on benchmarks from the Nevergard benchmarking suite for which log-normal outperforms
NGOpt. The rank, computed as described in Section E, is between 0 and num − algos − 1. We compare
log-normal to NGOpt. Cases in which log-normal is outperformed by NGOpt are in Table 11. We note that
results on continuous problems are not bad, in particular for hard problems: Deceptive (which is designed for
being hard), some multi-objective benchmarks (in particular the many-objective case), PBBOB which uses
difficult distributions of random translations for optima, very low budget problems such as YaTuningBBOB,
and difficult low budget Photonics or Fishing problems. * denotes discrete problems, ** denotes single-
objective problems which are highly multimodal and difficult.

Since NGOpt is a “wizard” provided by Nevergrad that is tuned for selecting automatically a proper algorithm
for each problem, we use it as a baseline for comparison. We run log-normal and NGOpt and proposed default
methods.Tables 2 and 11 list the rank of the log-normal algorithm and of NGOpt: Table 2 lists the problems
in which the benchmark outperforms NGOpt, and Table 11 presents the results of the other benchmarks.

We observe that the log-normal algorithm can outperform NGOpt on 17 out of 41 benchmarks and perform
better than 50% of all algorithms on 29 benchmarks. Recall that Nevergrad contains a diverse set of
benchmarks, and it is well-known that we can not expect one algorithm to perform the best for all problems.
The lognormal algorithm shows robust and competitive performance for Nevergrad benchmarks.

Since the log-normal algorithm was originally proposed for discrete optimization, we first present the detailed
results of log-normal variants for the two discrete benchmarks in Fig. 1. In Fig. 1, the y-axis represents the
loss of algorithms for tested budgets (presented on the x-axis), and algorithm labels are annotated by their
average loss for all the maximum budget between parentheses and (for checking stability) the average loss
for the tested budgets excluding the largest one between brackets (if there are at least three budget values).
For readability, we present only the 35 best results (and the worst, for scale) for each benchmark. We can
observe that the log-normal variants obtain the best performance for the two discrete benchmarks.

4.3 Competitive results for deceptive problems

Recall that in the ranks in Table 2, the log-normal algorithm performs best for the “deceptive” and “fishing”
benchmarks and outperforms NGOpt on many difficult multimodal benchmarks (marked with **). We
plot in Fig. 2 the detailed results of the best of 61 algorithms on the deceptive benchmark. The deceptive
benchmark combines many random translations of hard problems in many dimensionalities, including (i) a
problem with a long path to the optimum, which becomes thinner and thinner close to the optimum, (ii)
a problem with infinitely many local minima, (iii) a problem with condition number growing to infinity as

6

Under review as submission to TMLR

Figure 1: Results on instrum-discrete (top, 35 best methods and the worst method out of 98 methods run
on this benchmark), pbo-reduced (bottom, 35 best and the worst method out of 156 methods run on this
benchmark). log-normal is simple but good. CMALn is a combination of CMA and log-normal (used as a
warmup during the early 10% of the budget): on PBO all strong methods use log-normal at some point.

we get closer to the optimum. We note that on this hard continuous benchmark, the log-normal algorithm
performs well across all the tested budgets. Therefore, due to its robust performance across a number of
benchmarks and particularly competitive performance for the hardest benchmarks, we utilize the log-normal
mutation for the following fake detector scenarios.

7

Under review as submission to TMLR

Figure 2: Results on the Deceptive benchmark in Nevergrad. X-axis: budget. Y-axis: average normalized
(linearly to [0, 1], for each benchmark) loss. We observe that CMALn (CMA with log-normal warmup) out-
performs CMARS (CMA with random search warmup), which outperforms CMA, on this hard benchmark.
The best algorithms are based on log-normal: CMALn (resp. NgLn) uses CMA (resp. NGOpt) for local op-
timization after log-normal. Lengler also performs well, showing that discrete algorithms can be competitive
for continuous problems, in the hardest cases, as a warmup or as a standalone method. The CSEC codes
are all variants of NgIohTuned: they are good, but still outperformed by codes based on Lognormal. We
note an excellent performance of the Lengler method adapted to continuous problems, in particular for the
greatest values of the budget, though Table 2 shows that log-normal was better over the different budget
values (25, 37, 50, 75, 87, 100, 200, 400, 800, 1600, 3200, 6400, 12800) for the criterion defined in Section E.

5 New attacks of fake detectors

We attack fake detectors. More precisely, we add imperceptible noise e to the image x, with this noise
chosen so that fake detectors fail: typically x is a fake image detected as fake by a detector D and we find a
small e such that x + e is classified as non-fake by D. Black-box algorithms can be straightforwardly applied
to attacking a fake detector D (which returns the estimated probability D(x) that an image x is fake) by
defining loss(e) = D(e+x) and minimizing loss on a domain D (typically [−0.03, 0.03]t, where t is the shape
of the image tensor2) using a black-box algorithm. Our attacks (Section 5.1) consider the fake detector as
a black-box, so we do not have gradients. Then, in Section 5.2, we create defense mechanisms by detecting
various black-box attacks, showing that the log-normal attack is not detected by a detector created for a
classical attack (such as Square Attack) and, therefore, needs new ad hoc detectors.

5.1 Black-box attacking fake detectors

The fake detector we consider is the universal fake detector (Ojha et al., 2023). Our dataset of fake images
is sampled from the test set provided by the authors. Precisely, we consider the datasets as described in
Table 3. IN500- refers to the 500 first classes of ImageNet, IN500+ to the other classes of ImageNet, G refers
to Glide, PG refers to ProGAN, BG refers to BigGAN, LDM-200 is defined in (Ojha et al., 2023). In the
present paper, Clean means unattacked, neither by no-box nor by black-box attacks.

Critical cases. We consider the detection of attacks (no-box or black-box attacks) aimed at evading fake
detectors. So, we are particularly interested in correctly detecting attacks in two cases (1) fake images
attacked for making them appear genuine and (2) real, unaltered images (clean). The other cases are less

2In this case, we assume that pixels are in the range [0, 1]. Due to maximum values in image representations we might clamp
the values of e + x.

8

Under review as submission to TMLR

Name Description

Dataset1 2k images from PG, 2k images from BG and 1k images from LDM-200 for a total
of 5k fake images. Used to benchmark variations of log-normal attacks and square
attack.

Dataset2-DP Same as Dataset1, plus 5k real images from IN500- and their purified versions by
DiffPure with parameter 0.1

Dataset2-IR Same as Dataset1, plus 5k real images from IN500- and their purified versions by
ImageRephrase with parameter 0.1

Dataset2-SA Same as Dataset1, plus 5k real images from IN500- and their attacks by SA with
budget=10k and l∞ = 0.01. Total = 20k images.

Dataset2-LN Same as Dataset1, plus 5k real images from IN500- and their attacks by log-normal
(algo1) with budget=10k and l∞ = 0.01. Total = 20k images.

Dataset3 1k real images from IN500+ + 500 fake images from PG of different classes than
Dataset2 + 500 fake images from P and their attacked counterpart. Total = 4k
images.

Dataset3-IR0.1,
IR0.2, IR0.3

Purified versions of Dataset3 based on ImageRephrase, with parameter 0.1, 0.2, 0.3.

Dataset3-DP0.1,
DP0.2, DP0.3

Purified versions of Dataset3 based on DiffPure, with parameter 0.1, 0.2, 0.3.

Dataset3-SA
(L,B)

Real images from Dataset3 + fake images from Dataset3 attacked by SA with various
amplitudes (L ∈ {0.01, 0.03, 0.05}) and budget (B ∈ {1000, 10000}).

Dataset3-LN
(L,B)

Real images from Dataset3 + fake images from Dataset3 attacked by LN (algo1 to
algo5) with various L ∈ {0.01, 0.03, 0.05} and B ∈ {1000, 10000}.

Dtaset4 1k fake images from Dataset3, attacked with log-normal attacks (algo1).

Table 3: Datasets used in the study. Dataset3 will be used as a test set for the detectors trained on Dataset2
and Dataset4, will be used for testing the transfer of detectors trained on SA attacks to log-normal attacks.

critical: (1) the case of real images attacked so that they will look fake: this will usually not prevent the
original images from being classified as real, making the situation less annoying. (2) the case of clean fake
images (erroneously viewing them as attacked will not prevent a fake detector from working). Therefore,
besides our accuracies on datasets, we will present accuracies on the critical part of these datasets.

We first attack the fake detector with the classical SA, and then with generic black-box optimization methods
from section 2.2. We give a brief overview here and full details are in appendix D.2. Nevergrad provides
modifiers dedicated to domains shaped as images. These modifiers can be applied to any black-box opti-
mization algorithm. For example, the prefix Smooth means that the algorithm periodically tries to smooth
its attack x, if the loss of Smooth(x) is better than the loss of x, then x is replaced by Smooth(x) in the
optimization algorithm. We add two additional modifiers specific from adversarial attacks. Both are inspired
from SA, though our modifications have, by definition, less horizontal and vertical artifacts. First, G (Great)
means that we replace loss(x) by loss(0.03× sign(x)) when the allowed norm of the attack is 0.03 for the l∞

norm. Second, SM (smooth) means that we replace the loss function f by f(convolve(x)), where convolve
applies a normal blurring with standard deviation 3/8. GSM means that we apply both G and SM. For
example, we get GSM-SuperSmoothLognormalDiscreteOnePlusOne by applying G, SM and SuperSmooth
as modifiers on top of the standard log-normal method, and various methods as in Tab 4 (top). Results are
presented in Tab. 4 (bottom). Examples of attacked images are presented in Figure 5.1. Basically, when we

9

Under review as submission to TMLR

Original algo 1 algo 5 SA

Figure 3: Example of attacked images. All attacks are done with a budget of 10k queries and l∞ = 0.03.

Algorithms Alias Algorithms Alias

GSM-SuperSmoothLognormalDiscreteOnePlusOne algo1 LognormalDiscreteOnePlusOne algo4
G-SuperSmoothLognormalDiscreteOnePlusOne algo2 GSM-BigLognormalDiscreteOnePlusOne algo5
SuperSmoothLognormalDiscreteOnePlusOne algo3 G-BigLognormalDiscreteOnePlusOne algo6

Algorithm SA algo1 algo2 algo3 algo4 algo5 algo6

Success rate on dataset1 100% 91.0% 94.1% 64.6% 82.0% 99.2% 99.1%

Table 4: Top: Variations of the log-normal algorithm considered. Bottom: Success rate when attacking the
fake detector. The success rate is computed solely on attacks of correctly classified clean images. All attacks
have 10k budget and l∞ = 0.03. Inspired by SA, with maximum values of modifications (“G”) covering
an area (“SM”), Algo5 performs best among LogNormal variants. Compared to SA, it is less specific from
images and it has a self-adaptive mutation rate starting at a high value (“Big”): the key point for us is that
it performs reasonably well while the transfer from SA detectors fails.

have a black-box access to a fake detector, we can attack it either by SA or by log-normal with a budget of
10k queries and l∞ = 0.03.

5.2 From attack to defense: detecting attacks

A recent trend is the denoising of watermarked images for evading the detection: whereas the watermark
makes it possible to detect that an image is fake, the denoised version goes undetected. However, a defense is
to detect such a denoising (e.g. by DiffPure or ImageRephrase), or other forms of attacks (such as SA). That
way, our work both provides (i) new attacks and (ii) detectors for those attacks, to be used as an additional
step (detection of evasion) in fake detectors.

5.2.1 No-box attacks (purifiers) and their detection

While watermarking techniques can be made robust against some image alterations such as resizing or
JPEG compression as shown by Fernandez et al. (2023), they remain vulnerable to no-box purification at-

10

Under review as submission to TMLR

Attacks
Clean DP 0.1 DP 0.2 DP 0.3 IR 0.1 IR 0.2 IR 0.3

FNR 5.2% 23.42% 34.4% 40.1% 11.3% 16.8% 26.2%
PSNR NA 27.9 24.4 22.1 26.6 24.4 22.7

Table 5: The second row shows the false negative rate (FNR) at a threshold of 0.5 for the universal fake
detector on clean Dataset1 consisting of only fake images and different purified versions of this dataset. DP
stands for DiffPure while IR stands for ImageRephrase. The third row corresponds to the average PSNR.

tacks (Saberi et al., 2023) that destroy the hidden message. Additionally, the distribution change introduced
by no-box purification can impact negatively the performance of a fake detector, as shown in Table 5. We
will next show that one can easily detect these attacks if we have access to the purification method. We
consider two purifiers used by Saberi et al. (2024): DiffPure based on guided diffusion and ImageRephrase
based on latent diffusion. We consider the strength/steps parameter in the set {0.1, 0.2, 0.3}. These two
purifiers lead to an average PSNR (Peak Signal-to-Noise Ratio) between 20 and 30, which is a noticeable
yet acceptable quality loss. As expected, the PSNR of the distortion increases with the strength parameter.
For detecting the no-box attacks, we train a classifier, specified in table 13, on Dataset2-DP or Dataset2-IR.
We experiement with both ResNet50 and SRnet (Boroumand et al., 2018) and the latter performs better
overall. We use Dataset3 as a test set (so that the distributions of images differ) with images attacked by
same purifier but with different parameters in {0.1, 0.2, 0.3}. The results of the detection of latent purifiers
and guided diffusion purifiers are shown in Table 6 and Table 7. We achieve less than 5% FPR and FNR
across the hold-out training dataset and the critical part of testset, although the FPR is relatively higher
for the full testset that can be explained by having a sort of transfer from detecting DP or IR to detecting
images generated by G. In short, training on a purifier with a specific parameter allows us to detect that
same purifier with different parameters and for different image distributions.

5.2.2 The detection of black-box attacks

For detecting square attacks, we train a deep net using a similar setup, as the SRnet model still performs
better than ResNet in this scenario. We also employ data augmentation techniques: horizontal flip, random
crop and color jitter which empirically makes the model more robust to different attack parameters, while
allowing us to train using only one attack parameter budget=10k and l∞ = 0.01. The training is done on
Dataset2-SA. For testing, we use Dataset3-SA using different parameters than those used during training.
We then test the transfer of the SA detector on Dataset4, corresponding to Log-normal attacks. Table 8
summarizes the results of the SA detector, for detecting SA and as a detector of log-normal attacks. We
observe that the transfer to detecting log-normal attacks is very poor. So, we need to include such attacks
in our training for improving the defense.

A new detector for log-normal attacks. We have seen that detectors of SA do not detect our log-
normal attacks. For detecting log-normal attacks, we use the same setup as in section 5.2.2 for creating
a new detector. Dataset2-LN is used during training with the attacked images now obtained with GSM-
SuperSmoothLognormalDiscreteOnePlusOne budget=10k and l∞ = 0.01 and again, the dataset is split to
80% train, 10% test, 10% validation. For testing, we use Dataset3 with the images attacked using different
variations of log-normal and parameters (Budget and l∞). Table 9 presents the results of the log-normal
detector: we observe that the learning was made on images attacked by algo1 only and we get positive results
for all log-normal variants.

6 Conclusions

We tested log-normal mutations on various benchmarks and extended it to continuous benchmarks, includ-
ing fake detection tasks. Lognormal mutations perform well in some cases in the Nevergrad benchmarks,
especially on: (1) PBO, a classical discrete benchmark, and some other discrete benchmarks (2) In some

11

Under review as submission to TMLR

Dataset FPR↓ FNR↓ AUC↑
(same dist) Dataset2(param=IR0.1) hold-out 0.9% 0.3% 0.99

Dataset 3, full (critical and non critical images)

(different dist)
Dataset3 (param=IR0.1) 23.1% 0.1% 0.96
Dataset3 (param=IR0.2) 23.1% 0.2% 0.96
Dataset3 (param=IR0.3) 23.1% 0.2% 0.95

Dataset 3, critical part

(different dist)
Dataset3 (param=IR0.1) 1.7% 0.0% 0.99
Dataset3 (param=IR0.2) 1.7% 0.0% 0.99
Dataset3 (param=IR0.3) 1.7% 0.0% 0.99

Table 6: False positive and false negative rates for purified images detection at a threshold of (0.5) alongside
with the AUC score. The purified training images correspond to the latent-purifier (class “ImageRephrase”)
with parameter 0.1. We observe good results, in particular for critical cases.

Dataset FPR↓ FNR↓ AUC↑
(same dist) Dataset2(param=DP0.1) hold-out 1.9% 3.9% 0.99

Dataset 3, full (critical and non critical)

(different dist)
Dataset3 (param=DP0.1) 23.0% 3.7% 0.88
Dataset3 (param=DP0.2) 23.0% 4.0% 0.87
Dataset3 (param=DP0.3) 23.0% 4.2% 0.87

Dataset 3, critical part

(different dist)
Dataset3 (param=DP0.1) 2.2% 3.0% 0.99
Dataset3 (param=DP0.2) 2.2% 4.6% 0.99
Dataset3 (param=DP0.3) 2.2% 5.4% 0.99

Table 7: False positive and false negative rates for purified images detection at a threshold of (0.5) alongside
with the AUC score. The purified training images correspond to the guided-diffusion purifier (class “Diff-
Pure”) with parameter 0.1. We observe good results, in particular when we restrict the analysis to critical
cases (see the specification of critical cases in section 5.1).

continuous contexts, in particular in the most difficult scenarios such as many-objective, highly multimodal,
low budget benchmarks, including e.g. real world benchmarks in photonics. We note that other discrete
algorithms adapted to the continuous case do perform well. We note that discrete optimization methods are
relevant in continuous optimization, when the prior (i.e. the range of reasonable values for each variable) is
important and excellent precision is impossible (Sections 4.2 and 4.3). Of course this can not compete with
classical local optimization in terms of convergence rates for large budgets, but we show that it can be great
for a low ratio budget/dimension.

Fake detection presents a complex challenge, with the difficulty of identification varying based on factors
such as the type of data and the model used (Epstein et al., 2023; Sha et al., 2023). We consider the setting
in (Wang et al., 2023). We observe that log-normal mutations in continuous settings, as well as other generic
black-box optimization algorithms, are credible attack mechanisms, so that detecting attacks is necessary
for a good defense. We observe a very poor transfer between the detectors of different types of attacks and
in particular from the detection of classical attacks (such as SquareAttack) to our modified attacks (such as
log-normal), so that a good defense mechanism (aimed at improving the detection of manipulated images)
must include the learning of diverse attack mechanisms.

We also note that detecting no-box attacks is a simple yet effective protection against them: we get a
detection rate close to 100%, so that no-box attacks are vastly mitigated. Combining (simply by if-then-else)
many tools can therefore lead to better fake detectors: classical fake detectors, watermarking detectors,

12

Under review as submission to TMLR

Dataset FPR↓ FNR↓ AUC↑
(same dist) Dataset2-SA hold-out 1.8% 0.5% 0.99

(different dist)

Dataset3-SA (B=10k, L=0.01) 0.8% 0.9% 0.99
Dataset3-SA (B=10k, L=0.03) 0.8% 0.0% 0.99
Dataset3-SA (B=10k, L=0.05) 0.8% 0.0% 0.99
Dataset3-SA (B=1k, L=0.01) 0.8% 0.0% 0.99
Dataset3-SA (B=1k, L=0.03) 0.8% 0.0% 0.99
Dataset3-SA (B=1k, L=0.05) 0.8% 0.0% 0.99

(transfer to log-normal) Dataset4 NA 79.5% NA

Table 8: False positive and false negative rates for square attack detection at a threshold of (0.5) alongside
with the AUC score. B stands for the budget used for the attack and L stands for the accepted l∞ distance.
Last row: (clearly failed) transfer to log-normal detection.

Dataset FPR↓ FNR↓ AUC↑
(same dist) Dataset2-LN hold-out 0.7% 2.1% 0.99

(different dist)

Dataset3-LN (algo1, B=10k, L=0.01) 4.1% 5.4% 0.98
Dataset3-LN (algo1, B=10k, L=0.03) 4.1% 2.3% 0.99
Dataset3-LN (algo1, B=10k, L=0.05) 4.1% 2.9% 0.99
Dataset3-LN (algo2, B=10k, L=0.03) 4.1% 4.1% 0.98
Dataset3-LN (algo3, B=10k, L=0.03) 4.1% 11.7% 0.95
Dataset3-LN (algo4, B=10k, L=0.03) 4.1% 1.6% 0.99
Dataset3-LN (algo5, B=10k, L=0.03) 4.1% 0.4% 0.99

Table 9: False positive and false negative rates for log-normal detection at a threshold of (0.5) alongside
with the AUC score. Algorithms are reported in Table 4, B stands for the budget used for the attack and L
stands for the accepted l∞ distance. LN stands for log-normal.

no-box detection as proposed in the present paper, detectors of classical attacks such as SA, and detectors
for our proposed black-box attacks based on generic black-box optimization tools.

Our most immediate further work is the combination, by machine learning instead of if-then-else, of our fake
detectors (no-box, SA, lognormal, and existing detectors such as (Ojha et al., 2023) and (Fernandez et al.,
2023), into a single detector. We also plan to. add new attacks and defenses based on generic black-box
optimization, and a third work is the investigation of log-normal mutations (and other discrete algorithms)
for other continuous problems.

References
Ali Al-Haj. Combined DWT-DCT digital image watermarking. Journal of computer science, 3(9):740–746,

2007.

Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square attack: A
query-efficient black-box adversarial attack via random search. In Andrea Vedaldi, Horst Bischof, Thomas
Brox, and Jan-Michael Frahm (eds.), Computer Vision - ECCV 2020 - 16th European Conference, Glasgow,
UK, August 23-28, 2020, Proceedings, Part XXIII, volume 12368 of Lecture Notes in Computer Science,
pp. 484–501. Springer, 2020. doi: 10.1007/978-3-030-58592-1_29. URL https://doi.org/10.1007/
978-3-030-58592-1_29.

SME Artelys. Sequential quadratic programming: Knitro wins the BBO competition, 2015a. URL https:
//www.artelys.com/news/solvers-news/knitro-bbcomp-winner/.

13

Under review as submission to TMLR

SME Artelys, 2015b. URL https://www.artelys.com/news/159/16/
KNITRO-wins-the-GECCO-2015-Black-Box-Optimization-Competition.

Thomas Bäck and Martin Schütz. Evolution strategies for mixed-integer optimization of optical multilayer
systems. In John R. McDonnell, Robert G. Reynolds, and David B. Fogel (eds.), Proceedings of the Fourth
Annual Conference on Evolutionary Programming, EP 1995, San Diego, CA, USA, March 1-3, 1995, pp.
33–51. A Bradford Book, MIT Press. Cambridge, Massachusetts., 1995.

Thomas Bäck and Martin Schütz. Intelligent mutation rate control in canonical genetic algorithms. In
Zbigniew W. Raś and Maciek Michalewicz (eds.), Foundations of Intelligent Systems, pp. 158–167, Berlin,
Heidelberg, 1996. Springer Berlin Heidelberg. ISBN 978-3-540-68440-4.

Thomas H. W. Bäck, Anna V. Kononova, Bas van Stein, Hao Wang, Kirill A. Antonov, Roman T.
Kalkreuth, Jacob de Nobel, Diederick Vermetten, Roy de Winter, and Furong Ye. Evolutionary algo-
rithms for parameter optimization - thirty years later. Evolutionary Computation, 31(2):81–122, 2023.
doi: 10.1162/EVCO_A_00325. URL https://doi.org/10.1162/evco_a_00325.

James Bergstra, Brent Komer, Chris Eliasmith, Dan Yamins, and David D Cox. Hyperopt: a Python library
for model selection and hyperparameter optimization. Computational Science and Discovery, 8(1):014008,
2015.

Mehdi Boroumand, Mo Chen, and Jessica Fridrich. Deep residual network for steganalysis of digital images.
IEEE Transactions on Information Forensics and Security, 14(5):1181–1193, 2018.

Davide Alessandro Coccomini, Andrea Esuli, Fabrizio Falchi, Claudio Gennaro, and Giuseppe Amato. De-
tecting images generated by diffusers. arXiv preprint arXiv:2303.05275, 2023.

Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, and Ton Kalker. Digital watermarking and
steganography. Morgan kaufmann, 2007.

Swagatam Das, Sankha Subhra Mullick, and Ponnuthurai N. Suganthan. Recent advances in differential
evolution - an updated survey. Swarm Evol. Comput., 27:1–30, 2016. doi: 10.1016/J.SWEVO.2016.01.004.
URL https://doi.org/10.1016/j.swevo.2016.01.004.

Benjamin Doerr and Frank Neumann (eds.). Theory of Evolutionary Computation - Recent Developments
in Discrete Optimization. Natural Computing Series. Springer, 2020. ISBN 978-3-030-29413-7. doi:
10.1007/978-3-030-29414-4. URL https://doi.org/10.1007/978-3-030-29414-4.

Benjamin Doerr, Carola Doerr, and Timo Kötzing. Provably optimal self-adjusting step sizes for multi-valued
decision variables. In Proceedings of PPSN, volume 9921, pp. 782–791, 09 2016. ISBN 978-3-319-45822-9.
doi: 10.1007/978-3-319-45823-6_73.

Benjamin Doerr, Carola Doerr, and Timo Kötzing. Static and self-adjusting mutation strengths for multi-
valued decision variables. Algorithmica, 80, 07 2017. doi: 10.1007/s00453-017-0341-1.

Benjamin Doerr, Carola Doerr, and Johannes Lengler. Self-adjusting mutation rates with provably optimal
success rules. In Genetic and Evolutionary Computation Conference, pp. 1479–1487, 2019a.

Benjamin Doerr, Christian Gießen, Carsten Witt, and Jing Yang. The (1+λ) evolutionary algorithm with
self-adjusting mutation rate. Algorithmica, 81(2):593–631, 2019b. doi: 10.1007/S00453-018-0502-X. URL
https://doi.org/10.1007/s00453-018-0502-x.

Carola Doerr, Hao Wang, Furong Ye, Sander van Rijn, and Thomas Bäck. IOHprofiler: A Benchmarking
and Profiling Tool for Iterative Optimization Heuristics. arXiv:1810.05281, 2018.

Carola Doerr, Furong Ye, Naama Horesh, Hao Wang, Ofer M. Shir, and Thomas Bäck. Benchmarking discrete
optimization heuristics with iohprofiler. Applied Soft Computing, 88:106027, 2020. ISSN 1568-4946. doi:
https://doi.org/10.1016/j.asoc.2019.106027. URL https://www.sciencedirect.com/science/article/
pii/S1568494619308099.

14

Under review as submission to TMLR

Hafsteinn Einarsson, Marcelo Matheus Gauy, Johannes Lengler, Florian Meier, Asier Mujika, Angelika
Steger, and Felix Weissenberger. The linear hidden subset problem for the (1+1)-EA with scheduled and
adaptive mutation rates. Theoretical Computer Science, 785:150–170, 2019.

David C Epstein, Ishan Jain, Oliver Wang, and Richard Zhang. Online detection of ai-generated images. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 382–392, 2023.

Pierre Fernandez, Guillaume Couairon, Hervé Jégou, Matthijs Douze, and Teddy Furon. The stable signa-
ture: Rooting watermarks in latent diffusion models. arXiv preprint arXiv:2303.15435, 2023.

Ryoki Hamano, Shota Saito, Masahiro Nomura, and Shinichi Shirakawa. CMA-ES with margin: lower-
bounding marginal probability for mixed-integer black-box optimization. In Jonathan E. Fieldsend and
Markus Wagner (eds.), Proceedings of the Genetic and Evolutionary Computation Conference, Mas-
sachusetts, USA, July 9 - 13, 2022, pp. 639–647. ACM, 2022. doi: 10.1145/3512290.3528827. URL
https://doi.org/10.1145/3512290.3528827.

Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution strategies.
Evolutionary Computation, 11(1), 2003.

John H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.

Zhengyuan Jiang, Jinghuai Zhang, and Neil Zhenqiang Gong. Evading watermark based detection of ai-
generated content. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communica-
tions Security, pp. 1168–1181, 2023.

Johannes W. Kruisselbrink, Rui Li, Edgar Reehuis, Jeroen Eggermont, and Thomas Bäck. On the log-
normal self-adaptation of the mutation rate in binary search spaces. In Proceedings of the 13th Annual
Conference on Genetic and Evolutionary Computation, GECCO ’11, pp. 893–900, New York, NY, USA,
2011. Association for Computing Machinery. ISBN 9781450305570. doi: 10.1145/2001576.2001699. URL
https://doi.org/10.1145/2001576.2001699.

T.L Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Adv. Appl. Math., 6(1):
4–22, March 1985.

Peter Lorenz, Ricard L Durall, and Janis Keuper. Detecting images generated by deep diffusion models
using their local intrinsic dimensionality. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 448–459, 2023.

Laurent Meunier, Herilalaina Rakotoarison, Pak-Kan Wong, Baptiste Rozière, Jérémy Rapin, Olivier Tey-
taud, Antoine Moreau, and Carola Doerr. Black-box optimization revisited: Improving algorithm selection
wizards through massive benchmarking. IEEE Trans. Evol. Comput., 26(3):490–500, 2022.

A. G. Moskowitz, T. Gaona, and J. Peterson. Detecting ai-generated images via CLIP. CoRR,
abs/2404.08788, 2024. doi: 10.48550/ARXIV.2404.08788. URL https://doi.org/10.48550/arXiv.
2404.08788.

Ahmad M Nagm, Mohamed Torky, and Khaled Y Youssef. A novel watermarking approach for protecting
image integrity based on a hybrid security technique. arXiv preprint arXiv:2110.08777, 2021.

Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash Vahdat, and Animashree Anandkumar. Dif-
fusion models for adversarial purification. In International Conference on Machine Learning, pp. 16805–
16827. PMLR, 2022.

Utkarsh Ojha, Yuheng Li, and Yong Jae Lee. Towards universal fake image detectors that generalize across
generative models. In CVPR, 2023.

Quan-Ke Pan, Mehmet Fatih Tasgetiren, and Yun-Chia Liang. A discrete differential evolution algorithm
for the permutation flowshop scheduling problem. Computers & Industrial Engineering, 55(4):795–816,
2008. doi: 10.1016/J.CIE.2008.03.003. URL https://doi.org/10.1016/j.cie.2008.03.003.

15

Under review as submission to TMLR

M. J. D. Powell. A Direct Search Optimization Method That Models the Objective and Constraint Functions
by Linear Interpolation, pp. 51–67. Springer Netherlands, 1994.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine learning, pp. 8748–8763. PMLR,
2021.

S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama. Quasi-oppositional differential evolution. In IEEE
Congress on Evolutionary Computation, pp. 2229–2236, 2007.

Jeremy Rapin and Olivier Teytaud. Nevergrad - A gradient-free optimization platform. https://GitHub.
com/FacebookResearch/Nevergrad, 2018.

Ingo Rechenberg. Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-
Holzboog, 1973.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10684–10695, 2022.

Raymond Ros and Nikolaus Hansen. A simple modification in CMA-ES achieving linear time and space
complexity. In Parallel Problem Solving from Nature – PPSN X, pp. 296–305. Springer Berlin Heidelberg,
2008.

Mehrdad Saberi, Vinu Sankar Sadasivan, Keivan Rezaei, Aounon Kumar, Atoosa Chegini, Wenxiao Wang,
and Soheil Feizi. Robustness of ai-image detectors: Fundamental limits and practical attacks. arXiv
preprint arXiv:2310.00076, 2023.

Mehrdad Saberi, Vinu Sankar Sadasivan, Keivan Rezaei, Aounon Kumar, Atoosa Chegini, Wenxiao Wang,
and Soheil Feizi. Robustness of ai-image detectors: Fundamental limits and practical attacks. In ICLR,
2024.

Zeyang Sha, Zheng Li, Ning Yu, and Yang Zhang. De-fake: Detection and attribution of fake images
generated by text-to-image generation models. In Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, pp. 3418–3432, 2023.

Rainer Storn and Kenneth Price. Differential evolution - a simple and efficient heuristic for global optimiza-
tion over continuous spaces. J. of Global Optimization, 11(4):341–359, 1997.

André Thomaser, Jacob de Nobel, Diederick Vermetten, Furong Ye, Thomas Bäck, and Anna V. Kononova.
When to be discrete: Analyzing algorithm performance on discretized continuous problems. In Sara Silva
and Luís Paquete (eds.), Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
2023, Lisbon, Portugal, July 15-19, 2023, pp. 856–863. ACM, 2023. doi: 10.1145/3583131.3590410. URL
https://doi.org/10.1145/3583131.3590410.

Yizao Wang, Jean-Yves Audibert, and Rémi Munos. Algorithms for infinitely many-armed bandits. In
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou (eds.), Advances in Neural Information Processing
Systems 21, pp. 1729–1736. Curran Associates, Inc., 2009.

Zhendong Wang, Jianmin Bao, Wengang Zhou, Weilun Wang, Hezhen Hu, Hong Chen, and Houqiang Li.
Dire for diffusion-generated image detection. arXiv preprint arXiv:2303.09295, 2023.

Thomas Weise, Zijun Wu, and Markus Wagner. An improved generic bet-and-run strategy for speeding up
stochastic local search. CoRR, abs/1806.08984, 2018. URL http://arxiv.org/abs/1806.08984.

Furong Ye, Carola Doerr, and Thomas Bäck. Interpolating local and global search by controlling the variance
of standard bit mutation. In IEEE Congress on Evolutionary Computation, CEC 2019, Wellington,
New Zealand, June 10-13, 2019, pp. 2292–2299. IEEE, 2019. doi: 10.1109/CEC.2019.8790107. URL
https://doi.org/10.1109/CEC.2019.8790107.

16

Under review as submission to TMLR

Mingjian Zhu, Hanting Chen, Mouxiao Huang, Wei Li, Hailin Hu, Jie Hu, and Yunhe Wang. Gendet:
Towards good generalizations for ai-generated image detection. arXiv preprint arXiv:2312.08880, 2023.

A Broader Impact Statement

Detecting fake images is essential for preserving the quality of internet. Our detectors do not provide
certainties, only indications.

B Benchmarks: statistics

Min Max
Dimension 1 20000

Budget 10 3000000
Num-objectives 1 6

Noise dissymetries False True
Noise False True (many levels)

Number of blocks of variables 1 16
(with independent rotations)

Number of workers 1 500
Category Benchmarks

Real-world, ML tuning Keras, Scikit-learn (SVM,
Decision Trees, Neural nets)

Real-world, not ML tuning Crops, rockets, energy, fishing,
photonics, game

Discrete PBO, Bonnans, others
(includes: unordered variables)

Table 10: Diversity of the benchmarking platform used in our experiments.

Table 10 presents the benchmarks in Nevergrad.

17

Under review as submission to TMLR

C Cases in which log-normal is outperformed by NGOpt

Cases in which log-normal does not outperform NGOpt
Problem Rank of LogNormal Num algorithm Rank of NGOpt
yaonepenboundedbbob 7 86 0
yapenboundedbbob 8 87 0
yahdbbob 13 72 7
naivemltuning 14 21 10
reduced-yahdlbbbob 14 88 1
yamegapenboundedbbob 14 88 8
naive-seq-mltuning 15 23 14
seq-mltuning 17 23 8
yabbob 17 81 11
yaboxbbob 17 53 7
nano-naive-veryseq-mltuning 18 27 17
instrum-discrete* 23 123 4
mltuning 21 23 9
yaonepenparabbob 22 56 11
double-o-seven 24 39 2
yaboundedbbob 25 89 4
yapenparabbob 31 56 13
yatinybbob 41 89 37
zp-ms-bbob 41 58 28
ms-bbob 42 65 29
powersystems 42 50 26
yaparabbob 46 61 6
ultrasmall-photonics** 51 85 28
mldakmeans 57 70 13

Table 11: Benchmarks on which log-normal performs weaker than NGOpt. NGOpt is a wizard, automatically
choosing an algorithm in a big portfolio of algorithms: it performs vastly better than log-normal for problems
with noise (007 and PowerSystems, for which noise management is essential: log-normal can do better for
this when combined with Optimism in Front of Uncertainty for dealing with the noise as detailed in Section
D.1 and Fig. 4), and for problems derived from BBOB in which high precision by continuous methods is
possible.

D Black-box Optimization Algorithms

D.1 List of methods

We briefly present the main BBO algorithms used in the present paper.

• Log-normal (the full name in Nevergrad is LogNormalDiscreteOnePlusOne, sometimes abbreviated
as LDOPO), a (1 + λ) EA optimizer embedded with the self-adaptive log-normal mutation. This
optimizer is adapted from the corresponding discrete version (Kruisselbrink et al., 2011) (see Sec-
tion 3.1), and details of the tested continuous optimizer are introduced in Section 3.2. It is sometimes
abbreviated as LDOPO.

• Lengler (DiscreteLenglerOnePlusone, sometimes abbreviated as Lglr), namely the scheduled muta-
tion rate in (Einarsson et al., 2019).

• Adaptive mutation rates (AdaptiveDiscreteOnePlusOne) come from (Doerr et al., 2019a). This is a
(1 + 1) EA with self-adjusting mutation rates. It increases the mutation rate p by F s · p when the

18

Under review as submission to TMLR

obtained offspring is at least as good as the parent. Otherwise, p is replaced by p/F . F and s are
two constant parameters. The algorithm is extended to the continuous optimization following the
strategy in Section 3.2.

• Anisotropic discrete algorithms, which uses self-adaptation with a mutation rate per variable.

• NGOpt is a wizard developed by Nevergrad (Rapin & Teytaud, 2018). It automatically chooses an
algorithm from a portfolio of algorithms.

• CMA-ES, the Covariance Matrix Adaptation evolution strategy, is a well-known continuous op-
timization algorithm proposed by Hansen (Hansen & Ostermeier, 2003). We consider CMA and
DiagonalCMA (Ros & Hansen, 2008) implemented by Nevergrad (Rapin & Teytaud, 2018) for com-
parison, and the latter is a modified version for high dimensional objective functions.

• Random Search (abbreviated RS) has been commonly applied as a baseline for algorithm comparison.
In this paper, we sample new values for each variable uniformly at random.

• MultiSQP, a combination of multiple sequential quadratic programming runs (Artelys, 2015b; Rapin
& Teytaud, 2018).

• CMandAS2, a combination of several optimization methods (depending on the dimension and bud-
get, e.g. several CMAs equipped with quadratic MetaModels combined in a bet-and-run(Weise et al.,
2018) or the simple (1 + 1) evolution strategy with one-fifth rule(Rechenberg, 1973)) implemented
in (Rapin & Teytaud, 2018).

• NGOptRW, the wizard proposed for real-world problems in (Rapin & Teytaud, 2018); it used more
DE and more PSO than NGOpt (as opposed to using CMA), and a bet-and-run(Weise et al., 2018).

• Carola2, a chaining (inspired by (Doerr et al., 2018)) between Cobyla (Powell, 1994), CMA (Hansen
& Ostermeier, 2003) accompanied by a meta-model and sequential quadratic programming (Artelys,
2015a).

• HyperOpt (Bergstra et al., 2015), based on Parzen estimates.

• NgIoh variants, recent wizards co-developed by the Nevergrad team and the IOH team (Doerr et al.,
2018).

• CMA variants: besides DiagonalCMA (Ros & Hansen, 2008), we consider LargeDiagonalCMA (as
DiagonalCMA, but with larger initial variance for the population).

• VastDE, basically DE (Storn & Price, 1997) sampling closer to the boundary in bounded cases or
with greater variance in unbounded contexts.

• SQOPSO, Special Quasi-Opposite PSO, which adapts quasi-opposite sampling (Rahnamayan et al.,
2007) to PSO.

• BAR4, a bet-and-run between

– quasi-opposite DE folowed by BFGS with finite differences (Rahnamayan et al., 2007) and
– a CMA equipped with a meta-model followed by a sequential quadratic programming part.

Other methods were run thanks to their availability in the Nevergrad framework; we refer to (Rapin &
Teytaud, 2018) for all details.

We use the terminology in the Nevergrad code, i.e., (1+λ) optimization methods are derived from the (1+1)
code, and contain the suffix OnePlusOne even if λ > 1.

19

Under review as submission to TMLR

Parameter Value
Frequency of update 1/2 (ZetaSmooth)

(per iteration) 1/3 (UltraSmooth)
1/9 (SuperSmooth)

1/55 (Default smooth)
Size of smoothing window s s = 3

Table 12: Parametrization of the Smooth operator, which operates on a s× s-window.

D.2 Modifiers of algorithms

D.2.1 Modifiers dedicated to tensors

When the Smooth operator is applied to a black-box optimization method in Nevergrad, periodically, it tries
to replace the current best candidate x by Smooth(x). If Smooth(x) has a better loss value than x, then
x is replaced by Smooth(x). Smooth(x) is defined as a tensor with the same shape as x, with Smooth(x)i

defined as xi with probability 75%, and, otherwise, the average of the xj for j the points at distance at
most 1 of i in the indices of the tensor x. Smooth means that this tentative smoothing is tested once per 55
iterations, SuperSmooth once per 9 iterations; see Table 12.

D.2.2 Modified dedicated to adversarial attacks

The modifiers G and GSM used for arrays work as follows:

lossG(x) = loss(0.03× sign(x))
lossGSM (x) = loss(0.03× sign(convolve(x, k)))

in the context of an image with values in [0, 1] and an amplitude 0.03 in l∞. k refers to a Gaussian kernel
of width r/8 with r the width of the image.

D.3 Other modifiers of algorithms proposed in Nevergrad

There are other modifiers of algorithms proposed in Nevergrad and visible in prefixes, as follows:

• The prefix SA (self-avoiding, referring to tabu lists) and the suffix Exp (referring to parameters
related to simulated annealing) refer to add-ons for the discrete optimization methods.

• Recombining (R for short), which adds a two-point crossover (Holland, 1975) in an algorithm.

• Acceleration by meta-models: by default, MetaModel means CMA plus a quadratic meta-model,
but an optimization method (DE, PSO or other) can be specified, and the meta-model can be a
random-forest (RF) or a support vector machine (SVM) or a neural network (NN). The algorithm
periodically learns a meta-model, and if the learning looks successful it uses the minimum of the
MetaModel as a new candidate point.

• Combination with Optimism in front of uncertainty: Nevergrad features bandit tools, which can be
combined with other algorithms for making them compatible with noisy optimization. For example,
the optimistic counterpart of an algorithm A performs an upper confidence bound method(Lai &
Robbins, 1985) for choosing, between points in the search space that have already been used, which
one should be resampled, and chooses a new point when the number of function evaluations exceeds
a given function of the number of distinct points as specified in (Wang et al., 2009; Rapin & Teytaud,
2018).

E Significance in Nevergrad plots

In figures created by Nevergrad all dots are independently created. This means, for example,that dots
obtained for budget 1000 are not extracted from truncations of runs obtained for budget 2000. This implies

20

Under review as submission to TMLR

that the robustness of the rankings between methods can be deduced from the stability of curves: if the curve
corresponding to algorithm A is always below the curve obtained for Algorithm B (in minimization) this
means that Algorithm A performs robustly better than Algorithm B. For computing p-values, the probability
that Algorithm A performs better than Algorithm B for the k greatest budget values is at most 1/2k under
the null hypothesis that they have the same distribution of average loss values. When computing ranks of
algorithms as in Tables 2 and 11, Nevergrad proceeds as follows:

• Compute the average obtained loss lossa,p,b for each algorithm a and each problem p and each
budget b (averaged over instances).

• Then the score of a w.r.t algorithm a′ is scorea,a′ , frequency at which lossa,p,b < lossa′,p,b.

• Then, given n the number of algorithms, the score of a is scorea = 1
n

∑
a′ scorea,a′ and Nevergrad

provides the rank of a for this score.

F Comparisons of log-normal variants

Figures 4 and 5 compare Lognormal variants on many problems. The optimistic variant is unsurprisingly
good for noisy problems and topological problems seem to benefit from anisotropic mutations. Besides that,
the standard Lognormal version is never very far from the optimum.

21

Under review as submission to TMLR

Figure 4: Analysis of variants of Lognormal mutations (1/2). The number between parentheses is the average
score for the maximum budget and the number between brackets is the average score for the penultimate
budget: as these two figures are obtained in completely independent runs the consistency between both shows
the robustness/significance of the ranking (more details in Appendix E). Unsurprisingly, the Optimistic
variants (Section D.1) of log-normal algorithms perform well for noisy optimization problems such as 007.

22

Under review as submission to TMLR

Figure 5: Analysis of variants of Lognormal mutations (2/2). We observe that the default parametrization
of LogNormal is essentially ok. Lognormal mutations are a serious competitor in some continuous problems
when the prior search distribution used implicitly at initialization and mutation is good and the dimension
is high (e.g., YAHDBBOB). For topology optimization, the variable-wise adaptive mutation rate Anisotrop-
icAdaptiveDiscreteOnePlusOne (see Section D.1) is excellent.

23

Under review as submission to TMLR

G Parameters of the learning model

Hyperparameter Value
Type of model SRnet
learning rate 10−4

Number of epochs 20
Hardware 1 GPU

Training time ≃ 1 hour
JPEG 0.2 prob at 96 quality

Resize((256, 256))
RandomHorizontalFlip(0.5)Data Augmentation

RandomCrop((224, 224))

Table 13: Hyper-parameters of our learning model. We work on Dataset2 with each purifier (Dataset2-DP
and Dataset2-IR) with parameter 0.1, which is split in 80% train, 10% test, 10% validation.

24

