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Abstract

Large Language Models trained on web-scale001
text acquire language generation abilities that002
can solve a wide range of tasks, particularly003
when task knowledge is refined into the gen-004
erative prior using in-context examples. How-005
ever, spurious features learned from noisy data006
hinder their generalizability. Supervised fine-007
tuning can enhance task specificity but may008
lead to data inefficiency. Prior studies indicate009
that (i) noisy neural circuitries coexist with gen-010
eralizable ones within LLMs, and (ii) finetun-011
ing typically enhances (or suppresses) existing012
abilities without introducing newer ones. Build-013
ing upon these, we propose TaRot, a novel014
method for task adaptation. TaRot intervenes015
in the neural circuitries using learnable rotation016
matrices that are optimized using Bayesian op-017
timization, on labelled samples in the order of018
standard few-shot prompting examples. Experi-019
ments on multiple classification and generation020
tasks using LLMs of varying sizes reveal the ef-021
ficacy of TaRot, improving upon both zero- as022
well as few-shot performance, with average im-023
provements (across models and tasks) of 15.6%024
and 14%, respectively.025

1 Introduction026

Large Language Models (LLMs) acquire the ability027

to associate different language concepts presented028

in a sequential context by optimizing the predic-029

tion probability of the next token given a context.030

Despite its apparent simplicity, when scaled across031

web-sized text corpora, such a learning strategy032

introduces the ability to solve a wide range of tasks033

presented in natural language. However, the web034

contains almost everything humankind has written,035

and therefore, it introduces spurious token associa-036

tions that are irrelevant or even counter-productive037

to the model to become generalized task-solvers.038

We observe phenomena like brittle few-shot perfor-039

mance (Sclar et al., 2024), hallucination (Huang040

et al., 2023), harmful text generation (Wen et al.,041

2023), etc. as evidence of learning noisy pat- 042

terns. Remedial interventions like instruction tun- 043

ing (Zhang et al., 2024), alignment tuning (Shen 044

et al., 2023), etc. have been proposed. Recent re- 045

search has shown that such mediation only acts on a 046

superficial level — out-of-distribution inputs can re- 047

inforce noisy behavior and break the model (Ghosh 048

et al., 2024). Without an in-depth understanding 049

of the inner workings, remedial strategies become 050

wild goose chase. 051

Mechanistic disentangling of Transformer-based 052

language models has shed some light on this di- 053

rection (Elhage et al., 2021; Olsson et al., 2022; 054

Wang et al., 2023). Two recent investigations (Jain 055

et al., 2024; Prakash et al., 2024) on the effects 056

of fine-tuning confirm the inability of supervised 057

fine-tuning to alter fundamental abilities acquired 058

via pretraining. On a tangential investigation, Dutta 059

et al. (2024) recently confirmed the existence of 060

multiple parallel neural pathways of answer pro- 061

cessing within LLMs. Bhaskar et al. (2024) echoed 062

similar findings in the case of syntactic generaliza- 063

tion while pointing out that different components 064

acquire different generalization behaviors. These 065

findings lead us to the central research question of 066

this work: is it possible to edit the model behavior 067

by editing internal representations in a general- 068

izable manner? Prior work in this direction has 069

heavily relied on careful manual effort to localize 070

task-specific neural components and design inter- 071

vention techniques (Meng et al., 2022; Li et al., 072

2024a). Two key shortcomings limit the scalabil- 073

ity of such methods: (i) Localization complexity 074

grows polynomially with model size, making it dif- 075

ficult to identify task-relevant components and de- 076

sign effective ablations; (ii) Redundant components 077

performing similar neural computations hinder the 078

generalizability of any single intervention. 079

Our contributions. To this end, we propose a 080

novel intervention technique, TaRot – Task-aware 081
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Rotation of token-association (see Figure 1 for a082

representative depiction)1. We establish the con-083

ceptual prior from Transformers’s implicit gradient084

descent bias in next token prediction. Specifically,085

we first show that attention-weighted averaging of086

value vectors facilitates the memorization of token087

association from pertaining data in individual atten-088

tion heads, in the sense that each attention head acts089

as a mini-language model. Due to the vast num-090

ber of token associations present in the pretraining091

corpus compared to the number of attention heads092

in even the largest of the models, we hypothesize093

that individual directions of these memorized as-094

sociations remain in superposition, and removal095

or downscaling of a head can counteract model096

performance. Instead, we construct parametrized097

rotations to align head outputs for task-adaptation.098

The rotation parameters are then optimized using099

Bayesian optimization. Furthermore, TaRot is ex-100

tremely data- and compute-efficient: we use 6-20101

supervised examples for each task and dL
4 rotation102

parameters (where d is the model dimension and103

L is the number of layers) for each different task.104

This renders TaRot at par with standard few-shot105

prompting in labeled data-efficiency.106

We experiment with four different classifica-107

tion tasks and two natural language generation108

tasks; the choice of tasks seeks to investigate109

general world knowledge (news topic classifica-110

tion) as well as the ability to generalize beyond111

imitation (BIG Bench tasks (BIG-bench authors,112

2023)). TaRot demonstrates consistent improve-113

ments over six different language models of vary-114

ing sizes: Qwen2-1.5B-Instruct, Phi-3-mini-4k-115

instruct, Mistral-7B-Instruct-v0.1, Meta-Llama-3-116

8B-Instruct, Qwen2.5-14B-Instruct, and Qwen2.5-117

32B-Instruct, in both zero-shot as well as few-shot118

settings. Furthermore, we analyze the changes in119

neural representation introduced by TaRot to un-120

cover useful insights.121

2 Related Work122

Our work is primarily relevant to two broad ar-123

eas of existing literature: adaptation of pretrained124

language models to downstream tasks, and mecha-125

nistic understanding and intervention techniques.126

Task adaptation of pretrained language mod-127

els. The pretrain-finetune regime for adapting lan-128

guage models to downstream tasks dates back to the129

1The source code of TaRot is attached with the supplemen-
tary and will be made public upon acceptance of the paper.

early approaches like BERT (Devlin et al., 2019) — 130

pretrain a language model (LM) on large unstruc- 131

tured text corpora using self-supervised objective, 132

followed by supervised fine-tuning on task-specific, 133

relatively smaller datasets. Despite the apparent 134

simplicity, the pitfalls of this regime have been 135

pointed out in terms of distribution shift (Kumar 136

et al., 2022). With the development of large-scale, 137

autoregressive Transformer-based language mod- 138

els and their ability to learn from in-context ex- 139

amples (Brown et al., 2020), a definitive shift has 140

happened in the more recent past. Current prac- 141

tices of using these models for downstream tasks 142

primarily rely on designing suitable prompt tem- 143

plates and labeled example retrieval for in-context 144

learning (ICL) (Liu et al., 2022; Rubin et al., 2022; 145

Tanwar et al., 2023); traditional techniques of fine- 146

tuning have taken a back seat due to the computa- 147

tional cost and catastrophic forgetting introduced 148

by small-scale task-specific data that hurts the pre- 149

trained abilities (Zhai et al., 2024). Instead, fine- 150

tuning to follow task instructions, aka instruction- 151

tuning (Zhang et al., 2024), has gained popular- 152

ity. Instruction-tuning has been shown to introduce 153

zero-shot task adaptation abilities in LLMs (Wei 154

et al., 2022). Additionally, different methods of 155

alignment tuning have been proposed with the pri- 156

mary goal being aligning the generative distribu- 157

tion of the language models with human values and 158

preferences (Shen et al., 2023; Wang et al., 2024b). 159

Despite the popularity of instruction and alignment 160

tuning, their ability to alter fundamental informa- 161

tion processing has been put in question in recent 162

literature. Jain et al. (2024) investigated the effects 163

of fine-tuning in toy models trained with formal 164

languages as well as precompiled ones; their find- 165

ings suggest that supervised fine-tuning does not 166

introduce any new ability into pretrained models 167

but only reinforces (or suppresses) existing ones. 168

Similar concerns have been raised upon investi- 169

gating entity tracking in the neural representation 170

space (Prakash et al., 2024). Ghosh et al. (2024) 171

identified multiple limitations of instruction tun- 172

ing, including the inability to introduce new knowl- 173

edge and deterioration of performance due to over- 174

reliance on pattern matching. 175

Mechanistic understanding and interven- 176

tions. The umbrella of mechanistic interpretabil- 177

ity broadly encompasses methods to disentangle 178

model behavior via reverse engineering the underly- 179

ing neural algorithm (Elhage et al., 2021; Ferrando 180

et al., 2024). Endeavors to mechanistically under- 181
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Figure 1: A conceptual illustration of TaRot. (a) Model generates an undesired next token t6 upon an input token
sequence. (b) A certain attention head is responsible for associating certain input tokens with the undesired output.
(c) TaRot learns a parametrized rotation operator RΘ that rotates h to the direction of the desired token (red to
blue). The intervention results in a change in the forward pass in (a) that outputs the desired token t′6.

stand Transformer-based language models trace182

back to the seminal work by Elhage et al. (2021).183

Their framework established attention heads as one184

of the fundamental building blocks of language185

model interpretation. Subsequent studies have186

identified the functional roles of different atten-187

tion heads in pretrained models: induction heads as188

a primary mechanism of prefix matching (Olsson189

et al., 2022), circuitries of attention heads respon-190

sible for indirect object identification (Wang et al.,191

2023), neural pathways that implement chain-of-192

thought reasoning (Dutta et al., 2024), etc. Much193

relevant to our analysis, Lv et al. (2024) found that194

certain attention heads memorize the association195

between country names and their capitals. On a tan-196

gential line of investigation, Geiger et al. (2024) in-197

troduced the Distributed Alignment Search (DAS)198

framework for localizing interpretable features in199

subspaces of the neural representations. Mechanis-200

tic methods provide actionable insights that have201

led to non-traditional techniques to edit model be-202

havior. Elhage et al. (2021) experimented with key203

propagation to elicit induction heads (and thereby,204

prefix-matching ability) in single-layer attention-205

only Transformers. Meng et al. (2022) used causal206

tracing to locate factual associations in MLP neu-207

rons and proposed a gradient-free approach to edit208

factual recall patterns in pretrained language mod-209

els. Li et al. (2024a) identified attention head cir-210

cuitry that elicits toxic text generation in GPT-2;211

mean-ablation of these circuits is shown to reduce212

toxicity. Self-detoxification (Leong et al., 2023)213

identifies toxic generation direction in the inter-214

nal representation using trigger prompts and then215

rewrites in the opposite direction to reduce toxicity. 216

Wang et al. (2024a) formulated toxicity reduction 217

as a knowledge editing task that can permanently al- 218

ter toxic behaviors instead of suppressive interven- 219

tions like supervised fine-tuning or RLHF-based 220

alignment. Lamparth and Reuel (2024) localized 221

backdoor mechanisms (i.e., vulnerabilities against 222

adversarial prompt injections) in early-layer MLPs 223

and proposed a low-rank substitution to improve ro- 224

bustness against such injections. Vergara-Browne 225

et al. (2024) employed attribution patching tech- 226

niques to identify and remove certain singular val- 227

ues in the parameter matrices to improve perfor- 228

mance. 229

In comparison with prior intervention approaches, 230

our work bears two fundamental differences: (i) 231

TaRot does not necessitate task-specific localiza- 232

tion of neural behaviors; this significantly reduces 233

intense manual effort and risk of over-localization, 234

eliciting efficient, generalizable interventions; (ii) 235

TaRot is gradient-free, parameter-efficient, and re- 236

quires supervised samples in the order of standard 237

ICL; this poses TaRot as a practical alternative to 238

intense prompt-engineering. 239

3 Methodology 240

In this section, we demonstrate the role of attention 241

heads in memorizing token associations. Next, we 242

lay out the working principles of TaRot. 243

3.1 Attention heads as token-token maps 244

Inspired by Elhage et al. (2021), we dissect the 245

Transformer-based language models with the fol- 246

lowing assumptions: (i) each attention head reads 247
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from and writes to the residual stream indepen-248

dently in a linear fashion, and (ii) given that the249

attention heads utilize hidden representation of di-250

mensionality much smaller than the residual stream251

(i.e., for a model with 16 attention heads, each252

attention head uses 1/16-th of the dimension of253

the residual stream), they typical operate on small254

subspaces of the residual stream. This way, two255

attention heads can operate on two distinct sub-256

spaces and never interact with each other. These257

two assumptions allow us to interpret the work-258

ing of the attention heads meaningfully even while259

treating each head in isolation. We start with identi-260

fying what a single-head attention operation tends261

to learn in isolation.262

Following the standard terminology (Elhage263

et al., 2021), we represent the embedding and un-264

embedding matrices as WE ∈ Rd×V and WU ∈265

RV×d, where d and V are the dimensionality of266

the residual stream and the token space, respec-267

tively, the query, key, value, and output projection268

matrices denoted as WQ,WK ,WV ,WO ∈ Rd×d,269

respectively. Given a sequence of input tokens as270

one-hot column vectors T = {t1, · · · , tn}, the271

forward pass for single-layer attention-only Trans-272

former can be written as:273

t̂n+1 = WU

(
WEtn +WO

∑
i

an,iWV WEti

)
(1)

274

where an,i =
exp(t⊤nW⊤

E W⊤
Q RΘ,n−iWKWEti)∑

j exp(t⊤nW⊤
E W⊤

Q RΘ,n−jWKWEtj)
275

is the softmax-attention probability from source to-276

ken ti to destination token tn, and t̂n+1 ∈ RV277

is the logit of the predicted next token. Upon278

reparametrization of WUWOWV WE as WOV ,279

we can rewrite Equation 1 as280

t̂n+1 = WUWEtn +
∑
i

WOV ti (2)281

Note that WOV ∈ RV×V , denoted as OV-circuits282

by Elhage et al. (2021), maps a distribution over283

tokens to another distribution over tokens. If the284

true token is tn+1 with I(tn+1) donating its index285

(i.e., index of 1 in tn+1), then the typical language286

modeling loss can be calculated as:287

L(t̂n+1, tn+1) = − log

exp
(
t̂
(I(tn+1))
n+1

)
∑

k exp
(
t̂
(k)
n+1

)


(3)

288

We can compute the gradient dynamics of the OV- 289

circuit (with unit batch size and zero momentum) 290

using Equations 2 and 3 as follows: 291

W
(s+1)
OV = W

(s)
OV + ηtn+1

(∑
i

an,iti

)⊤

292

−η SoftMax (tn+1)

(∑
i

an,iti

)⊤

(4) 293

where W
(s)
OV and W

(s+1)
OV are the OV-circuit pa- 294

rameters before and after the s-th gradient update 295

step, respectively and η is the learning rate. The 296

positive incremental component in the right-hand 297

side of Equation 4 dictates that, when applied on a 298

attention-weighted linear combination of the con- 299

text tokens, OV-circuits learn to memorize a linear 300

combination of possible next tokens. 301

However, in a deep Transformer model with sev- 302

eral attention heads, MLP blocks and layer normal- 303

ization, we can not determine the exact token-token 304

map for the OV-circuits of attention head. More- 305

over, as Elhage et al. (2021) suggested, multiple 306

attention heads across different layers can construct 307

compositions, where the deeper heads use the out- 308

put of the shallower heads. Alternatively, we can 309

view each head as memorizing how to write in a 310

specific direction in the residual stream, given a 311

sequence of residual vectors—effectively acting as 312

a mini-LM. When pretrained on web-scale corpora, 313

these heads may memorize spurious token-token 314

associations that harm downstream performance or 315

introduce unsafe behaviors. 316

3.2 Editing model behavior via attention 317

rotation 318

A natural conclusion from the prior discussion 319

would be that, by suppressing undesired associ- 320

ations for certain attention heads, we can improve 321

task performance. However, multiple token as- 322

sociations are expected to be memorized in each 323

attention head in superposition since the number 324

of attention heads is way smaller than the potential 325

token associations present in the pretraining data — 326

one cannot selectively switch off one certain associ- 327

ation. Prior research in mechanistic interpretability 328

has shown that, although we can often localize 329

attention heads responsible for particular task, re- 330

moving the non-dominant attention heads does not 331

deliver the performance of the full model (Wang 332

et al., 2023; Dutta et al., 2024). 333
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Instead, one can rotate the output of the at-334

tention heads in order to maximize its alignment335

with rows of WU corresponding to certain tokens336

while near-orthogonalizing with certain undesired337

tokens. This way, the model behaviour can be338

edited without destroying the superposed associ-339

ations. Defining the complete space of d × d340

rotation matrices and optimizing them can be-341

come computationally challenging. Instead, we342

utilize the fact that any d× d orthonormal matrix343

is similar to a block-diagonal matrix RΘ, where344

Θ = {θ1, · · · , θd/2} ⊂ [0, 2π)
d
2 , defined as:345

Rd
Θ =


B(θ1) 0 · · · 0

0 B(θ2) · · · 0
...

...
. . .

...
0 0 · · · B(θd/2)

 (5)346

where347

B(θi) =

[
cos θi − sin θi
sin θi cos θi

]
348

Given the multi-head attention with H heads at349

layer l ∈ [L], where L is the total number of layers350

in the Transformer, defined as:351

Attnl(x
(l)
n |[x(l)

1 , · · · ,x(l)
n ]) =352

WO

H

∥
h=1

∑
i

a
(h,l)
n,i W

(h,l)
V x

(l)
i353

where ∥ is the concatenation operator, a(h,l)n,i and354

W
(h,l)
V denote the attention probability between355

source and destination residual streams at layer l356

x
(l)
i and x

(l)
n and the value projection matrix corre-357

sponding to the attention head with index h ∈ [H]358

at layer l, respectively; we define the rotated atten-359

tion as:360

RotAttnl(x
(l)
n |[x(l)

1 , · · · ,x(l)
n ]) =361

WOR
d
Θl

H

∥
h=1

∑
i

a
(h)
n,iW

(h)
V x

(l)
i (6)362

Note that the block-diagonal definition of Rd
Θ in363

Equation 5 implies that applying Rd
Θ on the con-364

catenated head outputs is equivalent to applying365

H-distinct Rd/H
Θ on each of the head outputs.366

Without prior knowledge of which attention367

heads are responsible for memorizing undesired368

token associations, we need to apply the interven-369

tion defined in Equation 6 on a set of attention370

blocks at layers l ∈ L̂ (see Section 4 for the choice 371

of the set L̂). Then, the intervened forward pass is 372

denoted as: 373

t̂n+1 = MRotated

(
{t1, · · · , tn}|ΘO,ΘR{Θl|l ∈ L̂}

)
(7)

374

where ΘO is the set of pretrained model parame- 375

ters, and ΘR are the parameters of rotations, and 376

MRotated denote the function representing the lan- 377

guage model upon the designed intervention. 378

3.3 Optimization of rotation parameters 379

With the rotational interventions defined, all that 380

we are left with is to optimize the rotational pa- 381

rameters. Let D := {Tj ,Yj |j ∈ [D]} be a set of 382

D supervised examples for a given task, with Tj , 383

Yj referring to the sequence of tokens correspond- 384

ing to the input and gold output, respectively. If 385

Yj = {yj} is a single label token, the cost function 386

to optimize becomes straightforward: 387

max
ΘR

∑
j

p
(
MRotated

(
Tj |ΘO,ΘR{Θl|l ∈ L̂}

)
= yj

)
(8) 388

where Θ ⊂ [0, 2π). For NLG tasks, maximizing 389

the aggregate probability of all the generated to- 390

kens can be a solution. However, the goal of our 391

rewiring method is to minimize undesired behav- 392

iors. When a model demonstrates such behaviors, 393

depending upon the task, not all tokens equally 394

correspond to the behavior under inspection. The 395

pretrained model is trained using teacher-forcing 396

and is generally able to generate grammatically cor- 397

rect responses. Hence, trying to align the model 398

generation to a single reference response does not 399

make much sense. Instead, we opt for a surro- 400

gate scoring function s : {Yj} → R that scores 401

the “desirability” of a generated response. We let 402

the model with rotation intervention to generate 403

a complete response given an input, compute the 404

score for the generated response, and seek to min- 405

imize the aggregate score across D. We imple- 406

ment Bayesian optimization (Snoek et al., 2012) 407

to solve the optimization problem depending upon 408

the task. However, standard Gaussian Process with 409

Matern kernel fails to scale to high dimension in- 410

put space (Li et al., 2024b). Instead, Infinite-width 411

Bayesian Neiral Networks (I-BNN), proposed by 412

Lee et al. (2017), has shown to scale effectively 413

with high-dimensional parameter space2. The I- 414

2Here the term “high dimension” is relatively used. Our
method seeks to optimize only the rotation configurations that
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BNN covariance function does not rely on Eu-415

clidean distance, enabling the Gaussian Process to416

model non-stationary functions, an advantage since417

rotational effects may vary across the configuration418

space.419

4 Experiment Setup420

Training setting. Dutta et al. (2024) previously421

found that token associations corresponding to pre-422

trained knowledge primarily resides in the initial423

half of the model. Since the rotational interven-424

tion designed in Equations 6 and 7 are primarily425

targeted towards undesired token associations ac-426

quired through pretraining, we restrict L to the427

initial half only. Therefore, the total number of pa-428

rameters to optimise becomes dL
4 . Since we want429

to optimise the rotation matrix for a particular task,430

only a small subset of training samples is required,431

i.e, 6 ≤ Dtraining ≤ 20.432

Models. Six different instruction-tuned models433

with varying size are used for all experiments:434

Qwen2-1.5B-Instruct (Yang et al., 2024), Phi-435

3-mini-4k-instruct (Abdin et al., 2024) (2.8 bil-436

lion parameter), Mistral-7B-Instruct-v0.1 (Jiang437

et al., 2023), Meta-Llama-3-8B-Instruct (Dubey438

et al., 2024), Qwen2.5-14B-Instruct (Team, 2024),439

and Qwen2.5-32B-Instruct (Team, 2024); we re-440

fer to these models as Qwen2-1.5B, Phi-3-mini,441

Mistral-7B, Llama-3-8B, Qwen2.5-14B, and442

Qwen2.5-32B, respectively.443

Tasks. We experiment with four different clas-444

sification (i.e., single token generation) tasks and445

two NLG tasks. Classification tasks used are as446

follows: AG News (Zhang et al., 2015), Entailed447

Polarity (Srivastava et al., 2022), Navigate (Sri-448

vastava et al., 2022), and Winowhy (BIG-bench449

authors, 2023). The generation tasks used include450

Imdb Positive Review (Maas et al., 2011), and-451

Detoxify (Gehman et al., 2020) Further details and452

examples of tasks are available in Appendix A.1453

Baselines. We compare TaRot with four differ-454

ent baselines: Base model, Eigen Pruning (Vergara-455

Browne et al., 2024), RED (Representation EDit-456

ing) (Wu et al., 2024), and Rescaling (additional457

Details in Appendix A.2).458

Evaluation metrics. For NLG tasks, Imdb and459

Detoxify, two different types of reward models are460

scales as O(Ld), which is substantially low-dimensional if
compared to the parameter space of the LM itself.

used. To calculate the fluency of the generated text, 461

GPT4 (Achiam et al., 2023) is used as an oracle. 462

For both the tasks, the average of fluency and the 463

score from the reward models are reported. Further 464

details are present in Appendix A.3 465

5 Results 466

Tables 1 and 2 summarize the performance of var- 467

ious methods across classification tasks in zero- 468

and 6-shot settings, respectively. Eigen Pruning 469

is included only in zero-shot comparisons, per its 470

original design. Table 3 presents results for NLG 471

tasks. 472

Consistent improvement with TaRot. Across 473

LLMs of varying sizes, TaRot consistently ranks 474

as the best or second-best method across all 475

tasks. Notably, it achieves relative gains in 476

task-wise average F1 scores of 13.7%, 1.1%, 477

8.9%, 13%, 3.2%, and 1.3% over the base ver- 478

sions of Qwen2-1.5B, Phi-3-mini, Mistral-7B, 479

Llama-3-8B, Qwen2.5-14B, and Qwen2.5-32B, 480

respectively, in the zero-shot setting (see Ta- 481

ble 1). The only exceptions are the Entailed 482

polarity task with Qwen2-1.5B and Winowhy 483

with Qwen2.5-32B, where TaRot slightly under- 484

performs (e.g., 0.98 F1 vs. perfect score). In 485

contrast, baseline methods like Eigen Pruning and 486

Rescaling suffer from inconsistency—while they 487

may improve performance in some cases, they of- 488

ten cause severe drops without any clear task- or 489

model-specific patterns. For instance, Eigen Prun- 490

ing improves Qwen2-1.5B on all but one task, yet 491

fails on all tasks with Phi-3-mini. 492

In-context examples vs. TaRot. Unlike Eigen 493

Pruning (or even, traditional fine-tuning), TaRot is 494

optimized with a mixture of M-shot inference to 495

avoid zero-shot bias. Consequently, we can observe 496

the improvement over the base model achieved via 497

TaRot while provided with in-context examples, ex- 498

cept with Mistral-7B on AG News and Navigate 499

(c.f. Table 2). Specifically, we observe improve- 500

ments with Qwen2-1.5B on AG News, Entailed 501

Polarity, and Winowhy; and with Phi-3-mini, 502

Llama-3-8B, Qwen 2.5 14B, and Qwen 2.5 32B 503

across all tasks. For Mistral-7B, gains are limited 504

to Entailed Polarity and Winowhy. 505

Importance of rotation over rescaling atten- 506

tion heads. Comparing TaRot with the rotation- 507

free Rescaling approach highlights key differences 508

in intervention effectiveness. Rescaling is often 509

brittle, with no consistent performance pattern. For 510
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Method AG News Entailed polarity Navigate Winowhy Avg.

Qwen2-1.5B

Base 0.691 1.000 0.173 0.389 0.563
Eigen Pruning 0.720 0.919 0.290 0.415 0.586
Rescaling 0.796 0.719 0.214 0.458 0.547
TaRot 0.778 0.980 0.515 0.547 0.705

Phi-3-mini

Base 0.729 1.000 0.470 0.588 0.697
Eigen Pruning 0.519 0.878 0.392 0.099 0.472
Rescaling 0.739 0.921 0.273 0.629 0.641
TaRot 0.740 1.000 0.491 0.600 0.708

Mistral-7B
Base 0.653 0.762 0.140 0.618 0.543
Rescaling 0.437 0.896 0.550 0.683 0.642
TaRot 0.721 0.823 0.216 0.767 0.632

Llama-3-8B

Base 0.662 0.980 0.155 0.568 0.591
RED 0.688 0.980 0.957 0.236 0.715
Rescaling 0.636 0.544 0.550 0.255 0.496
TaRot 0.718 1.000 0.464 0.701 0.721

Qwen 2.5 14B
Base 0.753 0.763 0.424 0.723 0.666
Rescaling 0.738 0.517 0.463 0.506 0.556
TaRot 0.754 0.826 0.480 0.732 0.698

Qwen 2.5 32B
Base 0.808 0.901 0.717 0.788 0.803
Rescaling 0.803 0.892 0.625 0.593 0.728
TaRot 0.824 0.927 0.734 0.767 0.813

Table 1: Overall performance in zero-shot regime. Performance of methods with different LLMs in terms of
F1 scores are presented across different tasks and on average. Bold-faced number denote the best method. For
Mistral-7B, Llama-3-8B, Qwen 2.5 14B and Qwen 2.5 32B, Eigen Pruning resulted in OOM and RED codebase
is only compatible with LLaMA architecture. Further details in Appendix A.5

Method AG News Entailed polarity Navigate Winowhy Avg.

Qwen2-1.5B
Base 0.680 0.902 0.173 0.393 0.537
Rescaling 0.662 0.765 0.314 0.576 0.579
TaRot 0.695 0.902 0.494 0.544 0.659

Phi-3-mini
Base 0.745 0.974 0.440 0.604 0.691
Rescaling 0.732 0.980 0.196 0.562 0.618
TaRot 0.764 0.991 0.494 0.647 0.724

Mistral-7B
Base 0.691 0.921 0.236 0.790 0.660
Rescaling 0.746 0.698 0.196 0.580 0.555
TaRot 0.684 0.960 0.196 0.790 0.658

Llama-3-8B
Base 0.524 0.950 0.645 0.651 0.693
Rescaling 0.444 0.702 0.196 0.577 0.480
TaRot 0.638 1.000 0.727 0.761 0.782

Qwen 2.5 14B
Base 0.749 0.868 0.527 0.691 0.709
Rescaling 0.739 0.807 0.362 0.422 0.583
TaRot 0.752 0.888 0.605 0.759 0.751

Qwen 2.5 32B
Base 0.877 0.950 0.791 0.647 0.816
Rescaling 0.844 0.941 0.715 0.674 0.793
TaRot 0.882 0.966 0.802 0.688 0.835

Table 2: Overall performance in few-shot regime. Performance of methods with different LLMs in terms of F1
scores are presented across different tasks (and on average). Bold-faced numbers denote the best methods.

Method Imdb Toxicity

Qwen2-1.5B
Base 0.677 0.566
Rescale 0.252 0.161
TaRot 0.708 0.581

Phi-3-mini
Base 0.707 0.536
Rescale 0.686 0.416
TaRot 0.749 0.564

Llama-3-8B
Base 0.708 0.571
Rescale 0.669 0.566
TaRot 0.729 0.579

Table 3: Performance comparison on NLG tasks.
Performance of Imdb review and toxicity task. The
reported score are the average of the fluency and reward
scores. A higher score indicates better performance on
both NLG tasks.

instance, in zero-shot Entailed Polarity prediction, 511

Rescaling significantly outperforms both the base 512

model and TaRot on Mistral-7B (Table 1), but 513

fails to scale in the few-shot setting (Table 2) and 514

deteriorates performance across most other mod- 515

els. Two factors explain this: (1) As discussed 516

in Section 3.2, attention head token associations 517

exist in superposed states, making direct scaling 518

or ablation unreliable; (2) large fluctuations intro- 519

duced by Rescaling hinder optimization. While 520

Rescaling requires fewer parameters—H per layer 521

vs. d
2 in TaRot —the difficulty arises from the pol- 522

ysemantic nature of OV-circuits. In some cases, 523

downscaling all associations in a head helps, likely 524
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Method AG News Average

Qwen2-1.5B
SFT 0.603 0.362
TaRot 0.655 0.447

Phi-3-mini
SFT 0.677 0.745
TaRot 0.738 0.614

Llama-3-8B
SFT 0.693 0.661
TaRot 0.744 0.520

Table 4: Generalizaibility of TaRot. Performance of
supervised fine-tuning (SFT) and TaRot when trained
on the AG News dataset and evaluated on both AG
News and the average of two other tasks (Winowhy and
Navigate).

due to non-interacting associations, but this varies525

unpredictably across tasks and models. In contrast,526

TaRot ’s rotational alignment offers fine-grained527

control and robust, consistent performance. Fu-528

ture work can develop a formal theoretical frame-529

work to directly compare rotation-based (TaRot)530

and rescaling-based interventions, potentially by531

analyzing their effects on the residual stream. In532

case of NLG tasks, the combined score of the in-533

dividual task specific reward model and fluency,534

is higher for both the tasks across the models.We535

believe that combining reward model and fluency536

scores provides a more comprehensive evaluation –537

the reward model captures task alignment, and flu-538

ency ensures the outputs remain coherent and natu-539

ral. This combination better reflects overall perfor-540

mance (details in Appendix A.4). Table 3 presents541

TaRot’s results on IMDb and toxicity tasks, where542

it consistently outperforms both the base model543

and the rescaling approach. The reported scores544

reflect the combined metric, with higher values545

indicating better performance. On average, the per-546

formance of TaRot is improved on IMDb by 3.1%547

over the base model and 1.7% on toxicity tasks.548

However, on observing fluency and reward score549

separately. we see that solely in terms of reward550

values, Rescaling performs better than TaRot, and551

both interventions perform better than the original552

model. However, TaRot delivers more fluent re-553

sponse in terms of evaluation by GPT-4, pointing554

towards the more drastic edits of rescaling as com-555

pared to TaRot (see Appendix A.4 for complete556

results).557

Generalizability of TaRot. TaRot applies fine558

grained intervention to the model attention heads,559

without altering the performance on remaining560

tasks. To show this, we perform supervised fine tun-561

ing(SFT), keeping the size of the train set similar to562

that of TaRot. We choose AG news as the train task563

as this is the only multi-class classification prob-564

lem. Table 4 compares the performance of SFT565

and TaRot trained on the AG News dataset across 566

three different models: Qwen2-1.5B, Phi-3-mini, 567

and Llama-3-8B. The results indicate that TaRot 568

outperforms SFT on the trained tasks. We observe 569

strong generalization in smaller models but weaker 570

gains in larger ones (e.g., LLaMA-3-8B), due to 571

two main factors: (1) TaRot removes spurious fea- 572

tures but cannot inject new task-specific or syntac- 573

tic knowledge; (2) the high-dimensional rotation 574

space in larger models makes optimization harder. 575

Moreover, since all tasks are classification-based, 576

SFT, being explicitly task-driven, offers stronger 577

supervision, reducing TaRot’s relative impact at 578

scale. This explains the performance boost from 579

SFT even on unseen tasks. Future work can fo- 580

cus on enhancing TaRot ’s robustness for larger 581

models. 582

Ablation studies. To assess the robustness of 583

our approach, we conduct two ablation studies. (1) 584

Hyperparameter L: Using the Qwen 2.5-14B 585

model, we apply the rotation transformation on 586

varying layers of the model by changing the hyper- 587

parameter L. Results show that applying Bayesian 588

optimization to the initial layers yields the best 589

performance with minimal parameters (see Ap- 590

pendix A.6.1 for details). (2) System Prompt: To 591

guide the model towards accurate outputs, we use a 592

fixed system prompt per task. We evaluate TaRot’s 593

robustness to prompt variation on AG News us- 594

ing Qwen 2.5-14B with three different prompts. 595

Despite fluctuations in base model performance, 596

TaRot consistently outperforms it and reduces vari- 597

ance. Full results are in Appendix A.6.2. 598

6 Conclusion 599

In this work, we proposed TaRot, a novel, gradient- 600

free, mechanistic intervention method for editing 601

language models. TaRot builds on observations 602

from implicit gradient descent bias of causal atten- 603

tion and applies parametrized rotation on the at- 604

tention output to minimize the effects of undesired 605

memorizations, doing away with effort-intensive 606

localization steps and task-specificity of prior inter- 607

vention techniques. Using Bayesian optimization 608

of the rotational parameters, TaRot renders as data- 609

efficient as in-context learning; yet, across a variety 610

of tasks and language models of different sizes and 611

families, robust improvement is observed. In a nut- 612

shell, TaRot can pave the path for general-purpose 613

model editing methods in the future beyond super- 614

vised fine-tuning. 615
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7 Limitations and Ethical Considerations616

TaRot is designed to perform when the model has617

a generalization ability that is suppressed by noisy618

memorization. In that sense, it is limited by the619

boundaries of pretraining and cannot be used for620

domain adaptation. Fundamentally, it is not ap-621

plicable to proprietary models. Finally, similar to622

any intervention technique, TaRot can be used in623

reverse to bypass alignment tuning and reinforce624

undesired behaviors. Future work can be to address625

the potential misuse of TaRot for bypassing align-626

ment. One can develop detection mechanisms to627

identify whether TaRot or similar transformations628

have been applied to manipulate a model’s behavior.629

Incorporating regularization strategies that penal-630

ize rotations leading to toxic, biased, or otherwise631

misaligned generations would further ensure that632

the optimization process remains consistent with633

ethical AI principles. These directions can help mit-634

igate potential misuse of TaRot and similar model635

editing techniques.636
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A Appendix 915

A.1 Task Details 916

We experimented with five different classification 917

(i.e., single token generation) tasks and two NLG 918

tasks. Below are the details of the tasks with their 919

prompt templates used: 920

AG News: The goal of the task is to categories 921

new articles into one of the four predefined cate- 922

gories. 923

• World – News about global events, interna- 924

tional politics, and worldwide issues. 925

• Sports – News related to sporting events, ath- 926

letes, competitions, and sports industry devel- 927

opments. 928

• Business - News focusing on the economy, 929

financial markets, companies, and business 930

trends. 931

• Science & Technology – News about techno- 932

logical advancements, scientific discoveries, 933

and research. 934

System prompt used for AG News task: You 935

are a news classification model. Your task is to 936

classify news articles into one of the following four 937

categories: World, Sports, Business, or Science. 938

You should respond with only the category name 939

and no other characters. 940
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Entailed polarity: The Entailed Polarity task is941

a yes/no question-answering task (Srivastava et al.,942

2022). Given a fact and a question, the goal is to de-943

termine whether the fact entails a yes or no answer944

to the question. The task tests the model’s ability945

to infer whether the factual statement logically sup-946

ports the answer in terms of polarity (positive or947

negative). Example:948

• Fact: “Ed remembered to go.”949

• Question: “Did Ed go?”950

• Answer: “Yes”951

System prompt used for Entailed Polarity952

task: Follow the instructions below and answer953

with Yes / No.954

Navigate: The objective is to follow a set of di-955

rectional or spatial instructions and determine if,956

after following those steps, the entity returns to the957

starting point. The answer is either True or False,958

depending on whether the instructions guide the959

entity back to where they started. Example:960

• Instruction: “If you follow these instructions,961

do you return to the starting point?”962

• Steps: “Always face forward.", “Take 7 steps963

left.", “Take 2 steps backward.", “Take 7 steps964

backward.", “Take 7 steps backward.", “Take965

3 steps forward."966

• Question: “Do you return to the starting967

point?"968

• Answer: False969

System prompt used for the task: Answer the970

following question and output only True/False.971

Winowhy: This task (Srivastava et al., 2022) re-972

quires models to identify the correct reasons be-973

hind the answers to the Winograd Schema Chal-974

lenges(Zhang et al., 2020).975

This task is based on the original Wino-976

grad Schema Challenge (WSC) dataset and 4095977

WinoWhy reasons (15 for each WSC question) that978

could justify the pronoun coreference choices in979

WSC. The model is presented with a passage that980

contains a pronoun and an explanation of which981

word or entity the pronoun refers to. The model’s982

job is to assess whether the explanation given is983

correct or incorrect based on the context of the984

passage.985

• Text: “Fred is the only man alive who still 986

remembers my father as an infant. When Fred 987

first saw my father, he was twelve years old. 988

The ’he’ refers to Fred because, in his own 989

words, he is ‘a very odd man’.” 990

• Question: “The above reasoning is:” 991

• Answer: “Incorrect". 992

System prompt used for Winowhy task: Fol- 993

low the instructions and output Correct/Incorrect. 994

Imdb: Tune model to generate positive movie re- 995

views using a BERT (Kenton and Toutanova, 2019) 996

sentiment classifier as a reward function. The re- 997

ward model evaluates the sentiment of the gener- 998

ated reviews, and the goal is to maximize the likeli- 999

hood of generating reviews classified as positive. 1000

• Dataset Used: imdb (Maas et al., 2011) 1001

• Reward Model: lvwerra/distilbert-imdb, 1002

a fine-tuned version of distilbert-base- 1003

uncased (Sanh, 2019) on the imdb dataset. 1004

Detoxify: Involves reducing the toxicity of lan- 1005

guage model outputs. The toxicity evaluation is 1006

done using a classifier, such as facebook/roberta- 1007

hate-speech-dynabench-r4-target, which distin- 1008

guishes between “neutral" and “toxic" text. The 1009

classifier provides feedback (reward or penalty) 1010

based on the toxicity of the model’s output, guiding 1011

the model to produce less toxic text. The dataset 1012

used is allenai/real-toxicity-prompts (Gehman 1013

et al., 2020). 1014

A.2 Experimental Setup Details 1015

Bayesian optimization. We use I-BNN with 12 1016

hidden layers, and LogExpectedImprovement as 1017

the acquisition function. We use a mixture of M - 1018

shots generation to avoid biasing the intervention, 1019

with M chosen randomly from 0 to 6. Each task 1020

was optimized for 150 iterations. 1021

Baselines. We compare TaRot with four different 1022

baselines: (1) Base model denotes the pretrained 1023

LLM (zero-shot or few-shot) without any interven- 1024

tions. (2) Eigen Pruning (Vergara-Browne et al., 1025

2024) removes singular values from weight ma- 1026

trices in an LLM to improve its performance in 1027

a particular task. (3) RED (Representation EDit- 1028

ing) (Wu et al., 2024), which modifies the repre- 1029

sentations generated at some layers through the 1030

application of scaling and biasing operations. To 1031
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have a fair comparison, we also use a maximum1032

of 20 prompts in its training phase. (4) Rescaling1033

ablates attention heads by scaling their output in1034

the unit interval instead of rotating their outputs;1035

we use the same optimization technique to figure1036

out the optimal scaling configuration.1037

Evaluation metrics. For Imdb positive1038

review tasks, a sentiment analysis reward1039

model, lvwerra/distilbert-imdb3 is used.1040

Roberta-hate-speech-dynabench-r4-target41041

is used for detoxification. For fluency1042

GPT4 (Achiam et al., 2023) is used as an1043

oracle to assign a value between 1 and 5, 1 being1044

the least and 5 being the highest.1045

A.3 Fluency1046

To evaluate the fluency of a given text, the follow-1047

ing prompt was used with GPT4 (Achiam et al.,1048

2023):1049

System prompt used: Please rate the fluency of1050

the following text on a scale of 1 to 5, where 1 is1051

least fluent and 5 is most fluent: text. Provide only1052

the number.1053

where text is the output from the model.1054

A.4 NLG tasks performance1055

Table 3 presents the performance of TaRot on1056

IMDB sentiment classification and toxicity detec-1057

tion, where it consistently outperforms both the1058

base model and rescaling-based methods. The ta-1059

ble reports a combined score of fluency and reward1060

model outputs, where a higher score indicates bet-1061

ter performance for both tasks.1062

A.4.1 Combing score of reward mode and1063

fluency1064

Evaluation Setup of the two NLG tasks and fluency1065

is described below:1066

• Fluency: Assessed using GPT-4, which as-1067

signs a score from 1 to 5 (where 1 = least1068

fluent and 5 = most fluent).1069

• IMDB Sentiment Reward Model: We use1070

lvwerra/distilbert-imdb, where higher scores1071

indicate better sentiment classification.1072

• Toxicity Reward Model: We use RoBERTa-1073

hate-speech-dynabench-r4-target, where1074

higher scores indicate higher toxicity.1075

3https://huggingface.co/lvwerra/
distilbert-imdb

4https://huggingface.co/facebook/
roberta-hate-speech-dynabench-r4-target

Method Imdb Detoxify
Reward Fluency Reward Fluency

Qwen2-1.5B
Base -0.80 —- 4.50 —-
Rescaling 0.72 1.25 2.29 1.26
TaRot -0.25 2.24 4.01 4.56

Mistral-7B
Base -0.05 —- 4.31 —-
Rescaling 0.19 2.12 3.18 4.12
TaRot 0.16 2.5 4.01 4.30

Llama-3-8B
Base -0.31 —- 4.05 —-
Rescaling 0.28 2.56 3.18 4.76
TaRot .002 2.38 3.90 4.24

Table 5: Performance comparison on NLG tasks.

The scoring methodology of the NLG tasks and 1076

fluency combined is described below: 1077

• IMDB + Fluency: Both scores were normal- 1078

ized to [0,1] and summed to obtain the final 1079

score. 1080

• Toxicity + Fluency: The toxicity score was 1081

normalized and inverted (so that lower toxicity 1082

results in a higher score), then combined with 1083

fluency. 1084

Thus, in both cases, a higher final score reflects 1085

improved overall performance (i.e., better fluency 1086

and alignment with task objectives). The complete 1087

breakdown of the toxicity and fleuncy of the NLG 1088

tasks is shown in Table 5. 1089

A.5 Additional baselines 1090

Eigenpruning and RED were used as baselines in 1091

our study. Below, we outline the key challenges 1092

that prevented us from incorporating additional 1093

baselines: 1094

Eigenpruning: 1095

• Eigenpruning requires fine-tuning the model 1096

before identifying circuits, which is a compu- 1097

tationally expensive process. 1098

• Given our resource constraints, we were un- 1099

able to perform the necessary fine-tuning steps 1100

required for a fair comparison. 1101

RED: 1102

• The methodology and code for RED have only 1103

been demonstrated on GPT-2 and LLaMA 1104

models. 1105

• The publicly available codebase lacks imple- 1106

mentation details for extending RED to other 1107

model architectures. 1108

13

https://huggingface.co/lvwerra/distilbert-imdb
https://huggingface.co/lvwerra/distilbert-imdb
https://huggingface.co/facebook/roberta-hate-speech-dynabench-r4-target
https://huggingface.co/facebook/roberta-hate-speech-dynabench-r4-target


Method Layer AG News Navigate Winowhy
Base NA 0.753 0.424 0.723
TaRot 0 - 6 0.752 0.45 0.723
TaRot 0 - 12 0.757 0.432 0.715
TaRot 0 - 24 0.754 0.480 0.732
TaRot 0 - 32 0.743 0.439 0.712

Table 6: Zero Shot Performance with TaRot applied on
different layers.

Method Layer AG News Navigate Winowhy
Base NA 0.749 0.527 0.691
TaRot 0 - 6 0.755 0.549 0.733
TaRot 0 - 12 0.75 0.556 0.73
TaRot 0 - 24 0.752 0.605 0.759
TaRot 0 - 36 0.757 0.601 0.735

Table 7: Few Shot Performance with TaRot applied on
different layers.

As a result, we were only able to run RED on the1109

LLaMA model for comparison.1110

A.6 Ablation Study1111

A.6.1 Hyperparameter L1112

Previous studies indicate that token associations1113

related to pretrained knowledge primarily reside in1114

the first half of the model. Based on this insight,1115

we applied the rotation transformation only to the1116

first half of the model. However, we acknowledge1117

that an ablation study on this hyperparameter is1118

necessary to fully assess the robustness of our1119

approach.1120

To address this, we conducted an ablation study1121

on the Qwen 2.5-14B model, which has 48 layers.1122

We tested different layer ranges for applying the1123

rotation matrix: 0-6, 0-12, 0-24, and 0-36. The1124

tables below report zero-shot and few-shot F11125

scores across three tasks: AG News, Navigate, and1126

Winowhy. Table 6, 7 shows the performance zero1127

shot and few shot performance respectively.1128

1129

Key Observations1130

• For Navigate and Winowhy, the best perfor-1131

mance was achieved when applying TaRot to1132

the first 24 layers (0-24).1133

• Ideally, 0-32 layers should also perform well,1134

but the increased parameter space dimension-1135

ality makes it harder for Bayesian optimiza-1136

tion to converge effectively.1137

• For task AG news we see comparable perfor-1138

mance of TaRot optimized on the first half of1139

the model with the best performing setting.1140

Method Prompt 1 Prompt 2 Prompt 3
Base (Zero Shot) 0.724 0.815 0.73
TaRot (Zero Shot) 0.772 0.832 0.768
Base (Few Shot) 0.67 0.792 0.697
TaRot (Few Shot) 0.7 0.792 0.715

Table 8: Ablation of different prompt used for
Qwen/Qwen2-1.5B-Instruct on AG News Tasks.

Therefore we see that applying optimization on 1141

the first half provides with us with the best perfor- 1142

mance. 1143

A.6.2 System Prompt 1144

We tested the model with three semantically equiva- 1145

lent but syntactically different prompts. TaRot was 1146

optimized on each of these prompts separately to 1147

evaluate its effectiveness in mitigating performance 1148

fluctuations. 1149

Prompt 1: 1150

System prompt: You specialize in classifying news 1151

articles into distinct categories. Given a news arti- 1152

cle, determine whether it belongs to World, Sports, 1153

Business, or Science. Only provide the category 1154

name as a response. 1155

Question: News Content: <review> 1156

Query: What is the most suitable category for this 1157

news piece? 1158

Prompt 2: 1159

System prompt: You are an expert in news topic 1160

classification. Your role is to analyze articles and 1161

assign them to one of these four categories: Sports, 1162

World, Business, or Science. Do not add extra 1163

text—respond with just the category name. 1164

Question: Text: <review> 1165

Question: Which of the four categories (World, 1166

Sports, Business, or Science) does this article be- 1167

long to? 1168

Prompt 3: 1169

System prompt: Your function is to categorize news 1170

articles into one of four groups: World, Sports, 1171

Business, or Science. Given a news article, de- 1172

termine its category and respond using only the 1173

category name. 1174

Question: News Article: <review> 1175

Task: Identify the correct category for this article. 1176

Table 8 shows the performance of TaRot in 1177

zero and few shot settings compared with the base 1178

model. The model used is Qwen/Qwen2-1.5B- 1179

Instruct and the dataset is Ag News. The results 1180

demonstrate that the base model exhibits consid- 1181

erable fluctuation across different prompts, indi- 1182

cating a high sensitivity to prompt phrasing. In 1183
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contrast, TaRot consistently outperforms the base1184

model across all prompt settings, showcasing its1185

reliability and robustness. This consistency high-1186

lights TaRot’s ability to generalize better and re-1187

main stable despite variations in input structure.1188

Notably, while the base model suffers a significant1189

absolute drop of 0.145 in few-shot performance1190

between prompts (from 0.815 to 0.67), TaRot sub-1191

stantially minimizes such performance degradation.1192

This suggests that TaRot enhances the model’s re-1193

silience to prompt perturbations, reducing brittle-1194

ness and improving reliability. Furthermore, by1195

demonstrating improved performance across var-1196

ied prompt templates, the experiment effectively1197

addresses the reviewer’s concern—confirming that1198

TaRot’s improvements are not limited to a single1199

prompt instance but instead generalize across dif-1200

ferent prompt structures.1201

A.7 System Prompt Used1202

For each system custom system prompts were used1203

to help guide the model to output the final answer1204

directly. We ensured that system prompts were only1205

used when necessary—for instance, they were not1206

applied in tasks like Entailed Polarity, where the1207

model naturally follows the desired output struc-1208

ture, i.e output the final answer directly. The system1209

prompt used for each tasks are as follows:1210

• Task Navigate: Prompt: “If you follow these1211

instructions, do you return to the starting1212

point?”1213

• Task Entailed Polarity: Prompt: “Given a1214

fact, answer the following question with a yes1215

or a no.”1216

• Task Winowhy: Prompt: “Please answer the1217

following questions about which words cer-1218

tain pronouns refer to.”1219

• Task AG News: Prompt: “News Article: re-1220

view: Question: What category does this news1221

article belong to?”1222
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