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ABSTRACT

We analyze two variants of Local Gradient Descent applied to distributed logistic
regression with heterogeneous, separable data and show convergence at the rate
O(1/KR) for K local steps and sufficiently large R communication rounds. In
contrast, all existing convergence guarantees for Local GD applied to any prob-
lem are at least Ω(1/R), meaning they fail to show the benefit of local updates.
The key to our improved guarantee is showing progress on the logistic regression
objective when using a large stepsize η ≫ 1/K, whereas prior analysis depends
on η ≤ 1/K.

1 INTRODUCTION

In the practice of distributed optimization, local model updates are crucial for reducing communica-
tion cost. The standard distributed optimization algorithm is Local SGD (a.k.a., FedAvg) (McMahan
et al., 2017; Stich, 2019; Lin et al., 2019; Koloskova et al., 2020; Patel et al., 2024), in which each
communication round consists of K SGD updates to each client model, followed by an aggregation
step where local models are averaged. A practitioner using Local SGD can decrease the number of
communication rounds R while maintaining the same computational cost (KR sequential gradient
computations) by increasing the number of local steps K, accelerating optimization when commu-
nication is expensive, such as in federated learning (McMahan et al., 2017; Kairouz et al., 2021).

However, recent work characterizes the complexity of Local SGD for optimizing smooth, convex ob-
jectives under various heterogeneity assumptions (Woodworth et al., 2020a; Koloskova et al., 2020;
Glasgow et al., 2022; Patel et al., 2024), showing that the worst-case communication complexity
cannot be improved by increasing K: the dominating terms of the convergence rate do not depend
on K. Even when the algorithm can access full gradients, increasing local steps does not decrease
the number of rounds required to find an ϵ-approximate solution, according to these guarantees.

Crucially, these complexity results should be interpreted in the context of the assumptions on which
they rely: these works consider the worst-case over large classes of problems satisfying convexity,
smoothness, and various heterogeneity assumptions. Therefore, the worst-case complexity may not
be representative for particular problems that are relevant in practice. Many works (Haddadpour &
Mahdavi, 2019; Woodworth et al., 2020b; Koloskova et al., 2020; Glasgow et al., 2022; Wang et al.,
2022; Patel et al., 2023; 2024) approach this by modifying the problem class, in particular by trying
to find the “right” heterogeneity assumptions that reflect objectives for practically relevant problems,
where local steps are observed to help. We take an orthogonal approach, by directly considering a
distributed version of a classical machine learning problem. The central question of our paper is:

Can local steps provably accelerate Local GD for distributed logistic regression?

According to empirical observation (e.g., Figure 1 in Woodworth et al. (2020b)), the answer may
be positive. However, existing theory is insufficient to demonstrate such an acceleration, even for
this simple case involving deterministic gradients and a linear model. The existing guarantees (see
Section 3.2) require a small learning rate η ≤ 1/K, so that increasing the number of local steps
is counteracted by decreasing the learning rate, leading to no change in the dominating term of the
convergence rate. The best convergence rate from baseline analysis is Õ(1/(γ2R)), where γ is the
maximum margin of the combined dataset (see Corollary 2).
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Table 1: Communication rounds to find an ϵ-approximate solution for distributed logistic regression.
K is the number of local steps, M is the number of clients, and γ is the maximum margin of the
combined dataset. (a) these rates are derived by extending the results of Woodworth et al. (2020b);
Koloskova et al. (2020) to remove the assumption of existence of a global minimum (see Section
3.2). (b) this result holds for the case of M = 2 and n = 1 data point per client. (c) C, ϕ, and β
depend on the dataset, and α = 1/

√
log(1/(Cϵ)). Notice that α→ 0 at a logarithmic rate as ϵ→ 0.

Fixed K Best K

Local GD
(Woodworth et al., 2020b)(a) Õ

(
1

γ2ϵ3/2

)
Õ
(

1
γ2ϵ3/2

)
Local GD

(Koloskova et al., 2020)(a) Õ
(

1
γ2ϵ +

1
γϵ3/4

)
Õ
(

1
γ2ϵ +

1
γϵ3/4

)
Two-Stage Local GD

(Theorem 1) Õ
(

KM
γ4 + 1

γ2Kϵ

)
Õ
(

M1/2

γ3ϵ1/2

)
Local Gradient Flow

(Theorem 2)(b) Õ
(
Cϕ(ηK)β log(ηK) + ϕ

ηKϵ

)(c)
Õ
(

ϕCα

ϵ1−α

)(c)

Contributions. In this paper, we demonstrate that for distributed logistic regression, local steps
can accelerate a two-stage variant of Local GD that uses learning rate warmup (Algorithm 2). Our
analysis leverages properties of the logistic loss function, particularly that the “smoothness constant”
of the loss decreases with the loss itself. This allows us to use a large learning rate after a warmup
stage, and we can avoid the requirement η ≤ 1/K. After warming up for O(KM/γ4) rounds, the
algorithm converges at a rate of O(1/(γ2KR)). This result provides a guarantee for the particular
problem of logistic regression, but it also suggests a possible insight for distributed optimization in
general: the observed benefit of local steps could be due to properties of the loss landscape, rather
than to similarity of client objectives. See Section 7 for further discussion of this point.

Additionally, we provide preliminary results for a variant of Local GD with a constant learning
rate which uses gradient flow for local client updates, which we refer to as Local Gradient Flow
(Algorithm 3). In the special case with M = 2 clients and n = 1 data points per client, we use a
novel Lyapunov analysis to show that after sufficiently many rounds, Local GF converges at a rate
of Õ(1/KR) (ignoring constants depending on the dataset).

Organization. The rest of the paper is structured as follows. Related work and preliminaries are
discussed in Sections 2 and 3, respectively. Our main result, the convergence of Two-Stage Local
GD, is presented in Section 4, while our analysis of Local GF is presented in Section 5. Section 6
contains experimental results, and we conclude with a discussion in Section 7.

Notation. ∥A∥ denotes the spectral norm for A ∈ Rd×d, and [n] := {1, . . . , n}. Beyond the
abstract, O,Ω and Θ only omit universal constants unless explicitly stated. Similarly, Õ, Ω̃, and Θ̃
only omit universal constants and logarithmic terms.

2 RELATED WORK

Distributed Convex Optimization. Distributed convex optimization has been an active area of re-
search for more than a decade, with early work that leverages parallelization for learning problems
(Mcdonald et al., 2009; McDonald et al., 2010; Zinkevich et al., 2010; Dekel et al., 2012; Balcan
et al., 2012; Shamir & Srebro, 2014). The concept of federated learning and the FedAvg algorithm
were proposed by McMahan et al. (2017), which focuses on the machine learning setting where
many clients collaboratively train a model without uploading their data to maintain privacy. The
convergence analysis of FedAvg (a.k.a., local SGD) in the convex optimization setting was proved
by Stich (2018); Woodworth et al. (2020a;b); Khaled et al. (2020); Koloskova et al. (2020); Glas-
gow et al. (2022). For a comprehensive survey for federated learning and distributed optimization
algorithms, we refer the readers to Kairouz et al. (2019); Wang et al. (2021) and references therein.
The lower bounds of distributed convex optimization were studied in Zhang et al. (2013); Arjevani
& Shamir (2015); Woodworth et al. (2018; 2021); Glasgow et al. (2022); Patel et al. (2024).
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Algorithm 1 Local GD

Input: Initialization w̄0 ∈ Rd, rounds R ∈ N, local steps K ∈ N, learning rate η > 0, averaging
weights {αr,k}r,k

1: for r = 0, 1, . . . , R− 1 do
2: for m ∈ [M ] do
3: wm

r,0 ← w̄r

4: for k = 0, . . . ,K − 1 do
5: wm

r,k+1 ← wm
r,k − η∇Fm(wm

r,k)
6: end for
7: end for
8: w̄r+1 ← 1

M

∑M
m=1 w

m
r,K

9: end for
10: return ŵ =

∑R−1
r=0

∑K−1
k=0 αr,k

(
1
M

∑M
m=1 w

m
r,k

)

Local SGD and Other Baselines. There are several alternative algorithms for local SGD under var-
ious settings, including minibatch SGD (Dekel et al., 2012), accelerated minibatch SGD (Ghadimi
& Lan, 2012), SCAFFOLD (Karimireddy et al., 2020), SlowcalSGD (Levy, 2023), federated ac-
celerated SGD (Yuan & Ma, 2020). With convex, smooth, heterogeneous objectives, Patel et al.
(2024) show that the existing analysis of local SGD (Koloskova et al., 2020; Glasgow et al., 2022)
achieves the lower bound of local SGD, and that accelerated minibatch SGD is minimax optimal.
This means that local SGD does not benefit from local updates in the worst case. Other algorithms
can provably benefit from local steps. Levy (2023) show that SlowcalSGD provably benefits from
local updates and is better than minibatch SGD and local SGD. Mishchenko et al. (2022) show that
the ProxSkip algorithm can lead to communication acceleration by local gradient steps for strongly
convex functions with deterministic gradient oracles and closed-form proximal mapping.

Gradient Methods for Logistic Regression. Early work studied the implicit bias of GD with small
stepsize for logistic regression and exponentially-tailed loss functions in general (Soudry et al.,
2018; Ji & Telgarsky, 2018). In the context of logistic regression, Gunasekar et al. (2018) studied
the implicit bias of generic optimization methods. Ji et al. (2021) studied a momentum-based method
for fast margin maximization. Nacson et al. (2019) studied the implicit bias of SGD. Recently, Wu
et al. (2024b;a) studied the implicit bias and convergence rate of GD for logistic regression when
the learning rate is large (i.e., the Edge-of-Stability regime (Cohen et al., 2021)). Logistic regression
has also been studied under the self-concordance condition (Nesterov, 2013; Bach, 2014), which
resembles the properties of the logistic loss function that we use for our analysis (see Section 4.2),
although we do not directly use self-concordance.

3 PRELIMINARIES

3.1 PROBLEM SETUP

We consider a distributed version of the linearly separable binary classification problem. LetM ∈ N
be the number of clients, d ∈ N be the dimension of the input data, and n ∈ N be the number of
samples per client. Then each client m ∈ [M ] will have a “local” dataset Dm = {(xmi, ymi)}ni=1,
where xmi ∈ Rd and yi ∈ {−1, 1}. We consider the logistic regression objective for this classifica-
tion problem. Denoting ℓ(z) = log(1 + exp(−z)), the objective for client m is defined as

Fm(w) =
1

n

n∑
i=1

ℓ(ymi⟨w,xmi⟩), (1)

and as usual the global objective is F (w) = 1
M

∑M
m=1 Fm(w). Linear separability means that there

exists some w ∈ Rd such that ymi⟨w,xmi⟩ > 0 for all m ∈ [M ] and i ∈ [n], that is, there exists a
solution w that correctly classifies the data from all clients simultaneously. We denote the maximum
margin of the combined dataset and the corresponding classifier as

γ := max
∥w∥=1

min
m∈[M ],i∈[n]

ymi⟨w,xmi⟩, w∗ = argmax
∥w∥=1

min
m∈[M ],i∈[n]

ymi⟨w,xmi⟩. (2)
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We assume without loss of generality that ymi = 1 for all m, i. Since the objective depends only on
ymixmi, we can replace every input xmi with ymixmi and every label ymi with 1. We also assume
that ∥xmi∥ ≤ 1 for allm, i, which can be enforced by scaling each xmi by the maximum data norm.

3.2 BASELINE GUARANTEES

The standard analysis of Local SGD for smooth, convex objectives (Woodworth et al., 2020b;
Koloskova et al., 2020) additionally assumes the existence of a minimizer w∗ of the global ob-
jective, which is not satisfied by logistic regression. To establish a baseline rate for Local GD over
a problem class that includes distributed logistic regression, we modify two analyses of Local SGD
(Woodworth et al., 2020b; Koloskova et al., 2020) by removing the assumption of a global minimum.

These two analyses use different assumptions on the heterogeneity of the local objectives, both of
which can be applied to Local SGD; we therefore modify both analyses for the case where a global
minimum may not exist. We use the approach outlined in Orabona (2024), which modifies the
standard SGD analysis by replacing w∗ with a comparator u ∈ Rd. The full results and proofs for
this baseline analysis are given in Appendix C. Here, we state the convergence rates for Local GD
on the distributed logistic regression problem which are implied by the general analysis. Corollary
1 follows from Theorem 5 (extension of (Woodworth et al., 2020b)), and Corollary 2 follows from
Theorem 6 (extension of (Koloskova et al., 2020)).
Corollary 1. For distributed logistic regression, Local GD with η = Θ̃(1/(γ2/3KR1/3)) satisfies

F (ŵ) ≤ Õ
(

1

γ2KR
+

1

γ4/3R2/3

)
. (3)

Corollary 2. For distributed logistic regression, Local GD with η = Θ̃(1/K) satisfies

F (ŵ) ≤ Õ
(

1

γ2R
+

1

γ4/3R4/3

)
. (4)

Importantly, the dominating term in both upper bounds is not decreased by increasing the number
of local steps K. This aligns with the worst-case rates of Local GD in the case that a minimizer
does exist (Patel et al., 2024). Notice that in both cases, the choice of learning rate η has a 1/K
dependence on the number of local steps K, so increasing the number of local steps is countered by
decreasing the learning rate. Therefore, the existing worst-case analysis cannot show that local steps
can increase optimization performance of Local GD for distributed logistic regression.

4 CONVERGENCE OF TWO-STAGE LOCAL GD

In this section, we analyze a two-stage variant of Local GD, defined in Algorithm 2. This algorithm
essentially runs Local GD twice, using the output of the first stage as the initialization for the second
stage. In order to achieve an improved convergence rate, this algorithm uses a small learning rate η1
in the first phase, and a large learning rate η2 ≤ 4 in the second phase. For sufficiently large R, the
convergence rate of Two-Stage Local GD is O(1/(η2γ2KR)). The result is stated in Theorem 1, a
sketch of the proof is given in Section 4.2, and the complete proof is contained in Appendix A.

4.1 STATEMENT OF RESULTS

Theorem 1. Let 0 < η2 ≤ 4, and

r0 ≥ Õ
(
η2KM

γ4
+

(η2KM)3/4

γ5/2

)
, η1 = Θ̃

(
min

{
1

K
,
η
1/3
2 M1/3

γ2K2/3

})
, (5)

and R ≥ r0. Then Two-Stage Local GD (Algorithm 2) satisfies

F (ŵ2) ≤
2

η2γ2K(R− r0)
. (6)

Notice that η2K appears in the denominator of the second stage convergence rate, but importantly,
the choice of η2 is not constrained by K. The constraint η2 ≤ 4 comes from the fact that F is

4
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Algorithm 2 Two-Stage Local GD

Input: Initialization w̄0, rounds R ∈ N, local steps K ∈ N, learning rates η1, η2 > 0, averaging
weights {αr,k}r,k, phase 1 rounds r0 ∈ N

1: r1 ← R− r0
2: βr,k ← 1{r = R− 1 and k = 0}
3: ŵ1 ← Local GD(w̄0, r0,K, η1, {αr,k}r,k)
4: ŵ2 ← Local GD(ŵ1, r1,K, η2, {βr,k}r,k)
5: return ŵ2

H-smooth with H = 1/4, so that we require η2 ≤ 1/H . This means that we can set η2 = Θ(1) and
choose a large K in order to speed up convergence. In other words, Two-Stage Local GD benefits
from local steps. This is made formal in the following result.
Corollary 3. Let ϵ > 0. With η2 = 1, r0 = Θ̃(KM/γ4 + (KM)3/4/γ5/2), and η1 chosen as in
Theorem 1, the output of Two-Stage Local GD satisfies F (ŵ2) ≤ ϵ as long as

R ≥ Ω̃

(
KM

γ4
+

(KM)3/4

γ5/2
+

1

γ2Kϵ

)
. (7)

Further, if we choose K = Θ(γ/
√
Mϵ), then F (ŵ2) ≤ ϵ as long as

R ≥ Ω̃

(
M1/2

γ3ϵ1/2
+

1

γ7/4ϵ3/8

)
. (8)

Corollary 3 also describes the number of rounds r0 to transition from a small learning rate to a
large one. With η2 = Θ(1), the first stage requires r0 = Ω(KM/γ4) rounds. This aligns with the
intuition that increasing K necessitates a longer warmup before a large learning rate can be used
without creating instability. Lastly, notice from Algorithm 2 that the output ŵ2 is the last iterate
from the second stage. Therefore, Theorem 1 gives a last-iterate guarantee for Two-Stage Local
GD, whereas the baseline analyses (Corollaries 1 and 2) provide average-iterate guarantees.

4.2 PROOF SKETCH

The main idea of the proof is to leverage the relationship between the loss value, first derivative, and
second derivative, namely that 0 < ℓ′′(z) < |ℓ′(z)| < ℓ(z) for the logistic loss ℓ = log(1+exp(−z))
(see Lemma 24). This yields a similar relationship between the derivatives of the objective F :

∥∇F (w)∥ ≤ F (w), ∥∇2F (w)∥ ≤ F (w), (9)
see Lemma 25. Intuitively, when the objective F (w̄r) is small, the Hessian ∥∇2F (w̄r)∥ is also
small, so a large learning rate can be used while ensuring a decrease in the global objective.

Accordingly, we apply Corollary 2 to guarantee that the objective value after the first phase F (ŵ1)
is sufficiently small. For the second phase, we treat each round’s update w̄r+1 − w̄r as a bi-
ased gradient step on F , with bias introduced by heterogeneous local objectives. With small lo-
cal Hessians ∥∇2Fm(w̄r)∥, we can further bound the change of local gradient within a round, i.e.
∥∇Fm(wm

r,k)−∇Fm(w̄r)∥, thereby bounding the bias of the aforementioned biased gradient step.
We elaborate on this idea below. All results in this section apply to Local GD, and the application to
Two-Stage Local GD will occur at the end of the proof.

We want to bound the bias of w̄r+1 − w̄r as a gradient step on F , that is, we want to bound

Br := ∥(w̄r+1 − w̄r) + ηK∇F (w̄r)∥ =

∥∥∥∥∥ ηM
M∑

m=1

K−1∑
k=0

(∇Fm(wm
r,k)−∇Fm(w̄r))

∥∥∥∥∥ (10)

≤ ηK 1

MK

M∑
m=1

K−1∑
k=0

∥∥∇Fm(wm
r,k)−∇Fm(w̄r)

∥∥ (11)

≤ ηK 1

MK

M∑
m=1

K−1∑
k=0

 sup
t∈[0,1]

∥∥∇2Fm(twm
r,k + (1− t)w̄r)

∥∥︸ ︷︷ ︸
A1

 ∥wm
r,k − w̄r∥︸ ︷︷ ︸

A2

. (12)
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First, Equation 9 provides a bound on ∥∇2F (w̄r)∥, but not immediately on ∥∇2F (w)∥ for w close
to w̄r; such a bound is needed to bound A1. The following lemma bounds the Hessian of F in a
neighborhood of a point w1.

Lemma 1. For all w1,w2 ∈ Rd and all m ∈ [M ],

∥∇2Fm(w2)∥ ≤ Fm(w1)

(
1 + ∥w2 −w1∥

(
1 + exp(∥w2 −w1∥2)

(
1 +

1

2
∥w2 −w1∥2

)))
.

(13)

To prove Lemma 1, we bound ∥∇2Fm(w2)∥ ≤ Fm(w2) with Lemma 25, then bound Fm(w2) by
a second-order Taylor series of Fm centered at w1. The quadratic term of this Taylor series depends
on ∥∇2Fm(w)∥ for all w between w1 and w2, so we have an integral inequality in ∥∇2Fm(w)∥.
Applying a variation of Gronwall’s inequality yields Lemma 1. With Lemma 1, the task of bounding
A1 and A2 is reduced to bounding ∥wm

r,k − w̄r∥. This is achieved by the following lemma.

Lemma 2. If η ≤ 8, then ∥wm
r,k − w̄r∥ ≤ ηKFm(w̄r) for every r ≥ 0 and k ≤ K.

The idea of the proof of Lemma 2 is to show that each local step does not increase the local objective,
so Fm(wm

r,k) ≤ Fm(w̄r). Combining this with ∥∇Fm(w)∥ ≤ Fm(w) (Equation 9),

∥∇Fm(wm
r,k)∥ ≤ Fm(wm

r,k) ≤ Fm(w̄r), (14)

which we can use to upper bound ∥wm
r,k − w̄r∥ ≤ η

∑k−1
j=0 ∥∇Fm(wm

r,k)∥ ≤ ηKFm(w̄r). Com-
bining this with Lemma 1 yields a bound for A1 and A2.

Lemma 3. If η ≤ 8, and F (w̄r) ≤ 1/(ηKM), then for every m ∈ [M ] and k ∈ [K],

∥∇Fm(wm
r,k)−∇Fm(w̄r)∥ ≤ 7ηKFm(w̄r)

2. (15)

Note that the condition F (w̄r) ≤ 1/(ηKM) in Lemma 3 ensures that the RHS of Equation 13 is
O(Fm(w̄1)). Plugging Equation 15 back to Equation 12 yields a bound for the bias Br as

Br ≤ 7η2K2Fm(w̄r)
2. (16)

With this bound of the bias, we can bound F (w̄r+1)− F (w̄r) using classical techniques.

Lemma 4. Suppose that η ≤ 4 and F (w̄0) ≤ γ2/(42ηKM). Then for every r ≥ 0,

F (w̄r) ≤
2

ηγ2Kr
. (17)

Finally, with Lemma 4, we can analyze Two-Stage Local GD. First, we use Corollary 2 to guarantee
that the first stage output ŵ1 satisfies the condition of Lemma 4, i.e. F (ŵ1) ≤ γ2/(42η2KM).
Then, we can apply Lemma 4 to the second stage, which gives exactly the conclusion of Theorem 1.

5 CONVERGENCE OF LOCAL GRADIENT FLOW

Section 4 shows that Local GD with a two-stage learning rate can achieve a convergence rate with
dominating termO(1/(γ2KR)), by initially using a small learning rate, then transitioning to a larger
one. However, experiments show that Local GD can converge with a fixed, large learning rate, albeit
with non-monotonicity of the global objective early in training (see Figure 1a). It is then natural to
ask whether Local GD can provably converge with sufficient rounds for any fixed η.

In this section, we make progress towards answering this question by considering the special case
of M = 2 clients, n = 1 data point per client, and a variant of Local GD which we refer to as Local
Gradient Flow (defined in Algorithm 3). In each round of Local GF, client models are updated by
running gradient flow on each local objective for K units of time. The global model is updated in
the same way as Local GD, i.e. by setting the new global model as the average of updated client
models. Our main result for this section is Theorem 2, which shows that for sufficiently large R,
Local GF converges at a rate of Õ(1/ηKR)) (ignoring constants that depend on the dataset).
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Algorithm 3 Local Gradient Flow

Input: Initialization w̄0 ∈ Rd, rounds R ∈ N, local steps K ∈ N, learning rate η > 0
1: for r = 0, 1, . . . , R− 1 do
2: for m ∈ [M ] do
3: Set wm

r (t) as the solution to:

wm
r (0) = w̄r ẇm

r (t) = −η∇Fm(wm
r (t))

4: end for
5: w̄r+1 ← 1

M

∑M
m=1 w

m
r (K)

6: end for
7: return w̄R

5.1 STATEMENT OF RESULTS

For the case n = 1, we re-index the local data as x1, . . .xM , and denote γm = ∥xm∥ and wm
∗ =

xm/∥xm∥. Recall our assumption that all data points have label 1. Then each local objective Fm is

Fm(w) = log(1 + exp(−⟨w,xm⟩)) = log(1 + exp(−γm⟨w,wm
∗ ⟩)). (18)

Define W ∈ RM×d so that the m-th row equals w∗
m, and define G = WW ⊺ ∈ RM×M . For

M = 2 clients, the Gram matrix G is parameterized by a scalar, that is, G =

(
1 c
c 1

)
, where

c = ⟨w∗
1 ,w

∗
2⟩. Notice that, up to rotation of the data, a dataset is characterized by γ1, γ2, and c: the

magnitudes of γ1, γ2 affect the relative sizes of local updates, and c determines the angle between
the local client updates. In what follows, we denote γmin = min{γ1, γ2} and γmax = max{γ1, γ2}.
Theorem 2. Define

L0 = max
m∈[M ]

1

γm
log
(
1 + ηKγ2m

)
, H0 = min

m∈[M ]

1

γm
log
(
1 + ηKγ2m

)
, (19)

and

τ =
16(L0 + 1)2

(1 + c)γmin

( 1

H0
− 1

L0

)(
L0

H0

) 3(L0+1)2(1−c)γmax
(1+c)γmin

+ 4γmax +
2

H0

 . (20)

Then for every r ≥ τ , Local GD initialized with w̄0 = 0 satisfies

F (w̄r) ≤
32(1 + log(1 + ηK))2

(1 + c)γ4minηK(r − τ)
. (21)

Theorem 2 shows that Local GF will converge at the desired rate after τ rounds. so τ + 1/((1 +
c)γ4minηKϵ) rounds are sufficient to find an ϵ-approximate solution. The transition time τ can
be bounded as τ ≤ B(1 + ηK)β log(1+ηK), where B = poly(exp(1/γmin), exp(1/(1 + c)))
and β = poly(1/γmin, 1/(1 + c)). Denoting C = B(1 + c)γ4min, we can then choose ηK =

Θ̃
(
exp(

√
log(1/(Cϵ))/β)

)
, which yields a communication cost of

R ≤ Õ

exp
(
−
√
log(1/(Cϵ))

)
(1 + c)γ4minϵ

 = Õ
(

Cα

(1 + c)γ4minϵ
1−α

)
, (22)

where α = 1/
√

log(1/(Cϵ)). Therefore, the communication cost R has dependence ϵ−(1−α) on
ϵ, which is smaller than the ϵ−1 cost guaranteed by existing baselines (see Table 1). The exponent
1− α goes to 1 from below at a logarithmic rate as ϵ→ 0.

5.2 PROOF SKETCH

To prove Theorem 2, we construct a novel Lyapunov function Lr with respect to the update of each
communication round, show that it converges to 0 at a rate of O(1/r), and bound the client losses
in terms of the Lyapunov function, i.e. Fm(w̄r) ≤ O(Lr/(ηKγm)) when Lr is sufficiently small.
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Our Lyapunov function is defined in terms of a surrogate loss for each client. As observed experi-
mentally (see Figure 1a), the client losses Fm(w̄r) may not decrease monotonically. In particular, a
round update w̄r+1 − w̄r can be dominated by the local update wm

r (K)− w̄r of a single client m
even when the local loss Fm(w̄r) is small compared to the other client. Essentially, one client might
be implicitly prioritized based on the relative magnitudes of (and angle between) the client data.

Our surrogate losses are designed to capture this implicit prioritization of clients. Denote amr =
⟨w̄r,w

∗
m⟩, so that Fm(w̄r) = log(1 + exp(−γmamr )). Then, letting W denote the Lambert W

function, we define the surrogate client losses as

ρmr =
1

γm
log

(
W (exp(ηKγ2m + exp(γma

m
r ) + γma

m
r ))

exp(γmamr )

)
. (23)

Just as with the original losses Fm(w̄r), the surrogate losses ρmr are monotonically decreasing func-
tions of amr (see Lemma 30). Also, the client loss can be bounded in terms of the surrogate loss,
provided the surrogate loss is sufficiently small (see Lemma 12). However, the surrogate losses are
distinguished from the original losses by the following useful property: if at round r, client m has
the largest surrogate loss among all clients, then the surrogate loss for client m will decrease from
round r to round r + 1. This suggests the following Lyapunov function: Lr = maxm∈[M ] ρ

m
r . The

following lemma demonstrates such properties of the surrogate losses and Lyapunov function.

Lemma 5. Lr+1 ≤ Lr for every r ≥ 0. Further, if ρmr = maxm′∈[M ] ρ
m′

r , then

ρmr+1 ≤ Lr −
(1 + c)γm

4(L0 + 1)2(1 + exp(−γmamr ))
L2
r, (24)

and if ρmr+1 ≥ ρmr , then ρmr+1 ≤ ((1− c)/2)Lr.

Since the above lemma doesn’t provide an upper bound on the surrogate losses ρmr for every pair
of r,m, it doesn’t immediately yield a convergence rate for the Lyapunov function Lr. However,
we can use the previous lemma to upper bound the change in Lr after two consecutive rounds, and
applying this recursively yields the following lemma.
Lemma 6. Denote mr = argmaxm∈[M ] ρ

m
r and αr = amr

r . Let 0 ≤ q ≤ r. If αs ≥ −A for every
q ≤ s ≤ r, then

Lr ≤
1

1/Lq + ν(r − q)/2
, (25)

where ν := (1 + c)γmin/(4(L0 + 1)2(1 + exp(γmaxA))).

Notice that the above lemma gives an upper bound of Lr which depends on some constant A which
lower bounds amr . However, we do not have an a priori lower bound for amr ; while am0 = 0 for
every m, it is possible that amr becomes negative in early rounds. To address this, we can combine
Lemmas 5 and 6 to show that the decrease of the Lyapunov function gives a lower bound amr ≥ −A0

that holds for all r,m. This argument is formalized in Lemma 15.

Knowing that amr ≥ −A0, we can use Lemma 6 to get an upper bound of Lr that approaches 0, but
with a dependence on exp(A0). However, we can use this upper bound to show that there exists a
transition time τ for which amr ≥ 0 for every m and every r ≥ τ . This is proven in Lemma 16.

Finally, we can apply Lemma 6 in two phases. For r ≤ τ , Lemma 6 implies that Lr decreases with
a dependence on exp(A0), and for r ≥ τ , Lemma 6 implies that Lr decreases at the desired rate.
Theorem 2 follows by bounding the client losses in terms of Lr (see Lemma 12).

6 EXPERIMENTS

We experimentally study the behavior of Local GD under different choices of learning rate and local
steps. We use two datasets: (1) a synthetic dataset with M = 2 clients and n = 1 data point per
client, (2) a heterogeneous dataset of MNIST images with binary labels. We evaluate three stepsize
choices for Local GD: (1) small stepsize η = 1/(KH) as required by baseline guarantees, (2) two-
stage step size η1 = 1/(KH) and η2 = 1/H , as in our Theorem 1, and (3) large stepsize η = 1/H .
Note that Minibatch SGD in the deterministic setting reduces to Local GD with a single local step,
which is included in the evaluation.
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Additionally, to verify that Local SGD outperforms Minibatch SGD in practice (Woodworth et al.,
2020b; 2021; Glasgow et al., 2022; Patel et al., 2024), we compare these two algorithms for training
ResNets (He et al., 2016) on CIFAR-10. Results are included in Appendix F.

6.1 SETUP

Datasets. For the synthetic dataset, the data x1,x2 have significantly different magnitudes, the
angle between them is close to 180 degrees, but they have the same label. Using the notation of
Section 5, this means γmax/γmin is large and c is close to −1 (full details in Appendix E).

Following recent work on GD for logistic regression (Wu et al., 2024b;a), we also evaluate on a
dataset of 1000 MNIST images. We sample these images uniformly at random from the MNIST
training set, then partition them into M = 5 client datasets with n = 200 images each. To create
heterogeneity, we partition the data using a common protocol in which a large proportion of each
client’s data comes from a small number of classes (Karimireddy et al., 2020). After partitioning data
based on digit labels, we binarize the problem by reducing each image’s label mod 2. See Appendix
E for a complete description. For both datasets, we scale every sample so that the maximum data
norm is 1. This means ∥∇2F (w)∥ ≤ 1/4 (see Appendix C.5.1), so we useH = 1/4 to set stepsizes.

Stepsizes. We set η according to the requirements of theoretical guarantees, i.e. η = 1/(KH) from
Corollary 2, and η1 = 1/(KH), η2 = 1/H from Theorem 1. For simplicity, we ignore constants
and logarithmic terms. We also evaluate Local GD with a large stepsize, i.e. η = 1/H . For the
two-stage stepsize, we choose r0 (the number of rounds in the first stage) as a linear function of K,
as required by Theorem 1. Accordingly, we set r0 = λK and tune λ to ensure that the loss remains
stable when transitioning to the second stage. See Appendix E for the search space and tuned values.

6.2 RESULTS

Benefit of Local Steps. Figure 1 shows that the small stepsize η ≤ 1/(KH) required by baseline
guarantees is overly conservative. All choices of K in this regime lead to overlapping loss curves,
since the choice of more local steps K is essentially cancelled out by a smaller step size η. On the
other hand, the two-stage stepsize yields faster convergence with larger K, and mostly maintains
stability throughout optimization. This underscores our discussion in Section 7: operating under
worst-case assumptions can lead to suboptimal performance on particular problems.

Instability with Large K. Local GD with a large stepsize η = 1/H exhibits a significant increase in
loss during early rounds when training on the synthetic dataset with large K. Still, the large stepsize
exhibits the fastest convergence in the long term for both datasets. This behavior is reminiscent of
GD for logistic regression, where a large stepsize was shown to create instability early in training
while eventually leading to faster convergence (Wu et al., 2024a). Therefore, explaining the superior
practical performance of Local GD may require a theoretical framework that allows for unstable
convergence. One possible explanation for the superiority of the large stepsize is that the two-stage
stepsize prioritizes stability over speed: the second stage does not start until the loss is low enough
that a large stepsize will not create instability. On the other hand, Local GD with a large stepsize
remains stable with MNIST data even with very large K. This highlights another factor affecting
performance of Local GD: the structure in the training data, rather than the prediction problem alone.

7 DISCUSSION

Heterogeneity Assumptions for Worst-Case Analysis The pessimism of existing worst-case guar-
antees has motivated the search for “better” heterogeneity assumptions (Woodworth et al., 2020b;
Wang et al., 2022; Patel et al., 2023; 2024), that is, assumptions that accurately capture practically
relevant problems. However, the heterogeneity assumptions yet explored do not lead to guarantees
for Local SGD that align with empirical observations on practical problems (Wang et al., 2022; Pa-
tel et al., 2023). Indeed, the de facto standard heterogeneity assumption — that there exists some
κ > 0 such that ∥∇Fm(w)−∇F (w)∥ ≤ κ for all w — yields guarantees which imply that Local
SGD is significantly outperformed by Minibatch SGD (Woodworth et al., 2020b) for problems with
moderate heterogeneity. Yet, Local SGD remains the standard distributed optimization algorithm
and usually outperforms Minibatch SGD in practice. An alternative to searching for heterogeneity

9
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(a) Synthetic Dataset
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(b) Heterogeneous MNIST

Figure 1: Train loss of Local GD for a synthetic dataset and MNIST. Left: Small stepsize η =
1/(KH), as required by baselines (Corollary 2). Middle: Two stage stepsize with η1 = 1/(KH)
and η2 = 1/H , as in our Theorem 1. Right: Large stepsize η = 1/H . For the synthetic dataset, a
large stepsize causes the loss to increase significantly during early rounds.

assumptions is to analyze practical problems directly; this perspective was also discussed by Patel
et al. (2024). Indeed, in Section 4, we showed that local steps are provably beneficial due to the
structure of the loss landscape — that the Hessian vanishes with the objective — instead of the sim-
ilarity of client objectives. We are optimistic that studying particular problems may provide insights
into general structure that could explain algorithmic behavior for other practical problems.

Non-Monotonic Loss Our experimental results suggest that Local GD with constant η and large
K may converge for the distributed logistic regression problem, potentially with non-monotonic
decrease of the loss function. The unstable convergence of GD for logistic regression was recently
studied by Wu et al. (2024b;a), who showed that GD with any learning rate can converge, but with a
non-monotonic loss decrease. In our experiments, non-monotonicity of the loss does not come from
η > 1/H , but rather from large ηK, which creates large updates to client models between averaging
steps. With highly heterogeneous objectives, this can cause the global loss to increase from one
round to the next. Based on these experiments, it is possible that proving the benefits of local steps
for vanilla Local GD will require a theoretical framework that allows for unstable convergence.

Limitations and Future Work The most important limitation of the current work is that, while
we analyze two variants of Local GD, our results do not apply for the vanilla Local GD algorithm.
Although Two-Stage Local GD enjoys a strong guarantee due to the learning rate warmup, the
question remains whether this warmup is necessary to achieve convergence. Indeed, experiments
indicate that vanilla Local GD can converge faster with large K, even if this creates instability
during the initial part of training. It remains open whether vanilla Local GD can converge at a
rate of O(1/KR) for distributed logistic regression. Our analysis of Local GF is a step towards
vanilla Local GD (in that the learning rate is fixed throughout optimization), but these results are
preliminary in that they require strong assumptions on the number of clients and size of the datasets.
We leave the problem of analyzing vanilla Local GD for future work.
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A PROOFS FOR SECTION 4

Lemma 7 (Restatement of Lemma 1). For all w1,w2 ∈ Rd and all m ∈ [M ],

∥∇2Fm(w2)∥ ≤ Fm(w1)

(
1 + ∥w2 −w1∥

(
1 + exp(∥w2 −w1∥2)

(
1 +

1

2
∥w2 −w1∥2

)))
.

(26)

Proof. Let v = (w2−w1)/∥w2−w1∥, t > 0, and w = w1+ tv. Then starting with Equation 515
from Lemma 25,

∥∇2Fm(w)∥ ≤ Fm(w) (27)

= Fm(w1) + ⟨∇Fm(w1),w −w1⟩+
∫ t

0

(t− s)v⊺∇2Fm(w1 + sv)vds (28)

= Fm(w1) + t⟨∇Fm(w1),v⟩+
∫ t

0

(t− s)v⊺∇2Fm(w1 + sv)vds (29)

≤ Fm(w1) + t⟨∇Fm(w1),v⟩+
∫ t

0

(t− s)
∥∥∇2Fm(w1 + sv)

∥∥ ds (30)

≤ Fm(w1) + t∥∇Fm(w1)∥+ t

∫ t

0

∥∥∇2Fm(w1 + sv)
∥∥ ds. (31)

Denoting a = Fm(w1), b = ∥∇Fm(w1)∥, ϕ1(t) = a+ bt, ϕ2(t) = t, and

f(t) =

∫ t

0

∥∇2Fm(w1 + sv)∥ds, (32)

Equation 31 becomes

f ′(t) ≤ ϕ1(t) + ϕ2(t)f(t). (33)

We can then apply Lemma 27 to obtain

f ′(t) ≤ ϕ1(t) + ϕ2(t) exp

(∫ t

0

ϕ2(s)ds

)(
f(0) +

∫ t

0

exp

(
−
∫ s

0

ϕ2(r)dr

)
ϕ1(s)ds

)
(34)

∥∇2Fm(w1 + tv)∥ ≤ a+ bt+ t exp

(
1

2
t2
)∫ t

0

exp

(
1

2
s2
)
(a+ bs)ds (35)

∥∇2Fm(w1 + tv)∥ ≤ a+ bt+ t exp(t2)

∫ t

0

(a+ bs)ds (36)

∥∇2Fm(w1 + tv)∥ ≤ a+ bt+ t exp(t2)

(
at+

1

2
bt2
)
. (37)

Therefore

∥∇2Fm(w1+tv)∥ ≤ Fm(w1)+t∥∇Fm(w1)∥+t exp(t2)
(
Fm(w1) +

1

2
t2∥∇Fm(w1)∥

)
, (38)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

and finally, choosing t = ∥w2 −w1∥ implies

∥∇2Fm(w2)∥ ≤ Fm(w1) + ∥∇Fm(w1)∥∥w2 −w1∥ (39)

+ ∥w2 −w1∥ exp(∥w2 −w1∥2)
(
Fm(w1) +

1

2
∥∇Fm(w1)∥∥w2 −w1∥2

)
(40)

(i)

≤ Fm(w1)

(
1 + ∥w2 −w1∥

(
1 + exp(∥w2 −w1∥2)

(
1 +

1

2
∥w2 −w1∥2

)))
,

(41)

where (i) uses Equation 514.

Lemma 8 (Restatement of Lemma 2). If η ≤ 8, then for every r ≥ 0 and k ≤ K,

∥wm
r,k − w̄r∥ ≤ ηKFm(w̄r). (42)

Proof. Let r ≥ 0 and m ∈ [M ]. Recall that 0 ≤ ℓ′′(z) ≤ 1/4, so ∥∇2Fm(w)∥ ≤ 1/4. Therefore,
for every k ≤ K − 1,

Fm(wm
r,k+1) ≤ Fm(wm

r,k) + ⟨∇Fm(wm
r,k),w

m
r,k+1 −wm

r,k⟩+
1

8

∥∥wm
r,k+1 −wm

r,k

∥∥2 (43)

≤ Fm(wm
r,k)− η

∥∥∇Fm(wm
r,k)
∥∥2 + η2

8

∥∥∇Fm(wm
r,k)
∥∥2 (44)

≤ Fm(wm
r,k)− η

(
1− η

8

)∥∥∇Fm(wm
r,k)
∥∥2 (45)

(i)

≤ Fm(wm
r,k), (46)

where (i) uses the condition η ≤ 8. Induction over k implies Fm(wm
r,k) ≤ Fm(w̄r). Therefore

∥wm
r,k − w̄r∥ =

∥∥∥∥∥∥ ηM
M∑

m=1

k−1∑
j=0

∇Fm(wm
r,j)

∥∥∥∥∥∥ (47)

≤ η

M

M∑
m=1

k−1∑
j=0

∥∥∇Fm(wm
r,j)
∥∥ (48)

(i)

≤ η

M

M∑
m=1

k−1∑
j=0

Fm(wm
r,j) (49)

(ii)

≤ η

M

M∑
m=1

k−1∑
j=0

Fm(w̄r) (50)

≤ ηkFm(w̄r) (51)
≤ ηKFm(w̄r), (52)

where (i) uses Equation 514 and (ii) uses Equation 46.

Lemma 9 (Restatement of Lemma 3). If η ≤ 8, and F (w̄r) ≤ 1/(ηKM), then for every m ∈ [M ]
and k ∈ [K],

∥∇Fm(wm
r,k)−∇Fm(w̄r)∥ ≤ 7ηKFm(w̄r)

2. (53)

Proof. Let t ∈ [0, 1]. Then

∥(twm
r,k + (1− t)w̄r)− w̄r∥ ≤ ∥wm

r,k − w̄r∥
(i)

≤ ηKFm(w̄r)
(ii)

≤ 1, (54)

where (i) uses Lemma 2 and (ii) uses the condition F (w̄r) ≤ 1/(ηKM). So we can use Lemma 1
to bound

∥∇2Fm(twm
r,k + (1− t)w̄r)∥ ≤ Fm(wr)

(
1 +

(
1 + exp(1)

(
1 +

1

2

)))
≤ 7Fm(wr). (55)
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Finally, let v =
wm

r,k−w̄r

∥wm
r,k−w̄r∥ and λ = ∥wm

r,k − w̄r∥. Then

∥∇Fm(wm
r,k)−∇Fm(w̄r)∥ =

∥∥∥∥∥
∫ λ

0

∇2F (swm
r,k + (1− s)w̄r)vds

∥∥∥∥∥ (56)

=

∫ λ

0

∥∥∇2F (swm
r,k + (1− s)w̄r)

∥∥ ds (57)

(i)

≤ 7λFm(w̄r) (58)
= 7∥wm

r,k − w̄r∥Fm(w̄r) (59)
(ii)

≤ 7ηKFm(w̄r)
2, (60)

where (i) uses Equation 55 and (ii) uses Lemma 2.

Lemma 10 (Restatement of Theorem 4). Suppose that η ≤ 4 and let r0 ≥ 0 such that F (w̄r0) ≤
γ2/(42ηKM). Then for every r ≥ 2r0,

F (w̄r) ≤
4

ηγ2Kr
. (61)

Proof. We will show by induction that

F (w̄r) ≤
1

1/F (w̄r0) + ηγ2K(r − r0)/2
(62)

for all r ≥ r0. Clearly it holds for r0, so suppose that it holds for some r ≥ r0. Then F (w̄r) ≤
F (w̄r0) ≤ 1/(ηKM). From the definition of Local GD,

w̄r+1 − w̄r = − η

M

M∑
m=1

K−1∑
k=0

∇Fm(wm
r,k) (63)

= − η

M

M∑
m=1

K−1∑
k=0

∇Fm(w̄r)−
η

M

M∑
m=1

K−1∑
k=0

(∇Fm(wm
r,k)−∇Fm(w̄r)) (64)

= −ηK∇F (w̄r)−
η

M

M∑
m=1

K−1∑
k=0

(∇Fm(wm
r,k)−∇Fm(w̄r)). (65)

Denoting br = 1
KM

∑M
m=1

∑K−1
k=0 (∇Fm(wm

r,k)−∇Fm(w̄r)), this means

w̄r+1 − w̄r = ηK(∇F (w̄r) + br). (66)

Notice that

∥br∥ ≤
1

KM

M∑
m=1

K−1∑
k=0

∥∥∇Fm(wm
r,k)−∇Fm(w̄r)

∥∥ (67)

(i)

≤ 7ηK

M

M∑
m=1

Fm(w̄r)
2 (68)

≤ 7ηK

M

(
M∑

m=1

Fm(w̄r)

)2

(69)

= 7ηKMF (w̄r)
2, (70)

where (i) uses Lemma 3. Also, by Lemma 2,

∥w̄r+1 − w̄r∥ ≤ ηKF (w̄r)
(i)

≤ 1, (71)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

where (i) uses the condition F (w̄r) ≤ 1/(ηKM). By Lemma 1, this means for all t ∈ [0, 1]:∥∥∇2F ((1− t)w̄r + tw̄r+1)
∥∥ ≤ F (w̄r)

(
1 +

(
1 + exp(1)

(
1 +

1

2

)))
≤ 7F (w̄r). (72)

We can then use Equation 66, Equation 70, and Equation 72 to upper bound F (w̄r+1). Letting
λ = ∥w̄r+1 − w̄r∥ and v = w̄r+1−w̄r

∥w̄r+1−w̄r∥ ,

F (w̄r+1) (73)

= F (w̄r) + ⟨∇F (w̄r), w̄r+1 − w̄r⟩+
∫ λ

0

(λ− t)v⊺∇2F (w̄r + tv)vdt (74)

≤ F (w̄r) + ⟨∇F (w̄r), w̄r+1 − w̄r⟩+
∫ λ

0

(λ− t)
∥∥∇2F (w̄r + tv)

∥∥ dt (75)

(i)

≤ F (w̄r) + ⟨∇F (w̄r), w̄r+1 − w̄r⟩+
7

2
λ2F (w̄r) (76)

(ii)
= F (w̄r)− ηK ∥∇F (w̄r)∥2 + ηK⟨∇F (w̄r), br⟩+

7

2
η2K2∥∇F (w̄r) + br∥2F (w̄r) (77)

≤ F (w̄r)− ηK ∥∇F (w̄r)∥2 + ηK ∥∇F (w̄r)∥ ∥br∥+ 7η2K2
(
∥∇F (w̄r)∥2 + ∥br∥2

)
F (w̄r)

(78)
(iii)

≤ F (w̄r)− ηK ∥∇F (w̄r)∥2 + 7η2K2M ∥∇F (w̄r)∥F (w̄r)
2 (79)

+ 7η2K2
(
∥∇F (w̄r)∥2 + 49η2K2M2F (w̄r)

4
)
F (w̄r) (80)

(iv)

≤ F (w̄r)− ηK ∥∇F (w̄r)∥2 +
(
7η2K2MF (w̄r) + 7η2K2F (w̄r) + 343η4K4M2F (w̄r)

3
)
F (w̄r)

2

(81)
(v)

≤ F (w̄r)−
(
ηγ2K − 7η2K2MF (w̄r)− 7η2K2F (w̄r)− 343η4K4M2F (w̄r)

3
)
F (w̄r)

2

(82)

= F (w̄r)− ηγ2K
(
1− 7ηKM

γ2
F (w̄r)−

7ηK

γ2
F (w̄r)−

343η3K3M2

γ2
F (w̄r)

3

)
F (w̄r)

2

(83)
(vi)

≤ F (w̄r)−
1

2
ηγ2KF (w̄r)

2, (84)

where (i) uses Equation 72, (ii) uses Equation 66, (iii) uses Equation 70, (iv) uses Equation 516,
(v) uses Lemma 26, and (vi) uses F (w̄r) ≤ F (w̄r0) from the inductive hypothesis together with
F (w̄r0) ≤

γ2

42ηKM .

Therefore

1

F (w̄r)
≤ 1

F (w̄r+1)
− 1

2
ηγ2K

F (w̄r)

F (w̄r+1)
(85)

1

F (w̄r+1)
≥ 1

F (w̄r)
+

1

2
ηγ2K

F (w̄r)

F (w̄r+1)
(86)

1

F (w̄r+1)
≥ 1

F (w̄r)
+

1

2
ηγ2K (87)

1

F (w̄r+1)

(i)

≥ 1

F (w̄r0)
+

1

2
ηγ2K(r − r0) +

1

2
ηγ2K (88)

1

F (w̄r+1)
≥ 1

F (w̄r0)
+

1

2
ηγ2K(r + 1− r0) (89)

F (w̄r+1) ≤
1

1
F (w̄r0

) +
1
2ηγ

2K(r + 1− r0)
, (90)
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where (i) uses the inductive hypothesis. This completes the induction and proves Equation 62.
Therefore, for every r ≥ r0,

F (w̄r) ≤
1

1
F (w̄r0 )

+ 1
2ηγ

2K(r − r0)
(91)

≤ 2

ηγ2K(r − r0)
(92)

≤ 4

ηγ2Kr
. (93)

Theorem 3 (Restatement of Theorem 1). Let η2 > 0 and denote η̃ = η2KM . Suppose

r0 ≥ max

{
2,

126η̃

γ4
,
252η̃

γ4
log2

(
504η̃

γ4

)
,
76η̃3/4

γ5/2
log

(
38η̃3/4

γ5/2

)}
, (94)

and R ≥ r0. Then with

η1 = Õ

(
min

{
1

K
,
η
1/3
2 M1/3

γ2K2/3

})
, (95)

Two-Stage Local GD (Algorithm 2) satisfies for all r ≥ r0:

F (w̄r) ≤
2

η2γ2K(r − r0)
. (96)

Proof. We would like to apply Lemma 4 to the second phase of Two-Stage Local GD, but in order
to do so we must show that

F (ŵ1) ≤
γ2

42η2KM
. (97)

We already know from Corollary 2 that

F (ŵ1) ≤
1

γ2r0
+

log2(r0)

γ2r0
+

log4/3(r0)

γ4/3r
4/3
0

. (98)

From our choice of r0,
1

γ2r0
≤ 1

γ2
γ4

126η2KM
=

γ2

126ηKM
. (99)

Also, applying Lemma 28,

r0 ≥ max

{
2,

252η̃

γ4
log2

(
504η̃

γ4

)}
=⇒ r0

log2(r0)
≥ 126ηKM

γ4
, (100)

so
log2(r0)

γ2r0
≤ γ2

126ηKM
. (101)

Similarly, applying Lemma 28 again,

r0 ≥ max

{
2,

76η̃3/4

γ5/2
log

(
38η̃3/4

γ5/2

)}
=⇒ r0

log(r0)
≥ 38η̃3/4

γ5/2
(102)

so
log4/3(r0)

γ4/3r
4/3
0

≤ 1

γ4/3

(
log(r0)

r0

)4/3

≤ γ2

126η̃
. (103)

Plugging Equation 99, Equation 101, and Equation 103 into Equation 98 yields

F (ŵ1) ≤
γ2

42ηKM
, (104)

which is exactly Equation 97. Therefore, the condition of Lemma 4 is satisfied by ŵ1. Theorem 4
implies that, for all r ≥ r0,

F (w̄r) ≤
4

η2γ2K(r − r0)
. (105)
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B PROOFS FOR SECTION 5

Lemma 11. Denote ar = Ww̄r, and

Φ(b, x) =
W (exp(b+ exp(x) + x))

exp(x)
, (106)

where W denotes the Lambert W function. Then

ar+1 = ar +
1

M
G

(
1

γ
⊙ log

(
Φ(ηKγ2,γ ⊙ ar)

))
. (107)

Proof. We can rewrite the gradient flow dynamics as

ẇm
r (t) =

ηγm
exp(γmamr (t)) + 1

w∗
m, (108)

so

ȧmr (t) = ⟨ẇm
r (t),w∗

m⟩ (109)

=

〈
ηγm

exp(γmamr (t)) + 1
w∗

m,w
∗
m

〉
(110)

=
ηγm

exp(γmamr (t)) + 1
, (111)

and
ẇm

r (t) = ȧmr (t)w∗
m. (112)

In other words, wm
r (t) only changes in the direction of w∗

m. Therefore the total update to a local
model during a single round is:

wm
r (K) = w̄r + (wm

r (K)−wm
r (0)) (113)

= w̄r +

∫ K

0

ẇm
r (s)ds (114)

= w̄r +

(∫ K

0

ȧmr (s)ds

)
w∗

m (115)

= w̄r + (amr (K)− amr (0))w∗
m. (116)

Notice that Equation 111 is a separable ODE in the unknown amr (t), so we can solve by separation
to obtain

exp(γma
m
r (t)) + γma

m
r (t) = ηγ2mt+ C. (117)

Using the initial condition amr (0) = amr , we get C = exp(γma
m
r ) + γma

m
r , so

exp(γma
m
r (t)) + γma

m
r (t) = ηγ2mt+ exp(γma

m
r ) + γma

m
r . (118)

This is a transcendental equation in amr (t) without a closed form solution: however the solution
can be expressed in terms of the Lambert W function. Let z = exp(γma

m
r (t)) and x = ηγ2mt +

exp(γma
m
r ) + γma

m
r . Then

z + log z = x (119)
z exp(z) = exp(x) (120)

z =W (exp(x)), (121)

so

exp(γma
m
r (t)) =W (exp(ηγ2m + exp(γma

m
r ) + γma

m
r )) (122)

amr (t) =
1

γm
log
(
W (exp(ηγ2m + exp(γma

m
r ) + γma

m
r ))
)
. (123)
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To plug this into Equation 116, we first simplify

amr (K)− amr (0) =
1

γm
log
(
W (exp(ηKγ2m + exp(γma

m
r ) + γma

m
r ))
)
− amr (124)

=
1

γm
log
(
W (exp(ηKγ2m + exp(γma

m
r ) + γma

m
r ))
)
− 1

γm
log (exp(γma

m
r ))

(125)

=
1

γm
log

(
W (exp(ηKγ2m + exp(γma

m
r ) + γma

m
r ))

exp(γmamr )

)
(126)

=
1

γm
log
(
Φ(ηKγ2m, γma

m
r

)
, (127)

and plugging this into Equation 116 yields

wm
r (K) = w̄r +

1

γm
log
(
Φ(ηKγ2m, γma

m
r

)
w∗

m. (128)

Then we can rewrite the global update as

w̄r+1 =
1

M

M∑
m=1

wm
r (K) = w̄r +

1

M

M∑
m=1

1

γm
log
(
Φ(ηKγ2m, γma

m
r

)
w∗

m. (129)

Applying ⟨·,w∗
m⟩ to each side:

amr+1 = amr +
1

M

M∑
n=1

1

γn
log
(
Φ(ηKγ2n, γna

n
r

)
⟨w∗

n,w
∗
m⟩. (130)

This relation can be written in vector notation as

ar+1 = ar +
1

M
G

(
1

γ
⊙ log

(
Φ(ηKγ2,γ ⊙ ar

))
. (131)

Based on the above lemma, we can write a recurrence relation for the coordinates of ar for the case
of M = 2 as:

a1r+1 = a1r +
1

Mγ1
log
(
Φ(ηKγ21 , γ1a

1
r)
)
+

c

Mγ2
log
(
Φ(ηKγ22 , γ2a

2
r)
)

(132)

a2r+1 = a2r +
c

Mγ1
log
(
Φ(ηKγ21 , γ1a

1
r)
)
+

1

Mγ2
log
(
Φ(ηKγ22 , γ2a

2
r)
)
. (133)

Lemma 12. For each m ∈ [M ], if

Lr ≤ min

{
1

2γm
,
1

γm
log

(
1 +

ηKγ2m
2 + ηKγ2m

)}
, (134)

then
Fm(w̄r) ≤

4Lr

ηKγm
. (135)

Proof. Recall that

Fm(w̄r) = log(1 + exp(−⟨w̄r,xm⟩)) = log(1 + exp(−γmamr )). (136)

We can also bound exp(−γmamr ) in terms of Lr as follows:

Lr = max
m∈[M ]

1

γm
log
(
Φ(ηKγ2m, γma

m
r )
)

(137)

≥ 1

γm
log
(
Φ(ηKγ2m, γma

m
r )
)

(138)

(i)

≥ 1

2γm
log

(
1 +

ηKγ2m
exp(γmamr )

)
, (139)
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where (i) uses Lemma 32. Note that the condition of Lemma 32 is satisfied in this circumstance,
since the condition Lr ≤ 1

γm
log
(
1 +

ηKγ2
m

2+ηKγ2
m

)
implies that Φ(ηKγ2m, γma

m
r ) ≥ 1 +

ηKγ2
m

2+ηKγ2
m

;
the condition of Lemma 32 then follows from Lemma 31.

Rearranging Equation 139,

exp(−γmamr ) ≤ exp(2γmLr)− 1

ηKγ2m

(i)

≤ 4γmLr

ηKγ2m
=

4Lr

ηKγm
, (140)

where (i) uses convexity of exp(x)−1 together with the conditionLr ≤ 1/(2γm) to obtain exp(x)−
1 ≤ (1− x)f(0) + xf(1) = (e− 1)x ≤ 2x.

Finally, we combine Equation 136 and Equation 140:

Fm(w̄r) = log(1 + exp(−γmamr )) ≤ exp(−γmamr ) ≤ 4Lr

ηKγm
. (141)

Lemma 13 (Restatement of Lemma 5). Lr+1 ≤ Lr for every r ≥ 0. Further, if ρmr =

maxm′∈[M ] ρ
m′

r , then

ρmr+1 ≤ Lr −
(1 + c)γm

4(L0 + 1)2(1 + exp(−γmamr ))
L2
r, (142)

and if ρmr+1 ≥ ρmr , then

ρmr+1 ≤
1− c
2

Lr. (143)

Proof. Assume without loss of generality that ρ1r ≥ ρ2r (an identical proof works in the remaining
case by switching indices), so that Lr = ρ1r . To show that Lr+1 ≤ Lr, we must show that

ρmr+1 ≤ ρ1r (144)

for m ∈ {1, 2}.
Starting with m = 1, the recurrence relation of a1r from Equation 132 implies

a1r+1 = a1r +
1

2
ρ1r +

c

2
ρ2r (145)

= a1r +
1 + c

4

(
ρ1r + ρ2r

)
+

1− c
4

(
ρ1r − ρ2r

)
(146)

(i)

≥ a1r +
1 + c

4

(
ρ1r + ρ2r

)
(147)

≥ a1r +
1 + c

4
ρ1r (148)

where (i) uses the assumption ρ1r ≥ ρ2r . Therefore

ρ1r+1 =
1

γ1
log
(
Φ(ηKγ21 , γ1ar+1)

) (i)

≤ 1

γ1
log
(
Φ(ηKγ21 , γ1ar)

)
= ρ1r, (149)

where (i) uses a1r+1 ≥ a1r together with the fact that Φ(b, x) is decreasing in x (from Lemma 30).
This proves Equation 144 for m = 1.

For client m = 2, we consider two cases. If ρ2r+1 ≤ ρ1r+1, then we are done, since

ρ2r+1 ≤ ρ2r ≤ ρ1r. (150)

In the other case, ρ2r+1 ≥ ρ2r . Then

1

γ2
Φ(ηKγ22 , γ2a

2
r+1) ≥

1

γ2
Φ(ηKγ22 , γ2a

2
r), (151)
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so a2r+1 ≤ a2r , since Φ(b, ·) is decreasing (Lemma 30). Therefore

ρ2r+1 =
1

γ2
log
(
Φ(ηKγ22 , γ2a

2
r+1)

)
(152)

=
1

γ2
log
(
Φ(ηKγ22 , γ2a

2
r + γ2(a

2
r+1 − a2r))

)
(153)

(i)

≤ 1

γ2
log
(
Φ(ηKγ22 , γ2a

2
r) exp(γ2(a

2
r − a2r+1))

)
(154)

=
1

γ2
log
(
Φ(ηKγ22 , γ2a

2
r)
)
+ (a2r − a2r+1) (155)

(ii)
= ρ2r −

c

2
ρ1r −

1

2
ρ2r (156)

=
1

2
ρ2r −

c

2
ρ1r (157)

(iii)

≤ 1− c
2

ρ1r, (158)

where (i) uses Lemma 34, (ii) uses the recurrence relation of a2r from Equation 133, and (iii) uses
the assumption ρ1r ≥ ρ2r . This proves Equation 144 for m = 2, so that Lr+1 ≤ Lr.

To prove Equation 142, we continue from Equation 148. Denoting λ = (1+ c)/4 and plugging into
the definition of ρ1r+1,

ρ1r+1 =
1

γ1
log
(
Φ
(
ηKγ21 , γ1a

1
r+1

))
(159)

(i)

≤ 1

γ1
log
(
Φ
(
ηKγ21 , γ1a

1
r + λγ1ρ

1
r

))
(160)

(ii)

≤ 1

γ1
log

(
Φ
(
ηKγ21 , γ1a

1
r

)(
1 + (exp(−λγ1ρ1r)− 1)

Φ
(
ηKγ21 , γ1a

1
r

)
− 1

Φ (ηKγ21 , γ1a
1
r) + exp(−γ1a1r)

))
(161)

=
1

γ1
log
(
Φ
(
ηKγ21 , γ1a

1
r

))
+

1

γ1
log

(
1 +

(exp(−λγ1ρ1r)− 1)(Φ
(
ηKγ21 , γ1a

1
r

)
− 1)

Φ (ηKγ21 , γ1a
1
r) + exp(−γ1a1r)

)
(162)

≤ ρ1r +
1

γ1

(exp(−λγ1ρ1r)− 1)(Φ
(
ηKγ21 , γ1a

1
r

)
− 1)

Φ (ηKγ21 , γ1a
1
r) + exp(−γ1a1r)

(163)

(iii)
= ρ1r +

1

γ1

(exp(−λγ1ρ1r)− 1)(exp(γ1ρ
1
r)− 1)

exp(γ1ρ1r) + exp(−γ1a1r)
(164)

= ρ1r −
1

γ1

(1− exp(−λγ1ρ1r))(1− exp(−γ1ρ1r))
1 + exp(−γ1a1r − γ1ρ1r)

(165)

≤ ρ1r −
1

γ1

(1− exp(−λγ1ρ1r))(1− exp(−γ1ρ1r))
1 + exp(−γ1a1r)

, (166)

where (i) uses that Φ(b, ·) is decreasing together with Equation 148, (ii) uses Lemma 34, and (iii)
uses the substitution Φ(ηKγ2m, γma

m
r ) = exp(γmρ

m
r ). We can further bound the terms in the

numerator of Equation 166 as follows.

λγ1ρ
1
r ≤ γ1ρ1r ≤ ρ1r ≤ Lr ≤ L0, (167)

so −γ1ρ1r ∈ [−L0, 0]. By convexity of exp(x)− 1,

exp(−γ1ρ1r)− 1 ≤ γ1ρ
1
r

L0
(exp(−L0)− 1) +

(
1− γ1ρ

1
r

L0

)
(exp(0)− 1) (168)

= γ1ρ
1
r

1− exp(L0)

L0 exp(L0)
, (169)
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and similarly

exp(−λγ1ρ1r)− 1 ≤ λγ1ρ1r
1− exp(L0)

L0 exp(L0)
. (170)

Notice that

L0 exp(L0)

exp(L0)− 1

(i)

≤ L0 exp(L0) + exp(L0)− (L0 + 1)

exp(L0)− 1
=

(L0 + 1)(exp(L0)− 1)

exp(L0)− 1
= L0+1, (171)

where (i) uses exp(x)− (x+ 1) ≥ 0, so

1− exp(L0)

L0 exp(L0)
≤ − 1

L0 + 1
. (172)

Combining this with Equation 169 and Equation 170 yields

(1− exp(−λγ1ρ1r))(1− exp(−γ1ρ1r)) ≥
λγ21

(1 + L0)2
(ρ1r)

2. (173)

Plugging this back into Equation 166,

ρ1r+1 = ρ1r −
λγ1

(1 + L0)2(1 + exp(−γ1a1r))
(ρ1r)

2, (174)

and plugging in the definition of λ gives Equation 142.

Finally, we have already proven Equation 143 in Equation 158.

Lemma 14 (Restatement of Lemma 6). Denote mr = argmaxm∈[M ] ρ
m
r and αr = amr

r . Let
0 ≤ q ≤ r. If αs ≥ A for every q ≤ s ≤ r, then

Lr ≤
1

1/Lq + ν(r − q)/2
, (175)

where

ν :=
(1 + c)γmin

4(L0 + 1)2(1 + exp(−γmaxA))
. (176)

Proof. Lemma 5 gives an upper bound on the change of the surrogate losses ρmr after a single round,
under some conditions. In this proof, we use these one-step decreases to derive an upper bound on
Lr. The idea is to show that, after two steps, Ls decreases proportionally to its square:

Ls+2 ≤ Ls − νL2
s. (177)

For each s with q ≤ s ≤ r, we prove Equation 177 by considering three cases. Again, we assume
without loss of generality that ρ1s ≥ ρ2s.

Case 1: ρ2s+1 ≤ ρ1s+1. This case is easy, since

Ls+2

(i)

≤ Ls+1 (178)
(ii)
= ρ1s+1 (179)
(iii)

≤ Ls −
(1 + c)γ1

4(1 + L0)2(1 + exp(−γ1a1s))
L2
s (180)

(iv)

≤ Ls −
(1 + c)γmin

4(1 + L0)2(1 + exp(−γmaxA))
L2
s (181)

= Ls − νL2
s, (182)

where (i) uses the fact thatLr decreases monotonically (Lemma 5), (ii) uses the assumption ρ2r+1 ≤
ρ1r+1, (iii) uses Equation 24 from Lemma 5, and (iv) uses the condition A ≤ αs together with
αs = a1s.
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Case 2: ρ2s+1 ≥ ρ1s+1 and ρ2s+2 ≥ ρ1s+2. Since ρ2s+2 ≥ ρ1s+2, we have Ls+2 = ρ2s+2. Therefore

Ls+2 = ρ2s+2 (183)
(i)

≤ ρ2s+1 −
(1 + c)γ1

4(1 + L0)2(1 + exp(−γ1a1s))
(ρ2s+1)

2 (184)

(ii)
= Ls+1 −

(1 + c)γ1
4(1 + L0)2(1 + exp(−γ1a1s))

L2
s+1 (185)

(iii)
= Ls+1 −

(1 + c)γmin

4(1 + L0)2(1 + exp(−γmaxA))
L2
s+1 (186)

= Ls+1 − νL2
s+1 (187)

(iv)

≤ Ls − νL2
s (188)

where (i) uses the case assumption ρ2r+1 ≥ ρ2r+1 together with Equation 24 of Lemma 5, (ii)
uses the same case assumption, (iii) uses ther condition A ≤ αs together with αs = a1s, and
(iv) uses the fact that the mapping x 7→ x − a(x − 1)2 is increasing on [0, 1/2a] together with
Ls+1 ≤ Ls ≤ . . . ≤ L0 from Lemma 5.

Case 3: ρ2s+1 ≥ ρ1s+1 and ρ2s+2 ≤ ρ1s+2. From the case assumptions, Ls+2 = ρ1s+2 and Ls+1 =
ρ2s+1. The bound on Ls+2 in this case will depend on whether ρ1s+2 ≤ ρ1s+1. If this happens, then

Ls+2 = ρ1s+2 (189)

≤ ρ1s+1 (190)
(i)

≤ ρ1s −
(1 + c)γmin

4(1 + L0)2(1 + exp(−γ1a1s))
(ρ1s)

2 (191)

= Ls −
(1 + c)γ1

4(1 + L0)2(1 + exp(−γ1a1s))
L2
s (192)

(ii)

≤ Ls −
(1 + c)γmin

4(1 + L0)2(1 + exp(−γmaxA))
L2
s (193)

= Ls − νL2
s, (194)

where (i) uses Equation 24 from Lemma 5 and (ii) uses the condition A ≥ αs together with
αs = a1s.

On the other hand, if ρ1s+2 ≥ ρ1s+1, then

Ls+2 = ρ1s+2

(i)

≤ 1− c
2

Ls+1

(ii)

≤ 1− c
2

Ls (195)

where (i) uses Lemma 5 and (ii) uses Ls+1 ≤ Ls from Lemma 5. Notice that

1 + c

2

1

ν
=

1 + c

2

4(1 + L0)
2(1 + exp(−γmaxA))

(1 + c)γmin
(196)

=
2

γmin
(1 + L0)

2(1 + exp(−γmaxA)) (197)

≥ L0, (198)

so

νLs ≤ νL0 ≤
1 + c

2
(199)

1− 1 + c

2
≤ 1− νLs (200)

1− c
2
≤ 1− νLs (201)

1− c
2

Ls ≤ Ls − νL2
s. (202)
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Therefore the RHS of Equation 195 can be bounded as

Ls+2 ≤
1− c
2

L2 ≤ L2 − νL2
s. (203)

This covers all cases and completes the proof of Equation 177. All that remains is to unroll the
recursive upper bound of Ls given by Equation 177. For every k with 0 ≤ k ≤ (r − q)/2,

Lq+2k ≤ Lq+2(k−1) − νL2
q+2(k−1) (204)

1

Lq+2(k−1)
≤ 1

Lq+2k
− ν

Lq+2(k−1)

Lq+2k
(205)

1

Lq+2k
≥ 1

Lq+2(k−1)
+ ν

Lq+2(k−1)

Lq+2k
(206)

1

Lq+2k

(i)

≥ 1

Lq+2(k−1)
+ ν (207)

1

Lq+2k
≥ 1

Lq
+ νk (208)

Lq+2k ≤
1

1/Lq + νk
, (209)

where (i) uses the fact that Ls is monotonically decreasing (Lemma 5). Choosing k = (r − q)/2
gives Equation 175.

Lemma 15. Denote H0 = minm∈[M ] ρ
m
0 . For every m ∈ [M ] and r ≥ 0,

amr ≥ −
3(1− c)(L0 + 1)2

(1 + c)γmin
log

(
L0

H0

)
. (210)

Proof. Assume without loss of generality that α1
0 ≥ α2

0. Define X ={
r ≥ 0 : (ρ1s ≥ ρ2s) for all s ≤ r and ρ1r ≥ ρ20

}
and q = supX . Then for every r ≥ 0,

1

γ1
log
(
Φ(ηKγ21 , γ1a

1
r)
)
= ρ1r ≤ Lr

(i)

≤ L0 = ρ10 = Φ(ηKγ21 , γ1a
1
0) =

1

γ1
log
(
Φ(ηKγ21 , 0)

)
,

(211)
where (i) uses the fact that Lr is monotonically decreasing (Lemma 5). Also, since Φ(b, ·) is strictly
decreasing, the above implies that a1r ≥ 0 for every r ≥ 0.

Now, for every r ≤ q, the definition of q implies that ρ1r ≥ ρ2r . Therefore Equation 24 from Lemma
5 implies that

ρ1r+1 ≤ Lr −
(1 + c)γ1

4(L0 + 1)2(1 + exp(−γ1a1r))
L2
r (212)

= ρ1r −
(1 + c)γ1

4(L0 + 1)2(1 + exp(−γ1a1r))
(ρ1r)

2 (213)

(i)

≤ ρ1r −
(1 + c)γ1
8(L0 + 1)2

(ρ1r)
2, (214)
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where (i) uses the fact that a1r ≥ 0. Denoting β = (1+c)γ1

8(L0+1)2 , we can then unroll this recursion:

ρ1r+1 ≤ ρ1r − β(ρ1r)2 (215)

1

ρ1r
≤ 1

ρ1r+1

− β ρ1r
ρ1r+1

(216)

1

ρ1r+1

≥ 1

ρ1r
+ β

ρ1r
ρ1r+1

(217)

1

ρ1r+1

(i)

≥ 1

ρ1r
+ β (218)

1

ρ1r+1

≥ 1

ρ10
+ β(r + 1) (219)

ρ1r+1 ≤
1

1/ρ10 + β(r + 1)
, (220)

where (i) uses ρ1r+1 ≤ ρ1r from Equation 214. Choosing r = q − 1 yields

ρ1q ≤
1

1/ρ10 + βq
. (221)

From the definition of q, we also have ρ20 ≤ ρ1q , so

ρ20 ≤
1

1/ρ10 + βq
(222)

1

ρ10
+ βq ≤ 1

ρ20
(223)

q ≤ 1

β

(
1

ρ20
− 1

ρ10

)
. (224)

Now, we claim that for all r ≥ 0,
a2r ≥ min

s≤q+1
a2s. (225)

To see this, we consider two cases. Since q + 1 /∈ X , we know that either (1) ρ2q+1 > ρ1q+1 or (2)
ρ1q+1 < ρ20.

Case 1: ρ2q+1 > ρ1q+1. In this case, Lq+1 = ρ2q+1, so for all r > q,

1

γ2
log
(
Φ(ηKγ22 , γ2a

2
r)
)
= ρ2r ≤ Lr

(i)

≤ Lq+1 = ρ2q+1 =
1

γ2
log
(
Φ(ηKγ22 , γ2a

2
q+1)

)
, (226)

where (i) uses that Lr is monotonically decreasing (Lemma 5). Since Φ(b, ·) is decreasing (Lemma
30), this means a2r ≥ a2q+1. Therefore, more generally, a2r ≥ mins≤q+1 a

2
s for all r ≥ 0.

Case 2: ρ2q+1 ≤ ρ1q+1. In this case, we must have ρ1q+1 < ρ20. Therefore, for all r > q,

1

γ2
log
(
Φ(ηKγ22 , γ2a

2
r)
)
= ρ2r ≤ Lr

(i)

≤ Lq+1 = ρ1q+1 < ρ20 =
1

γ2
log
(
Φ(ηKγ22 , 0)

)
, (227)

where (i) uses that Lr is monotonically decreasing (Lemma 5). Since Φ(b, ·) is decreasing (Lemma
30), this means a2r ≥ 0. Therefore, more generally, a2r ≥ mins≤q a

2
s for all r ≥ 0, since a20 = 0

implies that mins≤q a
2
s ≤ 0.

This proves the claim in both cases. To finish the proof, we will use Equation 224 together with
the recurrence relation of amr to lower bound mins≤q+1 a

2
s. Starting from Equation 133, for every
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s ≤ q,

a2s+1 = a2s +
c

2
ρ1s +

1

2
ρ2s (228)

= a2s +
1 + c

4
(ρ1s + ρ2s) +

1− c
4

(ρ2s − ρ1s) (229)

≥ a2s +
1− c
4

(ρ2s − ρ1s) (230)

≥ a2s −
1− c
4

ρ1s, (231)

and unrolling yields that

a2s ≥ a20 −
1− c
4

s−1∑
t=0

ρ1t = −1− c
4

s−1∑
t=0

ρ1t ≥ −
1− c
4

q∑
t=0

ρ1t . (232)

We can plug in the bound of ρ1t from Equation 220 to obtain

a2s ≥ −
1− c
4

q∑
t=0

1

1/ρ10 + βt
(233)

= −1− c
4

q∑
t=0

1

1/L0 + βt
(234)

≥ −1− c
4

(
L0 +

∫ q

0

1

1/L0 + βx
dx

)
(235)

= −1− c
4

(
L0 +

[
1

β
log(1/L0 + βx)

]q
0

)
(236)

= −1− c
4

(
L0 +

1

β
log(1 + βL0q)

)
(237)

(i)

≥ −1− c
4

(
L0 +

1

β
log

(
1 + L0

(
1

ρ20
− 1

ρ10

)))
(238)

= −1− c
4

(
L0 +

1

β
log

(
ρ10
ρ20

))
(239)

(ii)
= −1− c

4

(
L0 +

8(L0 + 1)2

(1 + c)γ1
log

(
ρ10
ρ20

))
(240)

≥ −3(1− c)(L0 + 1)2

(1 + c)γmin
log

(
ρ10
ρ20

)
, (241)

where (i) uses the bound of q in Equation 224 and (ii) uses the definition of β. Combining this with
Equation 225 gives the desired result.

Lemma 16. Let

A0 =
3(1− c)(L0 + 1)2

(1 + c)γmin
log

(
L0

H0

)
(242)

ν0 =
(1 + c)γmin

4(L0 + 1)2(1 + exp(−γmaxA0))
(243)

τ0 =
2

ν0

(
1

H0
− 1

L0

)
. (244)

Then amr ≥ 0 for every m ∈ [M ] and r ≥ τ0.

Proof. In order for amr ≥ 0 = am0 , it suffices that ρmr ≤ ρm0 . Since Lr = maxm∈[M ] ρ
m
r , this can

be guaranteed when
Lr ≤ H0 := min

m∈[M ]
ρm0 . (245)
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Therefore, we only need to show that Lr ≤ H0 for all r ≥ τ0.

Lemma 15 tells us that amr ≥ −A0 for every m ∈ [M ] and r ≥ 0. Therefore, we can apply Lemma
6 with q = 0, A = A0, and any r ≥ 0 to conclude that

Lr ≤
1

1/L0 + ν0r/2
. (246)

For any r ≥ τ0,

Lr ≤
1

1/L0 + ν0/2τ0
=

1

1/L0 + (1/H0 − 1/L0)
= H0. (247)

This shows that amr ≥ 0 for every r ≥ τ0.

Theorem 4 (Restatement of Theorem 2). Define

τ1 = τ0 +
32(L0 + 1)2

(1 + c)γmin

(
2γmax +

1

H0

)
. (248)

Then for every r ≥ τ1,

F (w̄r) ≤
64(L0 + 1)2

(1 + c)γ2minηK(r − τ0)
. (249)

where

L0 = max
m∈[M ]

1

γm
log
(
1 + ηKγ2m

)
, H0 = min

m∈[M ]

1

γm
log
(
1 + ηKγ2m

)
. (250)

Proof. The result follows by applying a combination of Lemmas 12, 6, 15, and 16.

By Lemma 16, we know that amr ≥ 0 for all m ∈ [M ] and r ≥ τ0. Therefore we can Lemma 6 with
q = τ0 and A = 0, so that for all r ≥ τ0:

Lr ≤
1

1/Lτ0 + ν1(r − τ0)
. (251)

where we denoted

ν1 =
(1 + c)γmin

16(L0 + 1)2
. (252)

By Equation 247 from Lemma 16, we already know that Lτ0 ≤ H0, so

Lr ≤
1

1/H0 + ν1(r − τ0)
. (253)

We would like to use Lemma 12 to bound F (w̄r) in terms of Lr; in order to do this, we need to
ensure that the condition of Lemma 12 is satisfied for all m, i.e.

Lr ≤ min

{
1

2γm
,
1

γm
log

(
1 +

ηKγ2m
2 + ηKγ2m

)}
. (254)

Notice for each m, if ηKγ22 ≤ 1, then

1

γm
log

(
1 +

ηKγ2m
2 + ηKγ2m

)
≥ 1

γm
log

(
1 +

1

3
ηKγ2m

)
(i)

≥ 1

3γm
log
(
1 + ηKγ2m

)
≥ H0

3
, (255)

where (i) uses 1 + ax ≥ (1 + x)a =⇒ log(1 + ax) ≥ a log(1 + x) when a ∈ (0, 1) by concavity
of (1 + x)a. On the other hand, if ηKγ22 ≥ 1, then

1

γm
log

(
1 +

ηKγ2m
2 + ηKγ2m

)
≥ 1

γm
log

(
1 +

1

3

)
≥ 1

4γm
. (256)

Therefore
1

γm
log

(
1 +

ηKγ2m
2 + ηKγ2m

)
≥ min

{
1

4γm
,
H0

3

}
. (257)
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So to prove Equation 254, it suffices to show

Lr ≤ min

{
1

4γm
,
H0

3

}
. (258)

We will show that this is satisfied for every r ≥ τ1. From Equation 253, for all r ≥ τ1:

r − τ0 ≥ τ1 − τ0 (259)

r − τ0 ≥
2

ν1

(
2γmax +

1

H0

)
(260)

ν1(r − τ0) ≥ 4γmax +
2

H0
(261)

1/H0 + ν1(r − τ0) ≥ 4γmax +
3

H0
(262)

1/H0 + ν1(r − τ0) ≥ max

{
4γmax,

3

H0

}
. (263)

Therefore, from Equation 253,

Lr ≤
1

1/H0 + ν1(r − τ0)
≤ min

{
1

4γmax
,
H0

3

}
, (264)

which is exactly Equation 258. Therefore, the condition of Lemma 12 is satisfied for all r ≥ τ1.

Finally, Equation 253 and Lemma 12 imply that for all r ≥ τ1,

Fm(w̄r) ≤
4Lr

ηKγmin
(265)

≤ 4

ηKγmin

1

1/H0 + ν1(r − τ0)
(266)

≤ 4

ν1γminηK(r − τ0)
(267)

=
64(L0 + 1)2

(1 + c)γ2minηK(r − τ0)
. (268)

C EXTENDING WORST-CASE BASELINES

We formally describe the problem in Section C.1, and results are stated in Section C.2.

C.1 SETUP

We consider the following optimization problem:

min
w∈Rd

{
F (w) :=

1

M

M∑
m=1

Fm(w) :=
1

M

M∑
m=1

Eξ∼Dmf(w; ξ)

}
(269)

Assumption 1.

• f(·, ξ) is convex and H-smooth for every ξ.

• There exists F∗ ∈ R such that F (w) ≥ F∗ for every w ∈ Rd.

• For all w ∈ Rd: Eξ∼Di
[∇f(w, ξ)] = ∇Fi(w).

Note that we do not assume that f achieves its infimum at some point in the domain.

Assumption 2 (Stochastic Gradient Variance).
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Algorithm 4 Local SGD

Input: Initialization w̄0 ∈ Rd, rounds R ∈ N, local steps K ∈ N, learning rate η > 0, averaging
weights {αr,k}r,k

1: for r = 0, 1, . . . , R− 1 do
2: for m ∈ [M ] do
3: wm

r,0 ← w̄r

4: for k = 0, . . . ,K − 1 do
5: Sample ξmr,k ∼ Dm

6: wm
r,k+1 ← wm

r,k − η∇f(wm
r,k; ξ

m
r,k)

7: end for
8: end for
9: w̄r+1 ← 1

M

∑M
m=1 w

m
r,K

10: end for
11: return ŵ =

∑R−1
r=0

∑K−1
k=0 αr,k

(
1
M

∑M
m=1 w

m
r,k

)

(a) (Global) There exists σ ≥ 0 such that for all w ∈ Rd and m ∈ [M ]:

Eξ∼Dm

[
∥∇f(w, ξ)−∇Fm(w)∥2

]
≤ σ2. (270)

(b) (Local) For every u ∈ Rd, there exists σ(u) ≥ 0 such that for all m ∈ [M ]:

Eξ∼Dm

[
∥∇f(u, ξ)−∇Fm(u)∥2

]
≤ σ2(u). (271)

Assumption 3 (Objective Heterogeneity).

(a) (Global): There exists ζ ≥ 0 such that for all w ∈ Rd and m ∈ [M ]:

∥∇Fm(w)−∇F (w)∥ ≤ ζ. (272)

(b) (Local): For every u ∈ Rd, there exists ζ(u) ≥ 0 such that for all m ∈ [M ]:

∥∇Fm(u)−∇F (u)∥ ≤ ζ(u). (273)

Local SGD for the above optimization problem is defined in Algorithm 4.

C.2 STATEMENT OF GENERAL CONVERGENCE RESULTS

Theorems 5 and 6 below are proven by modifying two existing analyses of Local SGD Woodworth
et al. (2020b); Koloskova et al. (2020) which use global and local assumptions (respectively) on
stochastic gradient variance and objective heterogeneity, by removing the assumption that the global
objective F has a minimizer w∗. The resulting rates match the corresponding rates from the original
analyses, up to an additional additive term proportional to F (u) − F∗. The convex combination
weights {αr,k}r,k are specified separately in each proof.

Theorem 5. Let B = ∥w̄0−u∥. Under Assumptions 1, 2(a), and 3(a), for any u ∈ Rd, there exists
a choice of η such that Local SGD satisfies

E [F (ŵ)− F∗] ≤ O
(
HB2

KR
+

σB√
MKR

+
(Hζ2B4)1/3

R2/3
+

(Hσ2B4)1/3

K1/3R2/3
+ (F (u)− F∗)

)
.

(274)
Theorem 6. Let B = ∥w̄0−u∥. Under Assumptions 1, 2(b), and 3(b), for any u ∈ Rd, there exists
a choice of η such that Local SGD satisfies

E[F (ŵ)− F∗] ≤

O
(
HB2

R
+

σ(u)B√
MKR

+
(Hσ2(u)B4)1/3

K1/3R2/3
+

(Hζ2(u)B4)1/3

R2/3
+R(F (u)− F∗)

)
. (275)

Proofs are given in Appendices C.3 and C.4, respectively.
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C.3 PROOF OF THEOREM 5

For this section, we use Assumptions 1, 2(a), and 3(a). For the analysis, we will consider the absolute
timestep t = Kr+k, and re-index the algorithm’s internal variables as wm

t = wm
r,k, and gm

t = gm
r,k,

etc. Also, we will denote

w̄t =
1

M

M∑
m=1

wm
t . (276)

The following lemma is slightly modified from Woodworth et al. (2020b) in order to avoid the
assumption that some w∗ exists.

Lemma 17. If η ≤ 1/(4H), then for any u ∈ Rd,

E [F (w̄t)− F (u)] (277)

≤ 1

η

(
E
[
∥w̄t − u∥2

]
− E

[
∥w̄t+1 − u∥2

])
+
ησ2

M
+

3H

2M

M∑
m=1

E
[
∥wm

t − w̄t∥2
]
+ (F (u)− F∗).

(278)

Proof.

∥w̄t+1 − u∥2 =

∥∥∥∥∥w̄t − u− η

M

M∑
m=1

gm
t

∥∥∥∥∥
2

(279)

=

∥∥∥∥∥w̄t − u− η

M

M∑
m=1

∇Fm(wm
t )−

(
η

M

M∑
m=1

gm
t −∇Fm(wm

t )

)∥∥∥∥∥
2

. (280)

Taking conditional expectation Et[·] := E[·|{ξms : s < t,m ∈ [M ]}]:

Et

[
∥w̄t+1 − u∥2

]
=

∥∥∥∥∥w̄t − u− η

M

M∑
m=1

∇Fm(wm
t )

∥∥∥∥∥
2

+ Et

∥∥∥∥∥ ηM
M∑

m=1

gm
t −∇Fm(wm

t )

∥∥∥∥∥
2


(281)

=

∥∥∥∥∥w̄t − u− η

M

M∑
m=1

∇Fm(xmt )

∥∥∥∥∥
2

+
η2

M2

M∑
m=1

Et

[
∥gm

t −∇Fm(wm
t )∥2

]
(282)

≤

∥∥∥∥∥w̄t − u− η

M

M∑
m=1

∇Fm(wm
t )

∥∥∥∥∥
2

︸ ︷︷ ︸
A

+
η2σ2

M
. (283)

To bound A, we decompose

A = ∥w̄t − u∥2 + η2

M2

∥∥∥∥∥
M∑

m=1

∇Fm(wm
t )

∥∥∥∥∥
2

︸ ︷︷ ︸
B1

+
2η

M

〈
w̄t − u,−

M∑
m=1

∇Fm(wm
t )

〉
︸ ︷︷ ︸

B2

. (284)
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We can bound B1 and B2 separately:

B1 =

∥∥∥∥∥
M∑

m=1

∇Fm(w̄t) +

M∑
m=1

(∇Fm(wm
t )−∇Fm(w̄t))

∥∥∥∥∥
2

(285)

≤ 2

∥∥∥∥∥
M∑

m=1

∇Fm(w̄t)

∥∥∥∥∥
2

+ 2

∥∥∥∥∥
M∑

m=1

∇Fm(wm
t )−∇Fm(w̄t)

∥∥∥∥∥
2

(286)

≤ 2M2 ∥∇F (w̄t)∥2 + 2M

M∑
m=1

∥∇Fm(wm
t )−∇Fm(w̄t)∥2 (287)

≤ 4HM2(F (w̄t)− F∗) + 2H2M

M∑
m=1

∥wm
t − w̄t∥2 , (288)

and

B2 = −
M∑

m=1

⟨w̄t − u,∇Fm(wm
t )⟩ (289)

=

M∑
m=1

⟨u−wm
t ,∇Fm(wm

t )⟩ −
M∑

m=1

⟨w̄t −wm
t ,∇Fm(wm

t )⟩ (290)

(i)
=

M∑
m=1

(F (u)− F (wm
t ))−

M∑
m=1

(
F (w̄t)− F (wm

t )− H

2
∥w̄t −wm

t ∥2
)

(291)

= −M(F (w̄t)− F (u)) +
H

2

M∑
m=1

∥w̄t −wm
t ∥2, (292)

where (i) uses convexity and smoothness of F .

Plugging the resulting bound of A back into Equation 283 yields

Et

[
∥w̄t+1 − u∥2

]
≤ ∥w̄t − u∥2 + 4η2H(F (w̄t)− F∗) +

2η2H2

M

M∑
m=1

∥wm
t − w̄t∥2 (293)

− 2η(F (w̄t)− F (u)) +
ηH

M

M∑
m=1

∥w̄t −wm
t ∥2 +

η2σ2

M
(294)

(i)

≤ ∥w̄t − u∥2 + η(F (w̄t)− F∗) +
ηH

2M

M∑
m=1

∥wm
t − w̄t∥2 (295)

− 2η(F (w̄t)− F (u)) +
ηH

M

M∑
m=1

∥w̄t −wm
t ∥2 +

η2σ2

M
(296)

(ii)
= ∥w̄t − u∥2 − η(F (w̄t)− F (u)) +

3ηH

2M

M∑
m=1

∥wm
t − w̄t∥2 + η(F (u)− F∗) +

η2σ2

M
,

(297)

where (i) uses η ≤ 1/(4H), and (ii) uses F (w̄t)−F∗ = (F (w̄t)−F (u))+ (F (u)−F∗). Taking
total expectation and rearranging yields

E [F (w̄t)− F (u)]

≤ 1

η

(
E
[
∥w̄t − u∥2

]
− E

[
∥w̄t+1 − u∥2

])
+
ησ2

M
+

3H

2M

M∑
m=1

E
[
∥wm

t − w̄t∥2
]
+ (F (u)− F∗).

(298)
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The following lemma is exactly the same as in Woodworth et al. (2020b), and is unaffected by
removing the assumption that x∗ exists.

Lemma 18 (Lemma 8 of Woodworth et al. (2020b)). For any η > 0,

1

M

M∑
m=1

E
[
∥wm

t − w̄t∥2
]
≤ 3Kσ2η2 + 6K2η2ζ2.

Proof of Theorem 5. Let ŵ = 1
KR

∑KR−1
t=0 w̄t. Combining Lemma 17 and Lemma 18:

E [F (w̄t)− F (u)] ≤
1

η

(
E
[
∥w̄t − u∥2

]
− E

[
∥w̄t+1 − u∥2

])
+
ησ2

M
+
9

2
Kσ2η2H+9K2η2Hζ2+(F (u)−F∗).

(299)
Averaging over t and applying convexity of F yields

E [F (ŵ)− F (u)]

≤ 1

ηKR

(
E
[
∥w̄0 − u∥2

]
− E

[
∥w̄KR − u∥2

])
+
ησ2

M
+

9

2
Kσ2η2H + 9K2η2Hζ2 + (F (u)− F∗)

(300)

≤ ∥w̄0 − u∥2

ηKR
+

9

2
Kσ2η2H + 9K2η2Hζ2 + (F (u)− F∗). (301)

Denote B = ∥w̄0 − u∥. Identically as in Woodworth et al. (2020b), we can choose

η = min

{
1

H
,
B
√
M

σ
√
KR

,

(
B2

HK2Rσ2

)1/3

,

(
B2

HK3Rζ2

)1/3
}
, (302)

to guarantee

E [F (ŵ)− F (u)] ≤ 4HB2

KR
+

σB√
MKR

+
(Hζ2B4)1/3

R2/3
+

(Hσ2B4)1/3

K1/3R2/3
+ F (u)− F∗, (303)

and rearranging yields the desired result.

C.4 PROOF OF THEOREM 6

For this section, we use Assumptions 1, 2(b), and 3(b). Although our analysis follows a similar tech-
nique as that of (Koloskova et al., 2020), our proof is significantly simpler because we only consider
a fixed communication structure, where (Koloskova et al., 2020) allows for general communication
structures between clients.

Lemma 19. For every u ∈ Rd, t ≥ 0 and m ∈ [M ]:

Eξmt

[
∥∇f(wm

t ; ξmt )−∇Fm(wm
t )∥2

]
≤ 3σ2(u) + 3H2 ∥wm

t − w̄t∥2 + 6H(Fm(w̄t)− Fm(u))− 6H⟨w̄t − u,∇Fm(u)⟩. (304)

Proof. We can decompose:

∇f(wm
t ; ξmt )−∇Fm(wm

t ) = (∇f(wm
t ; ξmt )−∇f(w̄t; ξ

m
t )−∇Fm(wm

t ) +∇Fm(w̄t)) (305)
+ (∇f(w̄t; ξ

m
t )−∇f(u; ξmt )−∇Fm(w̄t) +∇Fm(u)) (306)

+ (∇f(u; ξmt )−∇Fm(u)), (307)
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so

Eξmt

[
∥∇f(wm

t ; ξmt )−∇Fm(wm
t )∥2

]
(308)

≤ 3Eξmt

[
∥∇f(wm

t ; ξmt )−∇f(w̄t; ξ
m
t )−∇Fm(wm

t ) +∇Fm(w̄t)∥2
]

(309)

+ 3Eξmt

[
∥∇f(w̄t; ξ

m
t )−∇f(u; ξmt )−∇Fm(w̄t) +∇Fm(u)∥2

]
+ 3Eξmt

[
∥∇f(u; ξmt )−∇Fm(u)∥2

]
(310)

(i)

≤ 3Eξmt

[
∥∇f(wm

t ; ξmt )−∇f(w̄t; ξ
m
t )∥2

]
+ 3Eξmt

[
∥∇f(w̄t; ξ

m
t )−∇f(u; ξmt )∥2

]
(311)

+ 3Eξmt

[
∥∇f(u; ξmt )−∇Fm(u)∥2

]
(312)

(ii)

≤ 3H2Eξmt

[
∥wm

t − w̄t∥2
]
+ 6HEξmt

[f(w̄t; ξ
m
t )− f(u; ξmt )− ⟨w̄t − u,∇f(u; ξmt )] + 3σ2(u)

(313)

= 3H2 ∥wm
t − w̄t∥2 + 6H(Fm(w̄t)− Fm(u))− 6H⟨w̄t − u,∇Fm(u)⟩+ 3σ2(u), (314)

where (i) uses the fact that E
[
∥X − E[X]∥2

]
≤ E

[
∥X∥2

]
, and (ii) uses the fact that f(·, ξmt ) is

smooth and convex together with Lemma 35.

Lemma 20. For any u ∈ Rd,

1

M

M∑
m=1

E
[
∥∇Fm(wm

t )−∇F (wt)∥2
]

≤ 10H2

M

M∑
m=1

E
[
∥wm

t − w̄t∥2
]
+ 5ζ2(u) + 10H(F (w̄t)− F (u))− 20HE[⟨w̄t − u,∇F (u)⟩].

(315)

Proof. For any m ∈ [M ], we decompose∇Fm(wm
t )−∇F (wm

t ) as:

∇Fm(wm
t )−∇F (wm

t ) = (∇Fm(wm
t )−∇Fm(w̄t)) + (∇Fm(w̄t)−∇Fm(u)) + (∇Fm(u)−∇F (u))

(316)
+ (∇F (u)−∇F (w̄t)) + (∇F (w̄t)−∇F (wm

t )). (317)

Then

∥∇Fm(wm
t )−∇F (wm

t )∥2 ≤ 5∥∇Fm(wm
t )−∇Fm(w̄t)∥2 + 5∥∇Fm(w̄t)−∇Fm(u)∥2 + 5∥∇Fm(u)−∇F (u)∥2

(318)

+ 5∥∇F (u)−∇F (w̄t)∥2 + 5∥∇F (w̄t)−∇F (wm
t )∥2 (319)

(i)

≤ 10H2∥wm
t )− w̄t∥2 + 5∥∇Fm(w̄t)−∇Fm(u)∥2 + 5∥∇Fm(u)−∇F (u)∥2

(320)

+ 5∥∇F (u)−∇F (w̄t)∥2 (321)
(ii)

≤ 10H2∥wm
t − w̄t∥2 + 5H(Fm(w̄t)− Fm(u)− 2H⟨w̄t − u,∇Fm(u)⟩)

(322)

+ 5∥∇Fm(u)−∇F (u)∥2 + 5H(F (w̄t)− F (u)− 2H⟨w̄t − u,∇F (u)⟩),
(323)
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where (i) uses smoothness of Fm and F , and (ii) uses Lemma 35. Taking expectation and averaging
over m ∈ [M ]:

1

M

M∑
m=1

E
[
∥∇Fm(wm

t )−∇F (wm
t )∥2

]
(324)

≤ 10H2

M

M∑
m=1

E
[
∥wm

t − w̄t∥2
]
+ 10HE[F (w̄t)− F (u)]− 20HE [⟨w̄t − u,∇F (u)⟩]

(325)

+
5

M

M∑
m=1

E
[
∥∇Fm(u)−∇F (u)∥2

]
(326)

≤ 10H2

M

M∑
m=1

E
[
∥wm

t − w̄t∥2
]
+ 10HE[F (w̄t)− F (u)]− 20HE [⟨w̄t − u,∇F (u)⟩] + 5ζ2(u)

(327)

Lemma 21. If η ≤ 1/(4H), then for any u ∈ Rd,

E
[
∥w̄t+1 − u∥2

]
≤ E

[
∥w̄t − u∥2

]
+

3η2σ2(u)

M
+

2ηH

M

M∑
m=1

E
[
∥wm

t − w̄t∥2
]
− ηE[F (w̄t)− F∗]

(328)

+ 2η(F (u)− F∗)−
6η2H

M
E[⟨w̄t − u,∇F (u)⟩]. (329)

Proof.

∥w̄t+1 − u∥2 =

∥∥∥∥∥w̄t − u− η

M

M∑
m=1

gm
t

∥∥∥∥∥
2

(330)

=

∥∥∥∥∥w̄t − u− η

M

M∑
m=1

∇Fm(wm
t )−

(
η

M

M∑
m=1

gm
t −∇Fm(wm

t )

)∥∥∥∥∥
2

. (331)

Taking conditional expectation Et[·] := E[·|{ξms : s < t,m ∈ [M ]}]:

Et

[
∥w̄t+1 − u∥2

]
=

∥∥∥∥∥w̄t − u− η

M

M∑
m=1

∇Fm(wm
t )

∥∥∥∥∥
2

+ Et

∥∥∥∥∥ ηM
M∑

m=1

gm
t −∇Fm(wm

t )

∥∥∥∥∥
2


(332)

=

∥∥∥∥∥w̄t − u− η

M

M∑
m=1

∇Fm(wm
t )

∥∥∥∥∥
2

+
η2

M2

M∑
m=1

Et

[
∥gm

t −∇Fm(wm
t )∥2

]
(333)

(i)

≤

∥∥∥∥∥w̄t − u− η

M

M∑
m=1

∇Fm(wm
t )

∥∥∥∥∥
2

+
η2

M2

M∑
m=1

(
3σ2(u) (334)

+ 3H2 ∥wm
t − w̄t∥2 + 6H(Fm(w̄t)− Fm(u))− 6H⟨w̄t − u,∇Fm(u)⟩

)
(335)

=

∥∥∥∥∥w̄t − u− η

M

M∑
m=1

∇Fm(wm
t )

∥∥∥∥∥
2

︸ ︷︷ ︸
A

+
3η2σ2(u)

M
+

3η2H2

M2

M∑
m=1

∥wm
t − w̄t∥2

(336)
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+
18η2H

M
(F (w̄t)− F (u))−

6η2H

M
⟨w̄t − u,∇F (u)⟩, (337)

where (i) uses Lemma 19. To bound A, we decompose

A = ∥w̄t − u∥2 + η2

M2

∥∥∥∥∥
M∑

m=1

∇Fm(wm
t )

∥∥∥∥∥
2

︸ ︷︷ ︸
B1

+
2η

M

〈
w̄t − u,−

M∑
m=1

∇Fm(wm
t )

〉
︸ ︷︷ ︸

B2

. (338)

We can bound B1 and B2 separately:

B1 =

∥∥∥∥∥
M∑

m=1

∇Fm(w̄t) +

M∑
m=1

(∇Fm(wm
t )−∇Fm(w̄t))

∥∥∥∥∥
2

(339)

≤ 2

∥∥∥∥∥
M∑

m=1

∇Fm(w̄t)

∥∥∥∥∥
2

+ 2

∥∥∥∥∥
M∑

m=1

∇Fm(wm
t )−∇Fm(w̄t)

∥∥∥∥∥
2

(340)

≤ 2M2 ∥∇F (w̄t)∥2 + 2M

M∑
m=1

∥∇Fm(wm
t )−∇Fm(w̄t)∥2 (341)

≤ 4HM2(F (w̄t)− F∗) + 2H2M

M∑
m=1

∥wm
t − w̄t∥2 , (342)

and

B2 = −
M∑

m=1

⟨w̄t − u,∇Fm(wm
t )⟩ (343)

=

M∑
m=1

⟨u−wm
t ,∇Fm(wm

t )⟩ −
M∑

m=1

⟨w̄t −wm
t ,∇Fm(wm

t )⟩ (344)

(i)
=

M∑
m=1

(F (u)− F (wm
t ))−

M∑
m=1

(
F (w̄t)− F (wm

t )− H

2
∥w̄t −wm

t ∥2
)

(345)

= −M(F (w̄t)− F (u)) +
H

2

M∑
m=1

∥w̄t −wm
t ∥2, (346)

where (i) uses convexity and smoothness of F .

Plugging the resulting bound of A back into Equation 337 yields

Et

[
∥w̄t+1 − u∥2

]
(347)

≤ ∥w̄t − u∥2 + η2

M2

(
4HM2(F (w̄t)− F∗) + 2H2M

M∑
m=1

∥wm
t − w̄t∥2

)
(348)

+
2η

M

(
−M(F (w̄t)− F (u)) +

H

2

M∑
m=1

∥w̄t −wm
t ∥2

)
+

3η2σ2(u)

M
+

3η2H2

M2

M∑
m=1

∥wm
t − w̄t∥2

(349)

+
18η2H

M
(F (w̄t)− F (u))−

6η2H

M
⟨w̄t − u,∇F (u)⟩ (350)

≤ ∥w̄t − u∥2 + 3η2σ2(u)

M
+

(
2η2H2 + ηH +

3η2H2

M

)
1

M

M∑
m=1

∥wm
t − w̄t∥2 (351)

−
(
2η − 4η2H − 18η2H

M

)
(F (w̄t)− F∗) + 2η(F (u)− F∗)−

6η2H

M
⟨w̄t − u,∇F (u)⟩

(352)
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(i)

≤ ∥w̄t − u∥2 + 3η2σ2(u)

M
+

2ηH

M

M∑
m=1

∥wm
t − w̄t∥2 − η(F (w̄t)− F∗) + 2η(F (u)− F∗)

(353)

− 6η2H

M
⟨w̄t − u,∇F (u)⟩, (354)

where (i) uses the condition η ≤ 1/(22KH). Taking total expectation yields

E
[
∥w̄t+1 − u∥2

]
≤ E

[
∥w̄t − u∥2

]
+

3η2σ2(u)

M
+

2ηH

M

M∑
m=1

E
[
∥wm

t − w̄t∥2
]
− ηE[F (w̄t)− F∗]

(355)

+ 2η(F (u)− F∗)−
6η2H

M
E[⟨w̄t − u,∇F (u)⟩]. (356)

Lemma 22. For any η > 0,

1

M

M∑
m=1

E
[
∥wm

t − w̄t∥2
]
≤ 18η2Kσ2(u) + 120η2K2ζ2(u) + 276η2KH

t−1∑
i=t0

E[F (w̄i)− F (u)]

(357)

− 516η2KH

t−1∑
i=t0

E[⟨w̄i − u,∇F (u)⟩]. (358)

Proof. The proof of this Lemma is similar to that of Lemma 8 from Woodworth et al. (2020b), but
is modified to use a general comparator u instead of a global minimum w∗, and to use a local noise
assumption instead of a global one (i.e. σ(u) instead of σ).

1

M

M∑
m=1

E
[
∥wm

t − w̄t∥2
]
=

1

M

M∑
m=1

E

∥∥∥∥∥ 1

M

M∑
n=1

(wm
t −wn

t )

∥∥∥∥∥
2
 (359)

≤ 1

M2

M∑
m=1

M∑
n=1

E
[
∥wm

t −wn
t ∥

2
]

︸ ︷︷ ︸
Rt

. (360)

We can then establish a recursion over Rt as follows:

Rt =
1

M2

∑
m,n∈[M ]

E
[∥∥wm

t−1 − ηgm
t−1 − (wn

t−1 − ηgn
t−1)

∥∥2] (361)

=
1

M2

∑
m,n∈[M ]

E
[∥∥∥∥wm

t−1 −wn
t−1 − η∇Fm(wm

t−1) + η∇Fn(w
n
t−1) (362)

+ η(gm
t−1 −∇Fm(wm

t−1))− η(gn
t−1 −∇Fn(w

m
t−1))

∥∥∥∥2] (363)

(i)
=

1

M2

∑
m,n∈[M ]

E
[∥∥wm

t−1 −wn
t−1 − η∇Fm(wm

t−1) + η∇Fn(w
n
t−1)

∥∥2] (364)

+
η2

M2

∑
m,n∈[M ]

(
E
[∥∥gm

t−1 −∇Fm(wm
t−1)

∥∥2]+ E
[∥∥gn

t−1 −∇Fn(w
m
t−1)

∥∥2]) (365)

(ii)

≤ 1

M2

∑
m,n∈[M ]

E
[∥∥wm

t−1 −wn
t−1 − η∇Fm(wm

t−1) + η∇Fn(w
n
t−1)

∥∥2] (366)
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+ 2η2

(
3σ2(u) +

3H2

M

M∑
m=1

E
[∥∥wm

t−1 − w̄t−1

∥∥2]+ 6HE[F (w̄t−1)− F (u)]− 6HE[⟨w̄t−1 − u,∇F (u)⟩]

)
(367)

(iii)

≤
(
1 +

1

γ

)
1

M2

∑
m,n∈[M ]

E
[∥∥wm

t−1 −wn
t−1 − η∇F (wm

t−1) + η∇F (wn
t−1)

∥∥2] (368)

+ (1 + γ)
η2

M2

∑
m,n∈[M ]

E
[∥∥−(∇Fm(wm

t−1)−∇F (wm
t−1)) + (∇Fn(w

n
t−1)−∇F (wn

t−1))
∥∥2]

(369)

+ 6η2σ2(u) + 6η2H2Rt−1 + 12η2HE[F (w̄t−1)− F (u)]− 12η2HE[⟨w̄t−1 − u,∇F (u)⟩]
(370)

(iv)

≤
(
1 +

1

γ

)
1

M2

∑
m,n∈[M ]

E
[∥∥wm

t−1 −wn
t−1

∥∥2] (371)

+ (1 + γ)
2η2

M2

∑
m,n∈[M ]

(
E
[∥∥∇Fm(wm

t−1)−∇F (wm
t−1)

∥∥2]+ E
[∥∥∇Fn(w

n
t−1)−∇F (wn

t−1)
∥∥2])

(372)

+ 6η2σ2(u) + 6η2H2Rt−1 + 12η2HE[F (w̄t−1)− F (u)]− 12η2HE[⟨w̄t−1 − u,∇F (u)⟩]
(373)

≤
(
1 +

1

γ
+ 6η2H2

)
Rt−1 + (1 + γ)

4η2

M

M∑
m=1

E
[∥∥∇Fm(wm

t−1)−∇F (wm
t−1)

∥∥2] (374)

+ 6η2σ2(u) + 12η2HE[F (w̄t−1)− F (u)]− 12η2HE[⟨w̄t−1 − u,∇F (u)⟩], (375)

where (i) uses the fact that gm
t−1−∇Fm(wm

t ) has zero mean and is conditionally independent (given
wm

t−1) of wm
t−1 −wn

t−1 − η∇Fm(wm
t−1) + η∇Fn(w

n
t−1), (ii) uses Lemma 19, (iii) uses Young’s

inequality with arbitrary γ > 0, and (iv) uses Lemma 36 together with ∥a+b∥2 ≤ 2∥a∥2+2∥b∥2.
Finally, the heterogeneity term involving ∥∇Fm(wm

t )−∇F (wm
t )∥2 can be bounded with Lemma

20, which yields

Rt ≤
(
1 +

1

γ
+ 6η2H2

)
Rt−1 + (1 + γ) 4η2

(
10H2

M

M∑
m=1

E
[∥∥wm

t−1 − w̄t−1

∥∥2]+ 5ζ2(u)

(376)

+ 10H(F (w̄t−1)− F (u))− 20HE[⟨w̄t−1 − u,∇F (u)⟩]
)

(377)

+ 6η2σ2(u) + 12η2HE[F (w̄t−1)− F (u)]− 12η2HE[⟨w̄t−1 − u,∇F (u)⟩] (378)

≤
(
1 +

1

γ
+ 6η2H2 + 40(1 + γ)η2H2

)
Rt−1 + 6η2σ2(u) + 20(1 + γ)η2ζ2(u) (379)

+
(
12η2H + 40(1 + γ)η2H

)
E[F (w̄t−1)− F (u)] (380)

−
(
12η2H + 80 (1 + γ) η2H

)
E[⟨w̄t−1 − u,∇F (u)⟩]. (381)

Now we use the choice γ = 2(K − 1), so

Rt ≤
(
1 +

1

2(K − 1)
+ 6η2H2 + 80η2KH2

)
Rt−1 + 6η2σ2(u) + 40η2Kζ2(u) (382)

+
(
12η2H + 80η2KH

)
E[F (w̄t−1)− F (u)] (383)

−
(
12η2H + 160η2H

)
E[⟨w̄t−1 − u,∇F (u)⟩] (384)

(i)

≤
(
1 +

1

K − 1

)
Rt−1 + 6η2σ2(u) + 40η2Kζ2(u) + 92η2KHE[F (w̄t−1)− F (u)] (385)

− 172η2KHE[⟨w̄t−1 − u,∇F (u)⟩], (386)
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where (i) uses the condition η ≤ 1/(14KH).

Now, we can unroll this recurrence from t to t0, where t0 = K⌊t/K⌋ is the last synchronization
timestep before t. Notice that Rt0 = 0. So

Rt ≤
(
1 +

1

K − 1

)t−t0

Rt0 +

t−1∑
i=t0

(
1 +

1

K − 1

)t−1−i(
6η2σ2(u) + 40η2Kζ2(u) (387)

+ 92η2KHE[F (w̄i)− F (u)]− 172η2KHE[⟨w̄i − u,∇F (u)⟩]
)

(388)

≤
(
1 +

1

K − 1

)t−1−t0 t−1∑
i=t0

(
6η2σ2(u) + 40η2Kζ2(u) + 92η2KHE[F (w̄i)− F∗] (389)

− 172η2KHE[⟨w̄i − u,∇F (u)⟩]
)

(390)

≤
(
1 +

1

K − 1

)K−1(
6(t− t0)η2σ2(u) + 40(t− t0)η2Kζ2(u) + 92η2KH

t−1∑
i=t0

E[F (w̄i)− F (u)]

(391)

− 172η2KH

t−1∑
i=t0

E[⟨w̄i − u,∇F (u)⟩]
)

(392)

≤ 18η2Kσ2(u) + 120η2K2ζ2(u) + 276η2KH

t−1∑
i=t0

E[F (w̄i)− F (u)] (393)

− 516η2KH

t−1∑
i=t0

E[⟨w̄i − u,∇F (u)⟩]. (394)

Proof of Theorem 6. Starting from Lemma 21, applying Lemma 22 to bound the drift term yields

E
[
∥w̄t+1 − u∥2

]
(395)

≤ E
[
∥w̄t − u∥2

]
+

3η2σ2(u)

M
+

2ηH

M

M∑
m=1

E
[
∥wm

t − w̄t∥2
]
− ηE[F (w̄t)− F∗] (396)

+ 2η(F (u)− F∗)−
6η2H

M
E[⟨w̄t − u,∇F (u)⟩] (397)

≤ E
[
∥w̄t − u∥2

]
+

3η2σ2(u)

M
+ 2ηH

(
18η2Kσ2(u) + 120η2K2ζ2(u) (398)

+ 276η2KH

t−1∑
i=t0

E[F (w̄i)− F (u)]− 516η2KH

t−1∑
i=t0

E[⟨w̄i − u,∇F (u)⟩]
)
− ηE[F (w̄t)− F∗]

(399)

+ 2η(F (u)− F∗)−
6η2H

M
E[⟨w̄t − u,∇F (u)⟩] (400)

≤ E
[
∥w̄t − u∥2

]
− 6η2H

M
E[⟨w̄t − u,∇F (u)⟩]− 1032η3KH2

t−1∑
i=t0

E[⟨w̄i − u,∇F (u)⟩]

(401)

+
3η2σ2(u)

M
+ 36η3HKσ2(u) + 240η3K2Hζ2(u) + 2η(F (u)− F∗) (402)

− ηE[F (w̄t)− F∗] + 552η3KH2
t−1∑
i=t0

E[F (w̄i)− F∗]. (403)
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Each inner product term ⟨w̄i − u,∇F (u)⟩ can be bounded as:

−⟨w̄i−u,∇F (u)⟩ ≤ 1

2λ
∥w̄i−u∥2+ λ

2
∥∇F (u)∥2 ≤ 1

2λ
∥w̄i−u∥2+λH(F (u)−F∗), (404)

where we will specify λ > 0 later. So

E
[
∥w̄t+1 − u∥2

]
(405)

≤
(
1 +

3η2H

λM

)
E
[
∥w̄t − u∥2

]
+

516η3KH2

λ

t−1∑
i=t0

E[∥w̄i − u∥2] (406)

+
3η2σ2(u)

M
+ 36η3HKσ2(u) + 240η3K2Hζ2(u) +

(
2η +

6λη2H2

M
+ 1032λη3K2H3

)
(F (u)− F∗)

(407)

− ηE[F (w̄t)− F∗] + 552η3KH2
t−1∑
i=t0

E[F (w̄i)− F∗] (408)

(i)

≤
(
1 +

3η2H

λM

)
E
[
∥w̄t − u∥2

]
+

516η3KH2

λ

t−1∑
i=t0

E[∥w̄i − u∥2] (409)

+
3η2σ2(u)

M
+ 36η3HKσ2(u) + 240η3K2Hζ2(u) + (2 + 6λ)η(F (u)− F∗) (410)

− ηE[F (w̄t)− F∗] + 552η3KH2
t−1∑
i=t0

E[F (w̄i)− F∗], (411)

where (i) uses the condition η ≤ 1/(14KH). Equation 409 is a recursion of the form

at+1 ≤ rat + p

t−1∑
i=t0

ai + b− qct + s

t−1∑
i=t0

ci, (412)

with

at = E
[
∥w̄t − u∥2

]
, ct = E [F (w̄t)− F∗] (413)

r = 1 +
3η2H

λM
, p =

516η3KH2

λ
, s = 552η3KH2, q = η (414)

b =
3η2σ2(u)

M
+ 36η3HKσ2(u) + 240η3K2Hζ2(u) + (2 + 6λ)η(F (u)− F∗). (415)

Letting β = 1− 1
KR , we multiply Equation 412 by βt and sum over t ∈ {t0, . . . , t0 +K − 1}:

t0+K−1∑
t=t0

βtat+1 ≤ r
t0+K−1∑

t=t0

βtat + p

t0+K−1∑
t=t0

t−1∑
i=t0

βtai + b

t0+K−1∑
t=t0

βt − q
t0+K−1∑

t=t0

βtct + s

t0+K−1∑
t=t0

t−1∑
i=t0

βtci

(416)
t0+K−1∑

t=t0

βtat+1 ≤
t0+K−1∑

t=t0

(
rβt + p

t0+K−1∑
i=t0

βi

)
at + b

t0+K−1∑
t=t0

βt −
t0+K−1∑

t=t0

(
qβt − s

t0+K−1∑
i=t0

βi

)
ct.

(417)

Combining the sums over {at} and isolating the sum over {ct}:
t0+K−1∑

t=t0

(
qβt − s

t0+K−1∑
i=t0

βi

)
︸ ︷︷ ︸

A1

ct ≤

(
rβt0 + p

t0+K−1∑
i=t0

βi

)
at0 +

t0+K−1∑
t=t0+1

(
rβt + p

t0+K−1∑
i=t0

βi − βt−1

)
︸ ︷︷ ︸

A2

at

(418)

− βt0+K−1at0+K + b

t0+K−1∑
t=t0

βt. (419)
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To bound A1 from below, we claim that s
∑t0+K−1

i=t0
βi ≤ q

2β
t. This is equivalent to

552η3KH2
t0+K−1∑

i=t0

βi ≤ η

2
βt (420)

1104η2KH2
K−1∑
i=0

βi ≤ βt−t0 (421)

1104η2KH2 1− βK

1− β
≤ βt−t0 (422)

1104η2KH2 ≤ βt−t0
1− β
1− βK

, (423)

so it suffices to show
1104η2KH2 ≤ βK−1 1− β

1− βK
. (424)

Using the definition β = 1− 1
KR ,

βK−1 1− β
1− βK

=

(
1− 1

KR

)K−1
1

KR

1

1−
(
1− 1

KR

)K =
1

KR

(
1− 1

KR

) (
1− 1

KR

)K
1−

(
1− 1

KR

)K .
(425)

Using the condition R ≥ 2,(
1− 1

KR

)K

=

((
1− 1

KR

)KR
)1/R

≥

((
1− 1

2

)2
)1/R

= 4−1/R, (426)

so

βK−1 1− β
1− βK

≥ 1

KR

(
1− 1

KR

)
4−1/R

1− 4−1/R
≥ 1

4K

1/R

1− 4−1/R
≥ 1

4 log 4K
, (427)

where the last inequality follows from the fact that f(x) = (x(1−4−1/x))−1 is decreasing for x > 0,
and limx→∞ f(x) = 1/(log 4). Equation 424 follows by applying the condition η ≤ 1/(80KH).
This proves the claim, so A1 ≤ − q

2β
t.

Returning to Equation 419, we claim that A2 ≤ 0. This is equivalent to

rβt + p

t0+K−1∑
i=t0

βi − βt−1 ≤ 0 (428)

rβt−t0 + p

K−1∑
i=0

βi ≤ βt−t0−1 (429)

rβt−t0 + p
1− βK

1− β
≤ βt−t0−1 (430)

rβ + p
1− βK

βt−t0−1(1− β)
≤ 1, (431)

so it suffices to prove that

rβ + p
1− βK

βK−1(1− β)
≤ 1. (432)

From the definition β = 1− 1
KR ,

1− βK

βt−t0−1(1− β)
=

1−
(
1− 1

KR

)K(
1− 1

KR

)K KR =

((
1− 1

KR

)−K

− 1

)
KR (433)

=

((1− 1

KR

)−KR
)1/R

− 1

KR
(i)

≤
(
41/R − 1

)
KR

(ii)

≤ 4K, (434)
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where (i) uses the fact that (1 − 1/x)−x is decreasing together with R ≥ 2, and (ii) uses that
(41/x − 1)x is decreasing together with R ≥ 2. So we need to show rβ + 4Kp ≤ 1. Using the
definitions of r, p,

rβ + 4Kp =

(
1 +

3η2H

λM

)(
1− 1

KR

)
+

2064η3K2H2

λ
(435)

≤ 1 +
3η2H

λM
− 1

KR
+

2064η3K2H2

λ
(436)

≤ 1 +

(
1

λ

(
3η2H

M
+ 2064η3K2H2

)
− 1

KR

)
(437)

(i)

≤ 1, (438)

where (i) uses the choice λ =
(

3
M + 2064ηK2H

)
η2KRH . This proves the claim that A2 ≤ 0.

Returning to Equation 419 and applying our bounds for A1 and A2,

q

2

t0+K−1∑
t=t0

βtct ≤

(
rβt0 + p

t0+K−1∑
i=t0

βi

)
at0 − βt0+K−1at0+K + b

t0+K−1∑
t=t0

βt. (439)

We can now sum over t0 ∈ {0,K, 2K, . . . , (R− 1)K}:

q

2

KR−1∑
t=0

βtct ≤

(
r + p

K−1∑
i=0

βi

)
a0 +

∑
t0∈{K,...,(R−1)K}

(
rβt0 + p

t0+K−1∑
i=t0

βi − βt0−1

)
at0

(440)

− βKR−1aKR + b

KR−1∑
t=0

βt (441)

(i)

≤

(
r + p

K−1∑
i=0

βi

)
a0 − βKR−1aKR + b

KR−1∑
t=0

βt (442)

≤

(
r + p

K−1∑
i=0

βi

)
a0 + b

KR−1∑
t=0

βt, (443)

where (i) uses rβt0 + p
∑t0+K−1

i=t0
βi − βt0−1 ≤ 0, which can be proved similarly as the bound of

A2. Let αt = βt/
∑KR−1

i=0 βt, so

KR−1∑
t=0

αtct ≤

(
r∑KR−1

i=0 βi
+ p

K−1∑
i=0

αi

)
2a0
q

+
2b

b
(444)

(i)

≤
(
r

1− β
1− βKR

+ p

)
2a0
q

+
2b

q
(445)

(ii)
=

(
2r

KR
+ p

)
2a0
q

+
2b

q
(446)

=

(
2

KR

(
1 +

3η2H

λM

)
+

516η3KH2

λ

)
2a0
q

+
2b

q
(447)

=
1

KR

(
2 +

1

λ

(
6η2H

M
+ 516η3K2RH2

))
2a0
q

+
2b

q
(448)

(iii)
=

6a0
qKR

+
2b

q
, (449)

where (i) uses
∑K−1

i=0 αi ≤
∑KR−1

i=0 αi = 1, (ii) uses 1− βKR = 1−
(
1− 1

KR

)KR ≥ 1− 1/e ≥
1/2, and (iii) uses the choice λ =

(
3
M + 2064ηK2H

)
η2KRH .
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Finally, we can plug the definitions of q, a0, ct, and b to obtain
KR−1∑
t=0

αtE[F (w̄t)− F∗] (450)

≤ 6∥w̄0 − u∥2

ηKR
+

6ησ2(u)

M
+ 72η2HKσ2(u) + 480η2K2Hζ2(u) + (4 + 12λ)(F (u)− F∗)

(451)
(i)

≤ 6∥w̄0 − u∥2

ηKR
+

6ησ2(u)

M
+ 72η2HKσ2(u) + 480η2K2Hζ2(u) + 3R(F (u)− F∗),

(452)
where (i) uses the condition η ≤ 1/(80KH) to bound 4 + 12λ as

4 + 12λ ≤ 4 + 12

(
3

M
+ 2064ηK2H

)
η2KRH ≤ 4 + (3 + 26K)12η2KRH (453)

≤ 4 + 348η2K2RH ≤ R+ 4 ≤ 3R. (454)

Denoting ŵ =
∑KR−1

i=0 αiw̄i and applying convexity of F yields

E[F (ŵ)−F∗] ≤
6∥w̄0 − u∥2

ηKR
+
6ησ2(u)

M
+72η2HKσ2(u)+480η2K2Hζ2(u)+3R(F (u)−F∗).

(455)
Lastly, denoting B = ∥w̄0 − u∥, we choose η as

η = min

{
1

80KH
,

B
√
M

σ(u)
√
KR

,

(
B2

HK2Rσ2(u)

)1/3

,

(
B2

HK3Rζ2(u)

)1/3
}
, (456)

which yields

E[F (ŵ)−F∗] ≤
480HB2

R
+

6σ(u)B√
MKR

+
72(Hσ2(u)B4)1/3

K1/3R2/3
+
480(Hζ2(u)B4)1/3

R2/3
+3R(F (u)−F∗).

(457)

C.5 PROOFS OF COROLLARIES 1 AND 2

C.5.1 BOUNDING PROBLEM PARAMETERS

For now, we will only consider the deterministic case, so we can set σ = 0.

Next, we bound the smoothness constant H . For the loss of a single sample ℓ(w,x, y) = log(1 +
exp(−y⟨w,x⟩)), the Hessian∇2ℓ (with respect to w) is

∂2ℓ

∂w2
(w,x, y) =

exp(y⟨w,x⟩)
(1 + exp(y⟨w,x⟩))2

xxT , (458)

so the smoothness constant of ℓ is∥∥∥∥ ∂2ℓ∂w2
(w,x,y)

∥∥∥∥ = sup
w∈Rd

{
exp(y⟨w,x⟩)

(1 + exp(y⟨w,x⟩))2
∥x∥2

}
=

1

4
∥x∥2. (459)

Therefore, the smoothness constant of F (and similarly each Fm) can be bounded as

∥∇2F (w)∥ =

∥∥∥∥∥ 1

nM

M∑
m=1

n∑
i=1

∂2ℓ

∂w2
(w, xmi, ymi)

∥∥∥∥∥ (460)

≤ 1

nM

M∑
m=1

n∑
i=1

∥∥∥∥ ∂2ℓ∂w2
(w, xmi, ymi)

∥∥∥∥ (461)

≤ 1

4nM

M∑
m=1

n∑
i=1

∥xmi∥2 (462)

(i)

≤ 1

4
, (463)
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where (i) uses the assumption from Section 3 that ∥xmi∥ ≤ 1 for every m ∈ [M ], i ∈ [n]. This
allows us to use H ≤ 1/4 when applying Theorem 5 to the case of logistic regression.

To upper bound the data heterogeneity ζ, we need a bound for

max
m∈[M ]

sup
w∈Rd

∥∇Fm(w)−∇F (w)∥. (464)

Notice that ℓ is Lipschitz in terms of w, since∥∥∥∥ ∂ℓ∂w (w,x, y)

∥∥∥∥ =

∥∥∥∥ −y
1 + exp(y⟨w,x⟩)

x

∥∥∥∥ =
1

1 + exp(y⟨w,x⟩)
∥x∥ ≤ ∥x∥. (465)

This leads to a simple upper bound of the gradient dissimilarity as:

∥∇Fm(w)−∇F (w)∥ ≤ ∥∇Fm(w)∥+ ∥∇F (w)∥ (466)

≤ 1

n

n∑
i=1

∥∥∥∥ ∂ℓ∂w (w,xmi, ymi)

∥∥∥∥+ 1

nM

M∑
m′=1

n∑
i=1

∥∥∥∥ ∂ℓ∂w (w,xm′i, ym′i)

∥∥∥∥
(467)

≤ 1

n

n∑
i=1

∥xmi∥+
1

nM

M∑
m′=1

n∑
i=1

∥xm′i∥ (468)

≤ 2. (469)

Although this bound may appear pessimistic, the following lemma shows that the bound achieved
(up to constant factors) in a simple case.
Lemma 23. For d = 2,M = 2, n = 2 there exist client datasets for logistic regression such that
the corresponding optimization problem satifies

max
m∈[M ]

sup
w∈Rd

∥∇Fi(w)−∇F (w)∥ ≥ 1

2
. (470)

Proof. The previous bound on ζ can be achieved in a situation where, for a particular weight w,
both samples from client m = 1 are classified correctly, while both samples from client m = 2 are
classified incorrectly. Letting ∥w∥ → ∞ while preserving the direction of w achieves the desired
bound.

Let w∗ = e2, and consider the following client datasets:

D1 = {((0, 1), 1), ((0,−1),−1)} (471)

D2 = {((−2/
√
5, 1/
√
5), 1), ((2/

√
5,−1/

√
5),−1)}. (472)

It is straightforward to verify that this dataset is consistent with the ground truth parameter w∗, and
that 1 = supm∈[M ]

{
1
n

∑n
i=1 ∥xmi∥

}
. For any w = (w1, w2) ∈ R2, the gradient of each local

objective has the following closed form:

∇F1(w) =
1

2

(
−1

exp(w2) + 1
e2 +

1

exp(w2) + 1
(−e2)

)
=

−1
exp(w2) + 1

e2 (473)

∇F2(w) =
1

2

(
−1

exp(−2w1 + w2) + 1

1√
5
(−2e1 + e2) +

1

exp(−2w1 + w2) + 1

1√
5
(2e1 − e2)

)
(474)

=
1√

5(exp(−2w1 + w2) + 1)
(2e1 − e2). (475)

Now consider w = λ(1, 1) for λ > 0. This yields

∇F1(w) =
−1

exp(λ) + 1
e2 (476)

∇F2(w) =
1√

5(exp(−2λ) + 1)
(2e1 − e2). (477)
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Therefore, as λ→∞, the local (and global) gradients approach

∇F1(w)→ 0 (478)

∇F2(w)→
(

2√
5
e1 −

1√
5
e2

)
(479)

∇F (w)→ 1

2

(
2√
5
e1 −

1√
5
e2

)
. (480)

Finally, consider the gradient dissimilarity ∥∇F2(w)−∇F (w)∥ as λ→∞:

max
m∈[M ]

sup
w∈Rd

∥∇Fm(w)−∇F (w)∥ ≥ lim
λ→∞

∥∇F2(w)−∇F (w)∥ (481)

=
1

2

∥∥∥∥ 2√
5
e1 −

1√
5
e2

∥∥∥∥ (482)

=
1

2
. (483)

Lemma 23 demonstrates that the bound ζ ≤ 2 is tight up to constant factors (in the worst-case over
possible datasets).

We can also bound the local heterogeneity ζ(u) at an arbitrary point u as:

ζ2(u) =
1

M

M∑
m=1

∥∇Fm(u)−∇F (u)∥2 (484)

≤ 2

M

M∑
m=1

(
∥∇Fm(u)∥2 + ∥∇F (u)∥2

)
(485)

≤ 4H

M

M∑
m=1

((Fm(u)− Fm∗) + (F (u)− F∗)) (486)

(i)

≤ 8H(F (u)− F∗) (487)
(ii)

≤ 2(F (u)− F∗), (488)

where (i) uses the fact that 1
M

∑M
m=1 F

∗
m = F∗, and (ii) uses the previously derived bound H ≤

1/4.

C.5.2 CHOOSING A COMPARATOR

Let ŵ denote the output of Local SGD for the logistic regression problem. For simplicity, we will
assume that w̄0 = 0.

Global Heterogeneity/Noise For the deterministic case (σ = 0), we can restate the convergence
rate from Theorem 5 as:

E [F (ŵ)− F∗] ≤
4H∥u∥2

KR
+

(Hζ2∥u∥4)1/3

R2/3
+ 2(F (u)− F∗). (489)

Also, we can plug in the bounds H ≤ 1/4 and ζ ≤ 2 (from Section C.5.1) to obtain

E [F (ŵ)− F∗] ≤
∥u∥2

KR
+
∥u∥4/3

R2/3
+ 2(F (u)− F∗). (490)

Recall that w∗ is the maximum margin predictor for the global dataset with ∥w∗∥ = 1. We will
choose our comparator as u = λw∗ for some λ > 0 that will be chosen later. The error F (u)− F∗
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can then be bounded as

F (u)− F∗ =
1

nM

M∑
m=1

n∑
i=1

log(1 + exp(−λymi⟨w∗,xmi⟩)) (491)

(i)

≤ 1

nM

M∑
m=1

n∑
i=1

log(1 + exp(−λγ)) (492)

= log(1 + exp(−λγ)) (493)
(ii)

≤ exp(−λγ), (494)

where (i) uses the definition of the margin γ from Equation 2, and (ii) uses log(1 + x) ≤ x. The
convergence rate then simplifies to

E [F (ŵ)− F∗] ≤
λ2

KR
+
λ4/3

R2/3
+ 2 exp(−λγ). (495)

Denoting [x]+ = max{0, x}, we will use the choice

λ =
1

γ

[
min

{
log
(
KRγ2

)
, log

(
R2/3γ4/3

)}]
+
. (496)

So the last term of Equation 495 can be bounded as

exp(−λγ) ≤ max

{
1

KRγ2
,

1

R2/3γ4/3

}
≤ 1

KRγ2
+

1

R2/3γ4/3
. (497)

So plugging the choice of λ into Equation 495 yields

E [F (ŵ)− F∗] ≤
1

KRγ2
[
log
(
KRγ2

)]2
+
+

1

R2/3γ4/3

[
log
(
R2/3γ4/3

)]4/3
+

+ 2 exp(−λγ)

(498)

≤ 1

KRγ2

(
2 +

[
log
(
KRγ2

)]2
+

)
+

1

R2/3γ4/3

(
2 +

[
log
(
R2/3γ4/3

)]4/3
+

)
.

(499)

This proves Corollary 1, since Equation 499 is exactly the upper bound from Corollary 1.

Local Heterogeneity/Noise Restating the convergence rate from Theorem 6 (with σ(u) = 0):

E[F (ŵ)− F∗] ≤
H∥u∥2

R
+

(Hζ2(u)∥u∥4)1/3

R2/3
+R(F (u)− F∗), (500)

we can use the our bounds on H and ζ(u) from Section C.5.1 to obtain

E[F (ŵ)− F∗] ≤
∥u∥2

R
+

((F (u)− F∗)∥u∥4)1/3

R2/3
+R(F (u)− F∗). (501)

We again choose u = λw∗, so that

E[F (ŵ)− F∗] ≤
λ2

R
+
λ4/3

R2/3
exp1/3(−γλ) +R exp(−γλ). (502)

Here, we use the choice

λ =
2

γ
[log(R)]+ , (503)

which yields

E[F (ŵ)− F∗] ≤
1

γ2R

(
1 + [log(R)]

2
+

)
+

1

R2/3

1

γ4/3
[log(R)]

4/3
+

(
1

R2

)1/3

(504)

=
1

γ2R

(
1 + [log(R)]

2
+

)
+

1

γ4/3R4/3
[log(R)]

4/3
+ . (505)

This proves Corollary 2, since Equation 505 is exactly the upper bound from Corollary 2.
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D TECHNICAL LEMMAS

D.1 LEMMAS FOR SECTION 4/THEOREM 1

Lemma 24. For all z ∈ R,
0 < ℓ′′(z) ≤ |ℓ′(z)| ≤ ℓ(z). (506)

Also, for all z ≥ 0,
ℓ(z) ≤ 2|ℓ′(z)|. (507)

Proof. From the definition of ℓ,

ℓ′(z) =
− exp(−z)
1 + exp(−z)

=
−1

exp(z) + 1
(508)

ℓ′′(z) =
exp(z)

(exp(z) + 1)2
. (509)

Therefore ℓ′′(z) > 0, and

ℓ′′(z) =
exp(z)

exp(z) + 1

1

exp(z) + 1
≤ 1

exp(z) + 1
= |ℓ′(z)|. (510)

Also

ℓ(z) = log(1 + exp(−z))
(i)

≥ exp(−z)
1 + exp(−z)

=
1

exp(z) + 1
= |ℓ′(z)|, (511)

where (i) uses the inequality log(1 + x) ≥ x
1+x , which can be derived as

log(1 + x) = log(1) +

∫ x

0

d log(1 + t)

dt

∣∣∣∣
t=s

ds =

∫ x

0

1

1 + s
ds ≥

∫ x

0

1

1 + x
ds =

x

1 + x
. (512)

This proves Equation 506.

For Equation 507,

ℓ(z) = log(1 + exp(−z))
(i)

≤ exp(−z)
(ii)

≤ 2

exp(z) + 1
= 2|ℓ′(z)|, (513)

where (i) uses log(1 + x) ≤ x for all x, and (ii) uses the condition z ≥ 0.

Lemma 25. For all w ∈ Rd and m ∈ [M ],
∥∇Fm(w)∥ ≤ Fm(w) (514)

∥∇2Fm(w)∥ ≤ Fm(w). (515)
Consequently,

∥∇F (w)∥ ≤ F (w) (516)

∥∇2F (w)∥ ≤ F (w). (517)

Proof. From the definition of Fm,

∇Fm(w) =
1

n

n∑
i=1

ℓ′(ymi⟨w,xmi⟩)(−ymixmi) =
1

n

n∑
i=1

|ℓ′(ymi⟨w,xmi⟩)|ymixmi, (518)

therefore

∥∇Fm(w)∥ ≤ 1

n

n∑
i=1

|ℓ′(ymi⟨w,xmi⟩)|∥xmi∥ (519)

(i)

≤ 1

n

n∑
i=1

|ℓ′(ymi⟨w,xmi⟩)| (520)

(ii)

≤ 1

n

n∑
i=1

ℓ(ymi⟨w,xmi⟩) (521)

= Fm(w), (522)
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where (i) uses ∥xmi∥ ≤ 1 and (ii) uses Equation 506. This proves Equation 514.

Similarly,

∇2Fm(w) =
1

n

n∑
i=1

ℓ′′(ymi⟨w,xmi⟩)xmix
⊺
mi, (523)

so

∥∇2Fm(w)∥ ≤ 1

n

n∑
i=1

ℓ′′(ymi⟨w,xmi⟩) ∥xmix
⊺
mi∥ (524)

=
1

n

n∑
i=1

ℓ′′(ymi⟨w,xmi⟩) ∥xmi∥2 (525)

(i)

≤ 1

n

n∑
i=1

ℓ′′(ymi⟨w,xmi⟩) (526)

(ii)

≤ 1

n

n∑
i=1

ℓ(ymi⟨w,xmi⟩) (527)

= Fm(w), (528)

where (i) uses ∥xmi∥ ≤ 1 and (ii) uses 506. This proves Equation 515

Equation 516 follows from Equation 514 by

∥∇F (w)∥ =

∥∥∥∥∥ 1

M

M∑
m=1

∇Fm(w)

∥∥∥∥∥ ≤ 1

M

M∑
m=1

∥∇Fm(w)∥ ≤ 1

M

M∑
m=1

Fm(w) = F (w), (529)

and Equation 517 follows from Equation 515 by

∥∇2F (w)∥ =

∥∥∥∥∥ 1

M

M∑
m=1

∇2Fm(w)

∥∥∥∥∥ ≤ 1

M

M∑
m=1

∥∇2Fm(w)∥ ≤ 1

M

M∑
m=1

Fm(w) = F (w).

(530)

Lemma 26. Suppose w ∈ Rd such that ymi⟨xmi,w⟩ ≥ 0 for all m ∈ [M ], i ∈ [n].

∥∇F (w)∥ ≥ γ

2
F (w), (531)

where γ denotes the maximum margin of the combined dataset.

Proof. Recall that w∗ is the maximum margin classifier of the combined dataset, so
ymi⟨w∗,xmi⟩ ≥ γ for all m ∈ [M ] and i ∈ [n]. From the definitions of L2 norm and inner
product, we have for any z ∈ Rd:

∥∇F (w)∥ =
〈
∇F (w),

∇F (w)

∥∇F (w)∥

〉
≥
〈
∇F (w),

z

∥z∥

〉
(532)

In particular, choosing z = w∗ yields

∥∇F (w)∥ ≥ ⟨∇F (w),w∗⟩ (533)

=
1

Mn

M∑
m=1

n∑
i=1

|ℓ′(ymi⟨w,xmi⟩)|ymi⟨xmi,w∗⟩ (534)

(i)

≥ γ

Mn

M∑
m=1

n∑
i=1

|ℓ′(ymi⟨w,xmi⟩)| (535)

(ii)

≥ γ

2Mn

M∑
m=1

n∑
i=1

ℓ(ymi⟨w,xmi⟩) (536)

=
γ

2
F (w), (537)
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where (i) uses the definition of w∗ and (ii) uses Equation 507 together with the condition
yi⟨w,xmi⟩ ≥ 0.

Lemma 27. Suppose f : [0,∞)→ R is continuously differentiable and

f ′(t) < ϕ1(t) + ϕ2(t)f(t), (538)

where ϕ1, ϕ2 : [0,∞)→ [0,∞) are continuous and ϕ2(t) > 0 when t > 0. Then

f(t) ≤ exp

(∫ t

0

ϕ2(s)ds

)(
f(0) +

∫ t

0

exp

(
−
∫ s

0

ϕ2(r)dr

)
ϕ1(s)ds

)
, (539)

and consequently

f ′(t) ≤ ϕ1(t) + ϕ2(t) exp

(∫ t

0

ϕ2(s)ds

)(
f(0) +

∫ t

0

exp

(
−
∫ s

0

ϕ2(r)dr

)
ϕ1(s)ds

)
. (540)

Proof. Let g : [0,∞)→ R be the unique solution to the following initial value problem:

g′(t) = ϕ1(t) + ϕ2(t)g(t) (541)
g(0) = f(0), (542)

and let h(t) = g(t)− f(t). Then

h′(t) = g′(t)− f ′(t) (543)
> (ϕ1(t) + ϕ2(t)g(t))− (ϕ1(t) + ϕ2(t)f(t)) (544)
= ϕ2(t)(g(t)− f(t)) (545)
= ϕ2(t)h(t). (546)

So h′(0) > 0. Note that h is continuously differentiable, since both f, g are. Therefore there exists
some t0 > 0 such that h′(t) > 0 for all t ∈ [0, t0], and consequently h(t) > 0 for all t ∈ [0, t0].

Now assume for the sake of contradiction that h(t1) ≤ 0 for some t1 > 0. Then let T =
{t ≥ 0 : h(t) ≤ 0}. T is not empty, since t1 ∈ T . So t2 := inf T exists. Since h(t) > 0 for
all t ∈ [0, t0], we know that t2 > t0 > 0. Therefore

h(t2) =

∫ t2

0

h′(t)dt
(i)
=

∫ t2

0

ϕ2(t)h(t)dt
(ii)
> 0, (547)

where (i) uses Equation 546 and (ii) uses t < t2 =⇒ t /∈ T together with t2 > 0 and t > 0 =⇒
ϕ2(t) > 0. Therefore

h′(t2) = ϕ2(t2)h(t2) > 0. (548)
But since h is continuously differentiable, there exists some t3 > t2 such that h′(t) > 0 for all
t ∈ [t2, t3]. Then h′(t) > 0 for all t ∈ [0, t3], so t3 ≤ inf T = t2, but this contradicts the
construction of t3 > t2. Therefore, h(t) > 0 for all t > 0. This means f(t) < g(t) for all t > 0,
and in particular that f(t) ≤ g(t) for all t.

It only remains to solve for g in terms of ϕ1, ϕ2, which is a standard exercise in ordinary differential
equations. We include the solution here for completeness. We know that

g′(s)− ϕ2(s)g(s) = ϕ1(s), (549)

so multiplying by an “integrating factor”,

exp

(
−
∫ s

0

ϕ2(r)dr

)
g′(s)− exp

(
−
∫ s

0

ϕ2(r)dr

)
ϕ2(s)g(s) = exp

(
−
∫ s

0

ϕ2(r)dr

)
ϕ1(s)

(550)(
exp

(
−
∫ s

0

ϕ2(r)dr

)
g(s)

)′

= exp

(
−
∫ s

0

ϕ2(r)dr

)
ϕ1(s).

(551)

Integrating from s = 0 to s = t,

exp

(
−
∫ t

0

ϕ2(r)dr

)
g(t)− exp(0)g(0) =

∫ t

0

exp

(
−
∫ s

0

ϕ2(r)dr

)
ϕ1(s)ds, (552)
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so

g(t) = exp

(∫ t

0

ϕ2(r)dr

)(
f(0) +

∫ t

0

exp

(
−
∫ s

0

ϕ2(r)dr

)
ϕ1(s)ds

)
. (553)

Since f(t) ≤ g(t), this proves Equation 539. Equation 540 follows by combining Equation 538
with Equation 539.

Lemma 28. For any a > 0 and n > 0, if

x ≥ max

{
2,

(2n)na

n
logn(nna)

}
, (554)

then
x

logn x
≥ a. (555)

Proof. The desired inequality is equivalent to

x1/n

log x
≥ a1/n (556)

x1/n

n log x1/n
≥ a1/n (557)

x1/n

log x1/n
≥ na1/n. (558)

So denoting y = x1/n and b = na1/n, we want to show that
y

log y
≥ b. (559)

From the definition of y and b,

y = x1/n = max
{
21/n, 2na1/n log(na1/n)

}
= max

{
21/n, 2b log(b)

}
. (560)

We consider two cases depending on the magnitude of b. If b ≤ e, then we are done, since
z/ log(z) ≥ e for every z > 1, so that y/ log(y) ≥ b. Otherwise, 2b log(b) ≥ 2e ≥ 21/n, so
that the second term of the max in the definition is larger, i.e. y = 2b log(b). Therefore

y

log y
=

2b log(b)

log(2b log(b))
=

2b log(b)

log(b) + log(2 log(b))

(i)

≥ 2b log(b)

2 log(b)
= b, (561)

where (i) used log(b) > 0 together with ∀z : log(z) ≤ z/2 to show log(2 log(b)) ≤ log(b). This
proves Equation 559 in the second case, so that it always holds.

D.2 LEMMAS FOR SECTION 5/THEOREM 2

Recall from Section 5 the definition

Φ(b, x) :=
W (exp(b+ exp(x) + x))

exp(x)
, (562)

where W (x) denotes the principal branch of the Lambert W function, i.e. the unique solution in z
to

z exp(z) = x, (563)

for x ≥ 0. Notice that W (x) > 0 whenever x > 0.

Throughout this section, for a fixed b > 0, we will denote

ψ(x) := Φ(b, log(1/x)) = xW (exp(b+ 1/x+ log(1/x))). (564)

Lemma 29. For every x > 0:
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(a) W (x) > 0.

(b) W ′(x) = W (x)
x(1+W (x)) .

(c) Φ(b, x) > 1.

(d) ψ(x) > 1.

Proof. (a) W (x) exp(W (x)) = x > 0, so W (x) > 0.

(b) This is a well-known property of the Lambert W function, which can be shown by implicitly
differentiating the definition of W :

W (x) exp(W (x)) = x (565)

W (x) exp(W (x))W ′(x) +W ′(x) exp(W (x)) = 1 (566)

xW ′(x) +W ′(x)
x

W (x)
= 1 (567)

W ′(x)x (1 + 1/W (x)) = 1 (568)

W ′(x) =
W (x)

x(1 +W (x))
. (569)

(c) Denote y = exp(x) and w =W (exp(b+ x+ exp(x))). Then
w exp(w) = exp(b+ x+ exp(x)) (570)
w + logw = b+ x+ exp(x) (571)
w + logw = b+ y + log y (572)
w + logw > y + log y. (573)

Since f(x) = x+ log x is monotonic, the above means that w > y. So

Φ(b, x) =
W (exp(b+ x+ exp(x)))

exp(x)
=
w

y
> 1. (574)

(d) ψ(x) = Φ(b, log(1/x)) > 1.

The following lemma is a well-known property of the Lambert W function. We include it here for
completeness.
Lemma 30. For every b > 0, Φ(b, x) is strictly decreasing in x.

Proof. For any b > 0, to show that Φ(b, ·) is decreasing, it suffices to show that ψ is increasing,
since ψ(x) = Φ(b, log(1/x)). Also, denote z(x) = b+ 1/x− log(x). Then

ψ(x) = xW (exp(b+ 1/x+ log(1/x))) = xW (exp(z(x))), (575)
so

ψ′(x) =W (exp(z(x))) + xW ′(exp(z(x))) exp(z(x))z′(x) (576)

(i)
= W (exp(z(x))) + x

W (exp(z(x)))

exp(z(x))(1 +W (exp(z(x))))
exp(z(x))

(
−1
x2
− 1

x

)
(577)

=W (exp(z(x)))

(
1− 1

1 +W (exp(z(x)))

(
1

x
+ 1

))
(578)

=
W (exp(z(x)))

1 +W (exp(z(x)))
(W (exp(z(x)))− 1/x) (579)

=
W (exp(z(x)))

x(1 +W (exp(z(x))))
(xW (exp(z(x)))− 1) (580)

=
W (exp(z(x)))

x(1 +W (exp(z(x))))
(ψ(x)− 1) (581)

(ii)
> 0. (582)

where (i) uses Lemma 29(b), and (ii) uses Lemma 29(a) and 29(d).
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Lemma 31. If Φ(b, x) ≤ 1 + b
b+2 , then x ≥ log(1 + b).

Proof. By Lemma 30, Φ(b, x) is decreasing in x. So to prove the lemma, it suffices to show that
Φ(b, log(1 + b)) ≥ 1 + b/(b+ 2), since then

Φ(b, x) ≤ 1 +
b

b+ 2
=⇒ Φ(b, x) ≤ Φ(b, log(1 + b)) =⇒ x ≥ log(1 + b). (583)

From the definition of Φ,

Φ(b, log(1 + b)) =
W (exp(b+ (1 + b) + log(1 + b)))

1 + b
=
W (exp(1 + 2b+ log(1 + b)))

1 + b
. (584)

Let z =W (exp(1 + 2b+ log(1 + b))). Then by the definition of W ,

z exp(z) = exp(1 + 2b+ log(1 + b) (585)
z + log(z) = 1 + 2b+ log(1 + b). (586)

Denoting f(x) = x+ log(x), this means

f(z) = 1 + 2b+ log(1 + b) = b+ f(1 + b). (587)

By the concavity of f ,

f(z) ≤ f(1 + b) + (z − (1 + b))f ′(1 + b) (588)

z ≥ (1 + b) +
f(z)− f(1 + b)

f ′(1 + b)
(589)

z ≥ (1 + b) +
b

1 + 1/(1 + b)
= (1 + b) + (1 + b)

b

b+ 2
= (1 + b)

(
1 +

b

b+ 2

)
. (590)

Plugging z > 1 + b into Equation 584 yields

Φ(b, log(1 + b)) =
z

1 + b
> 1 +

b

b+ 2
. (591)

Lemma 32. If x ≥ log(1 + b), then Φ(b, x) ≥
√

1 + b
exp(x) .

Proof. Let x ≥ log(1 + b), and denote z = W (exp(b + x + exp(x)) and y = exp(x). Then
Φ(b, x) = z/y, so the statement we want to prove is

z

y
≥

√
1 +

b

y
(592)

log z − log y ≥ 1

2
log

(
1 +

b

y

)
(593)

log z ≥ log y +
1

2
log

(
1 +

b

y

)
(594)

z + log z ≥ z + log y +
1

2
log

(
1 +

b

y

)
. (595)

From the definition of z,

z exp(z) = exp(b+ x+ exp(x)) (596)
z + log(z) = b+ x+ exp(x) (597)
z + log(z) = b+ y + log(y), (598)

so Equation 595 can be rewritten as

b+ y + log y ≥ z + log y +
1

2
log

(
1 +

b

y

)
(599)

z ≤ b+ y − 1

2
log

(
1 +

b

y

)
. (600)
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All steps above are reversible, so Equation 600 is equivalent to the desired result.

Define f(x) = x+ log(x). Then f is concave, so

f(y) ≤ f(z) + (y − z)f ′(z) (601)
y + log(y) ≤ z + log(z) + (y − z)(1 + 1/z) (602)

(z − y)z + 1

z
≤ z + log(z)− y − log(y) (603)

(z − y)z + 1

z
≤ b (604)

z ≤ y + bz

z + 1
(605)

z ≤ y + b− b

z + 1
. (606)

Also, the condition x ≥ log(1 + b) implies b ≤ y − 1. Therefore, Equation 606 implies

z ≤ y + b ≤ 2y − 1, (607)

so z + 1 ≤ 2y. Again from Equation 606,

z ≤ y + b− b

z + 1
(608)

≤ y + b− b

2y
(609)

(i)

≤ y + b− 1

2
log

(
1 +

b

y

)
. (610)

where (i) uses log(1 + x) ≤ x. This is exactly Equation 600.

Lemma 33. ψ (defined in Equation 564) is concave.

Proof. We will show that ψ′′(x) < 0 for every x. Denoting z(x) = b + 1/x + log(1/x), we have
from Equation 578:

ψ′(x) =W (exp(z(x)))

(
1− 1 + 1/x

1 +W (exp(z(x)))

)
(611)

=W (exp(z(x)))

(
1− x+ 1

x+ xW (exp(z(x)))

)
(612)

=W (exp(z(x)))

(
1− x+ 1

x+ ψ(x)

)
. (613)

Therefore, differentiating again yields

ψ′′(x) =W (exp(z(x)))

(
− (x+ ψ(x))− (x+ 1)(1 + ψ′(x))

(x+ ψ(x))2

)
(614)

+W ′(exp(z(x))) exp(z(x))z′(x)

(
1− x+ 1

x+ ψ(x)

)
︸ ︷︷ ︸

A1

. (615)

The term A1 above can be simplified as:

A1 =
W (exp(z(x)))

exp(z(x))(1 +W (exp(z(x))))
exp(z(x))

(
−1
x2
− 1

x

)(
1− x+ 1

x+ ψ(x)

)
(616)

= − W (exp(z(x)))

1 +W (exp(z(x)))

x+ 1

x2
ψ(x)− 1

x+ ψ(x)
(617)

= − W (exp(z(x)))

x+ xW (exp(z(x)))
(1 + 1/x)

ψ(x)− 1

x+ ψ(x)
(618)

= −W (exp(z(x)))

(x+ ψ(x))2
(1 + 1/x) (ψ(x)− 1), (619)
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so

ψ′′(x) = −W (exp(z(x)))

(x+ ψ(x))2

(x+ ψ(x))− (x+ 1)(1 + ψ′(x)) + (1 + 1/x)(ψ(x)− 1)︸ ︷︷ ︸
A2

 .

(620)

Recall that W (y) > 0 whenever y > 0 (Lemma 29(a)), so sign(ψ′′(x)) = − sign(A2). To simplify
A2, we can rewrite ψ′(x) (starting from Equation 613) as:

ψ′(x) =W (exp(z(x)))

(
1− x+ 1

x+ ψ(x)

)
(621)

ψ′(x) =
ψ(x)

x

(
1− x+ 1

x+ ψ(x)

)
(622)

ψ′(x) =
ψ(x)

x

ψ(x)− 1

x+ ψ(x)
(623)

so

(x+ 1)(1 + ψ′(x)) = (x+ 1)

(
1 +

ψ(x)

x

ψ(x)− 1

x+ ψ(x)

)
(624)

= (x+ 1) + (1 + 1/x)
ψ(x)(ψ(x)− 1)

ψ(x) + x
. (625)

Therefore, A2 can be rewritten as

A2 = (x+ ψ(x))−
(
(x+ 1) + (1 + 1/x)

ψ(x)(ψ(x)− 1)

ψ(x) + x

)
+ (1 + 1/x)(ψ(x)− 1) (626)

= (ψ(x)− 1)− (1 + 1/x)
ψ(x)(ψ(x)− 1)

ψ(x) + x
+ (1 + 1/x)(ψ(x)− 1) (627)

= (ψ(x)− 1) + (ψ(x)− 1)(1 + 1/x)

(
− ψ(x)

ψ(x) + x
+ 1

)
(628)

= (ψ(x)− 1) + (ψ(x)− 1)(1 + 1/x)
x

ψ(x) + x
(629)

= (ψ(x)− 1) + (ψ(x)− 1)
1 + x

ψ(x) + x
(630)

= (ψ(x)− 1)

(
1 +

1 + x

ψ(x) + x

)
(631)

(i)
> 0, (632)

where (i) uses Lemma 29(d). Plugging back to Equation 620, this shows that ψ′′(x) < 0, so ψ is
concave.

Lemma 34. For every x ∈ R, b > 0, and a ∈ R:

Φ(b, x+ a) ≤ Φ(b, x)

(
1 + (exp(−a)− 1)

Φ(b, x)− 1

Φ(b, x) + exp(−x)

)
. (633)

In particular, if a < 0, then
Φ(b, x+ a) ≤ Φ(b, x) exp(−a). (634)

Proof. The idea of this proof is to leverage the concavity of ψ to upper bound ψ by its tangent line
at x, then convert this to an upper bound of Φ.
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Since ψ is concave (Lemma 33),

ψ(v) ≤ ψ(u) + (v − u)ψ′(u) (635)
(i)
= ψ(u) + (v − u)ψ(u)

u

ψ(u)− 1

u+ ψ(u)
(636)

= ψ(u)

(
1 +

( v
u
− 1
) ψ(u)− 1

ψ(u) + u

)
(637)

(638)

where (i) uses Equation 623. The definition ψ(x) = Φ(x,− log(x)) implies

Φ(b,− log(v)) ≤ Φ(b,− log(u))

(
1 +

( v
u
− 1
) Φ(b,− log(u))− 1

Φ(b,− log(u)) + u

)
. (639)

Choosing u = exp(−x) and v = exp(−x− a):

Φ(b, x+ a) ≤ Φ(b, x)

(
1 + (exp(−a)− 1)

Φ(b, x)− 1

Φ(b, x) + exp(−x)

)
. (640)

This proves Equation 633.

In the case that a < 0, exp(−a) − 1 > 0. Also, Φ(b, x) − 1 > 0 from Lemma 29(c). So by
Equation 633,

Φ(b, x+ a) ≤ Φ(b, x) (1 + (exp(−a)− 1)) = Φ(b, x) exp(−a). (641)

This proves Equation 634

D.3 LEMMAS FOR WORST-CASE BASELINES

Lemma 35. For a convex and H-smooth function F and any x,y ∈ dom(F ),

∥∇F (x)−∇F (y)∥2 ≤ 2H(F (x)− F (y)− ⟨x− y,∇F (y)⟩). (642)

Lemma 36. For a convex and H-smooth function F , any x,y ∈ dom(F ) and any 0 < η ≤ 2
H ,

∥(x− η∇F (x))− (y − η∇F (y))∥ ≤ ∥x− y∥. (643)

E ADDITIONAL EXPERIMENTAL DETAILS

E.1 SYNTHETIC DATASET

The dataset consists of only two data points x1,x2 ∈ R2 (one for each client). For parameters δ > 0
and g ∈ [1,∞), let

w∗
1 =

(
1√

1 + δ2
,

δ√
1 + δ2

)
(644)

w∗
2 =

(
− 1√

1 + δ2
,

δ√
1 + δ2

)
. (645)

and γ1 = 1, γ2 = 1/g. We then define xm = γmw∗
m and ym = 1. Then in the notation of Section

5, this dataset has

c = ⟨w∗
1 ,w

∗
2⟩ =

δ2 − 1

δ2 + 1
(646)

and γmax/γmin = g. So as δ → 0 and g → ∞, we should expect that the negative effect of
heterogeneity on optimization efficiency becomes worse and worse. For our experiments, we set
δ = 0.1 and g = 5.
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E.2 MNIST DATASET

Similarly to previous work on GD for logistic regression (Wu et al., 2024b;a), we use a subset of
1000 images from MNIST. For our distributed setting, we partition the data into M = 5 client
datasets with n = 200 data points each. This partitioning is done according to the protocol used by
Karimireddy et al. (2020), where s% of each local dataset is allocated uniformly at random from the
1000 images, and the remaining (1 − s)% is allocated to each client in order from a subset of data
that is sorted by label. This has the effect that, when s is small, the majority of each client’s dataset
has a small number of labels. For our dataset with 10 digits and M = 5 clients, we set s = 5%, so
that 95% of each local dataset contains data for only two digits.

Note that we binarize this classification problem, so that the model is trained to predict whether a
given image depicts an even digit or an odd digit. However, the heterogeneity partitioning protocol
above is performed before replacing class labels. This means that each client has roughly the same
label distribution (about half of examples have label 0, half have label 1), but very different feature
distributions.

According to this protocol, client 1 will have 42.5% of its data be images of the digit zero, 42.5%
of its data be images of the digit one, and 5% of its data have uniform probability of being any digit
from 0 to 9. Again, the labels for each client are either 0 or 1, according to whether the depicted
digit is even or odd.

E.3 TWO-STAGE STEPSIZE

To choose the number of rounds r0, in the first stage of the two-stage stepsize schedule, we follow
the requirement from Theorem 1 that r0 scale linearly withK. We therefore set r0 = ⌊λK⌋ and tune
λ ∈ {2−4, 2−3, 2−2, 2−1, 20, 21, 22, 23}. The final value of λ is selected by choosing the smallest
value which ensures that the transition to a larger learning rate does not cause the training loss to
increase above its value at initialization for any value of K.

The final tuned values of λ are λ = 4 for the synthetic experiment and λ = 1/16 for the MNIST
experiment. The larger value of λ for synthetic data aligns with the fact that the synthetic data is
designed to be highly heterogeneous, and generally requires smaller local model updates in order to
avoid increases in the objective due to model averaging.

Because λ = 4 for the synthetic experiment, the training run with K = 1024 does not enter the
second stage during the R = 2048 rounds used for training.

F DEEP LEARNING EXPERIMENTS

In this section, we provide additional experiments to compare Local SGD and Minibatch SGD for
training deep neural networks, which lies outside of the theoretical scope considered in this paper.
The purpose of these experiments is to verify the motivating claims from Sections 1 and 7 that in
practice (1) Local SGD outperforms Minibatch SGD, and (2) Local SGD can converge faster by
increasing the number of local steps K.

Setup We train a ResNet-50 (He et al., 2016) for image classification on a distributed version
of the CIFAR-10 dataset, using cross-entropy loss. For both algorithms, we train for R = 1500
communication rounds while varying the number of local steps K ∈ {1, 2, 4, 8, 16}. We split
CIFAR-10 into M = 8 client datasets according to the same data heterogeneity protocol as we used
for MNIST (see Section E.2) with data similarity s = 50%. Unlike the previous MNIST setting, for
this experiment we keep the original 10-way labels of the CIFAR-10 dataset.

For both algorithms, we tune the initial learning rate η with grid search over
{0.003, 0.01, 0.03, 0.1, 0.3, 1.0} by choosing the value that achieved the smallest training
loss after R = 150 training rounds with K = 4. We reuse this tuned value for all settings of K. For
both algorithms, the best choice was η = 0.03. We also applied learning rate decay by a factor of
0.5 after 750 rounds, and again after 1125 rounds. Lastly, we use a batch size of 128 for each local
gradient update.
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Figure 2: Train loss and testing accuracy for heterogeneous, distributed CIFAR-10 with ResNet-50.

Note that we do not use momentum, gradient clipping, or other bells and whistles not mentioned
here. Our goal is to methodically study the behavior of these two algorithms, not necessarily to
achieve the smallest loss possible.

Results Training loss and testing accuracy for both algorithms with all choices of K are shown in
Figure 2.

First, Local SGD is significantly faster when using a larger number of local steps K, up to a thresh-
old. The final training loss of Local SGD improves steadily as K increases from K = 1 to K = 8.
When the number of local steps is large (K = 16), training becomes less stable, although the train-
ing loss is still smaller than that reached by every K ≤ 4. These results suggest that our theoretical
results about the optimization benefit of local steps also apply for scenarios beyond logistic regres-
sion.

Also, Local SGD significantly outperforms Minibatch SGD in this setting, which corroborates the
often quoted folklore around these two algorithms Lin et al. (2019); Woodworth et al. (2020b);
Wang et al. (2022); Patel et al. (2024). As K increases, the training loss of Minibatch SGD is nearly
unchanged; recall that changes to K only affects the effective batch size of Minibatch SGD, but not
the number of model updates. This underscores the gap between ML in practice and existing theory
of distributed optimization algorithms. Local SGD is dominated by Minibatch SGD in many natural
regimes Woodworth et al. (2020b); Patel et al. (2024), but this worst-case analysis does not seem
representative of performance when training deep networks with real world data.
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