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ABSTRACT

Text-to-image (T2I) models are increasingly used in impactful real-life applications. As
such, there is a growing need to audit these models to ensure that they generate desirable,
task-appropriate images. However, systematically inspecting the associations between
prompts and generated content in a human-understandable way remains challenging. To
address this, we propose Concept2Concept, a framework where we characterize condi-
tional distributions of vision language models using interpretable concepts and metrics
that can be defined in terms of these concepts. This characterization allows us to use our
framework to audit models and prompt-datasets. To demonstrate, we investigate several
case studies of conditional distributions of prompts, such as user defined distributions or
empirical, real world distributions. Lastly, we implement Concept2Concept as an open-
source interactive visualization tool facilitating use by non-technical end-users.

Warning: This paper contains discussions of harmful content, including CSAM and NSFW
material, which may be disturbing to some readers.

1 INTRODUCTION

Text-to-image (T2I) models have become central to many real-world AI-driven applications. However, the
complexity of these models makes it difficult to understand how they associate concepts in images with
textual prompts. Existing works have shown that T2I models can resolve prompts in unexpected ways
(Bianchi et al. (2023)). Furthermore, the training datasets for T2I models are often large, uncurated, and
may contain undesirable prompt to image associations that models can learn to internalize (Birhane et al.
(2024)). Thus, without robust auditing frameworks that help us detect these undesirable associations, we
risk deploying T2I models that generate unexpected and inappropriate content for a given task.

However, auditing T2I models is challenging because it is difficult to systematically, efficiently, and intu-
itively explore the vast space of prompts and possible outputs. Because raw pixel values alone are difficult to
semantically reason about, previous works learn mappings from raw inputs to high-level concepts. This can
be achieved post-hoc (Kim et al. (2018); Zhou et al. (2018); Ghorbani et al. (2019)) or as an intervention dur-
ing training (Koh et al. (2020);Chen et al. (2020). Although these methods were designed for classification
networks, it is this general intuition which motivates our work.

In this paper, we propose a framework for producing interpretable characterizations of the conditional distri-
bution of generated images given a prompt, p(image|prompt). We do so by extracting high-level concepts
from each image and summarizing p(image|prompt) in terms of such concepts. Here, we define concepts
as a class of objects/nouns, ideas, open vocabulary detected classes or labels.

Our contributions are as follows:
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(1) We propose an interpretable framework for concept-association based auditing of conditional distri-
butions. Specifically, in our framework: we sample images from a T2I model under audit, given a prior
distribution over prompts–either a user defined distribution or an empirical real-world distribution. Then,
using a fast, scalable visual grounding model, we extract concepts from generated images. We characterize
the conditional distribution of the generated images by analyzing the distribution of concepts. This frame-
work allows users to systemically investigate associations of conditional distributions at varying levels of
granularity, from broad concept trends, co-occurrences, to detailed visual features. By design, our frame-
work utilizes visual grounding models that localize concepts in images, enabling a deeper analysis of visual
representations. Simple association mining metrics help uncover non-obvious concept relationships.

(2) We demonstrate a wide range of concrete use-cases for our framework, by applying it to audit models and
prompt datasets. In addition to demonstrating the effectiveness of the framework, our analysis unearthed new
findings that are independently interesting. In particular, we discovered child-sexual abuse material (CSAM)
in a human-preferences prompt dataset and misaligned classes in a synthetically generated ImageNet dataset.
These findings not only demonstrate the utility of our framework but also contribute to the broader discourse
on the safety, fairness, and alignment of T2I models.

(3) We introduce an interactive visualization tool, based on our framework, for human-in-the-loop audit-
ing of T2I models. Our tool allows users to explore and inspect the identified concept associations. To
facilitate widespread use, we provide our framework as an open-source package, enabling researchers and
practitioners to easily audit their own models and datasets.

2 RELATED WORK

Biases in T2I models. There is a body of works that have qualitatively investigated biases in T2I models,
focusing on social biases related to gender, race, and other identity attributes. For example, Bianchi et al.
(2023) qualitatively demonstrated a range of social biases in T2I models, including biases related to basic
traits, social roles, and everyday objects. Similarly, Ungless et al. (2023) manually analyzed images gener-
ated by T2I models and found that certain non-cisgender identities were misrepresented, often depicted in
stereotyped or sexualized ways. Through several focus groups, Mack et al. (2024) found that T2I models
repeatedly presented “reductive archetypes for different disabilities”. Qualitative evaluations play a critical
role in exposing instances where generative models can be biased. However, given the large space of pos-
sible prompts and images, instance-based bias probing alone cannot paint a systematic picture of how T2I
models may (mis)behave in application.

A number of works have focused on automating bias detection at scale. For example, in Cho et al. (2023),
the authors measured visual reasoning skills and social biases in T2I models by using a combination of
automated detectors and human evaluations to assess the representation of different genders, skin tones,
and professions. Likewise, Luccioni et al. (2024) employed Visual Question Answering (VQA) models and
clustering-based evaluations to measure correlations between social attributes and identity characteristics.
TIBET (Chinchure et al. (2023)) and OpenBias (D’Incà et al. (2024)) dynamically generate axes of bias,
either based on a single prompt or collection of input prompts. However, these works either do not operate
on the general concept-level (e.g. only specifically probe for concepts related to social attributes) and/or
do not leverage the rich information in the concept co-occurrences, the stability of concepts, nor do they
pinpoint and extract specific concepts. We found these key elements to being integral to uncovering deeper
insights relating to T2I models. Moreover, they typically require an additional large language model to
generate the bias axes, thus introducing significant additional computation. Most closely related to our
work is Try Before You Bias (TBYB) (Vice et al. (2023)), which proposes an object-centered evaluation
methodology to quantify biases in T2I models using image captioning and a set of proposed metrics. Also
like us, CUPID (Zhao et al. (2024)) presents a visualization framework that enables users to discover salient
styles of objects and object relationships by leveraging low-dimensional density-based embeddings. Our
approach generalizes and builds upon these previous works. While existing methods focus primarily on
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social bias and style relationships, our framework enables a more nuanced audit of model behavior, capturing
not only social biases but also the underlying patterns in how models represent and associate visual concepts.

Important use cases of synthetic data. One important use case of synthetic data is for training backbone
or foundation models. Works have demonstrated that training backbone models using synthetic ImageNet
(Deng et al. (2009)) clones can achieve similar performance on specific evaluation benchmarks as compared
to real ImageNet dataset (Azizi et al. (2023);He et al. (2022);Sarıyıldız et al. (2023)). They can also be
used to realign or mitigate bias in foundation models (Abdel Magid et al. (2024); Howard et al. (2024)) or
evaluate vision-language models (Fraser & Kiritchenko (2024); Smith et al. (2023)). In addition to training
foundation models, synthetic images and their corresponding prompts are used in reinforcement learning
human feedback (RLHF). Many datasets of real user prompts and preferences have been collected. Exam-
ples include RichHF-18K (Liang et al. (2024)), ImageReward (Xu et al. (2024)), and Pick-a-Pic (Kirstain
et al. (2023)). In this work, we demonstrate how to use our framework to audit synthetic datasets as well
as prompts datasets for RLHF alignment of T2I models. For auditing prompt datasets, we focus on Sta-
bleImageNet (Kinakh (2022)) and Pick-a-Pic. The latter is used to train PickScore which is then used as an
evaluation metric and to better align T2I models with human preferences.

3 CONCEPT2CONCEPT: AN INTUITIVE FRAMEWORK FOR CHARACTERIZING THE
CONDITIONAL DISTRIBUTION OF T2I MODELS

We propose Concept2Concept, a novel framework to provide systematic and interpretable characterizations
of the conditional distribution of images generated by a T2I model given a prompt, p(image|prompt). We
do so by first extracting high-level concepts from generated images, then characterizing the conditional
distribution of these concepts given prompts, p(concept|prompt).
Obtaining Concept Distributions from T2I Models. We assume a distribution of text prompts p(t), defined
by the user or the auditing task. We empirically represent p(t) with N sampled prompts {ti}Ni=1 from p(t):

ti ∼ p(t), for i = 1, 2, . . . , N. (1)
For each sampled prompt ti, we approximate the conditional distribution of images given prompt ti by
generating K images {xi,k}Kk=1 from the T2I model G:

xi,k ∼ pG(xi,k|ti), for k = 1, 2, . . . ,K. (2)
As image distributions are difficult for humans to work with at a global level, we focus on studying the
distribution of concepts in the generated images. Specifically, for each image, we are interested in C(x),
the set of concepts in image x. In practice, we compute C(xi,k) for each generated image xi,k by applying
an object detector D to label and localize (e.g., bounding box) the concepts in the image Ci,k = D(xi,k).
The choice of object detector D is not fundamental to our framework and can be application-specific. For
instance, in our experiments, we utilize two distinct detectors—Florence 2 (Xiao et al. (2023)) and BLIP
VQA (Li et al. (2022))—each offering different levels of detection capabilities. The flexibility to choose D
allows us to adapt the framework to various tasks, depending on what is important to detect and at which
level of granularity. Recent large vision-language models like Florence 2 offer multiple modes including
visual grounding. We note that our use of an object detector D can introduce uncertainty in the extracted
concepts, Ci,k (e.g., due to detection confidence levels or the probabilistic nature of the model). Thus, we
consider Ci,k as samples from a distribution Ci,k ∼ p(C|xi,k). In the case that concepts are extracted
deterministically from a given image xi,k, p(C|xi,k) is a delta distribution.

Finally, we empirically approximate two distributions of concepts – the marginal distribution of concepts
over the prompt distribution, p(C); and the conditional distribution of concepts given a prompt, p(C|t):

p(C) =

∫
t

p(C|t)p(t) dt, p(C|t) =
∫
x

p(C|x)pG(x|t) dx. (3)
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Summarizing Concept Distributions. We further summarize the concepts distributions p(C) and p(C|t)
we obtain from the T2I model to enable end-users in exploring and discovering associations between con-
cepts in the prompt and concets in the generated images. Towards this end, we use a number of metrics to
aid in our analysis of concept associations.

Concept Frequency P (c). We calculate the empirical frequency of each concept c across all generated
images. The probability P (c) is estimated by:

P (c) =

N∑
i=1

K∑
k=1

I[c ∈ Ci,k]

N ×K
, (4)

where I[c ∈ Ci,k] is the indicator function that equals 1 if concept c is present in Ci,k, and 0 otherwise. This
identifies the dominant concepts associated with the prompt distribution T .

Concept Stability. To assess the variability of concept c across prompts, we compute its coefficient of
variation (CV) as:

CV (c) =
σc

P (c)
, σc =

√√√√ 1

N

N∑
i=1

(P (c | ti)− P (c))
2
. (5)

We set a threshold τ to focus on concepts that occur with sufficient frequency: Cτ = {c ∈ C | P (c) > τ}.
Persistent concepts are those that consistently appear regardless of the prompt (small CV) , while triggered
concepts are more sensitive to specific concepts within the prompts (large CV) .

Concept Co-Occurrence. To uncover rich associations between concepts in the generated images, we analyze
concept co-occurrences. For each pair of concepts (c, c′), we compute the co-occurrence probability:

P (c, c′) =

N∑
i=1

K∑
k=1

I[c, c′ ∈ Ci,k]

N ×K
. (6)

This analysis helps us map the relationships between concepts present in the images. However, since the
number of detected concepts can be large and co-occurrences grow quadratically, we employ simple asso-
ciation mining metrics to identify significant and relevant co-occurrences: support, confidence, and lift. We
refer the reader to the appendix for additional details.

Choosing Task-Relevant Prompt Distributions p(t). The concept distribution p(C) depends on the choice
of the prompt distribution p(t). Generally, the choice of p(t) should be informed by the task, e.g. auditing
models for social biases. In this paper, we consider two primary scenarios for auditing: model auditing and
prompt dataset auditing.

Model Auditing. In this scenario, the prompt distribution p(t) should be user-defined and should capture re-
alistic ways users may interact with the model in order to understand its behaviors. Here, users may generate
controlled sets of prompts, possibly including counterfactual examples, to audit how the T2I model G repre-
sents specific concepts. By carefully designing p(t), users can manipulate the input conditions and study the
resulting concept distribution p(C) marginalized over prompts p(t). This allows for targeted analysis of the
model’s behavior with respect to particular concepts or biases. We provide several experiments in section 4.

Prompt Dataset Auditing. When we are trying to understand the images generated from a set of prompts,
p(t) should be an empirical distribution derived from real-world prompt datasets, such as those used in rein-
forcement learning from human feedback (RLHF). By examining the concept distribution p(C) marginalized

4
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over prompts p(t), we can surface potential issues like harmful or inappropriate content in training datasets.
We provide several experiments in section 5.

4 APPLICATION 1: AUDITING THE MODEL

4.1 CASE STUDY 1: TOY EXAMPLES
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Figure 1: Top concepts detected by our framework. Concepts are curated to highlight the effectiveness of
the framework for user-defined prompt distributions in Section 4.1
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Figure 2: Examples of concepts as they are extracted from our framework along with sample co-occurrences.
.

On a small, pedagogically designed prompt set, we demonstrate how to use Concept2Concept to probe
for unexpected generation behaviors. We design a prompt set which varies along a social attribute of in-
terest, age, and a second prompt set which adds an axis of variation along semantically similar words
(e.g. jogging vs running). Concretely, our prompt distribution is a uniform distribution over the set
{“A photo of a [age] person [action]”}, where [age] takes value in {young,middle-aged, old}, and
[action] takes value in {jogging, sprinting, running}.

In Concept2Concept, comparing conditional concept distributions helps us identify concept associa-
tions. Figure 1 shows the conditional concept distributions p(C|t) we obtain through Concept2Concept.
By contrasting these distributions, we find that the concept jogging is largely associated with the concept

woman (the concept of “woman” occurs in roughly 60% of the generations). Conversely, running is as-
sociated with man in about 80% of the generations. We are also able to discover that different attires are
associated to the concept of jogging and running , respectively (see Figure 2).
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In Concept2Concept, visually grounding concepts helps us verify that concepts are resolved as we
desire. Figure 2 provides a small example of concept co-occurrences. Even seemingly concrete concepts
can be visually resolved in diverse ways, in Concept2Concept, we visually ground each concept (see Figure
2). The localization of our framework is highly precise, even for small objects like glasses , which occupy
only a small fraction of the entire image. Using Concept2Concept, we can identify, compare, and contrast
the conceptual representations in generated images resulting from different prompts. This enables us to
uncover unexpected concept associations (e.g. boy and sprinting vs. woman and jogging ). Additional
results, including concept stability are included in A.4.

4.2 CASE STUDY 2: REPLICATING BIAS PROBING RESULTS FROM LITERATURE

Model Concept Detected U.S. Labor Bureau
% woman % man % woman % man

StableBias (Luccioni et al. (2024)) 31.10 % 68.90%

47.03% 52.97%Ours 28.41 % 71.59%
TBYB (Vice et al. (2023)) 31.64% 68.36%
Ours 19.56 % 80.44 %

Table 1: The average percentage of detections of woman and man generated by a concept detector in our
framework for the StableBias (Luccioni et al. (2024)) and TBYB (Vice et al. (2023)) case studies. Note that
these are two different case studies with different experimental settings. U.S. Bureau of Labor Statistics.

With Concept2Concept, we demonstrate that we can replicate experiments from existing works on gender-
based bias probing. We consider two studies, each using a different probing framework: StableBias (Luc-
cioni et al. (2024)) and Try Before You Bias (TBYB) (Vice et al. (2023)). In both works, the authors prompt
a T2I model with names of professions and report the distribution of gender representation (in percentages)
amongst the generated images. Our findings are summarized in Table 1. Consistent with the two existing
studies, we found that the concept woman is underrepresented across most professions, with only about
30% of the images depicting the concept woman , while approximately 70% of the images depicted the
concept man . While we were able to reproduce similar gender distributions as StableBias, our distributions
are notably different from those reported for TBYB. We provide a discussion for this discrepancy in A.4.

4.3 CASE STUDY 3: SCALING UP QUALITATIVE STUDIES ON DISABILITY REPRESENTATION

We replicated and extended findings from a qualitative study on disability representation in T2I mod-
els, which involved a focus group to evaluate the generated outputs (Mack et al. (2024)). By automat-
ing this process with our framework, we conceptually quantify how the model represents disabilities
across various prompts. Concretely, Tdisability = {ti = “A person with [value] } where [value] ∈
{a disability, bipolar disorder, a chronic illness, cerebral palsy, a limb difference, hearing loss}. Figure 3
(top left) shows for the prompt “a person with a disability,” nearly 100% of the generated images depicted
wheelchair , despite not being explicitly stated in the prompt. When analyzing specific disability-related

prompts, the model produced similarly stereotypical associations. For instance, the prompt “cerebral palsy”
primarily generated images of young and boy , while “a limb difference” Figure 3 (bottom left) resulted

in images with the concepts shorts and foot ; individuals in the images are typically dressed in shorts
to emphasize the disability. Unexpectedly, stick co-occurred with shorts . We visualize this in Figure 3
(bottom right) and find that the model produces branch -like sticks, perhaps to represent crutches. In the
case of “chronic illness,” the model often depicted people in hospital , beds , with their faces covered .
Additional results and a detailed experimental setup can be found in the appendix (A.6).
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dec
rea
se increase

before
after

decrease: wheelchair, wheel; increase: person, face

Prompt Revision

co-occur Visualize co-occurrence

Figure 3: Concept distributions for two examples on disability representation. We can leverage the concepts
to determine how to alter the images in a human-understandable way through simple negative prompting.
We can also visualize unexpected co-occurrences of specific concepts: shorts and sticks.

We demonstrate how the framework’s conceptual characterization of the conditional distribution can be
useful for adjusting the T2I outputs. Figure 3 (top right) shows how we can use the concepts and apply
negative prompting with concepts we wish to attenuate and/or amplify. Suppose we want to exclude the
concept wheelchair and emphasize face and person in the images. Our framework coupled with simple
prompt revision enables users to directly alter conceptual output distributions. This case study illustrates the
framework’s ability to identify harmful and unexpected biases.

5 APPLICATION 2: AUDITING PROMPT DATASETS

5.1 CASE STUDY 4: DETECTING UNEXPECTED ISSUES IN PICK-A-PIC

Warning: This section contains discussions of harmful content, including CSAM and NSFW material, which
may be disturbing to some readers. The Pick-a-Pic dataset (Kirstain et al. (2023)) is one of many human pref-
erences datasets consisting of prompt-image pairs. Authors reason that these “human preferences datasets”
are useful for realigning T2I models so that they produce output users actually want to see. Kirstain et al.
(2023) train the PickScore on the Pick-a-Pic training set to learn their collected human preferences. The
PickScore is then used (1) as a standalone evaluation metric to measure the quality of any given T2I model
and (2) to improve T2I generations by providing a ranking of a sample of images given a prompt. It is clear
that these two use cases are incredibly safety-critical. We used Concept2Concept to explore concept associa-
tions in Pick-a-Pic and audit the dataset for unexpected and undesirable associations. Notably, our analysis
of concept associations in Pick-a-Pic revealed child sexual abuse material (CSAM), pornography, and
hyper-sexualization of women, girls, and children.

We draw 10 random samples of size 1K each from the training split of the Pick-a-Pic dataset 1. In addition
to the prompts and images, each row indicates which image the user ranked higher. When sampling, we save

1https : //huggingface.co/datasets/yuvalkirstain/pickapicv1
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Figure 4: Co-occurrences of concepts with the detected concepts girl and woman in 10 random samples
of the Pick-A-Pic DatasetKirstain et al. (2023). Most frequent concepts overall can be found in A.7.
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Figure 5: Prompts in the Pick-a-Pic dataset that trigger the naked , underwear , and thong concept asso-
ciations. None of the prompts explicitly call for nudity or hyper-sexualization (HS).

the images that the user ranked as better for a corresponding prompt. 2 Our analysis is thus conducted on the
prompts and images that would reward a model for choosing similar content when trained on this dataset.

2In the case of a tie, we randomly choose one of the two images.
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Figure 4 shows concept co-occurrences for the concepts girl and woman . In addition to the stereotypical
and non-diverse concept co-occurrence distribution, we highlight in red concepts that may warrant additional
investigation or probing. We find that the concept girl co-occurs with the concepts young , naked , nude ,

thong , underwear , and lingerie among others. Similarly, woman co-occurs with naked , breast and

lingerie . We investigate, through localizing each concept, and determined the input concepts (prompts)
associated with the detected concepts. In Figure 5, we show examples of this process. Notably, none of
these prompts explicitly call for harmful material, yet the models output–and the users chose–nudity,
hyper-sexualization, CSAM, and pornographic material. For example, the top row of figure 5 shows
that the prompt “Japanese redhead woman” produced a naked individual. Similarly, the prompt “An asian
woman” and “Afrikan woman wet clothes” produced hyper-sexualized ( thong ) and naked content. We
note that hyper-sexualization when not necessarily desired or explicitly stated in the prompt is not limited
to woman or girl but is also exhibited for man and boy . Additional results are shown in the appendix,
along with the overall top detected concepts, with confidence intervals.

Where a user may not elicit pornographic material, a T2I model will enforce it. Moreover, due to the design
of the web-app used to collect the dataset, users are presented with two images at a time and a new image is
presented only when the user ranks one of the existing images. The user can only break out of the ranking
if they change the prompt. The authors of the Pick-a-Pic dataset conducted an automatic filtering of NSFW
prompts by using a list of keywords. This list was not released. Using our framework, we showed that these
problematic concepts do not necessarily occur in the prompt, but the association still occurred, and thus their
filtering scheme may not be the most effective way of auditing the dataset. We emphasize that this is of high
importance for several reasons. First, T2I models have been shown to memorize the original training data
Carlini et al. (2023), so there is a possibility of replicating real CSAM and pornography. Second, the fact
that this harmful material is also in a dataset that is used to realign and evaluate T2I models should not go
understated. The human has to be in the loop; using our framework simplifies that by characterizing the
distribution in terms of human understandable concepts.

5.2 CASE STUDY 5: DETECTING MISALIGNMENT IN SYNTHETIC IMAGENET

ski redbone turnstile ski_mask

Identified through localization of dreadlocks and co-occurrence: dreadlocks         beanie, mask, ski
 

Figure 6: Sample of misaligned synthetic ImageNet images detected through the conceptual characterization
of conditional distributions through our framework. The first 9 images from each class. Clear misalignment.
All 100 images for these classes as well as other detected misaligned classes can be found in the appendix.

In this section, we demonstrate another example of auditing the prompts (and the T2I model) used to generate
a synthetic ImageNet1k Russakovsky et al. (2015) dataset. Many works demonstrate that using synthetic

9
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ImageNet, either to augment real ImageNet or entirely replace it, boosts performance, as discussed in the
related works section 2. Moreover, works also use synthetic versions of ImageNet to evaluate other models
Bansal & Grover (2023). These are two important and safety-critical use cases of T2I model outputs and we
use our framework to investigate their concept associations.

Following TBYB Vice et al. (2023), we audit the synthetic StableImageNet dataset Kinakh (2022).
Concretely, TStableImageNet = {ti = “a photo of [value], realistic, high quality } where [value] ∈
{ImageNet1K Classes}. Several existing works have experimented with a similar setup to this generation
procedure; see Bansal & Grover (2023) and Sarıyıldız et al. (2023)). Using our framework, we identi-
fied misaligned concept associations in Figure 6. Through the localization and co-occurrence of concept
dreadlocks with beanie , mask , ski we found several classes had completely misaligned images. For

example, the class turnstile in real ImageNet is intended to be “A narrow, mechanical gate, with rotat-
ing arms of wood or metal...”3, however, the T2I model generated photos of a musical band called Turnstile.
Similarly, for the class redbone, the intended ImageNet class refers to “A variety or breed of American
hound with a predominantly red coat...”3 However, the model instead generated images of human individ-
uals. Another set of issues arises in the two closely related classes: ski and ski mask. First, the model
did not produce ski content and second, the model replaced it with individuals with certain skin tones and
hairstyles. The issue is thus two fold; one of prompt adherence and one of fairness. One can attribute the
failure to either a vague prompt or a poor T2I model. In any case, it raises concerns regarding both the dataset
and the model’s accuracy and bias. It is also important to note that while this exact dataset was not published
in a specific paper, the recipe for generation is replicated in other works as a comparison point (Bansal &
Grover (2023);Sarıyıldız et al. (2023)) demonstrating that the model (1) actually learns good representations
with this recipe and (2) presents an approach practitioners actively use and investigate.

6 INTERACTIVE TOOL

Given the ubiquity of T2I models and, as demonstrated in the case studies, the problematic concept associ-
ations and underlying prompts they may contain, there is a broad need for further analysis of these models
and their corresponding datasets. To lower the technical barrier for such auditing, we propose an interactive
visualization tool. This tool embeds into a user’s Jupyter notebook and accepts a broad array of data sources.
A user can investigate specific concepts, their stability, and co-occurrence with other concepts (Figure 22).
Additionally, users may search for specific concepts to identify the prompts used to generate the concept,
the distribution of these prompts, and, localize how the concept is depicted in different images (Figure 23).

7 CONCLUSION

In this work, we proposed an interpretability framework designed to characterize the conditional distribution
of T2I models in terms of high-level concepts. The purpose of this framework is to provide users with an
in depth understanding of how T2I models interpret prompts and associate concepts in generated images.
By providing in depth analysis through metrics such as concept frequency, stability, and co-occurrence, we
reveal biases, stereotypes, and harmful associations that other frameworks may overlook. We also note
that our findings of misaligned classes in StableImageNet and child sexual abuse material and pornographic
material in the Pick-a-Pic dataset are independently significant.

3Oxford Dictionary
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Step 1: Specify Prompt Distribution Step 2: Generate Images Step 3: Detect and Localize Concepts

Step 4: Analyze
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A photo of a middle-aged person jogging

t3 = A photo of a young person jogging
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Figure 7: Concept2Concept enables users to systematically analyze the conditional distributions by investi-
gating concept frequency and stability, co-occurrences, and detailed visual features using simple association
mining metrics. This approach enables comprehensive insights into underlying concept associations.

A APPENDIX

An overview of our method can be found in Figure 7.

A.1 ETHICS STATEMENT

We recognize that the detection of a concept does not imply an absolute truth. The definition of a concept
is subjective and can vary across different contexts, shaped by societal, cultural, and historical influences.
Concepts are not neutral; they carry power dynamics that affect how they are understood and applied, often
reflecting dominant ideologies and reinforcing existing inequalities while marginalizing alternative perspec-
tives. For instance, when the framework detects woman or Asian it is important to recognize that these la-
bels are not necessarily true, as such attributes cannot be reliably inferred from visual cues alone—especially
in the context of synthetic images. Since these images are artificially generated by models, the concept of
identity tied to real-world characteristics, such as gender or ethnicity, becomes even more ambiguous. In
this sense, the labels applied to synthetic images are inherently inaccurate, as they refer to constructs rather
than real individuals. However, these detections are still valuable because they help expose biases within
the models and datasets. By surfacing such issues, our tool provides insight into how certain concepts
are (mis)represented or (over)simplified, allowing for critical evaluation and improvement of text-to-image
models.

Similarly, other design choices in our work reflect inherent biases. For example, our use of U.S. labor statis-
tics as a comparison point introduces bias by privileging a specific cultural and national framework, which
may not be representative of broader, global contexts. This comparison inherently reflects the dominant
perspective from which the data was sourced, potentially excluding or misrepresenting other groups.
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These biases and design choices, whether in concept detection or the data we use, shape the outcomes of our
work and how it is interpreted. We acknowledge that the definitions we apply and the concepts we choose
to highlight are not neutral; they actively influence the narrative and meaning of our results. Therefore, we
strive to remain aware of the ethical implications of our decisions and aim for transparency in acknowledging
the limitations and biases inherent in our work.

A.2 LIMITATIONS

While our framework provides valuable insights into the concept associations learned by text-to-image (T2I)
models, it has several limitations that are important to acknowledge. First, the interpretability of the results
depends heavily on the quality of the object detection model. If this model fails to accurately detect objects
or introduces its own biases, the subsequent analysis can be skewed. Second, the computational complexity
of analyzing co-occurrences can grow significantly with the number of detected concepts, especially in
large-scale datasets or highly complex prompts. Another important direction is to explore active mitigation
strategies that go beyond prompt revision. This could include integrating the framework with model training
pipelines to intervene during the training process, helping to guide the model toward learning more equitable
and unbiased representations.

A.3 EXPERIMENTAL SETUP

The experimental setup for each case study is detailed below.

A.4 ADDITIONAL RESULTS AND DETAILS: TOY EXAMPLE

Table 2 details the experimental setup for this case study. Figure 8 shows additional visual examples of
detected concepts. We note how the concept jacket can clearly manifest in different styles and colors.
This visualization supports our argument for this component of our framework. Figure 9 shows the concept
stability for each of the actions. We can clearly see which concepts generally persist for a single action
(holding age constant) and across actions. Moreover, we can also determine which output concepts are
triggered by one or more of the input concepts.

Hyperparameter Value
Object Detector Florence 2

Object Detector Mode caption+grounding
Text-to-Image Model ByteDance/SDXL-Lightning 4 step model

T2I Model Hyperparameters inference steps= 4; guidance scale= 0
Number of Images 300

Prompt Distribution

a uniform distribution over the set
{“A photo of a [age] person [action]”},

where [age] takes value in
{young,middle-aged, old}, and
[action] takes value in

{jogging, sprinting, running}.

Table 2: Case study toy example: hyper-parameters and their corresponding values
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Figure 8: Additional examples of concepts localized by our framework.

Figure 9: Concept stability across actions. This is an effective way of capturing how a concept persists or is
triggered by a specific input concept.

A.5 ADDITIONAL RESULTS AND DETAILS: STABLEBIAS AND TBYB

Tables 3 and 4 detail the experimental setting for StableBias and TBYB, respectively. For the StableBias
case study, the list of adjectives and professions can found in Table 4 of the original work’s supplementary
material Luccioni et al. (2024). The professions for TBYB are listed in Table 1 of the original work’s
supplementary material Vice et al. (2023). We note that the list of professions for the two experiments
(TBYB and StableBias) are different. Second, the TBYB reports their results on a much larger set of prompts
that do not include professions. We omit these as that is not the focus of this case study. Moreover, we
observed that due to the prompt template, many images did not render with a detectable person. This is
likely the reason for the discrepancy in results between our detections and theirs.

Hyperparameter Value
Object Detector BLIP VQA

Object Detector Mode direct VQA: “What is this person’s gender?”
Text-to-Image Model Stable Diffusion v2.1

T2I Model Hyperparameters inference steps= 50; guidance scale= 7.5
Number of Images 30

Prompt Distribution a uniform distribution over the set
{“Portrait photo of a [adjective] [profession]}

Image Size 768× 768

Table 3: Case study Stable Bias: hyper-parameters and their corresponding values
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Hyperparameter Value
Object Detector BLIP VQA

Object Detector Mode direct VQA: “What is this person’s gender?”
Text-to-Image Model Stable Diffusion v2.1

T2I Model Hyperparameters inference steps= 50; guidance scale= 7.5
Number of Images 30

Prompt Distribution

a uniform distribution over the set
{“A photo of a [desc] [profession]”}, where

[desc] takes value in
{who is a good,who is a bad, that looks like a}

Image Size 768× 768

Table 4: Case study TBYB: hyperparameters and their corresponding values

A.6 ADDITIONAL RESULTS AND DETAILS: DISABILITY REPRESENTATION

Table 5 details the experimental setup for this case study. Figure 10 shows the concept stability over all
disabilities and Figure 11 shows the top concepts by disability.

Hyperparameter Value
Object Detector Florence 2

Object Detector Mode caption+grounding
Text-to-Image Model Stable Diffusion v2.1

T2I Model Hyperparameters inference steps= 50; guidance scale= 7.5
Number of Images Per Prompt 100

Prompt Distribution
{“A person with [value] } where [value] ∈{

a disability, bipolar disorder, a chronic illness,
cerebral palsy, a limb difference, hearing loss}

Image Size 768× 768

Table 5: Case study disability representation: hyper-parameters and their corresponding values

A.7 ADDITIONAL RESULTS AND DETAILS CASE STUDY: PICK-A-PIC

Table 6 shows the experimental setting for this case study. We drew 10 random samples of size 1k
each from the train split of the Pick-a-Pic dataset. Each image can be generated by a different text-
to-image model. We refer the reader to the dataset for the details of each image’s generation hyper-
parameters. Figure 13 shows the top detected concepts, along with confidence intervals. Figure 12 shows
prompts within the Pick-a-Pic dataset that request child nudity, violence, slurs, and sexually explicit ma-
terial. We have hidden most of them so as to not overwhelm the reader. The dataset can be accessed at
https://huggingface.co/datasets/yuvalkirstain/pickapic v1.

Warning: This section contains discussions of harmful content, including CSAM and NSFW material, which
may be disturbing to some readers.
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Figure 10: Concept stability for the disability representation case study.

Hyperparameter Value
Object Detector Florence 2

Object Detector Mode dense region caption and detection
Text-to-Image Model variable

T2I Model Hyperparameters variable
Number of Images Per Prompt variable (typically 1)

Prompt Distribution p(t) drawn from train split of Pick-a-Pic

Table 6: Case study Pick-a-Pic: hyperparameters and their corresponding values

A.8 ADDITIONAL RESULTS AND DETAILS CASE STUDY: STABLEIMAGENET

Table 7 details the experimental setting of this dataset. The dataset can be accessed at
https://www.kaggle.com/datasets/vitaliykinakh/stable-imagenet1k. We show all 100 images for the mis-
aligned classes in StableImageNet in Figures 14-??.

Hyperparameter Value
Object Detector Florence 2

Object Detector Mode caption + grounding
Text-to-Image Model Stable Diffusion v1.4

T2I Model Hyperparameters inference steps= 50; guidance scale= 7.5
Number of Images Per Prompt 100

Prompt Distribution a photo of class, realistic, high quality
Image Size 512× 512

Table 7: Case study StableImageNet: hyperparameters and their corresponding values
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Figure 11: Top concepts for all disabilities.

A.9 INTERACTIVE TOOL

Figures 23 and 22 show screenshots of the Concept2Concept interactive tool.
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Figure 12: Harmful prompts in the Pick-a-Pic dataset.
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Figure 13: The top detected concepts over 10 random samples of size 1k drawn from the Pick-a-Pic dataset.
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All 100 images for class=795_ski.

Figure 14
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All 100 images for class=796_ski mask.

Figure 15
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All 100 images for class=877_turnstile.

Figure 16
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All 100 images for class=017_jay.

Figure 17
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All 100 images for class=097_drake.

Figure 18
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All 100 images for class=168_redbone.

Figure 19
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All 100 images for class=513_cornet, horn, trumpet, trump.

Figure 20

28



1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362

Under review as a conference paper at ICLR 2025

All 100 images for class=345_ox.

Figure 21

29



1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409

Under review as a conference paper at ICLR 2025

Figure 22: Users can interactively inspect concept metrics, such as the persistence and fickleness scores,
their stability, and co-occurrence with other concepts. The interactive tool also includes features for users to
sort by certain metrics and filter by keywords.
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Figure 23: The interactive tool also includes a concept inspection tab that allows users to search for concepts
of interest. For each concept, the tool uses visual grounding models to localize how the concept is repre-
sented in different images. Localized concepts are displayed as thumbnails. The prompts that were used to
generate the concept are also displayed in a table below. Users can search for and compare two concepts in
this panel.
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B DISCUSSION PERIOD FIGURES

B.1 SIMPLE EXPERIMENT WITH CLOSED SOURCE TEXT-TO-IMAGE MODEL

In this section, we show how our method can be applied to closed source models, which are presumably
safety fine-tuned. Figure 25 shows 10 images generated using the interface of ChatGPT model 4o. The
prompt for generation is “A person with a disability, photo”, following that in case study 3 (see section 4.3
of the main paper). Figure 24 shows the results from our method, Concept2Concept, when applied to these
images.
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Figure 24: Top concepts detected by our framework on images generated using a closed source T2I model.

Figure 25: Images generated using ChatGPT for the disability prompt.
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B.2 CROSS-MODEL COMPARISON.

B.2.1 DISABILITY
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Figure 26: Top concepts detected by our framework for the prompt: “A person with a disability, photo.”
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Figure 27: Random sample of generated images by each model for the prompt: “A person with a disability,
photo.” Please zoom in.
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B.2.2 LIMB DIFFERENCE
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Figure 28: Top concepts detected by our framework for the prompt: “A person with a limb difference,
photo.”
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Figure 29: Random sample of generated images by each model for the prompt: “A person with a limb
difference, photo.” Please zoom in.
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B.2.3 HEARING LOSS
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Figure 30: Top concepts detected by our framework for the prompt: “A person with hearing loss, photo.”
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Figure 31: Random sample of generated images by each model for the prompt: “A person with hearing loss,
photo.” Please zoom in.

35



1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691

Under review as a conference paper at ICLR 2025

B.2.4 TOY EXAMPLE.
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Figure 32: Top concepts detected by our framework for the prompt: “A photo of a young person jogging.”
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Figure 33: Random sample of generated images by each model for the prompt: “A photo of a young person
jogging.” Please zoom in.
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