
Under review as submission to TMLR

Toward a Complete Criterion for Value of Information
in Insoluble Decision Problems

Anonymous authors
Paper under double-blind review

Abstract

In a decision problem, observations are said to be material if they must be taken into account
to perform optimally. Decision problems have an underlying (graphical) causal structure,
which may sometimes be used to evaluate certain observations as immaterial. For soluble
graphs — ones where important past observations are remembered — there is a complete
graphical criterion; one that rules out materiality whenever this can be done on the basis
of the graphical structure alone. In this work, we analyse a proposed criterion for insoluble
graphs. In particular, we prove that some of the conditions used to prove immateriality are
necessary; when they are not satisfied, materiality is possible. We discuss possible avenues
and obstacles to proving necessity of the remaining conditions.

1 Introduction

We can view any decision problem as having an underlying causal structure — a graph consisting of chance
events, decisions and outcomes, and their causal relationships. Sometimes, it is possible to evaluate key
aspects of a decision problem from its causal structure alone. For example, in Figure 1a and Figure 1b, we
see two causal structures. In each graph, there is an observation Z, which is a parent of the decision X,
which affects the outcome Y . The difference is that in Figure 1b, Z also directly influences Y , whereas in
Figure 1a, it does not.

To fully describe these decision problems we must specify, for each non-decision variable, a probability
distribution. Each probability distribution must be conditional only on the outcomes of the directed causes
(i.e. the parent variables), a condition known as Markov compatibility. In Figure 1b, a Markov compatible
decision problem is shown, where the variable Z is a Bernoulli trial (i.e. a coin flip), and the decision-maker
is rewarded with Y = 1 if they state the outcome of Z (i.e. call the outcome of the coin flip), otherwise
the reward is Y = 0. In this scenario, a greater reward can be attained if the decision is allowed to be
conditioned on Z, and so Z is said to be material. Specifically, if it is possible to observe the Bernoulli trial
before selecting X, then one can attain a utility of 1 surely, whereas if one cannot observe the Bernoulli trial,
the maximum expected utility is 0.5.

For the causal structure shown in Figure 1a, however, there will exist an optimal decision rule that ignores the
value of Z = z entirely, in other words Z is immaterial; this holds true for any decision problem compatible
with the graph. This is evident because given any decision X = x, the observation Z is independent of
Y , and so there is no need for the decision to vary with Z. (This can be proved from the fact that Z is
d-separated from Y given X.)

There are several reasons that we may want to evaluate whether a graph allows Z to be material. Firstly,
for algorithmic efficiency — if an observed variable is immaterial, then the optimal policies are contained
in a small subset of all available policies, that we can search exponentially more quickly. (For example, in
Figure 1a, there are four deterministic mappings from Z to X, but if we let X ignore Z, then there are just
two possible choices, X = 1 and X = 0.)

Secondly, materiality can have consequences for the fairness of a decision-making procedure. Suppose that
Z designates the gender of candidates available to a recruiter, which are male (Z = 1) or female (Z = 0)
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with equal probability, while X indicates whether that person is (X = 1) or is not (X = 0) recruited, and
Y indicates whether that person is (Y = 1) or is not (Y = 0) hired. If Y is correlated with Z given X, then
the applicant’s gender is material for the recruiter, and to maximize the hiring probability, they will have
to recruit applicants at different rates based on their gender. If the causal structure is that of Figure 1a,
then materiality can be ruled out, meaning that unfair behaviour is not necessary for optimal performance,
whereas the causal structure of Figure 1b can incentivize unfairness. Such an analysis can also be extended
to counterfactual fairness (Kusner et al., 2017): in an arbitrary graph where Z is a sensitive variable (such
as gender), counterfactual fairness can arise only when there is a path Z → · · · → O → X, where the
observation O is material (Everitt et al., 2021).

Thirdly, materiality can have implications for AI safety — if Z represents a corrective instruction from a
human overseer, and there exists no path Z → · · · → O → X where O is material, then there exist optimal
policies that ignore this instruction (Everitt et al., 2021). Materiality is also relevant for evaluations of agents’
intent (Halpern & Kleiman-Weiner, 2018; Ward et al., 2024b), and relatedly, their incentives to control parts
of the environment (Everitt et al., 2021; Farquhar et al., 2022). For an agent to intentionally manipulate a
variable Z to obtain an outcome Y = y, there must be a path p : X → · · · → Z → · · · → Y where for each of
its decisions X ′ lying on p, the parent O′ along p is material for X ′. In general, a stronger criterion for ruling
out materiality will allow us to rule out unfair or unsafe behaviour for a wider range of agent-environment
interactions (Everitt et al., 2021).
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(a) Z is immaterial for X.

Z Z = EZ
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(c) Z is material for X.

Figure 1: Three graphs, with decisions in red, and a real-valued outcome Y . We write U(B) for a uniform distribution
over B, i.e. a Bernoulli distribution with p = 0.5.

Any procedure for establishing immateriality based on the causal structure may be called a graphical crite-
rion. For example, if a decision X is not an ancestor of the outcome Y , then all of the variables observed at X
are immaterial. An ideal graphical criterion would be proved complete, in that it can establish immateriality
whenever this is possible from the graphical structure alone. Clearly, this criterion is not complete, because
in Figure 1a, X is an ancestor of the outcome, but we still proved Z immaterial. So far, a graphical criterion
from van Merwijk et al. (2022) has been proved complete, but only under some significant restrictions. The
causal structure must be soluble, meaning that all of the important information observed from past decisions
is remembered at later decision points. Also, no criteria has been proved complete for identifying immaterial
decisions, i.e. past decisions that can be safely forgotten.

For insoluble graphs, there is the criterion of Lee & Bareinboim (2020, Thm. 2), which can identify immaterial
decisions and is (strictly) more potent in general. However, it is not yet known whether this criterion is
complete. In particular, it is not yet clear whether several of its conditions are necessary. For example, one
case where all existing criteria are silent is the simple graph shown in Figure 1c — we would like to know
whether we can rule out X being a material observation for X ′. We cannot use van Merwijk et al. (2022)
because X is a decision, and because the graph is insoluble.1 Furthermore, we cannot establish immateriality
using Lee & Bareinboim (2020, Thm. 2), because it violates a property that we term LB-factorizability, which
we will discuss in Section 3.4.2

1Formally, this is because W ̸⊥ Y | X ∪X′, and X′ ̸⊥ Y | X ∪W , as per the definition of solubility that we will review in
Section 3.

2Specifically, requirement I of LB-factorizability is violated because Y is d-connected to πX′ given X′.
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By studying Figure 1c in a bespoke fashion, we find that there exists a decision problem with the given
causal structure, where X is material for X ′. As shown in Figure 1c, Z is a Bernoulli variable, and Y is
equal to 1 if Z = X ′ and to 0 otherwise. If X is observed by X ′, then a reward of E[Y ] = 1 can be achieved
by the policy X ′ = X = Z. If X is not observed, the greatest achievable reward is lower, at E[Y ] = 0.5,
implying materiality.

This raises a question: by generalizing this construction, can we prove that requirement I of LB-factorizability
is necessary to prove immateriality for a wide class of graphs? This work will prove that this requirement is
indeed necessary, meaning that materiality cannot be excluded for a wide class of graphs including Figure 1c.

It remains an open question whether the criterion of Lee & Bareinboim (2020, Thm. 2) as a whole is
complete, in that its other conditions are necessary for establishing immateriality. In the case that it is
complete, our work is a step toward proving this. On the other hand, we also present some graphs where
materiality is difficult to establish, that — if the criterion is not complete — could bring us closer to a proof
of incompleteness.

The structure of the paper is as follows. In Section 2, we will recap the formalism used by Lee & Bareinboim
(2020) for modelling decision problems, based on structural causal models. In Section 3, we will review
existing procedures for proving that an observation can or cannot be material. In Section 4, we will establish
our main result: that requirement I of LB-factorizability is necessary to establish immateriality. In Section 5,
we present some analogous results for other requirements of LB-factorizability that could serve as a building
block for proving the necessity of those requirements. We then illustrate the problems that arise in trying to
prove necessity of those further requirements, and outline some possible directions for further work. Finally,
in Section 6, we conclude.

2 Setup

Throughout the paper, we will define decision problems using structural causal models (Pearl, 2009, Chapter
7), following the formalism of Lee & Bareinboim (2020), although our results also apply equally to Bayesian
networks and influence diagrams.

2.1 Structural causal models

A structural causal model (SCM) M is a tuple ⟨U , V , P (U), F⟩, where U is a set of variables determined
by factors outside the model, called exogenous following a joint distribution P (U), and V is a set of
endogenous variables whose values are determined by a collection of functions F = {fV }V ∈V such that
V ← fV (Pa(V ), UV ) where Pa(V ) ⊆ V \ {V } is a set of endogenous variables and UV ⊆ U is a set of
exogenous variables. The observational distribution P (v) is defined as

∑
u

∏
V ∈V P (v|paV , uV )P (u), where

uV is the assignment u restricted to variables UV . Furthermore, do(X = x) represents the operation of
fixing a set X to a constant x regardless of their original mechanisms. Such intervention induces a submodel
Mx, which isM with fX replaced by x for X ∈X. Then, an interventional distribution P (v\x|do(x)) can
be computed as the observational distribution in Mx. The induced graph of an SCM M is a DAG G on
only the endogenous variables V , where (i) X→Y if X is an argument of fY ; and (ii) X↔Y if UX and UY

may be dependent, i.e. for any uX , uY , P (uX , uY ) ̸= P (uX)× P (uY ).

We use the notation Pa(X), Ch(X), Anc(X) and Desc(X) to represent the parents, children, ancestors and
descendants of a variable X, respectively, and take ancestors and descendants to include the node X itself.3

We write V1−− V2 to designate an edge whose direction may be V1 → V2 or V1 ← V2. For a path V1−− · · ·−−Vℓ,
we will use the shorthand V1 - - - Vℓ, and for a directed path V1 → · · · → Vℓ, the shorthand V1 99K Vℓ. For
a path p : A - - - B - - - C - - - D, we will describe the segment B - - - C using the shorthand B p- - - C. We
will use the shorthand V1:N for a sequence of variables V1, . . . VN indexed by 1, . . . , N , v1:N for a sequence
of assignments, and p1:N for a set of paths p1, . . . pN .

3Note that Pa(X) is an intentional reuse of the notation used to describe the arguments of fX in the SCM definition, because
the endogenous arguments of fX and the parents of X in the induced graph are the same variables.
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Some notations are used repeatedly when constructing causal models, such as tuples, bitstrings, indexing,
and Iverson brackets. We will write a tuple as z := ⟨x, y⟩, and this may be indexed as z[0] = x. A bitstring
of length n, i.e. a tuple of n Booleans, may be written as Bn, and a uniform distribution over this space, as
U(Bn). We will denote a bitwise XOR operation by ⊕ so that, for example, 01 ⊕ 11 = 10. Bitstrings may
also be used for indexing, for example, the yth bit of x may be written as as x[y], and the leftmost bits are
of higher-order so that, for example, 0100[01] = 1. Similarly, for random variables X, Y , we will write X[Y ]
for a variable equal to x[y] when X = x and Y = y. Finally, the Iverson bracket JP K is equal to 1 if P is
true, and 0 otherwise.

2.2 Modelling decision problems

To turn an SCM into a decision problem, three further elements must be specified: a set of decision variables,
a set of policies that the agent may use to control those decision variables, and a goal that the agent is trying
to achieve.

A Mixed Policy Scope (Lee & Bareinboim, 2020) supplies the first two elements: identifying certain variables
as decisions, and enumerating the context variables or “observations” CX on which each decision X is allowed
to depend.
Definition 1 (Mixed Policy Scope (MPS)). Given a DAG G on vertices V , a mixed policy scope S =
⟨X, CX⟩X∈X(S) consists of a set of decisions X(S) ⊆ V and a set of context variables CX ⊆ V for each
decision.

For a set of decisions X ′, we define their contexts as CX′ =
⋃

X∈X′ CX .

A policy consists of a probability distribution for each decision X, conditional on its contexts CX .
Definition 2 (Mixed Policy). Given an SCMM and scope S = ⟨X, CX⟩, a mixed policy π (or a policy, for
short) contains for each X a decision rule πX|CX

, where πX|CX
: XX ×XCX

7→ [0, 1] is a proper probability
mapping from the domain XX of X to the domain XCX

of CX .4

We will say that such a policy π follows the scope S, written π ∼ S. A mixed policy is said to be deterministic
if every decision is a deterministic function of its contexts.

Given a mixed policy scope, we obtain a new causal structure, described by a scoped graph.
Definition 3 (Scoped graph). The scoped graph GS is obtained from G by replacing, for each decision
X ∈X(S), all inbound edges to X with edges C → X for every C ∈ CX . We only consider scopes for which
GS is acyclic.

In a scoped graph, we will always illustrate the decision variables as red circles, as shown in Figure 1 (Lee
& Bareinboim, 2020). The final element of a decision problem — the agent’s goal — will be represented by
a real-valued variable Y . Throughout this paper, we will assume that Y is neither a decision, nor a context.

The expected utility µπ,S given a policy π is simply the expected value of Y in the model Mπ, where each
fX is replaced with πX , i.e. µπ,S := EMπ [Y ]. When the scope is obvious, we will simply write µπ.

This paper is concerned with materiality — whether removing one context variable from one decision will
decrease the expected utility attainable by the best policy. We define materiality in terms of the value of
information (Howard, 1990; Everitt et al., 2021).
Definition 4 (Value of Information). Given an SCMM and scope S, the maximum expected utility (MEU)
is µ∗

S = maxπ∼S µπ,S . The value of information (VoI) of context Z ∈ CX for decision X ∈ X(S) is
µ∗

S − µ∗
SZ ̸→X

, where SZ ̸→X is defined as ⟨X ′, CX′⟩X′∈X(S)\{X} ∪ ⟨X, CX \ {Z}⟩.

The context Z is material for X in an SCMM if Z has strictly positive value of information for X, otherwise
it is immaterial.

4Following Lee & Bareinboim (2020), we term this a “mixed policy” due to its including mixed strategies. Note that game
theory also has a distinction between “mixed” policies, where the decision rules share a source of randomness, and “behavioural”
policies, where they do not, and in this sense, the “mixed” policies of Lee & Bareinboim (2020) are actually behavioural.
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2.3 Graphical criteria for independence

Knowing when variables are independent is an important step in identifying immaterial contexts, as we will
discuss in the next section. Thus, we will make repeated use of d-separation, a graphical criterion that
establishes the independence of variables in a graph.
Definition 5 (d-separation; Verma & Pearl, 1988). A path p is said to be d-separated by a set of nodes Z
if and only if:

1. p contains a collider X →W ← Y such that the middle node W is not in Z and no descendants of
W are in Z, or

2. p contains a chain X →W → Y or fork X ←W → Y where W is in Z, or
3. one or both of the endpoints of p is in Z.

A set Z is said to d-separate X from Y , written (X ⊥G Y | Z), if and only if Z d-separates every path from
a node in X to a node in Y . Sets that are not d-separated are called d-connected, written X ̸⊥G Y | Z.

When the graph is clear from context, we will write ⊥ in place of ⊥G . When sets X, W , Z satisfy X ⊥W | Z
they are conditionally independent: P (X, W | Z) = P (X | Z)P (W | Z) (Verma & Pearl, 1988).

ZπX

X Y

Figure 2: A graph where decisions
Z, X jointly determine the outcome
Y . A policy node πX is shown,
which decides the decision rule at X.

If we know that a deterministic mixed policy is being followed, then
we may deduce further conditional independence relations. This is be-
cause conditioning on variables V may determine some decision vari-
ables, which are called “implied” (Lee & Bareinboim, 2020), or “func-
tionally determined” (Geiger & Pearl, 1990), making them conditionally
independent of other variables in the graph.
Definition 6 (Implied variables; Lee & Bareinboim, 2020). To obtain
the implied variables ⌈Z⌉ for variables Z in G given a mixed policy scope
S, begin with ⌈Z⌉ ← Z, then add to ⌈Z⌉ every decision X such that
CX ⊆ ⌈Z⌉, until convergence.

For example, in Figure 2, we see that ⌈X⌉ = {Z, X}, so Z is d-separated
from Y given ⌈X⌉. This means that under a deterministic mixed policy, Z and Y are statistically independent
given X. This has implications for materiality. In particular, it means that the best deterministic mixed
policy Z = z, X = x does not need to observe Z at X. Moreover, the performance of the best deterministic
mixed policy can never be surpassed by a stochastic policy (Lee & Bareinboim, 2020, Proposition 1), so Z
is immaterial.

3 Literature review

Our review will begin with the origin and applications of the concept of materiality, then cover graphical
criteria in single-decision, soluble, and general multi-decision settings.

3.1 Graphical criteria for materiality, and their applications

“Value of information” was originally described separately from graphical models like the influence diagram
(Howard, 1966). When influence diagrams were developed, however, knowing the value of information of
different variables became a fundamental aspect of understanding an influence diagram (Shachter, 1986;
Matheson, 1990; Howard & Matheson, 2005). Finding that a variable has zero value of information is
especially important because it narrows the search for an optimal policy. The property of having zero value
of information has since been termed “immateriality” (Shachter, 2016).

Various past works have sought to establish the circumstances in which a variable could be proved immaterial.
Sound criteria have been proposed by Fagiuoli & Zaffalon (1998); Lauritzen & Nilsson (2001); Shachter (2016).
Furthermore, Fagiuoli & Zaffalon (1998) attempted to prove the criterion’s completeness, although it was
not successful (Everitt et al., 2021).
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There are also criteria that establish whether a variable may be valuable to control (Fagiuoli & Zaffalon,
1998; Shachter & Heckerman, 2010). In particular, establishing immateriality can help with establishing zero
value of control because it shows that there exists an alternative influence diagram, where the same utility
can be achieved but with fewer edges, making it easier to establish that some variables are unnecessary to
control (Fagiuoli & Zaffalon, 1998). For example, in the influence diagram Z → X → Y , we know that Z is
immaterial, and the graph may be separated into Z; X → Y , wherein Z affects nothing, and so is clearly of
no value to control.

In recent years, influence diagrams have been applied to evaluating the safety of AI systems. To achieve
this, incentive concepts have been developed that are related to the value of information and control, such as
instrumental control incentives (Everitt et al., 2021), response incentives (Everitt et al., 2021), and notions
of intent (Halpern & Kleiman-Weiner, 2018). These concepts and their graphical criteria have been used to
analyse agent interactions, especially in the context of AI, including matters of fairness (Ashurst et al., 2022),
manipulation (Ward et al., 2024b), honesty (Ward et al., 2024a), and human control (Carey & Everitt, 2023).
For these incentive concepts, proofs of the soundness and completeness of their graphical criteria directly
extend the proofs pertaining to materiality (Everitt et al., 2021), and thus a complete criterion for materiality
is a key step for this line of work.

3.2 Single-decision settings

In the single-decision setting, there is a sound and complete criterion for materiality: in a scoped graph
G(S), there exists an SCM where the context Z ∈ CX is material if and only if Z ̸⊥ Y | CX ∪ {X} \ {Z}
and the outcome Y is a descendant of X (Lee & Bareinboim, 2020; Everitt et al., 2021). The proofs of the
soundness (the only if direction) and completeness (the if direction) are both relevant to the current paper.

The argument in the only if direction is that if X is not an ancestor of the outcome Y , then its policy is
completely irrelevant to the expected utility, and so all of its contexts are immaterial, and if Z is conditionally
independent of the outcome Y given the decision and other observations, then it may be safely ignored
without changing the expected utility of the policy. These conditions imply immateriality in the multi-
decision setting for precisely the same reasons.

The if direction is more important to us, because the result is extended by the present work. The if direction
is proved by constructing a decision problem where Z is material. By assumption, there is a directed path
X 99K Y , called the control path, and a path Z - - - Y , active given CX ∪ {X} \ {Z}, called the info path.
The idea is to construct an SCM where the info path makes Z contain information about Y , and how X
ought to influence Y , while the control path gives X a way to exert that influence.

The construction from Everitt et al. (2021) and Lee & Bareinboim (2020) has two cases. When the info path
contains no colliders, the construction is shown in Figure 3a. In essence, the info path transmits a random
value V = v to PaY , and the decision has to match this value, i.e. X = V , in order to obtain the maximum
utility of Y = 1. Without the context Z, the maximum expected utility is 0.5, proving materiality.5

For the case where the info path does contains a collider, the construction is shown in Figure 3b. Each
fork Ui in the info path, along with Z, generates a random bit, while each collider Wi is assigned the XOR
(Ui−1 ⊕ Ui) of its two parents. By observing z and the values w1:N , the agent has just enough information
to recover uN . In particular, the policy that sets X equal to the XOR of z and w1:N , obtains X = UN surely
and achieves the MEU, E[Y ] = 1. Without the context Z, the MEU becomes 0.5, so Z is material.

3.3 Soluble multi-decision settings

A decision problem is said to be soluble (or to have “sufficient recall”) if the decision-maker always remembers
enough aspects of past decisions and observations to make the present decision optimally. Formally, this
requires the graph to admit an ordering ≺ = ⟨X1, . . . , XN ⟩ over decisions such that for every Xi, for every
previous decision or context V ∈ {Xj ∪ CXj

| j ≺ i}, we have V ̸∈ Anc(Y ) or V ⊥ Y | {Xi} ∪ CXi
. For

5To be precise, the formalism of Lee & Bareinboim (2020) also allows the active path from Z to include one or more bidirected
edges V ↔ Y , but to deal with these cases, we begin with the distribution that we would use for a path V ← L → Y , then
marginalize out L.
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V

V ∼ U(B)

Z

Z = V

X

X = Z

Y

fY (paU ) = Jv = xK

Y

fY (paY ) = Jx = uN K

Z

(a) The Everitt et al. (2021); Lee & Bareinboim (2020)
scheme, with a red info path that lacks colliders, and the
control path shown with a thick dark red arrow.

X

= Z ⊕W1 ⊕ · · · ⊕WN

Z ∼U(B)

Y

fY (paY ) = Jx = uN K

UN ∼ U(B)

W1

=Z⊕U1

U1

∼U(B)

. . .

UN−1

∼U(B)

WN

=UN−1⊕UN

(b) The Everitt et al. (2021); Lee & Bareinboim (2020)
scheme, with a red info path that contains colliders, and
the control path shown in dark red.

Figure 3: Two decision problems where Z is material for X. For readability, we marginalize out exogenous variables
from the SCM, so z ∼ U(B) can be understood as shorthand for z = εZ where εZ ∼ U(B), and so on.

Z

Z ∼ U(B)

X
= Z

Z ′

= X

W ′

U ′

X ′

= Z ′
Y

fY (paY ) = Jz = x′K

(a) The Everitt et al. (2021) scheme is applied using just the
red info path; Z is immaterial for X.

Z

Z ∼ U(B)

X
= Z

Z ′

= X

W ′ = U ′[Z ′]

U ′

U ′ ∼ B2

X ′
=⟨Z ′, W ′⟩

Y

fY (paY ) = Jz = x′[0]K
+Ju′[x′[0]] = x′[1]K

(b) The van Merwijk et al. (2022) scheme is applied, using
the red and blue info paths; Z is material for X.

Figure 4: Two decision problems on a soluble graph.

example, in Figure 4a, using the ordering X ≺ X ′, the nodes Z, X are d-separated from Y by X ′ and its
contexts {Z, Z ′, W}, which implies solubility.

For those graphs that satisfy this condition (corresponding to solubility), there exists a sound and complete
criterion for evaluating materiality. As in the single-decision setting, an observation Z is identified as
immaterial if Z ⊥ Y | CX ∪ {X} \ {Z} where Y ∈ DescX. The only difference is that in the multi-decision
setting, we can remove Z as a context of X and then repeat the process (i.e. the edge Z → X is removed
from the scoped graph GS) to find more immaterial contexts, until all immaterial observations have been
removed. Conversely, when every such context has been removed in this way, then all remaining contexts
must be material. For example, in the graph of Figure 4a, every decision is an ancestor of Y , and every
context has an info path (the info paths include Z → Y , Z ′ → W ′ ← U ′ → Y , and W ′ ← U ′ → Y ), so, all
contexts may be material in at least one decision problem with this causal structure, and in fact they are
material in the SCM shown.

It is useful to understand how the completeness direction of this result is proved, i.e. how the presence of
info paths is used to construct a decision problem where Z is material (van Merwijk et al., 2022, Theorem
7). We can notice what obstacles arise by considering the graph from Figure 4. If we were to apply the
single-decision construction of Everitt et al. (2021) to this graph, we would first identify the info path Z → Y
and the control path X → Z ′ → X ′ → Y . The info path has no colliders, so we would construct a decision
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problem using the scheme from Figure 3a, and the result is shown in Figure 4a. The idea of this construction
is that X should have to copy Z in order for the value z transmitted by the info path to match the value
x′ transmitted by the control path. Whatever action x is selected, however, the decision X ′ can assume the
value z, thereby achieving the MEU. The MEU is then achievable whether Z is a context of X or not, so Z
is immaterial in this construction.

In order to render Z material, van Merwijk et al. (2022) instead adapts the construction from Figure 4a by
incentivizing X ′ to pass along the value of Z ′. This is done using the second info path Z ′ →W ′ ← U ′ → Y ,
shown in Figure 4b. The term y2 := Ju′[x′[0]] = x′[1]K is added to the reward, which equals 1 if X ′ presents
one bit from U ′, along with its index. (Recall that x′[0] denotes the 0th bit of x′ and so on.) Furthermore,
W ′ is defined as W ′ = U ′[Z ′], so that X ′ knows only the Z ′th bit of U ′, and since the index z′ is one bit, U ′ is
defined as two bits in length, i.e. U ′ ∼ U(B2). Finally, rather than requiring z = x′ as in Figure 4a, the term
y1 := Jz = x′[0]K is included, because an optimal policy in the new model will have x′[0] = z′ = z (rather
than simply x′ = z, as in the previous model). In the resulting non-intervened model, the utility is clearly
Y = 2, which is the MEU, and to achieve this utility, it is necessary that Y1 = Y2 = 1 with probability 1. To
maximize y2, the decision X ′ must reproduce the only known digit from U ′, i.e. x′ = ⟨z′, u′[z′]⟩. To maximize
y1, we must have Z = X ′[0] almost surely, and since X ′[0] = X, this requires X = Z with probability 1.
This can only be done if Z is a context of X, meaning that Z is material for X. A key idea of this approach
is that if a control path for X, such as X → Z ′ → X ′ → Y , contains decisions other than X, then we need
to incentivize the downstream decision to copy information along the control path, and this will be done by
choosing values for variables lying on the info path for X ′ (the one shown in blue in Figure 4b); we will reuse
this idea in the proofs of our main result.

3.4 Multi-decision settings in full generality

For insoluble decision problems, the literature includes a graphical condition for establishing immateriality,
but we do not yet know whether it is complete (in that materiality is possible whenever it is not satisfied).

For this procedure, we would begin with graphical criteria from the single decision case.

• If a decision X is a non-ancestor of Y , then its contexts are immaterial,
• If C ⊥ Y | CX \ {C}, then the context C is immaterial.

If either of these conditions describes the context Z that we are interested in, then we have proved it
immaterial, and our job is done. If neither of these conditions holds, then we can apply the more sophisticated
criterion of Lee & Bareinboim (2020, Lemma 1) and Lee & Bareinboim (2020, Theorem 2). If the assumptions
of Lee & Bareinboim (2020, Lemma 1) hold for some target variables Z, target actions X ′, and latent
variables U ′, then they admit a factorization, which we term “LB-factorizability”, after the authors’ initials.
Lee & Bareinboim (2020, Theorem 2) then contains some further assumptions; if these also hold, then the
contexts Z are immaterial to the decisions X ′. We begin with the definition of LB-factorizability.
Definition 7. For a scoped graph GS , we will say that target actions X ′, endogenous variables Z disjoint
with X ′, contexts C ′ := CX′ \ (X ′ ∪ Z) and exogenous variables U ′ are LB-factorizable if there exists an
ordering ≺ over V ′ := C ′ ∪X ′ ∪Z such that:

I. (Y ⊥ πX′ | ⌈(X ′ ∪C ′)⌉),
II. (C ⊥ πX′≺C

, Z≺C , U ′ | ⌈(X ′ ∪C ′)≺C⌉), for every C ∈ C ′ and
III. V ′

≺X is disjoint with Desc(X) and subsumes Pa(X) for every X ∈X ′,

where πX′ consists of a new parent πX added to each variable X ∈ X ′,6 and W≺V , for W ⊆ V ′, denotes
the subset of W that is strictly prior to V in the ordering ≺.

6To be precise, each d-separation ⊥ in (A-B) holds in the graph G′, obtained from G by adding a parent πX for each decision
X.
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For example, consider the graph Figure 2. In this case, Y ∈ Desc(X) and Z ̸⊥ Y | X, so the single-decision
criteria cannot establish that Z is immaterial for X. However, by choosing Z = {Z}, X ′ = {X}, and the
ordering ≺= ⟨Z, X⟩, we have that:

I. the outcome Y is d-separated from πX by ⌈X⌉, (since Z is a decision that lacks parents, we actually
have ⌈X⌉ = {Z, X}),

II. the contexts C ′ are an empty set, so (II) is trivially true, and
III. V ′

≺X = Z, and Z is disjoint with Desc(X) and Z ⊇ Pa(X)

so Z and X ′ are LB-factorizable.

In this paper, our focus is exclusively on the assumptions of Lee & Bareinboim (2020, Lemma 1) rather than
the additional conditions of Lee & Bareinboim (2020, Theorem 2), but for completeness sake, the latter is
reproduced in Appendix A. We also establish in Appendix A that the assumptions of Lee & Bareinboim
(2020, Theorem 2) are indeed satisfied in the graph Figure 2, meaning that Z is immaterial for X, matching
the ad hoc analysis of this graph in Section 2.

4 Main result

4.1 Theorem statement and proof overview

The goal of this paper is to prove that condition (I) of LB-factorizability is necessary to establish immate-
riality. More precisely, if condition (I) is unsatisfiable for all observations in the graph, then the graph is
compatible with materiality for all observations. It might initially seem unnecessarily stringent to assume
that this holds for all observations, rather than the context Z0 for which we are trying to prove materiality.
Recall from Figure 4b, however, that proofs of materiality are recursive, in that to prove that Z is material
for X, we incentivized X to copy Z, and to do this, we had to incentivize X ′ to pass on the value of Z ′. This
required us to assume that other contexts and decisions (such as Z ′ and X ′) have their own info paths and
control paths, not just Z and X. So that we can assume this, in our theorem below, condition (C) requires
that (I) holds for all contexts. Conditions (A) and (B) are also necessary for a graph to be compatible with
materiality, because their negation implies immateriality, as discussed in Section 3.2.
Theorem 8. If, in a scoped graph GS , for every X ∈X(S)

A. X ∈ AncGS (Y ),
B. ∀C ∈ CX : (C ̸⊥GS Y | ({X} ∪CX \ {C})), and
C. for every context Z ∈ CX in GS , (πX ̸⊥GS Y | ⌈(X(S) ∪ CX(S)\{Z}) \ {Z}⌉), where πX is a new

parent of X,

then for every X0 ∈X(S) and Z0 ∈ CX0 , there exists an SCM where Z0 is material for X0.

In words, this means that if an outcome Y is influencable (condition A) and each context provides information
about Y given other contexts (condition B), and given everything determined by the contexts and decisions
(condition C), then each context is material in at least one model compatible with the graph.

We will prove this result in three stages, across the next three sections.

• In Section 4.2, we will prove that any scoped graph satisfying the conditions of Theorem 8 contains
certain paths called “materiality paths”, which begin at a context Z0 and decision X0.

• In Section 4.3, we will use the materiality paths to define a model for this scoped graph, which we
will call the materiality SCM.

• In Section 4.4, we will prove that in the materiality SCM, Z0 is material for X0.

9
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U Z0

∼ U(B)
X0

= Z0
Y

fY (paY ) = Jz0 = x0K

(a) Z0 is immaterial for X0.

U

∼ U(B)
Z0

= u
X0

= z0
Y

fY (paY ) = Ju = x0K

(b) Z0 is material for X0

Figure 5: Two SCMs, with models constructed using different (red) info paths.

4.2 The materiality paths

To prove materiality, we will begin by selecting info paths and a control path, similar to what was described
in Section 3.3 and illustrated in Figure 4b. One difference, however, is that we must choose paths that allow
us to prove the value of remembering a past decision. We will describe how to accommodate this difference
in Section 4.2.1 then define the paths in Section 4.2.2.

4.2.1 Paths for the value of remembering a decision

Suppose that given the graph in Figure 5, we would like to establish that it is useful to remember the
decision Z0, when making the decision X0. Given an info path, the procedures of Everitt et al. (2021) and
van Merwijk et al. (2022) will tell us how to construct an SCM, in which we can compute whether Z0 is
material. The problem is that there are two candidate info paths: Z0 → Y and Z0 ← U → Y , and these
procedures give us no guidance on which one to choose. So which one will lead us to construct an SCM
where Z0 is material? Let us consider each info path in turn.

Using the info path Z0 → Y , we obtain the model in Figure 5a. In this model, we have Y = 1 if x0 = z0,
i.e. the decision X0 is required to match the value of a past decision Figure 5a. Then, the MEU of 1 can be
achieved with a deterministic policy such as Z0 = 1, X0 = 1, and Z0 is immaterial for X0. To understand
this in terms of the paths involved, Why does the proof fail with this info path? It is because the the info
path Z0 → Y includes no parents of Z0, so Z0 is implied by values outside the info path, and Z0 → Y is
rendered inactive given ⌈U⌉. This means that observing Z0 can no longer provide useful information about
how to maximize Y .

Using the info path Z0 ← U → Y , we obtain the model in Figure 5b. In this model, Y = 1 if x0 = u, i.e.
the decision X0 must match the value of a random Bernoulli variable U . The value of U is directly observed
only by Z0, and so in an optimal policy X0 must observe the decision z0; this is the case in the policy
z0 = u, x0 = z0, and so Z0 is material for X0. The proof has succeeded because the info path Z0 ← U → Y
includes a parent U of Z0, meaning that Z0 is no longer implied by variables outside the info path, and the
path Z0 ← U → Y remains active given ⌈∅⌉. This choice of path helps to ensure that Z0 provides useful
information about Y .

In general, when an info path passes through a decision, such as Z0 in the previous example, we want it to
also pass through a non-decision parent of Z0. We will now see that condition (C) of Theorem 8 implies that
each decision has a non-decision parent N that is not in ⌈(X(S) ∪ CX(S)\{Z}) \ {Z}⌉.
Lemma 9. If a scoped graph G(S) satisfies condition (C) of Theorem 8, then for every context Z ∈ CX

where Z, X ∈X(S) are decisions, there exists a non-decision N ∈ CZ \ ⌈(X(S) ∪ CX(S)\{Z}) \ {Z}⌉.

Intuitively, this is because condition (C) states that there is an active path from Z to Y , given a superset of
⌈X(S) \ {Z}. If all of the parents of Z are decisions, then we would have Z ∈ ⌈X(S) \ {Z}, and every path
would be blocked, and condition (C) could not be true.

Proof of Lemma 9. Assume that there is no such non-decision N , i.e. CZ ⊆ ⌈(X(S) ∪ CX(S)\{Z}) \ {Z}⌉,
and that πX ̸⊥ Y | ⌈(X(S) ∪ CX(S)\{Z}) \ {Z}⌉, (by condition (C) of Theorem 8), and we will prove a
contradiction. From CZ ⊆ ⌈(X(S)∪CX(S)\{Z})\{Z}⌉, we deduce that Z ∈ ⌈(X(S)∪CX(S)\{Z})\{Z}⌉ (by
the definition of ⌈W ⌉), and then there can be no active path from πX to Y given ⌈(X(S)∪CX(S)\{Z})\{Z}⌉ ⊇
CZ ∪ {Z}, contradicting condition (C) of Theorem 8, and proving the result.
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This tells us that for any decision Z there is an edge Z ← N . Moreover, by condition (C) of the main result,
we know that there is an info path from N to Y . By concatenating the edge and the path, we can obtain
a path from Z to Y , which we will prove is active given ⌈(X(S) ∪ CX(S)\{Z}) \ {Z}⌉. This is precisely
what we want for our info path, first because it passes through a non-decision parent of the endpoint Z,
(so the endpoint U will not be determined as it is in Figure 5a) and second, because this path is active
given ⌈(X(S) ∪ CX(S)\{Z}) \ {Z}⌉, meaning that forks and chains are not decisions, and so they cannot be
determined either.
Lemma 10. If a scoped graph G(S) satisfies conditions (B-C) of Theorem 8, then for every edge Z → X
between decisions Z, X ∈X(S), there exists a path Z ← N - - - Y , active given ⌈(X(S)∪CX(S)\{Z}) \ {Z}⌉,
(so N ̸∈ ⌈(X(S) ∪ CX(S)\{Z}) \ {Z}⌉).

The proof that the segment N - - - Y is active given ⌈(X(S) ∪CX(S)\{Z}) \ {Z}⌉ rather than just ⌈(X(S) ∪
CX(S)\{N}) \ {N}⌉ requires some detail, so it is deferred to Appendix B.1.

4.2.2 Defining the materiality paths

In this subsection, we will describe how to select some paths to exhibit that some context Z0 is material
for a decision X0. In overview, this will begin with the selection of a directed control path passing through
Z0 → X0 and terminating at Y . There are finitely many info paths, which emanate from the control paths
and go to Y . Then finally, there are finitely many auxiliary paths, which go from colliders in the info paths
to Y . We will refer to the control, info, and auxiliary paths collectively as the materiality paths, and they
can all be seen in Figure 6.

The control path is the horizontal spine in Figure 6. The control path exists because X0 is an ancestor of
Y by condition (A) of Theorem 8, and X0 has a chance node ancestor A by Lemma 10 (because the parent
Z0 of X0 is either a chance node, or it has a chance node parent.)

We then index the decisions on the control path as Ximin , . . . , Ximax , and their parents along the control path
as Zimin , . . . , Zimax . where imin is either 0 (if Z0 is a chance node), or −1 (if Z0 = X−1). (Note that where
the control path has consecutive decisions, we will have Zi = Xi−1.) Then, an info path m′

i is chosen for
each context Zi using Lemma 9 to ensure that it satisfies some desirable properties.

Rather than the info path m′
i per se, we will often be interested in the portion of it that is non-overlapping

with the control path. So the intersection node Ti will essentially be the point at which the info path departs
from the control path, and the truncated info path m′

i will be the segment Yi - - - Y of mi.

Then, in each truncated info path mi, for each collider Wi,j , we will define an auxiliary path ri,j : Wi,j 99K Y .
Lemma 11. Let G(S) be a scoped graph that contains a context Z0 ∈ CX0 and satisfies the conditions of
Theorem 8. Then, it contains the following:

• A control path: a directed path d : A 99K Z0 → X0 99K Y , where A is a non-decision, possibly
equal to Z0, and d contains no parents of X0 other than Z0.

• We can write d as A 99K Zimin → Ximin 99K · · ·Z0 → X0 99K Zimax → Ximax 99K Y, imin ≤ i ≤ imax,
where each Zi is the parent of Xi along d (where A 99K Zimin and Xi−1 99K Zi are allowed to have
length 0). Then, for each i, define the info path: m′

i : Zi - - - Y , active given ⌈(X(S)∪CX(S)\Zi
) \

Zi⌉, that if Zi is a decision, begins as Zi ← N (so N ∈ CZi \ ⌈(X(S) ∪ CX(S)\Zi
) \ Zi⌉.)

• Let Ti be the node nearest Y in m′
i : Zi - - - Y (and possibly equal to Zi) such that the segment

Zi
m′

i- - - Ti of m′
i is identical to the segment Zi

d
L99 Ti of d. Then, let the truncated info path mi

be the segment Ti
m′

i- - - Y .
• Write mi as mi : Ti 99KWi,1 L99Ui,1 99KWi,2 L99Ui,2 · · ·Ui,Ji 99KY , where Ji is the number of forks

in mi. (We allow the possibilities that Ti = Wi,1 so that mi begins as Ti L99 Ui,1, or that Ji = 0 so
that mi is Ti 99K Y .) Then, for each i and 1 ≤ j ≤ Ji, let the auxiliary path be any directed path
ri,j : Wi,j 99K Y from Wi,j to Y .

The proof was described before the lemma statement, and is detailed in Appendix B.2.
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Figure 6: The set of paths proven to exist by Lemma 11 are red, green and blue. In each case, the point of departure
of the active path from the (black) directed path is designated by Ti. In full generality, each path may begin either
as Zi L99 Ti ← · (as in red), or as Zi L99 Ti → · (green, blue).

4.3 The materiality SCM

We will now present a construction that uses the materiality paths to define an SCM where Z0 is material
for X0. This construction will differ from those of Sections 3.2 and 3.3, in ways that help to deal with
insolubility. We will outline these differences in Section 4.3.1 , then define the construction in Section 4.3.2.

4.3.1 Models for insoluble graphs

To see how the past constructions of Everitt et al. (2021) and van Merwijk et al. (2022) need to be modified,
it is instructive to consider some insoluble graphs that are allowed by Theorem 8, and examine how the past
constructions fail to establish materiality.

Consider, for example, the graph of Figure 7a. This is insoluble, because at the decision X0, the past decision
X ′ contains information about Y , i.e. X ′ ⊥ Y | Z0, and it also satisfies the three conditions of Theorem 8.

In this graph, we can select the control path X0 → Y and info path Z0 → W1 ← U1 → Y . Then, the
construction from Everitt et al. (2021) and van Merwijk et al. (2022) could be applied if only X ′ was a
non-decision variable. So treat X ′ as though it was a non-decision, and we obtain the decision problem
shown in Figure 7a. In this model, the outcome Y is equal to 1 when X0 is equal to U1. The idea of this
construction is that since W1 = Z0⊕Uq, the MEU is achieved with the non-intervened policy X0 = Z0⊕W1,
which would require X0 to depend on Z0. In this model, however, X ′ is a decision, and so there exists an
alternative optimal policy, where X ′ = U1 and X0 = X ′, and X0 need not directly depend on Z0, proving
that Z0 is immaterial for X0. Essentially, the single bit of X ′ suffices to transmit the value of U1, and so
the information contained in Z0 was not incrementally useful. So long as the decision problem allows X ′ to
copy U1, Z0 will be immaterial.

A potential remedy is to give U1 a larger domain than X ′, and this is the idea behind the modified construc-
tion shown in Figure 7b. In this scheme, two random bits are generated at U1. The outcome is Y = 1 if X1
supplies one bit from U1 along with its index. A random bit is sampled at Z0, and W1 presents the Z0

th bit
from U1, while X1 has a domain of just one bit. Then, similar to our previous discussion of Figure 4b, the
only bit from U1 that X0 can reliably know is the Z0

th bit. Hence the only way to achieve the MEU is for
X ′ to inform X0 about the value of W1, and for X0 to equal X0 = ⟨Z0, X ′⟩. Importantly, this can only be
done if X0 observes Z0, meaning that Z0 is material for X0.

How might we generalize this construction to the case of Figure 7c, where the info path has multiple fork
variables? Instead of just Z0 and U1, we now have J +1 fork variables U0:J , which sample bitstrings, each one
2n as long as its predecessor. Each bitstring is then used to index its successor to obtain one bit. Formally,

12
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X0
= Z0 ⊕W1

Z0 Z0 ∼ U(B)

Y

fY (paY ) = Ju1 = x0K

U1

U1 ∼ U(B)

W1 =Z0⊕U1

X ′ = W1

(a) Z0 is immaterial for X0

X0
= ⟨Z0, X ′⟩

Z0 Z0 ∼ U(B)

Y

fY (paY)=Ju1[x[0]]=x[1]K

U1

U1 ∼ U(B2)

W1 =U1[Z0]

X ′ = W1

(b) Z0 is material for X0

X0
X0 =⟨Z0,W1:J⟩

Z0 =U0

U0 U0 ∼ U(Bk)

Y

fY(paY )=Jx0 com.w. uJK

UJ

Uj ∼ U(BexpN
2 (k))

W1 =U1[U0]

. . .

WJ

Wj =UJ [UJ−1]

(c) Z0 is material for X0

Figure 7: Two SCMs (a-b), and a description of a family of SCMs, where each dashed line represents a path. The
repeated exponent expn

2 (k) is defined as k if n = 0, and 2expn−1
2 (k) otherwise.

the observation is Z0 = U0, and at each collider Wi, we have Wi = Uj [Uj−1]. If the decision X0 copies the
values from Z0 and W1:J , we will say that it is “consistent” with u0:J . The outcome Y in this graph must
be defined in terms of only X0 and UJ , so it cannot verify whether X0 = U0:J . What it can do, however, is
check whether there exists any assignments U0:J−1 that, taken with UJ would produce assignments z0, w1:J
that X0 is consistent with. We term this latter property “compatibility”.

Definition 12 (Consistency and compatibility). Let w = ⟨w0, w1, . . . , wJ⟩ where w0 ∈ Bk and wn ∈ B for
n ≥ 1. Then, w is consistent with u = ⟨u0, . . . , uJ , ui ∈ Bexpi

2(k)⟩ (i.e., w ∼ u) if w0 = u0 and wn = un[un−1]
for n ≥ 1. Moreover, w is compatible with uJ ∈ BexpJ

2 (k) (i.e. w ∼ uJ) if there exists any u0, . . . , uJ−1 such
that w is consistent with u0, . . . , uJ .

For example, in Figure 7b, x1 is consistent with ⟨z0, u1⟩ if x1 produces the z0
th bit from u1, i.e. x1 =

⟨z0, u1[z0]⟩. More leniently, we will say that x1 is compatible with ⟨z0, u1⟩ if x1 produces any bit from u1,
i.e. x1 = ⟨z0, u1[b]⟩ for any b. This means that either ⟨0, 0⟩ or ⟨1, 1⟩ is compatible with z0 = 0 and u1 = 01,
but only the former is consistent with z0 = 0 and u1 = 00.

The idea of the construction is that if the decision x0 is inconsistent with the fork assignments, then it
will also sometimes be incompatible with UJ , and therefore will be suboptimal. For example, in Figure 7b,
suppose that we have assignments z0 = 0 and u1 = 01 and a decision x = ⟨1, 1⟩. Then, given the assignments
y0 = 0 and u1 = 00, we will have assignments z0 = 0 and w1 = 0, which will in turn cause the assignment
x = ⟨1, 1⟩ however, this is not consistent with z0 = 0 and u1 = ⟨0, 0⟩, so the utility will be y = 0. We now
prove that this is also true for the more general construction of Figure 7c: if with strictly positive probability,
the assignment of X0 is inconsistent with u0:J , then there will exist an alternative assignment U0:J = u′

0:J ,
that produces the same assignments to the observations of X0, but where X0 is incompatible with u′

J .

Lemma 13. Let w = ⟨w0, . . . , wJ⟩ and w̄ = ⟨w̄0, . . . , w̄J⟩ be sequences with w0, w̄0 ∈ Bk, wj , w̄j ∈ B
for j ≥ 1, and let J ′ ≤ J be the smallest integer such that wJ′ ̸= w̄J′ . Let u0, . . . , uJ′ be a sequence
where uj [uj−1] = wj for 1 ≤ j < J ′. Then, there exists some uJ′+1, . . . , uJ such that w is consistent with
u0, . . . , uJ , but w̄ is incompatible with uJ .

The proof is deferred to Appendix B.5.

We can then use this result to argue that Z0 is material in Figure 7c. If Z0 is an observation of X0, then
we achieve the MEU of 1 in the non-intervened model, where x0 is compatible with u0:J , and y = 1 surely.
If instead Z0 is removed as an observation, then X0 cannot copy it, because Z0 is constructed to contain k
bits, where k may be an arbitrarily large integer. It follows that x0 is sometimes inconsistent with u0:J , and
hence sometimes compatible with uJ (by Lemma 13), so we will have y = 0 sometimes (by the definition of
Y ), making the MEU less than 1. This argument will be fully formalized in Section 4.4.
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4.3.2 A decision problem for any graph containing the materiality paths

We will now define a construction for any graph containing the materiality paths described in Lemma 11.

In most respects, the construction is a slight evolution of previous examples. Where the truncated info
path mi is a directed path, the construction will generalize Figure 3a, and the decision Xi will be tasked
with copying the value at an intersection node Ti. Where mi is not a directed path, the construction will
generalize Figure 7c, and Xi will be tasked with producing a bitstring that is compatible with forks Ui,1:Ji .

For this more general construction, we do, still need to fix some notation. The first issue is that the materiality
paths may overlap. To accommodate this possibility, we will define a random variable V p for each variable
in a materiality path p, then to derive the overall materiality SCM, we will define V as a Cartesian product
over each V p. The sole exception is the outcome variable Y , which will be defined by a sum over every Y p.
For any set of paths p, we define V p = ×p∈pV p.

A second issue is that variables will often depend on their parents along the same path — something that
we can compactly describe as follows.
Definition 14 (Parents along paths). When a vertex V has a unique parent V̄ along p, Pa(V p) = V̄ p, and
for a set of paths p′, let Pa(V p′) = ×p∈p′ Pa(V p). For a collider V in a truncated info path mi : Ti - - - Y ,
let the parent nearer Ti along mi be PaL(V ), and the parent nearer Y be PaR(V ).

For example, a non-outcome child V of A along the control path will be assigned V d = Pa(V d).

A third issue is that variables must sometimes depend on variables that do not lie in their paths, and this
occurs in three cases:

• in the truncated info path, the child of the intersection node must depend on all components T pi

i ,
not just T mi

i ;
• in the auxiliary path, the second node must copy the value of the collider from the info path W mi

i,j ;
• when the intersection node is a collider that is also the source node A of the control path, then it

must depend on not just Pa(T pi

i ), but also the exogenous variable EA.

We define the following shorthand to deal with these three cases:
Definition 15 (Out-of-path parent relations). For a truncated info path mi, let:

Pa∗(V mi) =
{

T pi

i if Pa(V mi) = T mi
i

Pa(V mi) otherwise
, and Pa∗

L(V ) =
{

T pi

i if PaL(V mi) = T mi
i

PaL(V mi

l ) otherwise
.

For an auxiliary path ri,j , let Pa∗(V ri,j ) =
{

W mi
i,j if Pa(V ri,j ) = W mi

i,j

Pa(V ri,j ) otherwise
.

For the intersection node let:

Pa∗(T pi

i ) =
{
EA × Pa(T pi

i ) if Ti is A

Pa(T pi

i ) otherwise
.

Using this notation, we now define the materiality SCM as follows.
Definition 16 (Materiality SCM). Given a graph containing the materiality paths, we may define the
following random variables.

In the control path, d : A 99K Y , let:

• the source be Ad = EAd where EAd ∼ U(Bk), the positive integer k is the smallest such that
2k > (k + c)bc, the maximum number of variables that can be contexts of one decision is b :=
maxX∈X(S)|CX |, and c is the maximum number of materiality paths passing through any vertex in
the graph;
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T0

= U0,1[A]
Z0

= T0

X0

= Z0

A

∼ U(Bk)

U0,1

∼ U(B2k )

Y

fY (paY )=Jpa(Y p0,r0:J0 ) com.w. u0,J0K +Jpa(Y p1,r0:J1 ) com.w. u1,J1K +JxI = tIK

U0,J0

∼ U(BexpJ0
2 (k))

W0,2

= U0,2[U0,1] . . .

W0,J0

= U0,J0 [U0,J0−1]

T1

= X0

Z1

= T1

X1

= Z1

. . . TI

= pa(T d
I )

ZI

= TI

XI

= ZI

U1,0
∼ U(B2k )

W1,1 = U1,0[T1]
. . .

U1,J1 ∼ U(BexpJ1+1
2 (k))

Figure 8: The materiality SCM: a general SCM where Z0 is material for X0.

• every non-endpoint V be V d = Pa(V d).

In each truncated info path that is directed, mi : Ti 99K Y , let:

• the intersection node T mi have trivial domain;
• each chain node be V mi = Pa∗(V mi);
• the outcome have the function fY mi (paY ) = Jpa(Y pi) = pa∗(Y mi)K.

In each truncated info path that is not directed, Ti - - - ←Wi,1 → · · · ←Wi,J 99K Y , let:

• each fork be W mi
i,j =EW

mi
i,j , EW

mi
i,j ∼U(Bexpj

2(k+|pi|−1)) where |pi| is the number of paths in pi;
• each chain node be V d = Pa∗(V d);
• each collider be V mi = PaR(V mi)[Pa∗

L(V mi)];
• each intersection node be T mi

i = Pa(V mi)[Pa∗(T pi

i )] if the info path begins as Ti → ·, otherwise it
has empty domain;

• the outcome have the function fY mi (paY ) = Jpa(Y pi,ri,1:Ji ) is compatible with pa∗(Y mi)K.

In each auxiliary path ri,j : Wi,j → V2 99K Y , let:

• each chain node have V ri,j = Pa∗(vri,j ).
• each source Wi,j have trivial domain.

Then, let the materiality SCM have outcome variable Y =
∑

imin≤i≤imax
Y mi , and non-outcome variables

V = ×p∈{d,mi,ri,1:Ji
|imin≤i≤imax} V p.

Note that this defines an SCM because each variable is a deterministic function of only its endogenous
parents and exogenous variables.

In this non-intervened model, we have Y mi = 1, surely.
Lemma 17. In the non-intervened model, the materiality SCM has Y = imax − imin + 1, surely.
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X0T0 T1 Pap1(Y)

U0,1

Y

U1,ℓ

. . .

(a) The intersection node T1 is a chance node.

X0(T1)

Cm1
X0

X1 Pap1(Y)

U1,1

YC¬m1
X0

U1,ℓ

. . .

(b) The intersection node T1 is a decision. The contexts of
X0 are divided into Cm1

X0
(its parent along the info path), and

C¬m1
X0

(the other parents).

Figure 9: The cases where the intersection node T1 is a chance node, or a decision

The proof follows from the model definition, and is supplied in Appendix B.4.

We also know that each utility term Y mi is upper bounded at one, so in order to obtain the MEU, each Y i

must equal 1, almost surely.
Lemma 18. If a policy π for the materiality SCM, has P π(Y mi <1)>0 for any i, the MEU is not achieved.

Proof. We know that Eπ[Y ] =
∑

imin≤i≤imax
Y mi (Definition 16), so for all i, Y mi ≤ 1 surely. So, if

P π(Y mi < 1) > 0 for any i, then Eπ[Y ] < imax − imin + 1, which underperforms the policy that is followed
in the non-intervened model (Lemma 17).

4.4 Proving materiality in the materiality SCM

We will now prove that in the materiality SCM, if Z0 is removed from the contexts of X0, then the perfor-
mance for at least one of the utility variables Y mi is compromised, and so the MEU is not achieved. The
proof is divided into two cases, based on whether the child of X0 along the control path is a non-decision
(Section 4.4.1) or a decision (Section 4.4.2).

4.4.1 Case 1: child of X0 along d is a non-decision.

We will now prove that if the child of X0 along the control path is a non-decision, i.e., X0 is not the context
Z1, then E[Y m0 ] < 1. In this case, either X0 is the last decision in the control path, or otherwise there must
exist an intersection node T1, as shown in Figure 9a. If the former is true, then it is immediate that the
value x0 is transmitted to Y along the control path, based on the model definition. As such, Y0 can directly
evaluate the decision X0. For the latter case, we want an assurance that downstream decisions will pass
along the value of X, as was the case in Figure 4b. Such an assurance is provided by the following lemma,
which states that whenever an intersection node Ti is a chance node (as T1 is) — the value ti is transmitted
to Y by every optimal policy.
Lemma 19 (Chance intersection node requirement). If in the materiality SCM, where Ti is a chance node,
a policy π has P π(Pa(T pi

i ) = Pa(Y pi)) < 1, then P π(Y mi < 1) > 0.

First, we prove the case where mi is a directed path. In this case, mi copies the value tpi to Y , which Y mi

checks against the value pa(ypi) received via the control path. Maximizing Y mi then requires them to be
equal.

Proof of Lemma 19 when mi is a directed path. We have fY mi (paY mi ) = Jpa(Y mi) = pa(Y pi))K (Defini-
tion 16). Also, Pa(Y mi) = T pi

i = Pa(T pi

i ) surely, where the first equality follows from Definition 16,
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while the second follows from Definition 16 and Ti being a chance node. So, if P π(Pa(Y pi)=Pa(T pi))<1,
then P π(Y mi =1) < 1.

We now prove the case where mi is a directed path. In this case, if the assignment pa(Y pi) transmitted
along the control path differs from the value pa(T pi

i ) that came in to the intersection node Ti, then just
as we established for Figure 7c, there will exist an assignment ui,1:Ji to the fork nodes in mi that gives an
unchanged assignment to colliders vi,1:Ji

, but where pa(Y pi) is incompatible with uJi
.

Proof of Lemma 19 when mi is not a directed path. Let us index the forks and colliders of mi as
Ti - - - Vi,1 L99 Ui,1 99K Wi,1 L99 · · ·Wi,Ji

L99 Ui,Ji
99K Y . Choose any assignments pa(T pi

i ) ̸= pa(Y pi)
that occur with strictly positive probability. Then, there must also exist assignments Pa(Y pi,ri,1:Ji ) =
pa(Y pi,ri,1:Ji ), Ui,1:Ji

= u1:Ji
, and Wi,1:Ji

= w1:Ji
such that

P π(pa(T pi

i ), pa(Y pi,ri,1), tpi

i , u1:Ji
, w1:Ji

) > 0.

By Lemma 13, there also exists an assignment Ui,1:Ji
= u′

1:Ji
such that pa(T pi

i ), w1:Ji
is consistent with

u′
1:Ji

, and pa(Y p
i ), pa(Y ri,1:Ji ) is incompatible with u′

Ji
. Now, consider the intervention do(Ui,1:Ji = u′

1:Ji
).

Since Ti is a chance node, every collider in mi is a non-decision, and is assigned the (unique) value consistent
with pa(T pi

i ), u′
1:Ji

. Furthermore, pa(T pi

i ), w1:Ji
is consistent with pa(T pi

i ), u′
1:Ji

, so the intervention does
not affect the assignments to these colliders. Moreover, from Definition 16, no variable outside of mi is
affected by assignments within mi, except through the colliders. Therefore:

P π(pa(Y pi), pa(Y ri,1:Ji ), Pa(Y mi) = u′
Ji
| do(Ui,1:Ji

= u′
1:Ji

)) > 0
∴ P π(Y mi = 0 | do(Ui,1:Ji

= u′
1:Ji

)) > 0
(pa(Y p

i ), pa(Y ri,1:Ji ) not compatible with u′
Ji

)
∴ P π(Y mi = 0 | Ui,1:Ji

= u′
1:Ji

) > 0

(Ui,1:Ji are unconfounded, so P π(V |do(Ui,1:Ji = u′
1:Ji

))=P π(V |Ui,1:Ji =u′
1:Ji

)

∴ P π(Y mi = 0) > 0 (P π(u′
i,1:Ji

) > 0).

If mi is not a directed path, then we will require that the values pa(Y ri,1:Ji ) are passed down the auxiliary
paths, not just the value pa(Y pi) from the control path. Specifically, pa(Y pi), pa(Y ri,1:Ji ) must be consistent
with pa(Y pi), ui,1:Ji

, where ui,1:Ji
denotes the values of forks on the info path.

Lemma 20 (Collider path requirement). If the materiality SCM has an info path mi that is not directed,
and under the policy π there are assignments Pa(Y pi,ri,1:Ji )=pa(Y pi,ri,1:Ji ) to parents of the outcome, and
Umi

i,1:Ji
=umi

i,1:Ji
to the forks of mi, with P π(pa(Y pi,ri,1:Ji ), umi

i,1:Ji
) > 0 and where pa(Y pi,ri,1:Ji ) is inconsistent

with pa(Y pi), umi

i,1:Ji
, then P π(Y mi < 1) > 0.

The idea of the proof, similar to Lemma 19, is that whenever the bits transmitted along the auxiliary paths
deviate from the values wi,1:Ji of colliders in mi, there exists an assignment u′

i,1:Ji
to forks in mi that

will render the colliders, and hence the decision xi unchanged, while making xi incompatible with uJi , and
thereby producing Y mi < 0. A detailed proof is in Appendix B.5.

Before we prove that Z0 is material in this case, we require one more intermediate result: that Z0 cannot
be chosen deterministically, if it is a decision. The idea will be that random information is generated at A,
which each of the decisions, including Z0, is required to pass along the control path; we can prove this as a
corollary of Lemma 19.
Lemma 21 (Initial truncated info path requirements). If π in the materiality SCM does not satisfy:
P π(Pa(Y d) = Ad) < 1. then the MEU is not achieved.
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Proof. From Lemma 11, the control path d begins with a chance node. So, the first decision Ximin in d
must have a chance node Zimin as its parent along d. Furthermore, the intersection node Timin must be an
ancestor of Zimin along d, so it is also a chance node. So it follows from Lemma 19, that any policy π must
satisfy P π(T pimin

imin
= Pa(Y pimin )) = 1 if it attains the MEU. As Timin is in the control path, we have d ∈ pimin

(by Lemma 11) so T d
imin

a.s.== Pa(Y d) is also required. Moreover, all of vertices in the segment A 99K Timin of
d are chance nodes, because Ximin was defined as the first decision in d, and Timin precedes it. And, each
chance variable V d on the control path equals its parent Pa(V d) (by Definition 16), so Ad = T d

imin
, and thus

Ad a.s.== Pa(Y d) is required to attain the MEU.

We can now combine our previous results to prove that it is impossible to achieve the MEU, if Z0 is not a
context of X0, in the case where T1 does not exist, or is a non-decision.
Lemma 22 (Required properties unachievable if child is a non-decision). Let M be a materiality SCM
where the child of X0 along d is a non-decision. Then, the MEU for the scope S cannot be achieved by a
deterministic policy in the scope SZ0 ̸→X0 (equal to S, except that Z0 is removed from CX0).

The logic is that if child of X0 in the control path is a non-decision, then the value of X0 is copied all the
way to Pa(Y d) (Lemma 21). Furthermore, Zd

0
a.s.== Pa(Y d) is necessary to achieve the MEU (Lemma 19).

But the materiality SCM has been constructed so that the non-Z0 parents of X0 do not contain enough
bits to transmit all of the information about Zd

0 , so the MEU cannot be achieved. The proof is detailed in
Appendix B.6.

4.4.2 Case 2: child of X0 along d is a decision.

We will now prove that if, as shown in Figure 9b, the child of X0 along d is a decision and the decision Z0
is not available as a context of X0, then E[Y1] < 1. The overall argument will be that if X0 cannot observe
Z0, then it cannot convey the value of U1,1 to the child X1, and so X1 will not be able to be consistent with
u0:J1 .

Our first lemma will state that if a decision Xi−1 does not distinguish Ui,1, and Ui,2 is a bitstring wherein
all of the digits are the same, then Ui,1 cannot influence Y , other contexts of Ti, colliders Wi,1:Ji

, or forks
Ui,2:Ji

. A couple of details of this lemma are worth remarking upon. First, it assumes that Ti = Xi−1
— something that is always true for i = 1 in the case that Z1 = X0. Second, it assumes that πTi is a
deterministic decision rule, which will simplify the proofs without importantly weakening it, because every
decision problem has a deterministic policy that performs as well as the best non-deterministic policy.
Lemma 23 (If next fork is repeated, then fork only influences intersection node). If, in the materiality
SCM:

• the intersection node Ti is the vertex Xi−1,
• πTi is a deterministic decision rule where πTi(c¬mi(Ti, ui,1) = πTi(c¬mi(Ti, u′

i,1)) for assignments
ui,1, u′

i,1 to the first fork variable, and c¬mi(Ti) to the contexts of Ti not on mi, and
• Wi,1:Ji

= wi,1:Ji
, and Ui,2:Ji

= ui,2:Ji
are assignments to forks and colliders in mi where each ui,j

consists of just wi,j repeated expj
2(k + |pi| − 1) times, then:

P π(pa(Y pi,ri,1), c¬mi(Ti), wi,1:Ji
, ui,2:Ji

|do(ui,1))=P π(pa(Y pi,ri,1), c¬mi(Ti), wi,1:Ji
, ui,2:Ji

|do(u′
i,1)).

The proof follows from the definition of the materiality SCM, and it is detailed in Appendix B.7.

We can now prove that if a deterministic policy does not appropriately distinguish assignments to Ui,1, then
the ith component of the utility will be suboptimal, i.e., E[Y mi ] < 1.
Lemma 24 (Decision must distinguish fork values). If in the materiality SCM:

• the intersection node Ti is the vertex Xi−1, and
• π is a deterministic policy that for assignments ui,1, u′

i,1 to Ui,1 where ui,1 ̸=u′
i,1,

has πTi
(c¬mi(Ti), ui,1)=πTi

(c¬mi(Ti), u′
i,1) for every C¬mi

Ti
(Ti)=c¬mi(Ti),

(†)
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then P π(Y mi < 1) > 0

The idea of the proof is that if ui,1 and u′
i,1 differ, there will be some assignment pa(Y pi) such that

ui,1[pa(Y pi)] and u′
i,1[pa(Y pi)] differ. When Pa(Y pi) = pa(Y pi) and Ui,1 = ui,1, then Pa(Y ri,1) will as-

sume one value. But if we intervene u′
i,1, ui,2:Ji

, then the value of Pa(Y ri,1) will be incorrect, making
Pa(Y pi,ri,1:Ji ) inconsistent with Pa(Y pi , Ui,1:Ji) so the maximum expected utility is impossible to achieve.
The details are deferred to Appendix B.8.

This allows us to prove that when the child of X0 along d is a decision, the MEU cannot be achieved unless
Z0 is a context of X0.
Lemma 25 (Required properties unachievable if child is a decision). Let M be the materiality SCM for
some scoped graph GS , where imax > 0 and T1 is a decision. Then, there exists no deterministic policy in
the scope SZ0 ̸→X0 that achieves the MEU.

To prove that no deterministic policy in SZ0 ̸→X0 can achieve the MEU (achievable with the scope S), we
will show that if a deterministic policy π satisfies P π(Pa(Y d) = Ad) = 1, as required by Lemma 21, then
the domain of X0×C¬m1

X0
is smaller than the domain of Cm1

X0
, so Equation (†) will be satisfied, and thus the

MEU cannot be achieved. A detailed proof is presented in Appendix C.

We now combine Lemmas 22 and 25 to prove the main result.

Proof of Theorem 8. Any scoped graph G(S) that satisfies conditions (A-C) contains materiality paths for
the context Z0 of X0 (Lemma 11), and has a materiality SCM (Definition 16) compatible with G(S). In this
decision problem, whether the child of X0 along d is or is not a decision, the MEU cannot be achieved by a
deterministic policy unless X0 is allowed to depend on Z0 (Lemmas 22 and 25). And stochastic policies can
never surpass the best deterministic policy (Lee & Bareinboim, 2020, Proposition 1), so no such policy can
achieve the MEU, and therefore Z0 is material for X0.

5 Toward a more general proof of materiality

So far, via Theorem 8, we have established the necessity of condition (I) of LB-factorizability for immateri-
ality. We now outline some steps toward evaluating the necessity of conditions (II-III) of LB-factorizability,
as well as the further condition in (Lee & Bareinboim, 2020, Thm. 2).

It is trivial to satisfy either one of (II-III) in isolation. Condition (III) merely requires that we choose an
ordering ≺ such that the parents of each decision X are prior to X, while the descendants come afterwards,
and such an ordering clearly exists in any acyclic graph. Condition (II) can also be satisfied by placing all
of the variables in C at the start of the ordering ≺.

However, there does not always exist an ordering that satisfies (II-III) simultaneously. Indeed, whenever
there does not, we will be able to prove the existence of some info paths and control paths. If we could use
these paths to establish materiality, then we would have proved that (II-III) are necessary conditions. So
far, however, we have only been able to carry out the first step — defining the paths — and difficulties have
arisen in using those paths to define an SCM that exhibits materiality. In this section, we will outline what
info paths and control paths can be proven to exist, and then outline the difficulties in using them to prove
materiality.

5.1 A lemma for proving the existence of paths

When the variables Z, X ′, C ′, U are not factorizable, we can prove the existence of info and control paths.
Lemma 26 (System Exists General). Let GS be a scoped graph that satisfies conditions (A,B) from Theo-
rem 8. If Z = {Z}, X ′ ⊇ Ch(Z), C ′ = CX′ \ (X ′ ∪Z), U = ∅ are not LB-factorizable, then there exists a
pair of paths to some C ′ ∈ C ′ ∪ Y :

• an info path m : Z - - - C ′, active given ⌈X ′ ∪C ′⌉, and
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• a control path d : X 99K C ′ where X ∈X ′.

A proof is supplied in Appendix D.1. The intuition of this proof is that each of the conditions (I-III) implies
a precedence relation between a pair of variables in V ′ ∪ Y . Each of these precedence relations can be used
to build an “ordering graph” over V ′∪Y . If the ordering graph is acyclic, then we can let ≺ be any ordering
that is topological on the graph, and then Z, X ′, C ′, U are LB-factorizable. Otherwise, we can use a cycle
in the graph to prove the existence of an info path and a control path. By iterating over these cycles, we
can obtain a series of info paths and control paths that terminate at Y .

The resulting paths are in some cases quite useful for proving materiality. For instance, we can recover the
pair of info and control paths used in Figure 4b. To prove that Z is material for X, we can start by choosing
X ′ = {X, X ′}, C ′ = {Z ′, W}, and U ′ = ∅. Then, Lemma 26 implies the existence of an active path from Z
to some DescX ∩ C ′, so we see that the first info path is the edge Z → Y . Since Y is a descendant of X,
we also have the first control path, X → Z ′ → X ′ → Y . We must then obtain some paths that exhibit why
Z ′ is itself useful for the decision X to know about, and to influence. To do this, we can reapply Lemma 26
using the sets X ′ = {X, X ′}, Z = {Z ′}, C ′ = {Z, W}, and U ′ = ∅. We then obtain the new info path
Z ′ →W ← U → Y , and the new control path X ′ → Y . The SCM in Figure 4b uses these paths to prove Z
is material for X.

5.2 A further challenge: non-collider contexts

In some graphs, it is not clear how to use the info and control paths from Lemma 26 to prove materiality,
because non-collider nodes on the info path may be contexts. (In previous work, this possibility was excluded
by the solubility assumption (van Merwijk et al., 2022, Lemma 28).) We will now highlight one case, in
Figure 10, where it is relatively clear how this challenge can be overcome, and one case, Figure 11, where it
is unclear how to make progress.

In the graph of Figure 10, we would like to prove that Z0 is material for X0. Using Lemma 26, we can obtain
the red and blue info paths as shown, and the corresponding control paths, shown in darker versions of the
same colours. The usual idea of Definition 16, shown in Figure 10a, would be that X0 must observe Z0 in
order to know which slice from V is presented at its parent X1. In this model, X1 would play two roles,
one for the red info path, and one for the dark blue control path. As a collider on the red info path, its role
is to present the Zth

0 bit from V . As the initial endpoint of the blue control path, its role is to copy the
assignment of Z0. The problem, however, is that X0 then does not need to observe Z0 in order to reproduce
its value, because this value is already observed at X1, and so Z0 is not material.

To remedy this problem, we can construct an alternative SCM, where the value of Z0 is “concealed”, i.e.
it is removed from the other contexts, CZ0 \ Z0. We now define X1 as V [Z0] (i.e. we have removed Z0),
leaving the decision X1 with a domain of only one bit. At C, we impose some random noise; that is C is
not always a perfect copy of Z0. The result is shown in Figure 10b. When this model is not intervened, an
expected utility of E[Y ] = 10.99 is achieved, because the red term in Y always equals 10, while the blue term
has an expectation of 0.99. (This is the MEU, because there is no way to improve the blue term to have
expectation 1 without decreasing the expectation of the red term by at least 0.05.) If instead Z0 is removed
as a context for X0, then the expected utility can only be as high as E[Y ] = 10.95. To understand this, we
restrict our attention to deterministic policies, and note that in order for the red term to be better than a
coin flip (with an expected value of 5), we would either need to have X0 = ⟨C, X1⟩ — and the red term will
have an expectation of 9.95, or we must have X1 = V [0] and X0 = ⟨0, X1⟩ — and then the blue term will
have an expectation of 0.5. In either case, performance is worse than 10.99, so Z0 is material for X0.

The problem is that concealing the value of Z0 does not work for all graphs. To see this, let us add two
decisions, X2 and X3, to the graph from Figure 10, to thereby obtain the graph in Figure 11. Let us retain
the materiality SCM from Figure 10b, except that X2 and X3 copy the value from C along to Y . One might
expect that Z0 should still be material, but it is not. Now, there is a policy that achieves the new MEU of 11
by superimposing the value of Z0 on the assignments of decisions X2 and X3. In this policy π, x1 = v[z0],
x2 = z0 ⊕ z0, x3 = x2 ⊕ z0, and x0 = x2 ⊕ x3 = z0 where ⊕ represents the XOR function. Under π, the red
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Z0

∼U(B)

X1
=⟨V [Z0],Z0⟩

C = ⟨X1[0], Z0⟩

X0
=⟨Z0,X1[Z0]⟩

V

∼ U(B2)

Y

fY (paY ) = Jv[x0[0]] = x0[1]K + Jc[0] = c[1]K

(a) A model with zero VoI.

Z0

∼U(B)

X1
= V [Z0]

C
P (C =z0) = 0.99
P (C =1−z0)=0.01

X0
= ⟨Z0, X1⟩

V

∼ U(B2)

Y

fY (paY ) = 10Jv[x0[0]] = x0[1]K + Jc = x0[0]K

(b) Z0 is material for X0

Figure 10: Two alternative models that use the same two info paths, red and blue.

term equals 10 surely, while the blue term equals 1 surely, i.e. the MEU is achieved, and π is a valid policy
even if Z0 is not a context of X0, meaning that Z0 is not material for X0.

In summary, whenever Z ∋ Z0, X ′ ∋ X0, C ′, U are not LB-factorizable, then we can find some info and
control paths for Z0 and X0, but then X0 can recover the value of Z0, making it possible to achieve the
MEU even when Z0 is removed as a context of X0. In some graphs, we can devise an alternative SCM that
conceals the value of Z0. But in others, a policy can superimpose the information from Z0 on other decisions,
such as X2 and X3 in Figure 11, so that X0 can recover the value of Z0, making Z0 immaterial for X0 once
again.

Overall, in order to establish a complete criterion for materiality, we would need some new method to prevent
the information from Z0 from being superimposed on other decisions. So, in order for future work to achieve
this goal, we predict that it will have to make further modifications to the construction from Definition 16.

Z0 ∼U(B)

X1 = V [Z0] C

P (C =z0) = 0.99
P (C =1−z0)=0.01

A1

X2
= C

A2

X3
= X2

A3

X0
= ⟨Z0, X1⟩

V ∼ U(B2)

Y

fY (paY ) = 10Jv[x0[0]] = x0[1]K + Jx2 = x0[0]K

Figure 11: A model with zero VoI

6 Conclusion

In graphical models of decision-making, a key challenge is to ascertain which variables can be deemed
immaterial based on the graphical structure alone. This problem is a long-standing one, a solution to which
could allow influence diagrams to be solved more efficiently, and aid in analyzing the safety and fairness of
AI systems. A key condition for establishing immateriality is LB-factorizability. We have found that if no
context can satisfy condition (I) of LB-factorizability, then any context is material in at least one decision
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problem that respects the graphical constraints. In the process of devising our proofs of materiality, we
encountered and addressed several new kinds of problems:

• if, as in Figure 5, the variable Zi whose materiality we are trying to establish is a decision, then we
must choose an info path so that the value of Zi cannot be determined by other contexts;

• if, as in Figure 7, the info path begins with a variable Z0 that is a context not just of the target
decision X0, but also some other decision X ′, then we must construct the decision problem so that
X ′ cannot copy Z0 in its entirety;

• if, as in Section 4.4.2, the control path contains consecutive decisions, then we give large domains to
the source A, and all of the variables on the control path, so that this information can only possibly
be copied by these decisions.

As a next step towards establishing a complete criterion for materiality, we then considered the more general
setting where no context can jointly satisfy conditions (I-III) of LB-factorizability. In this setting, we have
identified info paths and control paths that appear useful for proofs of materiality, and we can apply an
adjusted version of our construction to this case. However, in some settings there are ways for optimal
performance to be achieved even when Z0 is not a context of X0, and so we have not yet found a successful
proof of materiality in this more general setting.

Thus, the challenge of proving a complete criterion for materiality for insoluble graphs currently remains
open.
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