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Abstract

In a decision problem, observations are said to be material if they must be taken into account
to perform optimally. Decision problems have an underlying (graphical) causal structure,
which may sometimes be used to evaluate certain observations as immaterial. For soluble
graphs — ones where important past observations are remembered — there is a complete
graphical criterion; one that rules out materiality whenever this can be done on the basis
of the graphical structure alone. In this work, we analyse a proposed criterion for insoluble
graphs. In particular, we prove that some of the conditions used to prove immateriality are
necessary; when they are not satisfied, materiality is possible. We discuss possible avenues
and obstacles to proving necessity of the remaining conditions.

1 Introduction

We can view any decision problem as having an underlying causal structure — a graph consisting of chance
events, decisions and outcomes, and their causal relationships. Sometimes, it is possible to evaluate key
aspects of a decision problem from its causal structure alone. For example, in Figure 1a and Figure 1b, we
see two such causal structures. For now, let us focus on the three endogenous vertices: the observation Z,
the decision (chosen by the decision-maker) X, and the downstream outcome Y . In each graph, Z has an
effect on X, which affects Y , but in Figure 1b, Z also directly influences Y , whereas in Figure 1a, it does
not.

To fully describe a decision problem, we must specify probability distributions for each of the non-decision
variables — distributions that must be compatible with the graphical structure. In particular, the distribu-
tion for any variable must depend only on its direct causes, i.e. its parents, a condition known as Markov
compatibility. For example, in the causal structure shown in Figure 1b, one compatible decision problem is
shown in the figure. The variable Z is a Bernoulli trial (i.e. a coin flip), and the decision-maker is rewarded
with Y = 1 if they state the outcome of Z (i.e. call the outcome of the coin flip), otherwise the reward is
Y = 0. A variable is then said to be material if the attainable reward is greater given access to an observation
than without it. For example, by observing Z, the decision-maker can obtain a reward of 1, such as with
the policy X = Z. Without observing Z, any policy will achieve a reward of 0.5. This means that the value
of information is 1− 0.5 = 0.5, and since this quantity is strictly positive, Z is material.

For the causal structure shown in Figure 1a, we can instead make a deduction that applies to any decision
problem compatible with the graph. In this case, for any such decision problem, there will exist an optimal
decision rule that ignores the value of Z = z entirely. One way to see this is that once a decision X = x is
chosen, the observation Z becomes independent of Y , and so there is no reason for the decision to depend on
it. (This can be proved from the fact that Z is d-separated from Y given X.) So for any decision problem
compatible with this graph, Z is immaterial.

There are many reasons that we may want to evaluate whether a causal structure allows an observation such
as Z to be material. Firstly, for algorithmic efficiency — if an observed variable is immaterial, then the
optimal policies are contained in a small subset of all available policies, that we can search exponentially
more quickly. (For example, in Figure 1a, there are two choices for X, but there are four deterministic
mappings from Z to X.)
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Secondly, materiality can have implications regarding the fairness of a decision-making procedure. Suppose
that Z designates the gender of candidates available to a recruiter, which are male Z = 1 or female Z = 0
with equal probability, while X indicates whether that person is X = 1 or is not X = 0 recruited, and Y
indicates whether that person is Y = 1 or is not Y = 0 hired. If Y is correlated with Z given X, then
the applicant’s gender is material for the recruiter, and to maximize the hiring probability, they will have
to recruit applicants at different rates based on their gender. If the causal structure is that of Figure 1a,
then materiality can be ruled out, meaning that unfair behaviour is not necessary for optimal performance,
whereas the causal structure of Figure 1b can incentivize unfairness. Such an analyses can be used for well-
studied concepts like counterfactual fairness (Kusner et al., 2017). In an arbitrary graph where Z is a sensitive
variable (such as gender), counterfactual fairness can arise only when there is a path Z → · · · → O → X,
where the observation O is material (Everitt et al., 2021).

Thirdly, materiality can have implications for AI safety — if Z represents a corrective instruction from a
human overseer, and there exists no path Z → · · · → O → X where O is material, then there exist optimal
policies that ignore this instruction (Everitt et al., 2021). Materiality is also relevant for evaluations of agents’
intent (Halpern & Kleiman-Weiner, 2018; Ward et al., 2024b), and relatedly, their incentives to control parts
of the environment (Everitt et al., 2021; Farquhar et al., 2022). For an agent to intentionally manipulate a
variable Z to obtain an outcome Y = y, there must be a path p : X → · · · → Z → · · · → Y where for each of
its decisions X ′ lying on p, the parent O′ along p is material for X ′. In general, a stronger criterion for ruling
out materiality will allow us to rule out unfair or unsafe behaviour for a wider range of agent-environment
interactions (Everitt et al., 2021).
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(a) Z is immaterial for X.

Z Z = EZ

EZ EZ ∼ U(B)

X

X =Z

Y

fY (pay)=Jz =xK

(b) Z is material for X.

Z Z = EZ

EZ EZ ∼ U(B)

X

X =Z

X ′

X ′ =X

Y

fY (pay)=Jz =xK

(c) Z is material for X.

Figure 1: Three graphs, with decisions in red, and a real-valued outcome Y . We write U(B) for a uniform distribution
over B, i.e. a Bernoulli distribution with p = 0.5.

Any procedure for establishing immateriality based on the causal structure may be called a graphical crite-
rion. For example, if a decision X is not an ancestor of the outcome Y , then all of the variables observed at X
are immaterial. An ideal graphical criterion would be proved complete, in that it can establish immateriality
whenever this is possible from the graphical structure alone. Clearly, this criterion is not complete, because
in Figure 1a, X is an ancestor of the outcome, but we still proved Z immaterial. So far, a graphical criterion
from Van Merwijk et al. (2022) has been proved complete, but only under some significant restrictions. The
causal structure must be soluble, meaning that all of the important information observed from past decisions
is remembered at later decision points. Also, no criteria has been proved complete for identifying immaterial
decisions, i.e. past decisions that can be safely forgotten.

For insoluble graphs, there is the criterion of Lee & Bareinboim (2020, Thm. 2), which can identify immaterial
decisions and is (strictly) more potent in general. However, it is not yet known whether this criterion is
complete. In particular, it is not yet clear whether several of its conditions are necessary. For example, one
case where all existing criteria are silent is the simple graph shown in Figure 1c — we would like to know
whether we can rule out X being a material observation for X ′. We cannot use Van Merwijk et al. (2022)
because X is a decision, and because the graph is insoluble.1 Furthermore, we cannot establish immateriality

1Formally, this is because W ̸⊥ Y | X ∪X′, and X′ ̸⊥ Y | X ∪W , as per the definition of solubility that we will review in
Section 3.
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using Lee & Bareinboim (2020, Thm. 2), because it violates a property that we term LB-factorizability, which
we will discuss in Section 3.4.2

By studying Figure 1c in a bespoke fashion, we find that there exists a decision problem with the given
causal structure, where X is material for X ′. As shown in Figure 1c, Z is a Bernoulli variable, and Y is
equal to 1 if Z = X ′ and to 0 otherwise. If X is observed by X ′, then a reward of E[Y ] = 1 can be achieved
by the policy X ′ = X = Z. If X is not observed, the greatest achievable reward is lower, at E[Y ] = 0.5,
implying materiality.

This raises a question: by generalizing this construction, can we prove that requirement I of LB-factorizability
is necessary to prove immateriality for a wide class of graphs? This work will prove that this requirement is
indeed necessary, meaning that materiality cannot be excluded for a wide class of graphs including Figure 1c.

It remains an open question whether the criterion of Lee & Bareinboim (2020, Thm. 2) as a whole is
complete, in that its other conditions are necessary for establishing immateriality. In the case that it is
complete, our work is a step toward proving this. On the other hand, we also present some graphs where
materiality is difficult to establish, that — if the criterion is not complete — could bring us closer to a proof
of incompleteness.

The structure of the paper is as follows. In Section 2, we will recap the formalism used by Lee & Bareinboim
(2020) for modelling decision problems, based on structural causal models. In Section 3, we will review
existing procedures for proving that an observation can or cannot be material. In Section 4, we will establish
our main result: that requirement I of LB-factorizability is necessary to establish immateriality. In Section 5,
we present some analogous results for other requirements of LB-factorizability, that could serve as a building
block for proving the necessity of those requirements. We then illustrate the problems that arise in trying to
prove necessity of those further requirements, and outline some possible directions for further work. Finally,
in Section 6, we conclude.

2 Setup

Our analysis will follow Lee & Bareinboim (2020) by using the structural causal model (SCM) framework
(Pearl, 2009, Chapter 7), although the results also apply equally to Bayesian networks and influence diagrams.

2.1 Structural causal models

A structural causal model (SCM) M is a tuple ⟨U , V , P (U), F⟩, where U is a set of variables determined
by factors outside the model, called exogenous following a joint distribution P (U), and V is a set of
endogenous variables whose values are determined by a collection of functions F = {fV }V ∈V such that
V ← fV (Pa(V ), UV ) where Pa(V ) ⊆ V \ {V } is a set of endogenous variables and UV ⊆ U is a set of
exogenous variables. The observational distribution P (v) is defined as

∑
u

∏
V ∈V P (v|paV , uV )P (u), where

uV is the assignment u restricted to variables UV . Furthermore, do(X = x) represents the operation of
fixing a set X to a constant x regardless of their original mechanisms. Such intervention induces a submodel
Mx, which isM with fX replaced by x for X ∈X. Then, an interventional distribution P (v\x|do(x)) can
be computed as the observational distribution in Mx. The induced graph of an SCM M is a DAG G on
only the endogenous variables V , where (i) X→Y if X is an argument of fY ; and (ii) X↔Y if UX and UY

may be dependent, i.e. for any uX , uY , P (uX , uY ) ̸= P (uX)× P (uY ).

We use the notation Pa(X), Ch(X), Anc(X) and Desc(X) to represent the parents, children, ancestors and
descendants of a variable X, respectively, and take ancestors and descendants to include the node X itself.3

We write V1−− V2 to designate an edge whose direction may be V1 → V2 or V1 ← V2. For a path V1−− · · ·−−Vℓ,
we will use the shorthand V1 - - - Vℓ, and for a directed path V1 → · · · → Vℓ, the shorthand V1 99K Vℓ. For
a path p : A - - - B - - - C - - - D, we will describe the segment B - - - C using the shorthand B p- - - C. We

2Specifically, requirement I of LB-factorizability is violated because Y is d-connected to πX′ given X′.
3Note that Pa(X) is an intentional reuse of the notation used to describe the arguments of fX in the SCM definition, because

the endogenous arguments of fX and the parents of X in the induced graph are the same variables.
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will use the shorthand V1:N for a sequence of variables V1, . . . VN indexed by 1, . . . , N , v1:N for a sequence
of assignments, and p1:N for a set of paths p1, . . . pN .

Some notations are used repeatedly when constructing causal models, such as tuples, bitstrings, indexing,
and Iverson brackets. We will write a tuple as z := ⟨x, y⟩, and this may be indexed as z[0] = x. A bitstring
of length n, i.e. a tuple of n Booleans, may be written as Bn, and a uniform distribution over this space, as
U(Bn). We will denote a bitwise XOR operation by ⊕ so that, for example, 01 ⊕ 11 = 10. Bitstrings may
also be used for indexing, for example, the yth bit of x may be written as as x[y], and the leftmost bits are
of higher-order so that, for example, 0100[01] = 1. Similarly, for random variables X, Y , we will write X[Y ]
for a variable equal to x[y] when X = x and Y = y. Finally, the Iverson bracket JP K is equal to 1 if P is
true, and 0 otherwise.

2.2 Modelling decision problems

To use an SCM to define a decision problem, we need to specify what policies the agent can select from and
what goal the agent is trying to achieve.

We will describe the set of available policies using a Mixed Policy Scope (Lee & Bareinboim, 2020), which
casts certain variables as decisions, and others as context variables or “observations” CX , on which each
decision X is allowed to depend. Following Lee & Bareinboim (2020), we will consistently illustrate decision
variables with red circles, as shown in Figure 1.
Definition 1 (Mixed Policy Scope (MPS)). Given a DAG G on vertices V , a mixed policy scope S =
⟨X, CX⟩X∈X(S) consists of a set of decisions X(S) ⊆ V and a set of context variables CX ⊆ V for each
decision.

For a set of decisions X ′, we define their contexts as CX′ =
⋃

X∈X′ CX .

A policy consists of a probability distribution for each decision X, conditional on its contexts CX .
Definition 2 (Mixed Policy). Given an SCMM and scope S = ⟨X, CX⟩, a mixed policy π (or a policy, for
short) contains for each X a decision rule πX|CX

, where πX|CX
: XX ×XCX

7→ [0, 1] is a proper probability
mapping from the domain XX of X to the domain XCX

of CX .4

We will say that such a policy π follows the scope S, written π ∼ S. A mixed policy is said to be deterministic
if every decision is a deterministic function of its contexts.

Given a mixed policy scope, we obtain a new causal structure, described by a scoped graph.
Definition 3 (Scoped graph). The scoped graph GS is obtained from G, by replacing, for each decision
X ∈X(S), all inbound edges to X with edges C → X for every C ∈ CX . We only consider scopes for which
GS is acyclic.

We will designate one real-valued variable Y ̸∈X(S) ∪C(S) as the outcome node (also called the “utility”
variable). To calculate the expected utility under a policy π ∼ S, let C− =

(⋃
X∈X(S) CX

)
\X(S) be the

non-action contexts. Then, the expected utility is:
µπ,S =

∑
y,x,c− yPx(y, c−)

∏
X∈X(S) π(x|cx). When the scope is obvious, we will simply write µπ.

This paper is concerned with materiality — whether removing one context variable from one decision will
decrease the expected utility attainable by the best policy. We define it in terms of the value of information
(Howard, 1990; Everitt et al., 2021).
Definition 4 (Value of Information). Given an SCMM and scope S, the maximum expected utility (MEU)
is µ∗

S = maxπ∼S µπ,S . The value of information (VoI) of context Z ∈ CX for decision X ∈ X(S) is
µ∗

S − µ∗
SZ ̸→X

, where SZ ̸→X is defined as ⟨X ′, CX′⟩X′∈X(S)\{X} ∪ ⟨X, CX \ {Z}⟩.

The context Z is material for X in an SCMM if Z has strictly positive value of information for X, otherwise
it is immaterial.

4Following Lee & Bareinboim (2020), we term this a “mixed policy” due to its including mixed strategies. Note that game
theory also has a distinction between “mixed” policies, where the decision rules share a source of randomness, and “behavioural”
policies, where they do not, and in this sense, the “mixed” policies of Lee & Bareinboim (2020) are actually behavioural.
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2.3 Graphical criteria for independence

Knowing when variables are independent is an important step in identifying immaterial contexts, as we will
discuss in the next section. Thus, we will make repeated use of d-separation, a graphical criterion that
establishes the independence of variables in a graph.
Definition 5 (d-separation; Verma & Pearl, 1988). A path p is said to be d-separated by a set of nodes Z
if and only if:

1. p contains a collider X →W ← Y such that the middle node W is not in Z and no descendants of
W are in Z, or

2. p contains a chain X →W → Y or fork X ←W → Y where W is in Z, or
3. one or both of the endpoints of p is in Z.

A set Z is said to d-separate X from Y , written (X ⊥G Y | Z), if and only if Z d-separates every path from
a node in X to a node in Y . Sets that are not d-separated are called d-connected, written X ̸⊥G Y | Z.

When the graph is clear from context, we will write ⊥ in place of ⊥G . When sets X, W , Z satisfy X ⊥W | Z
they are conditionally independent: P (X, W | Z) = P (X | Z)P (W | Z) (Verma & Pearl, 1988).

ZπX

X Y

Figure 2: A graph where decisions
Z, X jointly determine the outcome
Y . A policy node πX is shown,
which decides the decision rule at X.

If we know that a deterministic mixed policy is being followed, then
we may deduce further conditional independence relations. This is be-
cause conditioning on variables V may determine some decision vari-
ables, which are called “implied” (Lee & Bareinboim, 2020), or “func-
tionally determined” (Geiger & Pearl, 1990), making them conditionally
independent of other variables in the graph.
Definition 6 (Implied variables; Lee & Bareinboim, 2020). To obtain
the implied variables ⌈Z⌉ for variables Z in G given a mixed policy scope
S, begin with ⌈Z⌉ ← Z, then add to ⌈Z⌉ every decision X such that
CX ⊆ ⌈Z⌉, until convergence.

For example, in Figure 2, we see that ⌈X⌉ = {Z, X}, so Z is d-separated
from Y given ⌈X⌉. This means that under a deterministic mixed policy, Z and Y are statistically independent
given X. This has implications for materiality. In particular, it means that the best deterministic mixed
policy Z = z, X = x does not need to observe Z at X. Moreover, the performance of the best deterministic
mixed policy can never be surpassed by a stochastic policy (Lee & Bareinboim, 2020, Proposition 1), so Z
is immaterial.

3 Literature review

We will begin by highlighting some works that motivate the development of a graphical criterion for materi-
ality. We will then review the strongest existing techniques for proving whether or not a graph is compatible
with some variable Z being material for some decision X.

3.1 Graphical criteria for materiality, and their applications

The notion of “value of information” was initially described directly in the language of probability theory
(Howard, 1966). When influence diagrams were developed, value of information was one of the most funda-
mental tasks that one might want to perform in this formal setting (Shachter, 1986; Matheson, 1990; Howard
& Matheson, 2005). An evaluation of zero value of information is especially useful because it would indicate
that one could search through fewer policies. This property has since been termed “materiality” (Shachter,
2016).

A variety of early works have sought to establish a set of circumstances in which a variable could be proved
immaterial. In particular, criteria have been proposed by Fagiuoli & Zaffalon (1998); Lauritzen & Nilsson
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(2001); Shachter (2016), but these works only established that their criteria are sound. Although they made
efforts in the direction of proving completeness, these were ultimately unsuccessful (Everitt et al., 2021).

There have also been past attempts at establishing whether a variable is valuable to control (Fagiuoli &
Zaffalon, 1998; Shachter & Heckerman, 2010). In particular, establishing immateriality can help with estab-
lishing zero value of control because it shows that there exists an alternative influence diagram, where the
same utility can be achieved but with fewer edges, making it is easier to establish that some variables are
unnecessary to control (Fagiuoli & Zaffalon, 1998).

In recent years, influence diagrams have found new applications in evaluating the safety of AI systems.
When evaluating AI systems, concepts such as intent (Halpern & Kleiman-Weiner, 2018), instrumental
control incentives (Everitt et al., 2021), and response incentives (Everitt et al., 2021) have been defined,
refining the notions of value of information and control. These concepts and their graphical criteria have
been used to analyse agent interactions, especially in the context of AI, including matters of fairness (Ashurst
et al., 2022), manipulation (Ward et al., 2024b), honesty (Ward et al., 2024a), and human control (Carey
& Everitt, 2023). For these concepts, proofs of the soundness and completeness of their graphical criteria
directly extend the proofs pertaining to materiality (Everitt et al., 2021), and thus a complete criterion for
materiality is a key step for this line of work.

3.2 Single-decision settings

In the single-decision setting, there is a sound and complete criterion for materiality: in a scoped graph
G(S), there exists an SCM where the context Z ∈ CX is material if and only if Z ̸⊥ Y | CX ∪ {X} \ {Z}
and the outcome Y is a descendant of X (Lee & Bareinboim, 2020; Everitt et al., 2021). This statement can
be split into proofs for the only if and if directions, both of which are relevant to the current paper.

The argument for the only if is that if X is not an ancestor of the outcome Y , then its policy is completely
irrelevant to the expected utility, and so all of its contexts are immaterial, and if Z is conditionally inde-
pendent of the outcome Y given the decision and other observations, then it may be safely ignored without
changing the outcome. These arguments are important to us because they remain equally valid as we move
to a multi-decision setting — a context must be an ancestor of Y , and must provide information about Y
over and above the other contexts, in order to be material.

The if direction is proved by constructing a decision problem where Z is material. By assumption, there is
a directed path X 99K Y , called the control path, and a path Z - - - Y , active given CX ∪ {X} \ {Z}, called
the info path. In the SCM that is constructed, the variable Z will contain information about Y (due to
a conditional dependency induced by the info path), and this will inform X regarding how to influence Y
(using influence that is transmitted along the control path).

The construction has two cases, which differ based on whether or not the info path contains colliders (Everitt
et al., 2021; Lee & Bareinboim, 2020). For the case where it does not contain colliders, the graph and
construction are shown in Figure 3a. (Note that when the info path is a directed path, we take this to be
a special case where V = Z.) The functions along the info path (dashed line) are chosen to copy V to PaY

and to Z, and Y equals its maximum value of 1 only if X equals V , and 0 otherwise. So, X must copy
Z to achieve the maximum expected utility. Without the context Z, the maximum expected utility is 0.5,
proving materiality.5

For the case where the info path does contains a collider, the graph and construction from Everitt et al.
(2021); Lee & Bareinboim (2020) are shown in Figure 3b. Each fork Ui in the info path, along with Z,
generates a random bit, while each collider Wi is assigned the XOR (Ui−1 ⊕ Ui) of its two parents. By
observing z and the values w1:N , the agent has just enough information to recover uN . In particular, the
policy that sets x equal to the XOR of z and w1:N , obtains x = uN and achieves the MEU, E[Y ] = 1.
Without the context Z, the MEU becomes 0.5, so Z is material.

5To be precise, the formalism of Lee & Bareinboim (2020) also allows the active path from Z to include one or more bidirected
edges V ↔ Y , but to deal with these cases, we begin with the distribution that we would use for a path V ← L → Y , then
marginalize out L.
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V

V ∼ U(B)

Z

Z = V

X

X = Z

Y

fY (paU ) = Jv = xK

(a) The Everitt et al. (2021); Lee & Bareinboim (2020)
scheme, with a red info path that lacks colliders, and the
control path shown with a thick dark red arrow.

X

= Z ⊕W1 ⊕ · · · ⊕WN

Z ∼U(B)

Y

fY (paY ) = Jx = uN K

UN ∼ U(B)

W1

=Z⊕U1

U1

∼U(B)

. . .

UN−1

∼U(B)

WN

=UN−1⊕UN

(b) The Everitt et al. (2021); Lee & Bareinboim (2020)
scheme, with a red info path that contains colliders, and
the control path shown in dark red.

Figure 3: Two decision problems where Z is material for X. For readability, we marginalize out exogenous variables
from the SCM, so z ∼ U(B) can be understood as shorthand for z = εZ where εZ ∼ U(B), and so on.

Z

Z ∼ U(B)

X
= Z

Z ′

= X

W ′

U ′

X ′

= Z ′
Y

fY (paY ) = Jz = x′K

(a) The Everitt et al. (2021) scheme is applied using just the
red info path; Z is immaterial for X.

Z

Z ∼ U(B)

X
= Z

Z ′

= X

W ′ = ⟨Z ′, U ′[Z ′]⟩

U ′

U ′ ∼ B2

X ′

= W ′
Y

fY (paY ) = Jz = x′[0]K
+Ju′[x′[0]] = x′[1]K

(b) The Van Merwijk et al. (2022) scheme is applied, using
the red and blue info paths; Z is material for X.

Figure 4: Two decision problems on a soluble graph.

3.3 Soluble multi-decision settings

This approach has been generalized to deal with multi-decision graphs that are soluble (also known as graphs
that respect “sufficient recall”).

To recap, a graph is said to be soluble if there is an ordering ≺ = ⟨X1, . . . , XN ⟩ over decisions such that
for every Xi, for every previous decision or context V ∈ {Xj ∪ CXj

| j ≺ i}, we have V ̸∈ Anc(Y ) or
V ⊥ Y | {Xi} ∪ CXi

. That is, past decisions and contexts do not contain any information that is relevant
for a later decision and unknown at the time that this later decision is made. For example, in Figure 4a,
using the ordering X ≺ X ′, the nodes Z, X are d-separated from Y by X ′ and its contexts {Z, Z ′, W}, which
implies solubility.

For soluble graphs, there exists a complete criterion, for discerning whether a non-decision context Z is
material for a decision X. If X lacks a control path (a directed path to Y ), or Z lacks an info path (a
path to Y , active given C \ {Z}), then Z is immaterial. Conversely, if in a graph, every X decision has a
control path, and each context Z has an info path, then every context is material in some decision problem
with that causal structure (Van Merwijk et al., 2022, Theorem 7).6 For example, in the graph of Figure 4a,

6In full generality, the result allows an info path to terminate at another context, rather than at Y . This detail is not
pertinent to the methods used to derive our main result in Section 4, although we do consider this scenario in Section 5.
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every decision is an ancestor of Y , and every context has an info path, (the info paths include Z → Y ,
Z ′ →W ′ ← U ′ → Y , and W ′ ← U ′ → Y ), so, all contexts may be material in at least one decision problem
with this causal structure.

It will be important for us to understand what obstacles can arise in proving materiality in multi-decision
graphs, such as was required in proving (Van Merwijk et al., 2022, Theorem 7). For example, suppose that
we seek to construct a decision problem where Z is material for the graph in Figure 4. Suppose that we
apply the single-decision construction of Everitt et al. (2021) to this graph. First, we would identify the info
path Z → Y and the control path X → Z ′ → X ′ → Y . The info path has no colliders, so we will construct
a decision problem using the scheme from Figure 3a, and the result is shown in Figure 4a. The idea of
this construction is that X should have to copy Z in order for the value z transmitted by the info path to
match the value x′ transmitted by the control path. We see, however, that whatever action x is selected,
the decision X ′ can assume the value z, thereby achieving the MEU. The MEU is then achievable whether
Z is a context of X or not, so Z is immaterial in this construction.

In order to render Z material, we must adapt the construction from Figure 4a by incentivizing X ′ to pass
along the value of Z ′. To this end, we will use the second info path Z ′ →W ′ ← U ′ → Y , shown in Figure 4b.
We add a term y2 := Ju′[x′[0]] = x′[1]K to the reward, which equals 1 if X ′ presents one bit from U ′, along
with its index. We then set W ′ = U ′[Z ′], so that X ′ knows only the Z ′th bit of U ′, and since the index z′ is
one bit, we let U ′ be two bits in length, i.e. U ′ ∼ U(B2). Finally, rather than requiring z = x′ as in Figure 4a,
we now include the term y1 := Jz = x′[0]K, because Z ′ will be the zeroth term of X ′. In the resulting model,
the utility is clearly Y = 2 in the non-intervened model, and to achieve this utility, the MEU, we must have
Y1 = Y2 = 1 with probability 1. To maximize y2, the decision X ′ must reproduce the only known digit from
U ′, i.e. x′ = ⟨z′, u′[z′]⟩. To maximize y1, we must have Z = X ′[0] almost surely, and since X ′[0] = X, this
requires X = Z with probability 1. This can only be done if Z is a context of X, meaning that Z is material
for X. There is a general principle here — if a control path for X, such as X → Z ′ → X ′ → Y , contains
decisions other than X, then we need to incentivize the downstream decision to copy information along the
control path, and this will be done by choosing values for variables lying on the info path for X ′ (the one
shown in blue in Figure 4b); we will revisit this matter in our main result.

3.4 Multi-decision settings in full generality

Once the solubility assumption is relaxed, there are some criteria for identifying immaterial variables, but
it is not yet known to what extent these criteria are necessary, as materiality is still possible whenever they
are not satisfied.

The simplest criteria for immateriality are those that carry over from the single-decision case:

• If a decision X is a non-ancestor of Y , then its contexts are immaterial,
• If C ⊥ Y | CX \ {C}, then the context C is immaterial.

But suppose that we have a graph where neither of these criteria is satisfied. Then on some occasions, we
can still establish immateriality, using the more sophisticated criterion of Lee & Bareinboim (2020, Theorem
2). The assumptions of this criterion are split across: Lee & Bareinboim (2020, Lemma 1) and Lee &
Bareinboim (2020, Theorem 2) itself. Lee & Bareinboim (2020, Lemma 1) establishes that if some target
variables Z, target actions X ′, and latent variables U ′ satisfy certain separation conditions, then they may
be factorized in a favourable way. Lee & Bareinboim (2020, Theorem 2) then proves that under some further
assumptions, the contexts Z are immaterial to the decisions X ′. In this paper, our focus is exclusively on
the assumptions of Lee & Bareinboim (2020, Lemma 1), and we term them “LB-factorizability”, after the
authors’ initials. Lee & Bareinboim (2020, Theorem 2) does not feature in our analysis, but for completeness
sake, it is reproduced in Appendix A.
Definition 7. For a scoped graph GS , we will say that target actions X ′, endogenous variables Z disjoint
with X ′, contexts C ′ := CX′ \ (X ′ ∪ Z) and exogenous variables U ′ are LB-factorizable if there exists an
ordering ≺ over V ′ := C ′ ∪X ′ ∪Z such that:

I. (Y ⊥ πX′ | ⌈(X ′ ∪C ′)⌉),

8



Under review as submission to TMLR

II. (C ⊥ πX′≺C
, Z≺C , U ′ | ⌈(X ′ ∪C ′)≺C⌉), for every C ∈ C ′ and

III. V ′
≺X is disjoint with Desc(X) and subsumes Pa(X) for every X ∈X ′,

where πX′ consists of a new parent πX added to each variable X ∈ X ′,7 and W≺V , for W ⊆ V ′, denotes
the subset of W that is strictly prior to V in the ordering ≺.

For example, consider the graph Figure 2. In this case, Y ∈ Desc(X) and Z ̸⊥ Y | X, so the single-decision
criteria cannot establish that Z is immaterial for X. However, by choosing Z = {Z}, X ′ = {X}, and the
ordering ≺= ⟨Z, X⟩, we have that:

I. the outcome Y is d-separated from πX by ⌈X⌉, (since Z is a decision that lacks parents, we actually
have ⌈X⌉ = {Z, X}),

II. the contexts C ′ are an empty set, so (II) is trivially true, and
III. V ′

≺X = Z, and Z is disjoint with Desc(X) and Z ⊇ Pa(X)

so Z and X ′ are LB-factorizable. As shown in Appendix A, the assumptions of Lee & Bareinboim (2020,
Theorem 2) are also satisfied, enabling us to deduce that Z is immaterial for X, matching the ad hoc analysis
of this graph in Section 2.

4 Main result

4.1 Theorem statement and proof overview

The goal of this paper is to prove that condition (I) of LB-factorizability is necessary to establish immateri-
ality. More precisely, we prove that if condition (I) is unsatisfiable for all observations in the graph, then the
graph is incompatible with materiality. It might initially seem unnecessarily stringent to assume that this
holds for all observations, rather than the context Z0 for which we are trying to prove materiality. Recall
from Figure 4b, however, that proofs of materiality are recursive — to prove that Z is material for X, we
incentivized X to copy Z, and to do this, we had to incentivize X ′ to pass on the value of Z ′. To do this,
we needed to assume that other contexts and decisions (such as Z ′ and X ′) have their own info paths and
control paths, not just Z and X. So, in our theorem below, assumption (C) requires that (I) holds for all
contexts. Assumptions (A) and (B) are also necessary for a graph to be compatible with materiality, because
their negation implies immateriality, as per the single-decision criterion discussed in Section 3.2.
Theorem 8. If, in a scoped graph GS , for every X ∈X(S)

A. X ∈ AncGS (Y ),
B. ∀C ∈ CX : (C ̸⊥GS Y | ({X} ∪CX \ {C})), and
C. for every context Z ∈ CX in GS , (πX ̸⊥GS Y | ⌈(X(S) ∪ CX(S)\{Z}) \ {Z}⌉), where πX is a new

parent of X,

then for every X0 ∈X(S) and Z0 ∈ CX0 , there exists an SCM where Z0 is material for X0.

In words, this means that if each variable provides information about the outcome given other contexts
(condition B), as well as all decisions, and everything determined by them (condition C), and moreover
that this outcome is influenceable (condition A), then each variable will be material in at least one model
compatible with the graph.

We will prove this result in three stages, across the next three sections.

• In Section 4.2, we prove that for any scoped graph satisfying the assumptions of Theorem 8, for any
context Z0 ∈ CX0 , there exist certain paths, which we will call the materiality paths.

7To be precise, each d-separation ⊥ in (A-B) holds in the graph G′, obtained from G by adding a parent πX for each decision
X.
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U Z0

∼ U(B)
X0

= Z0
Y

fY (paY ) = Jz0 = x0K

(a) Z0 is immaterial for X0.

U

∼ U(B)
Z0

= u
X0

= z0
Y

fY (paY ) = Ju = x0K

(b) Z0 is material for X0

Figure 5: Two SCMs, with models constructed using different (red) info paths.

• In Section 4.3, we use the materiality paths to define an SCM for this scoped graph, which we will
call the materiality SCM.

• In Section 4.4, we will prove that in the materiality SCM, Z0 is material for X0.

4.2 The materiality paths

To prove materiality, we will begin by selecting info paths and a control path, similar to what was described
in Section 3.3 and illustrated in Figure 4b. One difference, however, is that these paths must allow for
the case where we are proving the value of remembering a past decision. We will first describe how to
accommodate this case in Section 4.2.1 then define a set of paths for our proof in Section 4.2.2.

4.2.1 Paths for the value of remembering a decision

One distinction between our setting and that of Van Merwijk et al. (2022) is that we may need to establish the
value of remembering a past decision, for example, the value of remembering Z0 in Figure 5. In this graph,
the procedures of Everitt et al. (2021) and Van Merwijk et al. (2022) are silent about whether we should
choose the info path Z0 → Y , and construct the graph Figure 5a, or choose the info path Z0 ← U → Y ,
and construct the model depicted in Figure 5b. In the first case, we have Y = 1 if x0 = z0, i.e. the decision
X0 is required to match the value of a past decision Figure 5a. Then, the MEU of 1 can be achieved with a
deterministic policy such as Z0 = 1, X0 = 1, and Z0 is immaterial for X0. To understand this in terms of the
paths involved, The problem is that the info path Z0 → Y doesn’t include any parents of Z0, so Z0 is implied
by values outside the info path, and Z0 → Y is rendered inactive given ⌈U⌉. This means that observing Z0
can no longer provide useful information about how to maximize Y . In the second case, Y = 1 if x0 = u, i.e.
the decision X0 must match the value of a random Bernoulli variable U Figure 5b. U is directly observed
only by Z0, and so in optimal policy, X0 must observe the decision z0, as is the case in the optimal policy
z0 = u, x0 = z0, and so Z0 is material for X0. The info path Z0 ← U → Y does include a parent U of Z0,
and so Z0 is no longer implied by values outside the info path, and the path Z0 ← U → Y remains active
given ⌈∅⌉. Thus Z0 may still provide useful information about Y .

For our proof, we need a general procedure for finding an info path that contains a non-decision parent
for every decision. Condition (C) of Theorem 8 is useful, because it implies the presence of a path from
Z to Y that is active given ⌈(X(S) ∪ CX(S)\{Z}) \ {Z}⌉. Any fork or chain variables in this path will
not be decisions, otherwise they would be contained in ⌈X(S) \ Z⌉, which would make them blocked given
⌈(X(S) ∪ CX(S)\{Z}) \ {Z}⌉. This deals with the possibility of decisions anywhere except for the endpoint
Z. But how can we ensure that the info path contains a non-decision parent for Z, if it is a decision? We can
use condition (C) again, because it implies that every context that is a decision must have a non-decision
parent.
Lemma 9. If a scoped graph G(S) satisfies the condition(C) of Theorem 8, then for every context Z ∈ CX

where Z, X ∈X(S) are decisions, there exists a non-decision N ∈ CZ \ ⌈(X(S) ∪ CX(S)\{Z}) \ {Z}⌉.

Intuitively, this is because condition (C) states that there is an active path from Z to Y , given a superset of
⌈X(S) \ {Z}. If all of the parents of Z are decisions, then we would have Z ∈ ⌈X(S) \ {Z}, and every path
would be blocked, and condition (C) could not be true.

Proof of Lemma 9. Assume that there is no such non-decision N , i.e. CZ ⊆ ⌈(X(S) ∪ CX(S)\{Z}) \ {Z}⌉,
and that πX ̸⊥ Y | ⌈(X(S) ∪ CX(S)\{Z}) \ {Z}⌉, (by condition (C) of Theorem 8), and we will prove a
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Figure 6: The set of paths proven to exist by Lemma 11 are red, green and blue. In each case, the point of departure
of the active path from the (black) directed path is designated by Ti. In full generality, each path may begin either
as Zi L99 Ti ← · (as in red), or as Zi L99 Ti → · (green, blue).

contradiction. From CZ ⊆ ⌈(X(S)∪CX(S)\{Z})\{Z}⌉, we deduce that Z ∈ ⌈(X(S)∪CX(S)\{Z})\{Z}⌉ (by
the definition of ⌈W ⌉), and then there can be no active path from πX to Y given ⌈(X(S)∪CX(S)\{Z})\{Z}⌉ ⊇
CZ ∪ {Z}, contradicting condition (C) of Theorem 8, and proving the result.

This tells us that for any decision Z there is an edge Z ← N . Moreover, by condition (C) of the main result,
we know that there is an info path from N to Y . By concatenating the edge and the path, we obtain a path
from Z to Y , which we will prove is active given ⌈(X(S) ∪ CX(S)\{Z}) \ {Z}⌉. This is precisely the kind of
info path that we are looking for: activeness given ⌈(X(S)∪CX(S)\{Z}) \ {Z}⌉ means that forks and chains
will not be decisions, and we know that the endpoint Z has a non-decision parent N .
Lemma 10. If a scoped graph G(S) satisfies assumptions (B-C) of Theorem 8, then for every edge Z → X
between decisions Z, X ∈X(S), there exists a path Z ← N - - - Y , active given ⌈(X(S)∪CX(S)\{Z}) \ {Z}⌉,
(so N ̸∈ ⌈(X(S) ∪ CX(S)\{Z}) \ {Z}⌉).

Some care is needed in proving that the segment N - - - Y is active given ⌈(X(S)∪CX(S)\{Z})\{Z}⌉, rather
than just ⌈(X(S) ∪ CX(S)\{N}) \ {N}⌉, and the detail is presented in Lemma 10.

4.2.2 Defining the materiality paths

We will now describe how to select finitely many info paths, along with a control path, as shown in Figure 6.
The assumptions of Theorem 8 allow there to be any finite number of contexts and decisions, so we will
designate the target decision and context (whose materiality we are trying to establish) as X0 := X and
context Z0 := Z. We know from condition (A) that X0 is an ancestor of Y , so we have a directed path
X0 99K Y . We also know that Z0 has a chance node ancestor, because it either is a chance node, or it has a
chance node parent, from Lemma 10. So we will call that chance node ancestor, A, and define a control path
of the form A 99K Z0 → X0 99K Y , shown in black in Figure 6, where A 99K Z0 has length of either 0 or 1.

Other paths are then chosen to match this control path. We will index the decisions on the control path as
Ximin , . . . , Ximax , and their respective contexts as Zimin , . . . , Zimax . where imin is either 0 (if Z0 is a chance
node), or −1 (if Z0 = X−1). In general, we allow for the possibility that Zi = Xi−1 for any of the decisions.
We define an info path mi for each context Zi, which must satisfy the desirable properties established in
Lemma 9. To help with our later proofs, it is also useful to define an intersection node Ti, at which the info
path departs from the control path, and a truncated info path m′

i, which consists of the segment of mi that
is not in the control path. Recall from Figure 3b and Figure 4b that information from collider variables can
play an important role in incentivizing a decision to copy information from its context. So, for each collider
Wi,j in each info path mi we define an auxiliary path ri,j : Wi,j 99K Y .

11
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Collectively, we refer to the control, info and auxiliary paths as the materiality paths.
Lemma 11. Let G(S) be a scoped graph that contains a context Z0 ∈ CX0 and satisfies the assumptions of
Theorem 8. Then, it contains the following:

• A control path: a directed path d : A 99K Z0 → X0 99K Y , where A is a non-decision, possibly
equal to Z0, and d contains no parents of X0 other than Z0.

• We can write d as A 99K Zimin → Ximin 99K · · ·Z0 → X0 99K Zimax → Ximax 99K Y, imin ≤ i ≤ imax,
where each Zi is the parent of Xi along d (where A 99K Zimin and Xi−1 99K Zi are allowed to have
length 0). Then, for each i, define the info path: m′

i : Zi - - - Y , active given ⌈(X(S)∪CX(S)\Zi
) \

Zi⌉, that if Zi is a decision, begins as Zi ← N (so N ∈ CZi
\ ⌈(X(S) ∪ CX(S)\Zi

) \ Zi⌉.)
• Let Ti be the node nearest Y in m′

i : Zi - - - Y (and possibly equal to Zi) such that the segment
Zi

m′
i- - - Ti of m′

i is identical to the segment Zi
d

L99 Ti of d. Then, let the truncated info path mi

be the segment Ti
m′

i- - - Y .
• Write mi as mi : Ti 99KWi,1 L99Ui,1 99KWi,2 L99Ui,2 · · ·Ui,Ji

99KY , where Ji is the number of forks
in mi. (We allow the possibilities that Ti = Wi,1 so that mi begins as Ti L99 Ui,1, or that Ji = 0 so
that mi is Ti 99K Y .) Then, for each i and 1 ≤ j ≤ Ji, let the auxiliary path be any directed path
ri,j : Wi,j 99K Y from Wi,j to Y .

The proof was described before the lemma statement, and is detailed in Appendix B.2.

4.3 The materiality SCM

We will now show how the materiality paths can be used to define an SCM where Z0 is material for X0.
As with the selection of paths, the construction of models will have to differ a little from the constructions
of Sections 3.2 and 3.3, in order to better deal with insolubility. So we will first describe how we deal with
insoluble graphs, in Section 4.3.1 , then define a general model in Section 4.3.2.

4.3.1 Models for insoluble graphs

Certain graphs that are allowed by Theorem 8 violate solubility, and the constructions from Everitt et al.
(2021) and Van Merwijk et al. (2022) will need to be altered in order to establish materiality in these graphs.

The assumption of solubility meant that upstream decisions could not contain latent, actionable information
— in particular, this implies that if an info path mi contains a context C for a decision X ′ ∈X(S)\{Xi}, then
V must be context of Xi, otherwise the past decision V would contain latent information that is of import to
Xi (Van Merwijk et al., 2022, Lemma 28). For example, in Figure 7a the red info path contains the variable
W1, which is a context for X ′ but not for X0, and solubility is violated because W1 ⊥ Y | {Z0, X0, X1} but
it satisfies all the three conditions of Theorem 8.

We can nonetheless apply the construction from (Van Merwijk et al., 2022) to this graph, by treating X ′ as
through it was a non-decision. This yields the decision problem shown in Figure 7a, which is an example
of the construction from Figure 7c), except that there is a decision X ′ that observes Z0 and W1. In this
model, the outcome Y is equal to 1 if x0 is equal to u1. The intended logic of this construction is that since
W1 = Z0⊕Uq, the MEU can be achieved with the non-intervened policy X0 = Z0⊕W1, which would require
X0 to depend on Z0. In this model, however, there exists an alternative policy where X ′ = U1 and X0 = X ′,
which achieves the MEU of 1, without having X0 directly depend on Z0, and proving that Z0 is immaterial
for X0. Essentially, the single bit of X ′ sufficed to transmit the value of U1, meaning that Z0 contained no
more useful information. So long as the decision problem allows X ′ can do this there can be no need for X0
to observe Z0. So in order to exhibit materiality, we need the domain of X ′ to be smaller than that of U1.

As such, we can devise a modified scheme, shown in Figure 7b. In this scheme, two random bits are generated
at U1. The outcome is Y = 1 if X1 supplies one bit from U1 along with its index. A random bit is sampled
at Z0, and W1 presents the Z0

th bit from U1, while X1 has a domain of just one bit. Then, similar to our
previous discussion of Figure 4b, the only bit from U1 that X0 can reliably know is the Z0

th bit. Hence the
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X0
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Y
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U1 ∼ U(B)
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(a) Z0 is immaterial for X0

X0
= ⟨Z0, X ′⟩
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Y
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(b) Z0 is material for X0

X0
X0 =⟨Z0,W1:J⟩
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U0 U0 ∼ U(Bk)
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. . .
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Figure 7: Two SCMs (a-b), and a description of a family of SCMs, where each dashed line represents a path. The
repeated exponent expn

2 (k) is defined as k if n = 0, and 2expn−1
2 (k) otherwise.

only way achieve the MEU is for X ′ to inform X0 about the value of W1, and for X0 to equal X0 = ⟨Z0, X ′⟩.
Importantly, this can only be done if X0 observes Z0; it is material for X0.

In Figure 7b, if x1 produces the z0
th bit from u1, i.e. x1 = ⟨z0, u1[z0]⟩, we will call it consistent with ⟨z0, u1⟩.

If it produces any bit from u1, then we will call it compatible with ⟨z0, u1⟩. For instance, either ⟨0, 0⟩ or
⟨1, 1⟩ is compatible with z0 = 0 and u1 = 01, but only the former is consistent with z0 = 0 and u1 = 00.

We can generalize these concepts to a case of multiple fork variables, rather than just Z0 and U1. For
example, Figure 7c, we have J + 1 fork variables U0:J , which sample bitstrings of increasing length. Then,
Z0 = Wu, and each collider Wi has Wi = Uj [Uj−1]. The outcome Y will still check whether X0 is compatible
with UJ , but it will do so using a more general definition, as follows.
Definition 12 (Consistency and compatibility). Let w = ⟨w0, w1, . . . , wJ⟩ where w0 ∈ Bk and wn ∈ B for
n ≥ 1. Then, w is consistent with u = ⟨u0, . . . , uJ , ui ∈ Bexpi

2(k)⟩ (i.e. w ∼ u) if w0 = u0 and wn = un[un−1]
for n ≥ 1. Moreover, w is compatible with uJ ∈ BexpJ

2 (k) (i.e. w ∼ uJ) if there exists any u0, . . . , uJ−1 such
that w is consistent with u0, . . . , uJ .

In Figure 7b, if, with positive probability, the assignment of X0 is inconsistent with ⟨z0, u1⟩, then the decision-
maker is also penalized with strictly positive probability. For instance, if the assignments z0 = 0 and u1 = 01
lead to the assignment x = ⟨1, 1⟩, then this policy will achieve utility of y = 0 given the assignments y0 = 0
and u1 = 00, since they cause the values z0 = 0 and w1 = 0, which will in turn cause the assignment
x = ⟨1, 1⟩; however, this is not consistent with z0 = 0 and u1 = ⟨0, 0⟩. We find that the same is true in the
more general mode of Figure 7c. If with strictly positive probability, the assignment of X0 is inconsistent
with u0:J , then there will exist an alternative assignment U0:J = u′

0:J , that produces the same assignments
to the observations of X0, but where X0 is not compatible with u′

J .
Lemma 13. Let w = ⟨w0, . . . , wJ⟩ and w̄ = ⟨w̄0, . . . , w̄J⟩ be sequences with w0, w̄0 ∈ Bk, wj , w̄j ∈ B
for j ≥ 1, and let J ′ ≤ J be the smallest integer such that wJ′ ̸= w̄J′ . Let u0, . . . , uJ′ be a sequence
where uj [uj−1] = wj for 1 ≤ j < J ′. Then, there exists some uJ′+1, . . . , uJ such that w is consistent with
u0, . . . , uJ , but w̄ is incompatible with uJ .

The proof is deferred to Appendix B.5.

This result implies that an optimal policy in Figure 7c, x0 must be consistent with u0:J with probability 1.
After all, the non-intervened policy clearly achieves the MEU of 1, being that it is consistent with u0:J , and
consistency implies compatibility. On the other hand, if x0 is inconsistent with u0:J with strictly positive
probability, then there will exist an alternative assignment u′

0:J that produces the same assignment x0, and
since the variables U0:J have full support, this will lead to y = 0 will strictly positive probability, and decrease
the expected utility. If a policy cannot copy Z0 without observing it, then this will make X0 inconsistent with
u with strictly positive probability, so this policy will not be optimal. One may notice that by setting U0 to
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contain k bits rather than just one, this will make it very difficult for X0 to copy the value of Z0 without
observing it, if a sufficiently large k is chosen. We will develop a fully formal argument for materiality in
Section 4.4.

4.3.2 A decision problem for any graph containing the materiality paths

We will now generalize the constructions from Figure 3a (for a truncated info path that is a directed path)
and Figure 7c (for a truncated info path that is not a directed path) to an arbitrary graph containing the
materiality paths described in Lemma 11.

To begin with, let us note that the materiality paths may overlap. So our general approach will be to define
a random variable V p for each variable in a path p. To derive the overall materiality SCM, we will simply
define V by a Cartesian product over each V p. For the outcome variable Y , we will instead take a sum over
each Y p. For any set of paths p, we define V p = ×p∈pV p.

Let us now discuss the control path. The initial node A will sample a bitstring that is passed along the
control path, and through each intersection node Ti in particular. To describe this, we will rely on shorthand.
Definition 14 (Parents along paths). When a vertex V has a unique parent V̄ along p, Pa(V p) = V̄ p, and
for a set of paths p′, let Pa(V p′) = ×p∈p′ Pa(V p). For a collider V in a truncated info path mi : Ti - - - Y ,
let the parent nearer Ti along mi be PaL(V ), and the parent nearer Y be PaR(V ).

For example, a non-outcome child V of A along the control path will be assigned V d = Pa(V d).

Each info path must transmit information from upstream paths that pass through the intersection node.
We therefore use the notation pi to refer to the set of control and auxiliary paths that enter the intersection
node Ti. We also devise an extended notion of parents Pa∗ to include this information. Relatedly, we will
define a notion of parents for the auxiliary path, which includes information from the collider Wi,j of the
info path, and a notion of parents for the paths pi, that includes the exogenous parent EA of A.
Definition 15 (Extended parent relations). For a truncated info path mi, let:

Pa∗(V mi) =
{

T pi

i if Pa(V mi) = T mi
i

Pa(V mi) otherwise
, and Pa∗

l (V ) =
{

T pi

i if PaL(V mi) = T mi
i

PaL(V mi

l ) otherwise
.

For an auxiliary path ri,j , let Pa∗(V ri,j ) =
{

W mi
i,j if Pa(V ri,j ) = W mi

i,j

Pa(V ri,j ) otherwise
.

Finally, let: Pa∗(V pi) =
{
EA × Pa(V pi) if V is A

Pa(V pi) otherwise
.

In other respects, the materiality SCM will behave in a similar manner to previous examples. For instance,
when mi is directed, the outcome Y mi will evaluate whether the values Pa(Y pi) (which mostly come from
Xi) are equal to Pa(Y mi), which come from the info path. When mi is not directed, the outcome Y mi will
evaluate whether the values from Pa(Y pi,ri,0:J ) are compatible with those from Ui,J . So let us now define
the materiality SCM as follows.
Definition 16 (Materiality SCM). Given a graph containing the materiality paths, we may define the
following random variables.

In the control path, d : A 99K Y , let:

• the source be Ad = EAd where EAd ∼ U(Bk) where k is the smallest positive integer such that
2k > (k + c)bc, where b is the maximum number of variables that are contexts of one decision,
b := maxX∈X(S)|CX |, and c is the maximum number of materiality paths passing through any
vertex in the graph;

• every non-endpoint V have V d = Pa(V d).

14
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T0

= U0,1[A]
Z0

= T0

X0

= Z0

A

∼ U(Bk)

U0,1

∼ U(B2k )

Y

fY (paY )=Jpa(Y p0,r0:J0 ) com.w. u0,J0K +Jpa(Y p1,r0:J1 ) com.w. u1,J1K +JxI = tIK

U0,J0

∼ U(BexpJ0
2 (k))

W0,2

= U0,2[U0,1] . . .

W0,J0

= U0,J0 [U0,J0−1]

T1

= X0

Z1

= T1

X1

= Z1

. . . TI

= pa(T d
I )

ZI

= TI

XI

= ZI

U1,0
∼ U(B2k )

W1,1 = U1,0[T1]
. . .

U1,J1 ∼ U(BexpJ1+1
2 (k))

Figure 8: The materiality SCM: a general SCM where Z0 is material for X0.

In each truncated info path that is directed, mi : Ti 99K Y , let:

• the intersection node T mi have trivial domain;
• each chain node be V mi = Pa∗(V mi);
• the outcome have the function fY mi (paY ) = Jpa(Y pi) = pa∗(Y mi)K.

In each truncated info path that is not directed, Ti - - - ←Wi,1 → · · · ←Wi,J 99K Y , let:

• each fork be W mi
i,j =EW

mi
i,j , EW

mi
i,j ∼U(Bexpj

2(k+|pi|−1)) where |pi| is the number of paths in pi;
• each chain node be V d = Pa∗(V d);
• each collider be V mi = PaR(V mi)[Pa∗

L(V mi)];
• each intersection node be T mi

i = Pa(V mi)[Pa∗(T pi

i )] if the info path begins as Ti → ·, otherwise it
has empty domain;

• the outcome have the function fY mi (paY ) = Jpa(Y pi,ri,1:Ji ) is compatible with pa∗(Y )K.

In each auxiliary path ri,j : Wi,j → V2 99K Y , let:

• each chain node have V ri,j = Pa∗(vri,j ).
• each source Wi,j have trivial domain.

Then, let the materiality SCM have outcome variable Y =
∑

imin≤i≤imax
Y mi , and non-outcome variables

V = ×p∈{d,mi,ri,1:Ji
|imin≤i≤imax} V p.

Note that this defines an SCM because each variable is a deterministic function of only its endogenous
parents and exogenous variables.

We have define the materiality SCM so that decisions behave just as non-decisions, which always do what is
required to ensure that Y mi = 1.
Lemma 17. In the non-intervened model, the materiality SCM has Y = imax − imin + 1, surely.

The proof follows from the model definition, and is supplied in Appendix B.4.
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X0T0 T1 Pap1(Y)

U0,1

Y

U1,ℓ

. . .

(a) The intersection node T1 is a chance node.

X0(T1)

Cm1
X0

X1 Pap1(Y)

U1,1

YC¬m1
X0

U1,ℓ

. . .

(b) The intersection node T1 is a decision. The contexts of
X0 are divided into Cm1

X0
(its parent along the info path), and

C¬m1
X0

(the other parents).

Figure 9: The cases where the intersection node T1 is a chance node, or a decision

We also know that each utility term Y mi is upper bounded at one, so in order to obtain the MEU, each Y i

must equal 1, almost surely.
Lemma 18. If a policy π for the materiality SCM, has P π(Y mi <1)>0 for any i, the MEU is not achieved.

Proof. We know that Eπ[Y ] =
∑

imin≤i≤imax
Y mi (Definition 16), so for all i, Y mi ≤ 1 always. So, if

P π(Y mi < 1) > 0 for any i, then Eπ[Y ] < imax − imin + 1, which underperforms the policy that is followed
in the non-intervened model (Lemma 17).

4.4 Proving materiality in the materiality SCM

We will now prove that in the materiality SCM, if Z0 is removed from the contexts of X0, then the perfor-
mance for at least one of the utility variables Y mi is compromised, and so the MEU is not achieved. The
proof is divided into two cases, based on whether the child of X0 along the control path is a non-decision
(Section 4.4.1) or a decision (Section 4.4.2).

4.4.1 Case 1: child of X0 along d is a non-decision.

If the child of X0 along the control path is a non-decision and Z0 is not a context of X0, we will prove that
E[Y m0 ] < 1. In this case, either X0 is the last decision in the control path, or otherwise there must exist an
intersection node T1, as shown in Figure 9a. If the former is true, then it is immediate that the value x0 is
transmitted to Y along the control path, based on the model definition. As such, Y0 can directly evaluate
the decision X0. For the latter case, we want an assurance that downstream decisions will pass along the
value of X, as was the case in Figure 4b. Such an assurance is provided by the following lemma, which
states that whenever an intersection node Ti is a chance node (as T1 is) — the value ti is transmitted to Y
by every optimal policy.
Lemma 19 (Chance intersection node requirement). If in the materiality SCM, where Ti is a chance node,
a policy π has P π(Pa(T pi

i ) = Pa(Y pi)) < 1, then P π(Y mi < 1) > 0.

First, we prove the case where mi is a directed path. In this case, mi copies the value tpi to Y , which Y mi

checks against the value pa(ypi) received via the control path. Maximizing Y mi then requires them to be
equal.

Proof of Lemma 19 when mi is a directed path. We have fY mi (paY mi ) = Jpa(Y mi) = pa(Y pi))K (Defini-
tion 16). Also, Pa(Y mi) = T pi

i = Pa(T pi

i ) surely, where the first equality follows from Definition 16,
while the second follows from Definition 16 and Ti being a chance node. So, if P π(Pa(Y pi)=Pa(T pi))<1,
then P π(Y mi =1) < 1.
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We now prove the case where mi is a directed path. In this case, if the assignment pa(Y pi) transmitted
along the control path differs from the value pa(T pi

i ) that came in to the intersection node Ti, then just
as we established for Figure 7c, there will exist an assignment ui,1:Ji to the fork nodes in mi that gives an
unchanged assignment to colliders vi,1:Ji

, but where pa(Y pi) is incompatible with uJi
.

Proof of Lemma 19 when mi is not a directed path. Let us index the forks and colliders of mi as
Ti - - - Vi,1 L99 Ui,1 99K Wi,1 L99 · · ·Wi,Ji

L99 Ui,Ji
99K Y . Choose any assignments pa(T pi

i ) ̸= pa(Y pi)
that occur with strictly positive probability. Then, there must also exist assignments Pa(Y pi,ri,1:Ji ) =
pa(Y pi,ri,1:Ji ), Ui,1:Ji = u1:Ji , and Wi,1:Ji = w1:Ji such that

P π(pa(T pi

i ), pa(Y pi,ri,1), tpi

i , u1:Ji
, w1:Ji

) > 0.

By Lemma 13, there also exists an assignment Ui,1:Ji
= u′

1:Ji
such that pa(T pi

i ), w1:Ji
is consistent with

u′
1:Ji

, and pa(Y p
i ), pa(Y ri,1:Ji ) is incompatible with u′

Ji
. Now, consider the intervention do(Ui,1:Ji = u′

1:Ji
).

Since Ti is a chance node, every collider in mi is a non-decision, and is assigned the (unique) value consistent
with pa(T pi

i ), u′
1:Ji

. Furthermore, pa(T pi

i ), w1:Ji
is consistent with pa(T pi

i ), u′
1:Ji

, so the intervention does
not affect the assignments to these colliders. Moreover, from Definition 16, no variable outside of mi is
affected by assignments within mi, except through the colliders. Therefore:

P π(pa(Y pi), pa(Y ri,1:Ji ), Pa(Y mi) = u′
Ji
| do(Ui,1:Ji

= u′
1:Ji

)) > 0
∴ P π(Y mi = 0 | do(Ui,1:Ji

= u′
1:Ji

)) > 0
(pa(Y p

i ), pa(Y ri,1:Ji ) not compatible with u′
Ji

)
∴ P π(Y mi = 0 | Ui,1:Ji

= u′
1:Ji

) > 0

(Ui,1:Ji are unconfounded, so P π(V |do(Ui,1:Ji = u′
1:Ji

))=P π(V |Ui,1:Ji =u′
1:Ji

)

∴ P π(Y mi = 0) > 0 (P π(u′
i,1:Ji

) > 0).

If mi is not a directed path, then this requirement extends to the values pa(Y ri,1:Ji ) passed down the auxiliary
paths, not just the value pa(Y pi) from the control path. Specifically, pa(Y pi), pa(Y ri,1:Ji ) must be consistent
with pa(Y pi), ui,1:Ji , where ui,1:Ji denotes the values of forks on the info path.
Lemma 20 (Collider path requirement). If the materiality SCM has an info path mi that is not directed,
and under the policy π there are assignments Pa(Y pi,ri,1:Ji )=pa(Y pi,ri,1:Ji ) to parents of the outcome, and
Umi

i,1:Ji
=umi

i,1:Ji
to the forks of mi, with P π(pa(Y pi,ri,1:Ji ), umi

i,1:Ji
) > 0 and where pa(Y pi,ri,1:Ji ) is inconsistent

with pa(Y pi), umi

i,1:Ji
, then P π(Y mi < 1) > 0.

The idea of the proof, similar to Lemma 19, is that whenever the bits transmitted along the auxiliary paths
deviate from the values wi,1:Ji of colliders in mi, there exists an assignment u′

i,1:Ji
to forks in mi that

will render the colliders, and hence the decision xi unchanged, while making xi incompatible with uJi
, and

thereby producing Y mi < 0. A detailed proof is in Appendix B.5.

In order to prove that the context Z0 is needed, we will also need to establish that it is not deterministic,
even if it is a decision. In the case where Z0 is a decision, the idea is that random information is generated
at A, which each of the decisions are required to pass along the control path. We are able to prove this as a
corollary of Lemma 19.
Lemma 21 (Initial truncated info path requirements). If π in the materiality SCM does not satisfy:
P π(Pa(Y d) = Ad) < 1. then the MEU is not achieved.

Proof. From Lemma 11, the control path d begins with a chance node. So, the first decision Ximin in d
must have a chance node Zimin as its parent along d. Furthermore, the intersection node Timin must be an
ancestor of Zimin along d, so it is also a chance node. So it follows from Lemma 19, that any policy π must
satisfy P π(T pimin

imin
= Pa(Y pimin )) = 1 if it attains the MEU. As Timin is in the control path, we have d ∈ pimin
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(Lemma 11) so T d
imin

a.s.== Pa(Y d) is also required. Moreover, all of vertices in the segment A 99K Timin of
d are chance nodes, because Ximin was defined as the first decision in d, and Timin precedes it. And, each
chance variable V d on the control path equals its parent Pa(V d) (Definition 16), so Ad = T d

imin
, and thus

Ad a.s.== Pa(Y d) is required to attain the MEU.

We can now combine our previous results to prove that it is impossible to achieve the MEU, if Z0 is not a
context of X0, in the case where T1 does not exist, or is a non-decision.
Lemma 22 (Required properties unachievable if child is a non-decision). Let M be a materiality SCM
where the child of X0 along d is a non-decision. Then, the MEU for the scope S cannot be achieved by a
deterministic policy in the scope SZ0 ̸→X0 (equal to S, except that Z0 is removed from CX0).

The logic is that if child of X0 in the control path is a non-decision, then the value of X0 is copied all the
way to Pa(Y d) (Lemma 21). Furthermore, Zd

0
a.s.== Pa(Y d) is necessary to achieve the MEU (Lemma 19).

But the materiality SCM has been constructed so that the non-Z0 parents of X0 do not contain enough
bits to transmit all of the information about Zd

0 , so the MEU cannot be achieved. The proof is detailed in
Appendix B.6.

4.4.2 Case 2: child of X0 along d is a decision.

If the child of X0 along d is a decision, as shown in Figure 9b, we will prove that the decision X0 must
depend on Z0 in order to achieve E[Y1] = 1. This will be because, without Z0, X0 will be limited in its
ability to distinguish all of the possible values of the first fork node Ui,1 of m1. To establish this, we will
need to conceive of a possible intervention to the fork nodes in mi, that Xi would have to respond to, and
so we begin by proving that relatively few variables will be causally affected by certain interventions.
Lemma 23 (Fork information can pass in few ways). If, in the materiality SCM:

• the intersection node Ti is the vertex Xi−1,
• πTi

is a deterministic decision rule where πTi
(c¬mi(Ti, ui,1) = πTi

(c¬mi(Ti, u′
i,1)) for assignments

ui,1, u′
i,1 to the first fork variable, and c¬mi(Ti) to the contexts of Ti not on mi, and

• Wi,1:Ji = wi,1:Ji , and Ui,2:Ji = ui,2:Ji are assignments to forks and colliders in mi where each ui,j

consists of just wi,j repeated expj
2(k + |pi| − 1) times, then:

P π(pa(Y pi,ri,1), c¬mi(Ti), wi,1:Ji
, ui,2:Ji

|do(ui,1))=P π(pa(Y pi,ri,1), c¬mi(Ti), wi,1:Ji
, ui,2:Ji

|do(u′
i,1)).

The proof follows from the definition of the materiality SCM, and it is detailed in Appendix B.7.

We can now prove that if a deterministic policy does not appropriately distinguish assignments to Ui,1, then
the ith component of the utility will be suboptimal E[Y mi ] < 1.
Lemma 24 (Decision must distinguish fork values). If in the materiality SCM:

• the intersection node Ti is the vertex Xi−1, and
• π is a deterministic policy that for assignments ui,1, u′

i,1 to Ui,1 where ui,1 ̸=u′
i,1,

has πTi
(c¬mi(Ti), ui,1)=πTi

(c¬mi(Ti), u′
i,1) for every C¬mi

Ti
(Ti)=c¬mi(Ti),

(†)

then P π(Y mi < 1) > 0

The idea of the proof is that if ui,1 and u′
i,1 differ, there will be some assignment pa(Y pi) such that

ui,1[pa(Y pi)] and u′
i,1[pa(Y pi)] differ. When Pa(Y pi) = pa(Y pi) and Ui,1 = ui,1, then Pa(Y ri,1) will as-

sume one value. But if we intervene u′
i,1, ui,2:Ji , then the value of Pa(Y ri,1) will be incorrect, making

Pa(Y pi,ri,1:Ji ) inconsistent with Pa(Y pi , Ui,1:Ji
) so the maximum expected utility is impossible to achieve.

The details are deferred to Appendix B.8.

This will allow us to prove that when the child of X0 along d is a decision, the MEU cannot be achieved
without Z0 as a context of X0.
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Lemma 25 (Required properties unachievable if child is a decision). Let M be the materiality SCM for
some scoped graph GS , where imax > 0 and T1 is a decision. Then, there exists no deterministic policy in
the scope SZ0 ̸→X0 that achieves the MEU.

To prove that no deterministic policy in SZ0 ̸→X0 can achieve the MEU (achievable with the scope S), we
will show that if a deterministic policy π satisfies P π(Pa(Y d) = Ad) = 1, as required by Lemma 21, then
the domain of X0×C¬m1

X0
is smaller than the domain of Cm1

X0
, so Equation (†) will be satisfied, and thus the

MEU cannot be achieved. A detailed proof is presented in Appendix C.

We now combine the lemmas for the two cases to prove the main result.

Proof of Theorem 8. Any scoped graph G(S) that satisfies assumptions (A-C) contains materiality paths for
the context Z0 of X0 (Lemma 11), and has a materiality SCM (Definition 16) compatible with G(S). In this
decision problem, whether the child of X0 along d is or is not a decision, the MEU cannot be achieved by a
deterministic policy unless X0 is allowed to depend on Z0 (Lemmas 22 and 25). And stochastic policies can
never surpass the best deterministic policy (Lee & Bareinboim, 2020, Proposition 1), so no such policy can
achieve the MEU, and so Z0 is material for X0.

5 Toward a more general proof of materiality

So far, via Theorem 8 we have established the necessity of condition (I) of LB-factorizability for immateriality.
We now outline some steps toward evaluating the necessity of conditions (II-III) of LB-factorizability, as well
as the further condition in (Lee & Bareinboim, 2020, Thm. 2).

It is trivial to satisfy either one of (II-III) by itself. Condition (III) merely requires that we choose an
ordering ≺ such that the parents of each decision X are prior to X, while the descendants come afterwards,
and such an ordering clearly exists in any acyclic graph. Condition (II) can also be satisfied by placing all
of the variables in C at the start of the ordering ≺.

However, there does not always exist any ordering that satisfies (II-III) simultaneously. Indeed, whenever
there does not, we will be able to prove the existence of some info paths and control paths. If we could use
these paths to establish materiality, then we would have proved that (II-III) are necessary conditions. So
far, however, we have only been able to carry out the first step — defining the paths — and difficulties have
arisen in using those paths to define an SCM that exhibits materiality. In this section, we will outline what
info paths and control paths can be proven to exist, and then outline the difficulties in using them to prove
materiality.

5.1 A lemma for proving the existence of paths

When the variables Z, X ′, C ′, U are not factorizable, we can prove the existence of info and control paths.
Lemma 26 (System Exists General). Let GS be a scoped graph that satisfies assumptions (A,B) from
Theorem 8. If Z = {Z0}, X ′ ⊇ Ch(Z0), C ′ = CX′ \ (X ′ ∪ Z), U = ∅ are not LB-factorizable, then there
exists a pair of paths to some C ′ ∈ C ′ ∪ Y :

• an info path m : Z0 - - - C ′, active given ⌈X ′ ∪C ′⌉, and
• a control path d : X 99K C ′ where X ∈X ′.

A proof is supplied in Appendix D.1. The intuition of this proof is that each of the conditions (I-III) implies
a precedence relation between a pair of variables in V ′ ∪ Y . Each of these precedence relations can be used
to build an “ordering graph” over V ′∪Y . If the ordering graph is acyclic, then we can let ≺ be any ordering
that is topological on the graph, and then Z, X ′, C ′, U are LB-factorizable. Otherwise, we can use a cycle
in the graph to prove the existence of an info path and a control path. By iterating through these cycles, we
can obtain a series of info paths and control paths that terminate at Y .

The resulting paths are in some cases, quite useful for proving materiality. For instance, we can recover the
pair of info and control paths used in Figure 4b. To prove that Z is material for X, we can start by choosing
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X ′ = {X, X ′}, C ′ = {Z ′, W}, and U ′ = ∅. Then, Lemma 26 implies the existence of an active path from Z
to some DescX ∩ C ′, so we see that the first info path is the edge Z → Y . Since Y is a descendant of X,
we also have the first control path, X → Z ′ → X ′ → Y . We must then obtain some paths that exhibit why
Z ′ is itself useful for the decision X to know about, and to influence. To do this, we can reapply Lemma 26
using the sets X ′ = {X, X ′}, Z = {Z ′}, C ′ = {Z, W}, and U ′ = ∅. We then obtain the new info path
Z ′ →W ← U → Y , and the new control path X ′ → Y . The SCM in Figure 4b uses these paths to prove Z
material for X.

5.2 A further challenge: non-collider contexts

In some graphs, it is not clear how to use the info and control paths Lemma 26 to prove materiality, because
non-collider nodes on the info path may be contexts. (In previous work, this possibility was excluded by the
solubility assumption (Van Merwijk et al., 2022, Lemma 28).) We will now highlight one case, in Figure 10,
where it is relatively clear how this challenge can be overcome, and one case, Figure 11, where it is unclear
how to make progress.

In the graph of Figure 10, we would like to prove that Z0 is material for X0. Using Lemma 26, we can
obtain the red and blue info paths as shown, and the corresponding control paths in darker versions of the
same colors. In the approach of Definition 16, shown in Figure 10a, X0 should need to observe Z0 in order
to know which slice from V is presented at its parent X1. Then, X1 would play two roles, one for the red
info path, and one for the dark blue control path. As a collider on the red info path, its role is to present
the Zth

0 bit from V . As the initial endpoint of the blue control path, so its role is to copy the assignment
of Z0. The problem, however, is that X0 then does not need to observe Z0 in order to reproduce its value,
because this value is already observed at X1, so Z0 is not material.

To remedy this problem, we can construct an alternative SCM, where the value of Z0 is “concealed”, i.e. it
is removed from the other contexts, CZ0 \ Z0. At X1, we directly remove Z0, leaving this decision with a
domain of only one bit. At C, we impose some random noise, so that it is not always a perfect copy of Z0.
The result is shown in Figure 10b. When this model is not intervened, an expected utility of E[Y ] = 10.99 is
achieved, because the red term in Y always equals 10, while the blue term has an expectation of 0.99. (This
is the MEU, because there is no way to improve the blue term to have expectation 1 without decreasing
the expectation of the red term by at least 0.05.) If instead, Z0 is removed as a context for X0, then
the expected utility can only be as high as E[Y ] = 10.95. To understand this, restrict our attention to
deterministic policies, and note that in order for the red term to be better than a coin flip (with an expected
value of 5), we would either need to have X0 = ⟨C, X1⟩— and the red term will have an expectation of 9.95,
or we must have X1 = V [0] and X0 = ⟨0, X1⟩ — and then the blue term will have an expectation of 0.5. In
either case, performance is worse than 10.99, so Z0 is material for X0.

Z0

∼U(B)

X1
=⟨V [Z0],Z0⟩

C = ⟨X1[0], Z0⟩

X0
=⟨Z0,X1[Z0]⟩

V

∼ U(B2)

Y

fY (paY ) = Jv[x0[0]] = x0[1]K + Jc[0] = c[1]K

(a) A model with zero VoI.

Z0

∼U(B)

X1
= V [Z0]

C
P (C =z0) = 0.99
P (C =1−z0)=0.01

X0
= ⟨Z0, X1⟩

V

∼ U(B2)

Y

fY (paY ) = 10Jv[x0[0]] = x0[1]K + Jc = x0[0]K

(b) Z0 is material for X0

Figure 10: Two alternative models that use the same two info paths, red and blue.
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The problem is that concealing the value of Z0 does not work for all graphs. To see this, let us add two
decisions, X2 and X3, to the graph from Figure 10, to thereby obtain the graph in Figure 11. Let us retain
the materiality SCM from Figure 10b, except that X2 and X3 copy the value from C along to Y . One might
expect that Z0 should still be material, but it is not. Now, there is a policy that achieves the new MEU of 11
by superimposing the value of Z0 on the assignments of decisions X2 and X3. In this policy π, x1 = v[z0],
x2 = z0 ⊕ z0, x3 = x2 ⊕ z0, and x0 = x2 ⊕ x3 = z0 where ⊕ represents the XOR function. Under π, the red
term equals 10 always, while the blue term always equals 1, i.e. the MEU is achieved, and π is a valid policy
even if Z0 is not a context of X0, meaning that Z0 is not material for X0.

In summary, whenever Z ∋ Z0, X ′ ∋ X0, C ′, U are not LB-factorizable, then we can find some info and
control paths for Z0 and X0, but then X0 can recover the value of Z0, making it possible to achieve the
MEU even when Z0 is removed as a context of X0. In some graphs, we can devise an alternative SCM that
conceals the value of Z0. But in others, a policy can superimpose the information from Z0 on other decisions,
such as X2 and X3 in Figure 11, so that X0 can recover the value of Z0, making Z0 immaterial for X0 once
again.

Overall, in order to establish a complete criterion for materiality, we would need some new method to prevent
the information from Z0 from being superimposed on other decisions. So, in order for future work to achieve
this goal, we predict that it will have to make further modifications to the construction from Definition 16.

Z0 ∼U(B)

X1 = V [Z0] C

P (C =z0) = 0.99
P (C =1−z0)=0.01

A1

X2
= C

A2

X3
= X2

A3

X0
= ⟨Z0, X1⟩

V ∼ U(B2)

Y

fY (paY ) = 10Jv[x0[0]] = x0[1]K + Jx2 = x0[0]K

Figure 11: A model with zero VoI

6 Conclusion

In graphs of decision-making, it is a key challenge to identify which variables are material, based on the
structure of the graph alone. This problem is a long-standing one, a solution to which could allow influence
diagrams to be solved more efficiency, and aid in analysing the safety and fairness of AI systems. A key
condition for establishing immateriality is LB-factorizability. We have found that in a graph where contexts
cannot satisfy condition (I) of LB-factorizability, any context can be material. We encountered some new
problems for materiality proofs, and devised appropriate solutions:

• if the variable Zi, whose materiality we are trying to establish, is a decision and its value can be
determined by other available contexts, then we must choose a different info path so that the value
of Zi cannot be determined by observed variables;

• if the info path begins with a context of multiple decisions, then we must construct the SCM
differently along the info path;

• if the control path contains consecutive decisions, then we require more bits to be copied along the
control path, so that not all of these bits can be copied along alternative paths.

As a next step towards establishing a complete criterion for materiality, we then considered the more general
setting where no context can jointly satisfy conditions (I-III) of LB-factorizability. In this setting, it is
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possible to identify info paths and control paths for a target context Z0 and decision X0, and to apply
our SCM construction to these paths. However, there may exist policies that transmit the assignment of
Z0 through alternative paths, and that achieve the MEU even when Z0 is removed as a context of X0.
Although there exist ways of concealing the information about Z0 from a descendant decision Xi′ , i < i′,
there can also be other ways that information about Z0 may still be transmitted through other decisions,
undermining materiality once again. Thus, the challenge of proving a complete criterion for materiality for
insoluble graphs currently remains open.
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