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Abstract
This paper presents an approach by the Innova-team to the KDD

Cup 2024 ShopBench challenge, specifically detailing the 4th-place

solution in Track 4: Multi-lingual abilities
1
. The research intro-

duces a versatile Large Language Model (LLM) based on Qwen2-

72B-Instruct, designed to enhance the multi-lingual online shop-

ping experience. Utilizing multi-task learning, the model was fine-

tuned to address various tasks derived from Amazon shopping

data. To optimize performance, the vLLM library [vLLM] was em-

ployed in conjunction with Activation-aware Weight Quantization

(AWQ) [1], enabling efficient model inference across four NVIDIA

T4 GPUs in the competition environment. This solution demon-

strates the potential of LLMs in mastering complex multi-lingual

e-commerce tasks, ranging from product navigation to personalized

recommendations. The research leverages Qwen2-72B-Instruct [2]

as the foundation for fine-tuning, showcasing its effectiveness in

tackling multi-lingual e-commerce challenges.

The code and datasets are publicly available in the following

GitLab repository:

https://gitlab.aicrowd.com/fersebasIn/innova-team-amazon-kdd-

cup-2024-track-4-4th-position

∗
These authors contributed equally to this research.
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1 Introduction
E-commerce is a complex field involving multiple tasks, from browsing

to purchasing, all of which require deep insights into customer behavior

and intentions. This complexity necessitates multi-task learning models

capable of leveraging shared knowledge across various aspects of the online

shopping process.

However, many current models lack the specific product knowledge
necessary for e-commerce tasks, often struggling to distinguish between

similar products from different brands, understand compatibility between

various accessories and devices, recognize the significance of product gener-

ations or versions, interpret technical specifications and their implications

for use, and identify which features are standard versus optional for a given

product category. This limitation hinders their ability to provide accurate

recommendations, answer nuanced product-related queries, or make in-

formed compatibility assessments, ultimately impacting the quality of the

e-commerce experience they can support.

Therefore, to address these limitations, specialized fine-tuned models

for e-commerce, known as e-commerce LLMs, have been developed, such

as [3], [4], and [5]. In this competition, the challenge is to utilize an Open

Large Language Model (LLM) to handle diverse tasks for which the model

has not been specifically trained, as the test dataset remains hidden from

the participants. This setup evaluates the model’s ability to generalize its

understanding of e-commerce concepts and apply its knowledge to novel

1
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situations, mimicking the real-world scenario where new products and

queries constantly emerge.

1.1 Data exploration
The ShopBench Dataset is an anonymized, multi-task dataset derived from

real Amazon shopping data. It is designed to evaluate four key shopping

skills: Shopping Concept Understanding, Shopping Knowledge Reasoning,

User Behavior Alignment, and Multi-lingual Abilities, which correspond to

Tracks 1 through 4 of the Amazon KDD Cup, respectively.

The focus of this paper is on the Multi-lingual Track, which includes

multi-lingual concept understanding and user behavior alignment. Statistics

for ShopBench related to this track are provided in Table 1:

Table 1: Dataset statistics for Track 4: Multi-lingual Abilities.

#Tasks #Questions #Products #Queries
7 2379 ~6000 ~520

Note: Product categories, attributes and reviews do not appear in the sta-
tistics for this track.

In addition, the dataset is divided into a few-shot development set and a

test set to better replicate a few-shot learning scenario. The development

dataset
2
is provided in JSON format and includes the following fields:

• input_field: The instructions and the question that the model

needs to answer.

• output_field: The correct answer to the question.

• task_type: The type of task, which can be Multiple Choice, Re-

trieval, Ranking, Named Entity Recognition (NER), or Generation.

• metric: The metric used to evaluate the answer.

Listing 1: Example of JSON code.
{" input_field ":" Which of the following productcategories may have

the attribute power source? \n0. table \n1. writing tools \n2
. car seat cover \n3. comb \nAnswer:", "output_field ":3, "
task_name ":" task2", "task_type ": "multiple -choice", "metric
":" accuracy", "is_multiple_choice ": true , "track": "amazon -
kdd -cup -24- understanding -shopping -concepts "}

However, the test dataset follows a different format with only two fields:

• input_field: Identical to the one in the development set.

• is_multiple_choice: Indicateswhether the question is amultiple-

choice question, with a value of ’True’ or ’False’.

Additionally, in order to obtain a more elaborated training set, examples

have been generated for several tasks such as the following:

• Task 1 (Generation): Explanation of categories or product types.

• Task 4 (NER): Named Entity Recognition in queries.

• Task 5 (Multiple-choice): Questions based on product descrip-

tions.

1.2 Data evaluation
Since there are various types of tasks, the evaluation method for each of

them differs:

2
URL development dataset

Table 2: Evaluation metrics.

Task Type Metric
Multiple Choice Accuracy

Retrieval Normalized Discounted Cumulative Gain

Ranking Micro-F1 score

Named Entity Recognition Hit@3

Generation - ROUGE-L for Extraction tasks [6]

- BLEU score for Translation tasks [7]

- Sentence Transformers (cosine similarity)

Since all these metrics fall within the range [0, 1], the average metric

is calculated across all tasks within each track using macro-averaging to

determine the overall score for that track.

Note that in this multilingual Track 4, out of the five task types, there

are no Named Entity Recognition or Retrieval tasks.

2 Detailed Method
The solution proposed for this challenge involves several steps. First, a

larger synthetic dataset was created. The base model was then fine-tuned

with this dataset to enhance its performance. Following that, the model was

optimized, and its efficiency was improved through padding techniques

and model quantization strategies. The inference process leveraged the

vLLM library for optimized parallelization across multiple GPUs, ensuring

efficient handling of both multiple-choice and open-ended tasks. Addition-

ally, prompt engineering played a crucial role in enhancing the model’s

responses, particularly by crafting task-specific prompts that aligned with

the nature of each question, significantly improving the model’s perfor-

mance in ranking (output format) and generation tasks (maximum tokens).

Although the paper focuses on the solution for Track 4, most of the steps

were replicated for the other tracks, resulting in the following positions:

Track 1—6th, Track 2—6th, and Track 5—8th.

2.1 Data Creation
The original dataset available for the participants of the competition (the

development dataset) consisted of only 96 items, and its structure was

presented in the Subsection 1.1.

To enrich the collection of examples, different public datasets and an

OpenAImodel were used, in particular GPT-3.5. The new synthetic examples

covered tasks from 1 to 11, with the exception of tasks 9 and 10.

2.1.1 AMAZON PRODUCTS DATASET. One of the main external resources

was the Amazon-M2 dataset [8] which included a list of Amazon products

with the following attributes: id, locale, title, price, brand, color, size,
model, material, author, and desc (description).

The synthetic examples followed a similar structure to the development

set, but only English-language products were used with a simpler format

consisting of two columns: input_field and output_field .
The procedure involved defining a different prompt for each task, which

was fed with the examples from the corresponding task found in the de-

velopment set, and a list of Amazon products. At least 2,500 products were

used for each task, and five examples were generated for each product.

Afterwards, the resulting examples had to go through a cleaning process

that removed the ones that did not match the structure of the input_field
and output_field attributes of the original examples.

2.1.2 OTHER DATASETS. Another external dataset containing a list of

Amazon product categories was used in task 1, as its purpose was to explain

categories and types of products. Meanwhile, for tasks 6 and 7 a dataset of

Amazon reviews [9] was applied, since they involved keyphrase and aspect

extraction from user reviews. The full dataset can be found in the folder

“finetuning_code” of the repository.

2
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2.1.3 COMPLETE TRAINING DATASET. By following all these methods,

a minimum of 8,000 examples were produced for several known tasks.

Moreover, to assemble the final training set, some data from the ECInstruct

dataset was added. This is the first open-sourced, large-scale, and high-

quality benchmark instruction dataset for e-commerce, and it was used for

training the model eCeLLM [3] with 92,022 items.

Therefore, as the final step in creating the synthetic dataset, the generated

examples were transformed into the ECInstruct format, which includes:

• split: Indicates whether the item will be used to “train” or “test”

the model.

• task: The type of task (multiple-choice, generation, NER, etc.).

• setting: Always set to “IND_Single_Instruction”.

• instruction: A sentence that specifies the action that needs to

be carried out.

• input: The additional queries required in each instruction, for

example, a product or a question.

• options: The list of options (if it is a multiple choice task).

• output: The answer (one or more numbers, or a string).

• few_shot_example: Always set to “null”.

Note: In order to be able to use the setting “IND_Single_Instruction” and,
therefore, simplify the instruction, the same sentence was always used within
the examples of each task. For example: “Given the product title and question,
select the correct answer among all the options.”

Only the columns input, options, instruction and output of the

"train" split were kept, so the final dataset used for training contained

204,593 items.

An example of the process is shown in Appendix A.

2.2 Fine-tuning Model
As mentioned previously, the base model used for instruction fine-tuning

was the Qwen2-72B-instruct (72 billion parameters). Specifically, to reduce

costs, the fine-tuning was performed on its 4-bit version, available on Hug-

ging Face
3
.

For fine-tuning, due to its size, the unsloth library
4
was used to reduce

the required VRAM size.

The environment used was a RUNPOD with an RTX 6000 ADA GPU

(48 GB of VRAM). The fine-tuning process involved 22,000 steps, equivalent

to approximately 70 hours of execution time, at an estimated cost of $70.

Table 3 shows the specified fine-tuning parameters:

Table 3: Fine-tuning parameters.

Parameter Value
Train batch size 2

Gradient accumulation steps 4

Max Steps 22000

Learning rate 2e-4

optim Adamw 8bit

weight decay 0.01

lr scheduler type linear

After fine-tuning, the model was saved in 16-bit precision to perform

Activation-aware Weight Quantization (AWQ) instead of 4-bit quantization.

More details can be found in the notebook inside the “finetuning_code”

folder of the repository.

3
Qwen Model unsloth 4bnb Hugging Face

4
Unsloth GitHub

2.3 Padding Model
Before performing AWQ [1], it was necessary to adjust the model’s param-

eter of intermediate_size from its default value of 29, 568 to 29, 696 in

order to make inference using 4 GPUs.

The expansion of the model tensors from 29, 568 to 29, 696 significantly

improved its compatibility with various GPU configurations for parallel

processing. By increasing the size to 29, 696, when it is divided by 128,

29, 696 yields 232, which factors as 2
3 · 29. This factorization allows the

model to work efficiently with 1, 2, 4, 8, or their combinations. In contrast,

29, 568 divided by 128 gives 231, which factors as 3 · 7 · 11. This less flexible
factorization limits efficient parallelism to configurations with 1, 3, 7, or 11

GPUs, or their combinations.

The code for padding was found in an issue of the Qwen2 repository
5
.

After executing the code, one must change the intermediate_size in

config.json to the new value of 29,696 and copy the other files, excluding the

weights. This change allows the use of the vLLM library across all 4 GPUs

with group_size equals to 128 during inference.

2.4 Quantization Model
After evaluating various quantization techniques including GPTQ [10],

AWQ, and Bits and Bytes
6
, AWQ was chosen due to its flexibility, allowing

different quantization levels based on group_size, and its compatibility

with the vLLM library.

For this purpose, the auto-AWQ library by Casper-Hansen was utilized

with the following quantization configuration:

Table 4: Quantization configuration.

Parameter Value
zero_point True

q_group_size 128

w_bit 4

version GEMM

The size of the model after AWQ quantization was approximately 38.74

GB.More details can be found in the notebook inside the “compression_code”

folder of the repository.

2.5 Inference/Serving Model Using vLLM
To ensure reproducibility, the model was initialized with a fixed random

seed and utilized vLLM for efficient inference. Key configuration parameters

included the batch size (16), tensor parallel size (4), and GPU memory

utilization (1, i.e., 100%), all of which can be adjusted according to available

computational resources.

The model utilized vLLM with half-precision computation, as bfloat16

is not supported on NVIDIA T4 GPUs. It employed worker distribution

via Ray, and a maximum model length of 4, 096 tokens was set to prevent

potential RAM errors. The implementation requires pre-downloaded model

weights for offline use.

The core of the implementation relied on its batch prediction method

and baseline code, which could distinctly handle both multiple-choice and

open-ended tasks, each with its own task-specific parameters.

Table 5: Task-Specific Parameters.

Parameter Multiple-Choice task No Multiple-Choice task
max_new_tokens 1 80

top_p 0.95 0.95

temperature 0.2 0

top_k 50 default value (-1)

5
Qwen2 repository

6
Bits and Bytes documentation

3

https://huggingface.co/unsloth/Qwen2-72B-Instruct-bnb-4bit
https://github.com/unslothai/unsloth
https://github.com/QwenLM/Qwen2/issues/578##issuecomment-2193235546
https://huggingface.co/docs/bitsandbytes/main/en/index
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Every query was prefixed with the following system prompt: “You are

a helpful online shopping assistant. Please answer the following question

about online shopping and follow the given instructions.”. Additionally, for

non-multiple-choice tasks, a second instruction was appended: “Do not give

explanation only Answer. Output:”.

3 Experiments
A detailed summary of the most relevant tests conducted by the team,

including their scores and a descriptions of the changes made, is provided

below.

Table 6: Score of Selected Submissions.

Model Score Multiple-
Choice
Score

Generation
Score

Ranking
Score

Llama 3 70B

Instruct
0.669 0.770 0.389 0.822

Qwen2 72B

Instruct

(no prompting

engineering)

0.696 0.811 0.424 0.783

Qwen2 72B

Instruct

(with prompting

engineering)

0.711 0.812 0.454 0.816

As shown in Table 6, the Qwen2 72B model consistently outperformed

the Llama 3 70B across several key metrics and task types. Notably, the

application of prompt engineering techniques significantly enhanced per-

formance in the ranking task type, improving the score from 0.783 to 0.816.

This result underscored the effectiveness of prompt engineering in opti-

mizing model performance for specific tasks, making Qwen2 72B a better

choice than Llama 3 70B in this competition.

4 Conclusions
The selection of the base model with the highest possible score that could fit

into RAM in the execution environment was key, as was the quality of the
data used to further enhance the base model through costly fine-tuning.

Another crucial aspect of the competition was recognizing that in most

Tracks, the number of multiple-choice tasks was greater, thereby signifi-

cantly influencing the final score. For this reason, efforts were directed at

improving multiple choice without worsening the performance on other

tasks, as it was already identified whether the task was multiple choice.

It’s also worth noting that the parsing process was crucial, as there were

instances where the LLM provided correct responses, but they were not

formatted properly in the required output format. In summary, the success

in achieving this position was largely due to the selection of the base model,

the quality of the data, and the effectiveness of prompt engineering.

A Example Generation Task 5
Task 5 we named “Questions Based on Product Descriptions”, and belongs

to the Multiple-Choice type. Given a product name, a question, and a list of

multiple possible answers (only one answer is correct), the model has to

select the correct one.

A synthetic example created with a product from the Amazon-M2 dataset

is presented below.

First, a specific prompt was provided to the GPT-3.5 model, which also

included the product name and a few examples from the development set:

Listing 2: GPT-3.5 Prompt for Task 5.
{ "You are given a list of Amazon products that appear on an e-

commerce website , and a question about it with 3 possible
responses. Only 1 is correct and you need to indicate which
one is it. Examples: {dev_data }.

Use the description from the following Amazon product to generate
5 questions about its characteristics like in the previous
examples. For each question provide 3 possible answers (2
incorrect and 1 correct), and then indicate the answer (that
is, the correct one).

Follow the same formulation as in the examples , and that is "The
product '[HERE INSERT FULL PRODUCT NAME]' appears on an e-
commerce website. [HERE INSERT QUESTION] [HERE INSERT OPTIONS
] Answer: [HERE INSERT NUMBER OF ANSWER ]".

The possible answers must be numerated from 1 to 3 and the final
answer must just be the number of the correct one.

Product description: {product }"}

The resulting output then had to go through a filtering process to ensure

it had the correct structure, like the following:

Listing 3: Example of GPT-3.5 output for Task 5.
{ "input_field ": "The product 'Microsoft PN7 -00013 Bluetooth

Mobile Mouse 3600 - Red ' appears on an e-commerce website.
What is the type of connectivity used in the mouse?\n1. USB\
n2. Bluetooth\n3. Wi-Fi\nAnswer: ", "output_field ": 2 }

Afterwards, it was transformed into the ECInstruct format:

Listing 4: Example in ECInstruct format for Task 5.
{ "split ":" train", "task ":" multiple -choice",
"setting ":" IND_Single_Instruction",
"instruction ":" Given the product title and question , select the

correct answer among all the options.",
"input ":{ "product title ":" Microsoft PN7 -00013

Bluetooth Mobile Mouse 3600 - Red",
"question ":" What is the type of connectivity used in the mouse

?" },
"options ":"[[1. USB , 2. Bluetooth , 3. Wi-Fi]",
"output ":"2", "few_shot_example ":null }

Finally, only the ‘input‘, ‘options‘, ‘instruction‘, and ‘output‘ fields were

kept for training.
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