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ABSTRACT

Benchmarking the hundreds of functional connectivity (FC) modeling methods
on large-scale fMRI datasets is critical for reproducible neuroscience. However,
the combinatorial explosion of model–data pairings makes exhaustive evaluation
computationally prohibitive, preventing such assessments from becoming a rou-
tine pre-analysis step. To break this bottleneck, we reframe the challenge of FC
benchmarking by selecting a small, representative core-set whose sole purpose
is to preserve the relative performance ranking of FC operators. We formalize
this as a ranking-preserving subset selection problem and propose Structure-aware
Contrastive Learning for Core-set Selection (SCLCS), a self-supervised framework
to select these core-sets. SCLCS first uses an adaptive Transformer to learn each
sample’s unique FC structure. It then introduces a novel Structural Perturbation
Score (SPS) to quantify the stability of these learned structures during training,
identifying samples that represent foundational connectivity archetypes. Finally,
while SCLCS identifies stable samples via a top-k ranking, we further introduce
a density-balanced sampling strategy as a necessary correction to promote di-
versity, ensuring the final core-set is both structurally robust and distributionally
representative. On the large-scale REST-meta-MDD dataset, SCLCS preserves
the ground-truth model ranking with just 10% of the data, outperforming state-of-
the-art (SOTA) core-set selection methods by up to 23.2% in ranking consistency
(nDCG@k). To our knowledge, this is the first work to formalize core-set selection
for FC operator benchmarking, thereby making large-scale operators comparisons a
feasible and integral part of computational neuroscience. Code is publicly available
on https://github.com/lzhan94swu/SCLCS

1 INTRODUCTION

Methodological choices can substantially affect scientific reproducibility, as reflected in highly
variable outcomes obtained from the same dataset, making systematic benchmarking increasingly
important (Kohli et al., 2024; Qiu et al., 2024; Marek et al., 2022). This issue is especially acute in
functional connectivity (FC) modeling, where hundreds of candidate statistical pairwise interactions
(SPIs) require careful evaluation to ensure reliable conclusions (Liu et al., 2025; Roell et al., 2025).
Yet the computational cost of exhaustive evaluation makes it impractical to run as a routine pre-
analysis step for data-driven model selection (Ying et al., 2024; Zhou et al., 2021) (see the complexity
analysis in Appendix H). To address this bottleneck, we propose a two-stage workflow: we first
benchmark all candidate SPIs on a small, representative core-set to identify top performers, and then
evaluate the selected SPI(s) on the full dataset for downstream analysis. This workflow hinges on
selecting a core-set that preserves the relative performance ranking of SPIs.

∗Corresponding author.
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Figure 1: Overview of the SCLCS framework for ranking-preserving core-set selection. Contrasting
with selection for single-model classification (top left), our task is to preserve the performance ranking
of SPIs (top right). Our method (bottom) achieves this using a Transformer to learn structures, our
novel SPS metric to ensure stability, and a density-aware strategy to promote diversity.

While core-set selection is well studied, most existing methods target a different goal: constructing
a small training proxy for a single predictive model (Feldman, 2020; Lee et al., 2024; Hong et al.,
2024b). In our setting (Figure 1), the core-set must preserve the relative performance ranking across
hundreds of candidate SPIs (Liu et al., 2025; Cliff et al., 2023). This ranking-preservation objective
raises three challenges: (1) Formulating a selection criterion that targets cross-SPI ranking stability
rather than single-model training loss. (2) Defining a principled, structure-aware notion of sample
importance based on FC patterns (the targets of SPIs). (3) Reducing the brittleness of score-based
top-k selection, which can fail to generalize across sampling ratios and distort rankings.

In this work, we cast core-set selection for FC benchmarking as a ranking-preserving subset selection
problem. Rather than training a predictive model, we seek a subset that preserves the SPI ordering
from the full dataset (Figure 1). We evaluate on the REST-meta-MDD dataset (Yan et al., 2019; Long
et al., 2020), a large multi-site resting-state fMRI dataset for MDD, which captures heterogeneity
across acquisition sites and a large cohort. We instantiate benchmarking with two tasks, brain fin-
gerprinting (Van De Ville et al., 2021) and MDD diagnosis (Gallo et al., 2023), both widely used in
FC research (Lu et al., 2024; Otte et al., 2016). For each task, we score each SPI by how well the
resulting FC matrices separate within-class from between-class pairs using Spearman’s rank correla-
tion (Sedgwick, 2014), yielding an SPI ranking. Core-set quality is measured by nDCG@k (Wang
et al., 2013) between the SPI rankings induced by the core-set and the full dataset.

We use SPIs as a validation case because benchmarking FC operators has been formalized as a
well-defined task in recent work (Liu et al., 2025; Cliff et al., 2023; Honari et al., 2021). Based on
this formulation, we propose Structure-aware Contrastive Learning for Core-set Selection (SCLCS).
As shown in Figure 1, SCLCS is built around a Transformer-based encoder that encodes sample-
specific synchronization structure via an adaptively weighted fusion of attention heads. Under
the assumptions of Theorem 2, we show this encoder has universal approximation capacity for
continuous SPI mappings. We then define a Structure Perturbation Score (SPS) to quantify the
stability of these structures, and prioritize low-SPS samples to form a robust core-set. Because
naïve top-k selection can be brittle for certain task structures, SCLCS augments it with a density-
aware sampling strategy to improve diversity. SCLCS learns in an identity-supervised contrastive
manner, using subject identities to encourage stable “brain fingerprints”(Van De Ville et al., 2021)
that SPI-based analyses aim to capture(Liu et al., 2025; Luppi et al., 2024). This yields task-agnostic
representations suitable for benchmarking. Finally, SCLCS is a pre-analysis acceleration tool
that makes large-scale benchmarking computationally feasible, rather than a method for the final
neuroscientific discovery task.

Our theoretical analysis and empirical results on 130 candidate SPIs support our design choices and
show consistent improvements over strong baselines. The main contributions are: (1) We formulate
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core-set selection for efficient FC operator (SPI) benchmarking as a ranking-preservation problem. (2)
We propose SCLCS, a structure-aware framework for selecting stable and diverse samples for ranking-
based benchmarking. (3) We provide a universal approximation result for continuous SPI mappings
(Theorem 2) and introduce SPS, a new use of attention dynamics to quantify structural heterogeneity.
(4) We show that SCLCS enables reliable benchmarking at a fraction of the computational cost,
making large-scale comparisons practical.

2 RELATED WORK

Benchmarking in Functional Connectivity. Selecting an appropriate SPI (i.e., a network modeling
method) is a central challenge in modern FC research. Prior studies show that different SPIs can
yield divergent FC topologies and, consequently, different scientific conclusions (Smith et al., 2011;
2013; Bobadilla-Suarez et al., 2020; Mohanty et al., 2020; Honari et al., 2021; Luppi et al., 2024),
contributing to long-standing concerns about reproducibility (Collaboration, 2015; Botvinik-Nezer
et al., 2020; Marek et al., 2022). Meanwhile, comprehensive libraries such as pyspi(Cliff et al.,
2023), which include hundreds of SPIs, highlight the methodological richness of the field and
magnify the scale of the selection problem(Liu et al., 2025; Roell et al., 2025). These works motivate
systematic benchmarking, but the computational cost of evaluating large SPI suites remains a key
practical bottleneck. We address this bottleneck by introducing a core-set selection approach for
efficient SPI benchmarking.

Core-set Selection. Core-set selection is a fundamental problem in machine learning (Guo et al.,
2022; Feldman, 2020; Ros & Guillaume, 2019). Most score-based (Coleman et al., 2020; Feldman &
Zhang, 2020; Paul et al., 2021; Toneva et al., 2019) and diversity-based (Sener & Savarese, 2018;
Xia et al., 2022) methods construct proxy datasets for training a single predictive model, which
mismatches our ranking-preservation objective over many SPIs. Their criteria are often model-
dependent (e.g., EVA (Hong et al., 2024b)) and typically assume static i.i.d. inputs, overlooking
the temporal dependencies in fMRI time series from which FC structure is derived. Consequently,
selected core-sets may not transfer to ranking-based evaluation over large SPI suites (Liu et al.,
2024; Lee et al., 2024). Training-acceleration methods (Hong et al., 2024a; Killamsetty et al., 2021;
Mirzasoleiman et al., 2020; Wei et al., 2015) share the same single-model focus and thus do not
directly address our setting.

To our knowledge, SCLCS is among the first methods tailored for accelerating benchmarking of
FC operators (SPIs) via core-set selection. It uses the stability of learned synchronization structures
during training as a selection criterion, which is particularly natural for neuroimaging. While related
to graph structure learning (Li et al., 2023; Zhou et al., 2023; Zong et al., 2024), SCLCS treats
learned structure as a diagnostic probe rather than an inference output. We therefore do not review
general-purpose structure learning in depth.

3 PRELIMINARIES

Benchmarking FC modeling. The goal of FC benchmarking is to produce a principled ranking of
statistical pairwise interaction (SPI) operators from a set S . For a given fMRI dataset X , where each
sample X ∈ X is a matrix in RN×T , each operator S ∈ S maps X to an FC matrix S(X) ∈ RN×N .
An evaluation index, I : S → R, assigns a score to each SPI under a chosen evaluation protocol.
This process induces a ranking over all SPIs in S, which we denote as Rank(S,X ), to guide the
selection of a suitable SPI for subsequent analysis.

Core-set Selection for Benchmarking FC Modeling. Computing the full-dataset ranking
Rank(S,X ) is often computationally prohibitive. We therefore introduce the task of core-set selection
for benchmarking, which seeks to identify a small subset of samples Xc ⊂ X where |Xc| ≪ |X |
that acts as an efficient proxy. Formally, a high-quality core-set is the solution to the following
optimization problem:

X ∗
c = argmin

X ′⊂X , |X ′|=c

D
(
Rank(S,X ), Rank(S,X ′)

)
. (1)

where D(·, ·) is a ranking discrepancy metric (e.g., based on nDCG@k) and c is the core-set budget.
The goal is to preserve the full-dataset ranking while using only c samples.
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Directly optimizing this objective is intractable, as it requires exhaustively evaluating an exponential
number of subsets, with each evaluation incurring the very computational cost we aim to avoid. We
therefore propose a practical proxy: selecting a structurally representative subset. The core hypothesis
is that preserving the distribution of functional connectivity structures also preserves the SPI ranking.
Our SCLCS framework, detailed next, is designed to find such a subset.

4 METHOD

In this section, we introduce the detailed formulation of the proposed SCLCS. SCLCS consists
of four modules: (1) attention-based FC learning, (2) structural perturbation score calculation, (3)
structure-aware density-balanced sampling, and (4) contrastive learning.

4.1 ATTENTION-BASED FC LEARNING

To select a rank-preserving core-set, our framework first requires an encoder that can learn a general
and expressive representation of each sample’s FC structure. The self-attention mechanism within
Transformers is a natural candidate for this task, as it can model complex inter-regional relation-
ships (Vaswani et al., 2017). However, naïve fusion of multiple attention heads via uniform averaging
is insufficient, as it can obscure distinct structural patterns learned by individual heads Theorem 1
(proved in Appendix A).
Theorem 1 (Interference of Averaged Attention). Let {Ah}Hh=1 be row-stochastic attention matrices.
Assume disjoint structural masks: for each row i there exist pairwise-disjoint sets {S(i)

h }Hh=1 such
that Ah(i, j) = 0 for all j /∈ S

(i)
h . Let Ā := 1

H

∑H
h=1 Ah. Then for every row i:

supp
(
ā(i)

)
=

H⋃
h=1

S
(i)
h and H

(
ā(i)

)
> min

1≤h≤H
H
(
a
(i)
h

)
if {a(i)h }

H
h=1 are not all identical.

In particular, if H ≥ 2, naive averaging expands support beyond any single head’s mask and inflates
entropy, blurring head-specific structure.

Theorem 1 pertains strictly to the internal attention maps and explains the empirical failure of
directly applying the traditional Transformer on core-set selection for benchmarking FC modeling. It
motivates us to propose an adaptive fusion mechanism that aggregates head-specific attention matrices
via learnable weights. This modification is not merely an engineering choice: we prove it endows
the architecture with the power of a universal approximator for the class of continuous FC operators
as formalized in Theorem 2 (proved in Appendix B). This provides a theoretical foundation for its
ability to capture the diverse synchronization patterns required for our benchmarking task.
Theorem 2 (Universal Approximation of Continuous Stochastic SPIs1). Let X ⊂ RN×T be compact.
Let S : X → ∆N−1×N be continuous, where ∆N−1×N := {P ∈ RN×N : P1 = 1, P ≥ 0}
denotes the set of row-stochastic matrices. Consider the adaptive multi-head attention family

Aθ(X) :=

H∑
h=1

αh softmax
(

XWQ
h (WK

h )⊤X⊤

τ

)
, α ∈ ∆H−1, τ > 0, (2)

where softmax is applied row-wise. Then for every ε > 0 there exist H , τ , and parameters
{WQ

h ,W
K
h }Hh=1 and α such that

sup
X∈X

∥∥Aθ(X)− S(X)
∥∥
F
< ε. (3)

Our implementation is as follows: for each fMRI sample X ∈ RN×T , we treat the N ROIs as input
tokens, where each token has a feature dimension of T . Each attention head independently projects
queries and keys using learnable linear maps, parameterized by matrices WQ

h and WK
h :

Qh = XWQ
h , Kh = XWK

h , WQ
h ,W

K
h ∈ RD×d, h = 1, . . . ,H. (4)

1This statement is for continuous targets on compact domains. If an SPI uses discrete thresholds (hard masks),
the guarantee applies to any continuous relaxation (e.g., finite-temperature softmax / sigmoid gates) and then a
limiting argument is required to justify the hard-threshold limit.
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The attention matrix from head h is computed as:

Ah = softmax
(
QhK

⊤
h√

d

)
, Ah ∈ RN×N . (5)

Motivated by Theorem 1, uniform head averaging is a structural constraint: αh ≡ 1/H forces every
sample to use the same (high-entropy) centroid of head-wise attention patterns. By strict concavity of
Shannon entropy, this averaging inflates uncertainty and smears head-specific structure. Learnable
fusion weights α relax the constraint, enabling sparse/peaked mixtures (up to single-head selection)
to reduce interference while still combining complementary patterns. Thus the operator class strictly
expands: by Theorem 2, an adaptive fusion module can approximate continuous FC operator on
compact domains.

Thus, we propose a learnable fusion mechanism that aggregates head-specific attention matrices via
adaptive weights, formulated as:

A =

H∑
h=1

αhAh, with
H∑

h=1

αh = 1, αh ≥ 0, (6)

where the weight α is normalized via softmax. The resulting matrix A ∈ RN×N serves as
the operational definition of a sample’s FC structure, forming the basis for our selection criteria.
Importantly, we treat these attention maps as a normalized structural probe—a sample-specific proxy
for synchronization structure—not as an attempt to replicate the raw outputs of any particular SPI.

4.2 STRUCTURAL PERTURBATION SCORE (SPS)

Having established an encoder that is expressive enough to capture diverse FC structures, the next
challenge is to define a criterion for identifying the most fundamental samples for a robust benchmark.
Our central hypothesis is that samples representing common, foundational connectivity patterns will
induce stable structural representations during training, while noisy or atypical samples will cause
greater fluctuations. To quantify this phenomenon, we propose the Structural Perturbation Score
(SPS), a metric grounded in the principle that perturbation magnitude reflects structural heterogeneity
(Proposition 1).
Proposition 1 (Mixture-driven perturbation magnitude). Let S(1), . . . , S(K) ∈ RN×N be distinct
prototypes and Dkl := ∥S(k) − S(l)∥2F (Dkl > 0 for k ̸= l). Let (Ze)e≥1 be i.i.d. with Pr[Ze =

S(k)] = λk,
∑

k λk = 1, and define ∆e := ∥Ze − Ze−1∥2F .

Then
E[∆e] =

∑
k,l

λkλlDkl = 2
∑
k<l

λkλlDkl. (7)

With Dmin := mink<l Dkl and Dmax := maxk<l Dkl,

Dmin

(
1−

∑
k

λ2
k

)
≤ E[∆e] ≤ Dmax

(
1−

∑
k

λ2
k

)
. (8)

In particular, E[∆e] scales with the Gini impurity 1 −
∑

k λ
2
k up to constants set by prototype

separation. If Dkl ≡ D for all k ̸= l, then

E[∆e] = D
(
1−

∑
k

λ2
k

)
. (9)

(Proof in Appendix C.)

Proposition 1 indicates samples that are a purer representation of a single archetype will be more
stable (low SPS). The SPS for a sample X ∈ X is thus defined as the cumulative structural instability
across L training epochs:

SPS(X) =
1

L

L∑
e=1

∥∥∥A(e)
(X) −A

(e−1)
(X)

∥∥∥2
F
, (10)
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where A
(e)
(X) denotes the attention-based structure matrix of sample X ∈ X at training epoch

e ∈ {1, . . . , L} and || · ||F denotes the Frobenius norm. Specifically, A(e)
(X) is a proxy for structural

representation, not a proposed network model. In this way, SPS captures the structural volatility
of the sample-specific synchronization graph during training, not fidelity to any specific SPI. Our
rationale is that a robust and reliable benchmark is built upon foundational, structurally stable samples.
As supported by Proposition 1, low-SPS samples exhibit less internal structural conflict and thus
represent stable archetypes of functional connectivity. Therefore, our primary selection strategy is to
rank samples by their SPS and select those with the lowest SPS.

For SPS to be a reliable metric, however, we must ensure that it is a consistent estimator that does
not depend on the arbitrary length of the training process. Lemma 1 (in Appendix D) provides
this theoretical guarantee: Under stable perturbation dynamics, the assumptions of Lemma 1 are
satisfied. We used extensive grid search to find a configuration that achieves optimal performance
on the downstream ranking preservation task as detailed in Appendix M. Notably, the assumptions
of that configuration’s stationarity and ergodicity in Lemma 1 are empirically supported by our
convergence analysis in Appendix K.2, where we show that the perturbation dynamics stabilize as
the model converges. This standard procedure sufficiently validates the feasibility of SPS.

4.3 STRUCTURE-AWARE DENSITY-BALANCED SAMPLING

While selecting for structurally stable (low-SPS) samples provides a robust foundation, a naïve top-k
selection risks creating a core-set with low diversity by over-selecting from dense clusters of typical
patterns. This lack of diversity can cause the core-set benchmark to diverge from the full-dataset
ranking (Theorem 3).
Theorem 3 (Persistent bias of top-k selection). Let X contain two clusters Cp, Cq with proportions
πp, πq. Given x ∈ Cr (r ∈ {p, q}), let the score s(x) have continuous CDF Fr, and assume scores
are independent across samples. Select the k = ⌊ρN⌋ samples with the smallest scores (ρ ∈ (0, 1)),
and write π̂r := |Sk ∩ Cr|/k.

Let τ satisfy the mixture-quantile equation

πpFp(τ) + πqFq(τ) = ρ, (11)

and assume strict separation at τ :

γ := Fp(τ)− Fq(τ) > 0. (12)

Then

π̂p
Pr−→ πpFp(τ)

ρ
= πp + δ, π̂q

Pr−→ πqFq(τ)

ρ
= πq − δ, δ :=

πpπq

ρ
γ > 0. (13)

Consequently, the representation error ∆k := |π̂p − πp|+ |π̂q − πq| satisfies ∆k
Pr−→ 2δ > 0. (See

Appendix E.)

To explicitly balance stability with diversity, we introduce a density-aware sampling scheme, yielding
the SCLCSDense variant. This scheme first ensures robustness by retaining a pool of the most stable
samples (the bottom 1 − β quantile of SPS scores), then promotes diversity by applying Kernel
Density Estimation (KDE) (Węglarczyk, 2018) to up-weight samples from sparser regions within
that stable pool. This mitigates redundancy and ensures the core-set captures a broader range of
structurally distinct subtypes, which is crucial for including less common but potentially critical
neural patterns often associated with clinical biomarkers.

Specifically, given the set of SPS for all samples in X , we first discard the top β quantile of the most
unstable samples to form a stable candidate pool X̃ . This is formally defined as:

X̃ = {X ∈ X | SPS(X) ≤ Q1−β}, (14)

where Q1−β is the empirical quantile. On X̃ , we fit a Gaussian KDE to the empirical distribution of
{SPS(X) : X ∈ X̃}, and define the local density of a sample as the KDE evaluated at its SPS:

p̂SPS(s) = KDE
(
{SPS(X)}X∈X̃

)
, ρ(X) = p̂SPS

(
SPS(X)

)
. (15)
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To promote diversity, weights are set inversely proportional to ρ(X) and normalized over X̃ :

w(X) =
1

ρ(X) + ϵ
, w(X)← w(X)∑

X′∈X̃ w(X′)
. (16)

We then select m samples without replacement from X̃ using weights {w(X)}. This yields a
structurally diverse subset that up-weights samples in low-density regions of the SPS distribution
within the stable pool. Theoretical guarantees on coverage and benchmarking consistency are
demonstrated in Theorem 4 and Theorem 5, respectively (provided and proved in Appendix F
and Appendix G, respectively). Notably, this scheme is applicable to other score-based methods by
replacing SPS to different metrics as shown in Appendix J.

4.4 STRUCTURE-AWARE CONTRASTIVE LEARNING

To learn structural representations, we train the encoder with a structure-aware contrastive objective.
Motivated by FC evaluation practices that exploit inter-subject differences (Liu et al., 2025; Luppi
et al., 2024), we enforce consistency among samples drawn from the same subject within a scan
session. This identity-supervised setup encourages the model to capture stable, person-specific traits
(“brain fingerprints” (Lu et al., 2024)), providing a task-agnostic signal for structure-based selection.

First, to obtain a graph-level embedding for each sample, we compute node-level embeddings
Z ∈ RN×d by applying the learned attention matrix to the value embeddings and projecting the
result through a final linear layer. A global mean pooling is then applied to obtain the graph-level
embedding z ∈ Rd, which captures the sample’s global topological semantics and serves as input to
our contrastive loss:

Lcontrast =
1

|P|
∑

(i,j)∈P

− log
exp (sim(zi, zj)/τ)∑

k∈N (i) exp (sim(zi, zk)/τ)
, (17)

where sim(·, ·) is cosine similarity, τ is a temperature parameter, and the pairs are defined across a
batch. Positive pairs (i, j) ∈ P consist of two different temporal segments from the same subject,
while for a given anchor sample i, the negative sample k ∈ N (i) are all other samples in the batch
from different subjects. All the trainable parameters are optimized using Adam (Kingma & Ba, 2015).

5 EXPERIMENT

In this section, we present empirical results to validate our proposed framework. We first detail
the experimental settings and then present the main quantitative and qualitative results comparing
SCLCS to SOTA baselines. Due to space constraints, several important settings and supplemen-
tary analyses, including detailed experimental settings for reproduction (Appendix M), a detailed
computational cost breakdown (Appendix H), the effect of supervised information on baselines
(Appendix I), the application of our density-aware sampling to other baselines (Appendix J), empiri-
cal results (Appendix K) for supporting Theorem 2 and the assumptions in Lemma 1, and additional
generalization and robustness analysis (Appendix L).

5.1 EXPERIMENTAL SETTINGS

Data We validate our framework on the REST-meta-MDD dataset (Yan et al., 2019), a large-
scale, multi-site resting-state fMRI collection comprising 1,642 subjects from 17 sites. This highly
heterogeneous collection was released with a standardized preprocessing pipeline, providing a
rigorous testbed for core-set selection. For efficiency and consistency with prior work, we focus
on a subset of 904 subjects (Long et al., 2020). To capture dynamic patterns, each subject’s fMRI
record is segmented into overlapping temporal samples via a sliding window, yielding 4,520 samples.
Demographic statistics are in Table 1. Complete data and preprocessing details are in Appendix M.1.

Baselines Following the experimental setup in Hong et al. (2024b), we extend their comparison
with two additions (k-Means and BOSS), evaluating against 9 baselines in total: (1) Random; (2)
k-Means (Hartigan & Wong, 1979); (3) Forgetting score (Toneva et al., 2019); (4) Entropy (Coleman
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Table 1: Summary of the used subset of REST-meta-MDD.
Site #Samples #HC #MDD #Male #Female Age Range Education Range (Years)

15 335 37 30 26 41 19–65 5–21
17 410 41 41 27 55 18–30 9–17
19 245 31 18 19 30 18–51 5–15
20 2395 229 250 157 322 18–65 3–20
21 720 65 79 62 82 18–65 5–15
22 190 20 18 21 17 19–47 8–17
23 225 23 22 18 27 19–54 6–20

Overall 4520 458 446 330 574 18–65 3–21

et al., 2020); (5) EL2N (Paul et al., 2021); (6) AUM (Pleiss et al., 2020); (7) CCS (Zheng et al.,
2023); (8)EVA (Hong et al., 2024b);(9) BOSS (Acharya et al., 2024). The latter 7 of them are SOTA
methods designed for core-set selection. Detailed introduction is summarized in Appendix M.2.

Environment Experiments are performed on an 8-GPU (H20) high-performance computing cluster
provided by the Large-scale Instrument Sharing Platform of Southwest University.

Evaluation Protocol Our goal is to select a subset that preserves model ranking, not to train a
single predictive model. Therefore, our evaluation deviates from the standard train/test split. The
protocol is as follows: (1) Each method selects a core-set of a given size from the entire dataset. (2)
We then compute the SPI performance ranking on both the full dataset (ground truth) and the selected
core-set. (3) The quality of the core-set is measured by the consistency between these two rankings.

Task We use two distinct downstream tasks to evaluate SPI discriminability: brain fingerprinting
(distinguishing individuals based on subject ID), which probes for fine-grained, subject-specific
structures, and MDD diagnosis, which relies on cohort-level patterns.

Metrics We use two primary metrics. (1) Discriminability Score, a metric based on Spearman’s
rank correlation (Sedgwick, 2014) that quantifies the class separability (within- vs. between-class) of
the resulting FC matrices. (2) Ranking Consistency, the concordance between the full-dataset and
core-set SPI rankings using nDCG@5/10/20 (Wang et al., 2013).

5.2 QUANTITATIVE RESULTS

We present the primary quantitative results in Table 2 and Table 3. The evaluation includes SCLCS
(using low-SPS top-k selection), SCLCSDense (density-aware selection), and SPSMHA (a variant using
naïve attention averaging to empirically test Theorem 1).

Table 2: Performance of different methods on brain fingerprinting ranking task (mean ± std) and
nDCG@k is reported as percentage (×100).

Method nDCG@5 nDCG@10 nDCG@20
0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

Random 15.17±13.97 69.57±24.69 66.60±20.21 17.97±17.50 71.19±20.93 66.98±19.47 21.97±21.91 71.63±21.27 68.13±17.80
k-Means 17.32±11.53 65.72±12.25 67.29±11.41 21.23±15.32 64.35±14.83 63.37±9.92 22.15±15.19 62.58±19.22 66.78±15.28

Forgetting 14.41±7.84 54.43±13.26 43.36±3.35 15.49±7.83 48.57±7.85 49.87±4.66 20.23±7.21 55.80±6.72 49.70±4.60
Entropy 47.40±40.26 22.84±13.20 59.95±26.99 37.73±25.94 32.05±15.22 58.68±23.71 36.05±18.11 35.90±16.19 57.72±21.84
El2N 35.56±36.16 20.30±5.77 31.03±34.57 36.51±25.38 33.18±14.68 32.70±30.84 33.30±21.55 35.82±12.10 40.06±32.08
AUM 65.92±33.80 56.68±11.11 38.17±13.94 60.95±30.91 62.05±4.91 36.83±8.78 51.75±22.42 59.09±5.72 38.34±6.88
CCS 1.90±2.07 30.53±14.15 46.65±22.32 2.92±3.24 29.13±8.00 51.78±24.12 16.24±13.34 32.56±14.15 52.18±20.20
EVA 38.40±40.57 62.03±26.64 37.80±42.45 43.37±19.92 55.01±20.05 49.56±33.28 43.22±15.28 53.51±14.70 65.49±21.99
BOSS 15.98±25.58 42.11±24.33 35.36±9.21 29.44±11.05 40.57±23.37 39.15±6.71 31.45±9.45 38.24±19.65 38.92±5.97

SCLCS 81.21±2.86 50.24±13.16 72.68±20.83 66.54±1.10 49.45±14.18 71.86±4.35 57.46±0.52 53.40±16.27 70.13±1.57
SCLCSDense 35.73±31.18 79.18±6.29 51.54±13.83 35.84±28.43 73.45±1.42 50.54±15.16 41.03±35.89 72.96±3.35 55.43±13.64
SPSMHA 1.32±2.07 12.23±5.11 15.62±6.33 2.92±1.13 13.12±11.33 11.28±4.32 1.21±1.04 12.13±3.17 12.18±7.23

Brain Fingerprinting This task rewards subject-specific patterns, which aligns with our identity-
supervised objective. As shown in Table 2, SCLCS achieves stronger performance with lower
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variance at sampling ratios 0.1 and 0.5, suggesting that selecting structurally stable samples via
low-SPS top-k ranking is effective. In contrast, SPSMHA performs poorly, consistent with Theorem 1.
At the moderate ratio 0.3, SCLCS degrades, whereas SCLCSDense performs best. This pattern
supports Theorem 3: when stability ranking alone is insufficient, explicitly promoting structural
diversity provides a corrective signal.

Table 3: Performance of different methods on MDD diagnosis ranking task (mean ± std) and
nDCG@k is reported as percentage (×100).

Method nDCG@5 nDCG@10 nDCG@20
0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

Random 49.58±33.78 23.77±35.85 31.76±15.83 60.50±33.36 25.81±36.19 77.95±11.77 67.04±27.03 30.30±39.67 82.71±8.59
k-Means 51.32±17.47 32.45±33.46 37.33±17.20 30.18±12.65 40.47±14.81 43.75±22.84 28.62±14.33 37.87±14.77 79.83±5.24

Forgetting 28.70±28.06 41.60±28.08 61.42±4.31 40.56±28.06 50.27±32.37 66.72±8.60 44.37±28.07 57.02±33.39 75.70±7.58
Entropy 29.00±45.10 31.84±46.19 57.48±29.81 29.17±43.24 40.75±44.05 63.23±23.44 30.30±43.52 45.85±45.00 70.79±18.00
El2N 30.93±41.17 51.70±28.14 68.85±12.46 36.05±24.41 58.54±27.55 72.96±15.77 41.04±39.61 64.68±26.25 78.85±14.56
AUM 36.07±12.59 42.68±46.16 35.49±14.37 39.17±14.58 44.41±44.05 58.14±16.54 44.94±18.48 48.44±42.48 64.36±14.40
CCS 55.95±16.28 59.92±30.08 74.73±12.46 59.25±16.26 67.01±24.61 75.41±18.08 68.98±15.67 71.62±21.15 78.77±13.49
EVA 31.80±17.70 66.81±9.12 70.07±6.05 36.11±14.79 72.61±8.73 76.26±6.17 48.39±19.48 75.34±8.48 81.73±5.61
BOSS 42.44±24.37 57.52±20.11 79.57±16.62 50.64±25.12 64.86±21.86 84.70±14.07 58.11±23.22 71.36±18.94 88.95±9.49

SCLCS 48.38±23.00 70.27±23.27 64.18±25.98 50.59±21.72 73.86±15.67 66.15±21.96 61.12±16.75 76.89±9.86 68.43±17.52
SCLCSDense 57.29±24.07 74.62±18.02 81.87±9.68 64.34±16.97 77.52±17.18 86.25±7.22 69.84±14.71 82.70±11.04 89.45±6.81
SPSMHA 19.13±15.36 26.82±16.34 27.45±19.31 20.13±12.27 22.75±14.33 23.19±13.22 25.73±11.92 17.85±12.03 20.73±14.90

MDD Diagnosis This cohort-level task requires broader structural coverage than fingerprinting. As
shown in Table 3, SCLCSDense achieves superior performance with lower variance across sampling
ratios and evaluation depths, highlighting the benefit of density-aware sampling for capturing diverse
patterns in group-comparison benchmarking. In this setting, the standard SCLCS (top-k) is less
effective, suggesting that the best sampling strategy depends on the task’s structural demands. Finally,
simpler heuristics such as k-Means and class-imbalance–prone criteria such as Entropy (Figure 2)
perform less competitively, reinforcing the need for structure-aware selection.

The behavior of the Random baseline suggests that ranking-preserving selection differs from tradi-
tional single-model core-set objectives, and that methods designed for the latter may not transfer well.
The non-monotonic trend (30% < 10%) observed for SCLCS and SCLCSDense is consistent with The-
orem 3, indicating that naïve score-based top-k sampling can be brittle: it may over-represent dense
clusters of typical patterns while missing rarer but important structures. This motivates SCLCSDense,
which mitigates this failure mode via density-aware sampling.

Table 4: Empirical validation of Theorem 2. Our modified Transformer approximates a diverse set
of SPIs. The model demonstrates effective fitting and generalization.

SPI Operator Train MSE (Start) Train MSE (End) Test MSE SPI Operator Train MSE (Start) Train MSE (End) Test MSE
pec_orth 0.0605 0.0584 0.0584 plv_multitaper_mean 0.3122 0.0588 0.0585
phase_multitaper_mean 0.0295 0.0264 0.0265 cohmag_multitaper_max 0.5721 0.0055 0.0057
pli_multitaper_mean 0.0239 0.0221 0.0222 te_kernel 0.8513 0.0181 0.0182
wpli_multitaper_mean 0.0237 0.0221 0.0222 bary_euclidean_max 1.9840 0.1164 0.1153
psi_wavelet_max 6.0959 3.5522 3.5789 xme_gaussian 0.9223 0.0155 0.0158
ppc_multitaper_mean 0.2082 0.1391 0.1382 je_kernel 7.5831 0.1021 0.1025
gwtau 6.4630 1.8087 1.8124 ce_kernel 0.9243 0.0141 0.0144
icoh_multitaper_mean 0.0797 0.0206 0.0206 lcss_constraint 0.2608 0.0020 0.0020

Empirical Validation of Theorem 2 To empirically test the approximation capacity implied by
Theorem 2, we train our modified Transformer to approximate the FC matrices produced by 16
representative SPI operators selected from the taxonomy of Cliff et al. (2023). For each target SPI,
we train a separate model on fMRI time series by minimizing the mean squared error (MSE) to the
SPI-generated FC matrices. Table 4 shows low final test MSE across all 16 targets, indicating that the
model can closely approximate a diverse set of SPIs. Approximation fidelity varies by SPI, but the
overall trend supports Theorem 2.

Together, Theorem 2 and Table 4 suggest that the architecture is expressive enough to serve as a
structural probe for fMRI time series. Small approximation errors (e.g., imperfect emulation of
discrete statistical tests) need not invalidate our stability signal: SPS aims to distinguish structurally
stable samples (low SPS) from unstable ones (high SPS), rather than to maximize approximation
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fidelity. Quantifying how approximation error propagates to ranking preservation is an important
direction for future work. Full details and convergence curves are provided in Appendix K.1.

Figure 2: Sample coverage balance on subjects and MDD/HC of baselines.

Sample Coverage Balance Analysis Beyond performance, we assess the reliability and repre-
sentativeness of selection by analyzing sample coverage balance (Figure 2). We introduce two
metrics: S-I Balance (selected samples per subject, lower indicates broader subject coverage) and
M-H Balance (MDD-to-HC ratio; deviation from 1 indicates class imbalance). As shown in Figure 2,
SCLCS and SCLCSDense maintain balanced coverage with low variance on both metrics, whereas
several baselines are unstable. Entropy is particularly sensitive to class-label effects, selecting almost
exclusively MDD subjects at low ratios. This produces a skewed, unrepresentative core-set and can
make downstream benchmarking misleading, highlighting the risk of naïve score-based selection.

5.3 QUALITATIVE RESULTS: VISUALIZING SPS DYNAMICS

To provide an intuitive check of the SPS metric, we visualize the evolution of the learned attention
map Ae

(X) over the early training epochs e. While the results in Appendix K indicate that attention
maps typically stabilize after ∼ 50 epochs, Figure 3 shows that the stabilization dynamics vary across
samples: a low-SPS sample (top row) rapidly converges to a stable structural pattern, whereas a
high-SPS sample (bottom row) exhibits sustained fluctuations. These observations suggest that SPS
reflects a stable, sample-specific property rather than transient optimization noise, supporting its use
for identifying foundational samples for benchmarking.

Figure 3: The evolution of the learned attention map Ae
(X) across training epochs.

6 CONCLUSION

In this work, we address the computational bottleneck of large-scale FC operator (SPI) benchmarking
by casting core-set selection as a ranking-preservation task. Our key technical contributions are:
(1) A modified Transformer architecture with a universal approximation guarantee for continuous
SPI mappings under our assumptions. (2) The SPS metric to identify structurally stable samples.
(3) The SCLCS framework, which outperforms 9 baselines in ranking-preservation evaluation. By
accelerating FC benchmarking, SCLCS makes large-scale, pre-analysis SPI comparisons practical
and supports more reproducible computational neuroscience.
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REPRODUCIBILITY STATEMENT

To ensure our research is fully reproducible, we have made our code, data sources, and experimental
details available as follows:

• Code: The complete source code for our SCLCS framework and all experiments is publicly
available on https://github.com/lzhan94swu/SCLCS.

• Dataset and Preprocessing: The REST-meta-MDD (Yan et al., 2019) dataset is publicly ac-
cessible at https://rfmri.org/REST-meta-MDD. Our detailed data preprocessing
pipeline is described in Appendix M.1.

• External Libraries: Our analysis relies on the pyspi library (Cliff et al., 2023), which
is publicly available at https://github.com/DynamicsAndNeuralSystems/
pyspi. The specific criteria used to select SPIs for our benchmark are detailed in Ap-
pendix H.

• Experimental Settings: A summary of the experimental setup is presented in Section 5.1,
with a comprehensive breakdown of all parameters and configurations available in Ap-
pendix M.

• Theoretical Proofs: Complete proofs for all theorems, propositions, and lemmas presented
in this paper can be found in Appendix A–G.

ETHICS STATEMENT

Our work provides a framework for evaluating and selecting computational models used in neu-
roimaging analysis, which can be applied to clinical tasks such as disease diagnosis. Therefore,
it is important to consider the potential societal impacts of the models ultimately chosen via our
benchmarking process. A potential negative impact could arise if a core-set, while efficient, is not
perfectly representative of the full dataset’s diversity, leading to the selection of a model that is biased
or performs suboptimally on underrepresented demographic or clinical groups. To mitigate this, we
emphasize that our framework is a tool for pre-clinical scientific validation. Any model selected
using our approach for real-world medical scenarios must undergo its own rigorous, independent
clinical validation, and the final diagnostic decision must always remain with a qualified physician.
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A PROOF OF THEOREM 1

Theorem (Interference of Averaged Attention, full version). Let {Ah}Hh=1 be a collection of row
stochastic2 attention matrices with Ah ∈ RN×N . For every row index i ∈ {1, . . . , N} assume there
exist sets S(i)

h ⊆ {1, . . . , N} that are pairwise disjoint, meaning S
(i)
h ∩ S

(i)
h′ = ∅ for all h ̸= h′, and

such that
Ah(i, j) = 0 for all j /∈ S

(i)
h .

Define the uniform average Ā := 1
H

∑H
h=1 Ah. Then for every row i:

(a) Support expansion. supp(ā(i)) =
⋃H

h=1 S
(i)
h . If H ≥ 2, then for every h, supp(ā(i)) ̸⊆

S
(i)
h .

(b) Entropy inflation. WithH(p) := −
∑N

j=1 pj log pj ,

H
(
ā(i)

)
≥ 1

H

H∑
h=1

H
(
a
(i)
h

)
≥ min

1≤h≤H
H
(
a
(i)
h

)
,

and strict inequality holds whenever the vectors {a(i)h }Hh=1 are not all identical. In particular,
under the disjoint mask assumption, strict inequality holds for every i whenever H ≥ 2.

Proof. Fix a row index i and write ph := a
(i)
h ∈ ∆N−1. By definition,

p̄ := ā(i) =
1

H

H∑
h=1

ph, p̄j =
1

H

H∑
h=1

(ph)j .

(a) Support expansion. All entries are nonnegative, so p̄j > 0 if and only if there exists a head h

with (ph)j > 0. Under the masking assumption, (ph)j > 0 implies j ∈ S
(i)
h . Conversely, since each

ph is a probability vector supported on S
(i)
h , every j ∈ S

(i)
h with nonzero mass in head h contributes

a positive term to p̄j . Therefore,

supp(p̄) =

H⋃
h=1

supp(ph) ⊆
H⋃

h=1

S
(i)
h .

Moreover, because ph is row stochastic and supported inside S
(i)
h , we have supp(ph) ̸= ∅ and

supp(ph) ⊆ S
(i)
h , so supp(p̄) equals the union of the head supports and is contained in the union of

the masks. If, as in the theorem statement, the intended structural supports are exactly the mask sets

2Each row is a probability distribution produced by a softmax: Ah(i, j) ≥ 0 and
∑N

j=1 Ah(i, j) = 1.
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(that is, the mask defines which indices can receive positive mass), then supp(ph) = S
(i)
h and hence

supp(p̄) =
⋃H

h=1 S
(i)
h . When H ≥ 2 and the sets {S(i)

h }Hh=1 are pairwise disjoint, the union strictly
contains each S

(i)
h , so supp(p̄) ̸⊆ S

(i)
h for every h.

(b) Entropy inflation. The Shannon entropy H is strictly concave on the probability simplex. By
Jensen’s inequality,

H(p̄) ≥ 1

H

H∑
h=1

H(ph) ≥ min
1≤h≤H

H(ph),

and the first inequality is strict unless p1 = · · · = pH . Under the disjoint mask assumption with
H ≥ 2, the vectors cannot all be identical: if ph = ph′ for some h ̸= h′, then their supports coincide
and are nonempty, so S

(i)
h ∩ S

(i)
h′ ̸= ∅, contradicting disjointness. Hence p1, . . . ,pH are not all

identical, soH(p̄) > 1
H

∑H
h=1H(ph) and thereforeH(p̄) > minhH(ph).

Together, (a) and (b) show that uniform averaging introduces additional nonzero entries and increases
entropy, which blurs head specific structural patterns.

B PROOF OF THEOREM 2

Proof. We use an existing attention-only universal approximation result as the main engine and then
specialize it to row-stochastic matrix-valued targets.

Step 1 (Reduce to sequence-to-sequence approximation). View X ∈ RN×T as a length-N
sequence with token dimension T . Likewise, view S(X) ∈ RN×N as a length-N sequence of row
vectors in RN . Since X is compact and S is continuous, this is a continuous sequence-to-sequence
map on a compact domain.

Step 2 (Attention-only universality on compact sets). Recent results show that (softmax-
)attention-only architectures with linear projections are universal approximators for continuous
sequence-to-sequence maps on compact domains (Hu et al., 2025). In particular, attention modules
can simulate piecewise-linear bases and hence achieve uniform approximation without requiring
feed-forward sublayers. We invoke such a theorem.

Step 3 (Constrain the output to be row-stochastic). Our target operator satisfies S(X) ∈
∆N−1×N for all X. The model family in equation 2 is also row-stochastic by construction: each
head output is row-stochastic (row-wise softmax), and the convex mixture with α ∈ ∆H−1 preserves
row-stochasticity. Therefore the approximating attention-only construction can be chosen to lie
entirely inside ∆N−1×N .

Step 4 (Uniform approximation in Frobenius norm). The cited attention-only universality
provides uniform approximation in a sup norm over the compact domain. Since ∥·∥F ≤

√
N∥·∥∞,∞,

the same parameter choice yields
sup
X∈X

∥∥Aθ(X)− S(X)
∥∥
F
< ε

after tightening constants.

This completes the proof.

C PROOF OF PROPOSITION 1

Proof. Because Ze and Ze−1 are i.i.d.,

E[∆e] =

K∑
k=1

K∑
l=1

Pr[Ze = S(k), Ze−1 = S(l)] ∥S(k) − S(l)∥2F

=

K∑
k=1

K∑
l=1

λkλlDkl,
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which gives the first equality in equation 7. Since Dkk = 0 and Dkl = Dlk,

K∑
k=1

K∑
l=1

λkλlDkl = 2
∑
k<l

λkλlDkl,

proving the second equality in equation 7.

For the bounds equation 8, note that for all k < l, Dmin ≤ Dkl ≤ Dmax, hence

2Dmin

∑
k<l

λkλl ≤ 2
∑
k<l

λkλlDkl ≤ 2Dmax

∑
k<l

λkλl.

Finally,

2
∑
k<l

λkλl =
( K∑
k=1

λk

)2

−
K∑

k=1

λ2
k = 1−

K∑
k=1

λ2
k,

which is the Gini impurity of {λk}. This yields equation 8.

If Dkl ≡ D for all k ̸= l, then equation 7 becomes

E[∆e] = 2D
∑
k<l

λkλl = D
(
1−

K∑
k=1

λ2
k

)
,

establishing equation 9.

D LEMMA 1 AND PROOF

Lemma 1 (Consistency of SPS). Let {A(e)
(X)}e≥0 be the sequence of attention-based structure

matrices for a fixed sample X generated by a stochastic optimization algorithm. Assume the sequence
of differences

∆e(X) =
∥∥A(e)

(X) −A
(e−1)
(X)

∥∥2
F

(18)

forms a stationary and ergodic process with finite mean σ2(X) = E[∆e(X)]. Then the empirical SPS
estimator

ŜPSL(X) =
1

L

L∑
e=1

∆e(X) (19)

converges almost surely to σ2(X) as L→∞: ŜPSL(X) −→ σ2(X) a.s.

Proof. Because {∆e(X)} is assumed stationary and ergodic with finite first moment, Birkhoff’s
pointwise ergodic theorem (Birkhoff, 1931) applies:

1

L

L∑
e=1

∆e(X)
a.s.−−→ E[∆e(X)] = σ2(X). (20)

But the left–hand side is precisely ŜPSL(X). Hence the estimator is strongly consistent.

E PROOF OF THEOREM 3

Proof. Write the scores as {si}Ni=1 and let s(k) be the k-th order statistic. Equivalently, Sk = {xi :
si ≤ s(k)} up to tie-breaking on a null event (because the score distributions are continuous).

Step 1: Identify the population selection threshold. Let τ satisfy equation 11. Intuitively, τ is the
population score threshold whose expected accepted fraction is ρ:

E
[ 1

N

N∑
i=1

1{si ≤ τ}
]
= πpFp(τ) + πqFq(τ) = ρ.
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Step 2: The empirical threshold concentrates. Define the empirical accepted fraction at threshold
t:

GN (t) :=
1

N

N∑
i=1

1{si ≤ t}.

Because scores are independent across samples and each indicator is bounded, a standard concen-
tration argument (e.g., Hoeffding) yields that GN (t) concentrates uniformly on compact intervals
around its mean G(t) := πpFp(t)+πqFq(t). Since Fp, Fq are continuous and G is strictly increasing
at τ (under mild regularity), it follows that the empirical quantile s(k) converges in probability to τ :

s(k)
Pr−−−−→

N→∞
τ. (21)

Step 3: Selected cluster counts converge to their expectations. Conditional on s(k), the number
of selected points from cluster Cp is

|Sk ∩ Cp| =
∑
x∈Cp

1{s(x) ≤ s(k)}.

Given s(k), the indicators in the sum are i.i.d. Bernoulli with parameter Fp(s(k)), so by the law of
large numbers (and Slutsky using equation 21),

|Sk ∩ Cp|
np

Pr−→ Fp(τ). (22)

Similarly,
|Sk ∩ Cq|

nq

Pr−→ Fq(τ). (23)

Step 4: Convert to selected proportions and compute the bias. Divide equation 22 by k/N → ρ:

π̂p(Sk) =
|Sk ∩ Cp|

k
=
|Sk ∩ Cp|/N

k/N
=

(np/N) · (|Sk ∩ Cp|/np)

k/N

Pr−→ πpFp(τ)

ρ
.

Using equation 11, we compute

πpFp(τ)

ρ
−πp = πp

(Fp(τ)− ρ

ρ

)
= πp

(Fp(τ)− πpFp(τ)− πqFq(τ)

ρ

)
=

πpπq

ρ

(
Fp(τ)−Fq(τ)

)
.

Under equation 12, this equals δ :=
πpπq

ρ γ > 0, establishing the first limit in equation 13. The

statement for π̂q(Sk) follows since π̂q(Sk) = 1− π̂p(Sk), and then ∆k = 2|π̂p(Sk)− πp|
Pr−→ 2δ >

0.

F THEOREM 4 AND PROOF

Theorem 4 (ε-coverage of density-reweighted sampling). Fix 0 < δ < 1 and ε > 0. Let X̃c be the
candidate pool with n = |X̃c|, and let S ⊂ X̃c be the subset of size m returned by the proposed
sampling procedure. Let Nε be the ε-covering number of Xc under d(A,A′) = ∥A−A′∥F . Under
Assumption 1, if

m ≥ n(ρmax + τ)

ρmin + τ

(
logNε + log(1/δ)

)
, (24)

then S is an ε-cover of Xc with probability at least 1− δ.

Define the structure-representation space (M, d) with metric d(A,A′) = ∥A−A′∥F . For ε > 0 let
Nε be the covering number of Xc ⊂M. That is, the smallest number of closed d-balls of radius ε
needed to cover all subjects in Xc.
Assumption 1. After the β-filter step, define the KDE-induced density ρ(X) := p̂SPS

(
SPS(X)

)
,

where p̂SPS is a Gaussian KDE fit on {SPS(X) : X ∈ X̃c}. Assume the estimator is bounded on the
candidate pool: 0 < ρmin ≤ ρ(X) ≤ ρmax <∞ for every X ∈ X̃c.
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Assumption 1 is mild because Gaussian KDE with finite bandwidth produces a bounded, strictly
positive estimate on any finite sample.

Proof. Define the (normalized) sampling weight for X ∈ X̃c as

w(X) =

1
ρ(X)+τ∑

Z∈X̃c

1
ρ(Z)+τ

. (25)

By Assumption 1, for all X, 1
ρ(X)+τ ≥

1
ρmax+τ and

∑
Z

1
ρ(Z)+τ ≤

n
ρmin+τ . Hence every point has

weight bounded below by

w(X) ≥ 1/(ρmax + τ)

n/(ρmin + τ)
=

ρmin + τ

n(ρmax + τ)
=: wmin. (26)

Let {B1, . . . , BNε} be a collection of closed d-balls of radius ε covering Xc. Since Xc ⊆ X̃c,
each Bj contains at least one candidate point. Therefore its total sampling mass satisfies Wj :=∑

X∈Bj∩X̃c
w(X) ≥ wmin.

Consider sequential sampling without replacement where at each draw we sample from the remaining
points proportionally to their weights (renormalized). If we have not yet sampled from Bj , then
removing points outside Bj can only increase the renormalized mass of Bj ; thus, at every draw the
conditional probability of selecting a point outside Bj is at most 1−Wj ≤ 1− wmin. Therefore

Pr[Bj ∩ S = ∅] ≤ (1− wmin)
m ≤ exp(−wminm). (27)

Choose m so that exp(−wminm) ≤ δ/Nε, i.e. m ≥ 1
wmin

(logNε + log(1/δ)). A union bound over
the Nε balls yields Pr[∃j : Bj ∩ S = ∅] ≤ δ. Hence with probability at least 1 − δ, every ball
contains at least one sampled point, so S is an ε-cover of Xc.

G THEOREM 5 AND PROOF

Theorem 5 (Expectation discrepancy under ε-coverage). Let (M, d) be the structure-representation
space with d(A,A′) = ∥A−A′∥F and representation map X 7→ A(X) ∈M. Let P be a probability
distribution supported on X . Assume X̃ ⊂ X is an ε-cover of X inM: for every X ∈ X there exists
X̃ ∈ X̃ with d(A(X),A(X̃)) ≤ ε.

Let π : X → X̃ be any (measurable) selection satisfying d(A(X),A(π(X))) ≤ ε for all X, and
define the push-forward measure Pπ := P ◦ π−1 on X̃ . Then for any function f : X → R that is
L-Lipschitz w.r.t. d, ∣∣EX∼P

[
f(X)

]
− EX∼Pπ

[
f(X)

]∣∣ ≤ Lε. (28)

Proof. Because f is L-Lipschitz w.r.t. d, for every X ∈ X ,∣∣f(X)− f(π(X))
∣∣ ≤ Ld

(
A(X),A(π(X))

)
≤ Lε.

Taking expectation under P and using Jensen/triangle inequality,∣∣EX∼P

[
f(X)

]
− EX∼P

[
f(π(X))

]∣∣ ≤ EX∼P

[
|f(X)− f(π(X))|

]
≤ Lε.

Finally, by definition of the push-forward measure Pπ ,

EX∼P

[
f(π(X))

]
= EX∼Pπ

[
f(X)

]
.

Combining completes the proof.
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Figure A1: Time consumption of different SPIs on a single sample.

Table A1: SPIs included in pyspi (bolded ones are used in this paper).
cov_EllipticEnvelope cov_GraphicalLasso cov_LedoitWolf cov_MinCovDet
cov_OAS cov_ShrunkCovariance cov-sq_EmpiricalCovariance cov-sq_EllipticEnvelope
cov-sq_GraphicalLasso cov-sq_LedoitWolf cov-sq_MinCovDet cov-sq_OAS
cov_PearsonCorrelation cov-sq_ShrunkCovariance prec_EmpiricalCovariance prec_EllipticEnvelope
prec_GraphicalLasso prec_LedoitWolf prec_MinCovDet prec_OAS
prec_ShrunkCovariance prec-sq_EmpiricalCovariance prec-sq_EllipticEnvelope prec-sq_GraphicalLasso
prec-sq_LedoitWolf prec-sq_MinCovDet prec-sq_OAS prec-sq_ShrunkCovariance
kendalltau-sq kendalltau xcorr_max_sig-True xcorr-sq_max_sig-True
xcorr_mean_sig-True xcorr-sq_mean_sig-True xcorr_mean_sig-False xcorr-sq_mean_sig-False
pdist_cityblock pdist_cosine pdist_chebyshev pdist_canberra
pdist_braycurtis lcss_constraint-sakoe-chiba bary_euclidean_mean bary_euclidean_max
bary-sq_euclidean_mean bary-sq_euclidean_max gwtau je_kernel_W-0.5
ce_gaussian ce_kernel_W-0.5 xme_gaussian_k1 xme_gaussian_k10
mi_gaussian tlmi_gaussian te_kernel_W-0.25_k-1 gc_gaussian_k-max-10_tau-max-2
gc_gaussian_k-1_kt-1_l-1_lt-1 te_symbolic_k-1_kt-1_l-1_lt-1 te_symbolic_k-10_kt-1_l-1_lt-1 phase_multitaper_mean_fs-1_fmin-0_fmax-0-5
phase_multitaper_mean_fs-1_fmin-0_fmax-0-25 phase_multitaper_mean_fs-1_fmin-0-25_fmax-0-5 phase_multitaper_max_fs-1_fmin-0_fmax-0-5 phase_multitaper_max_fs-1_fmin-0_fmax-0-25
phase_multitaper_max_fs-1_fmin-0-25_fmax-0-5 cohmag_multitaper_mean_fs-1_fmin-0_fmax-0-5 cohmag_multitaper_mean_fs-1_fmin-0_fmax-0-25 cohmag_multitaper_mean_fs-1_fmin-0-25_fmax-0-5
cohmag_multitaper_max_fs-1_fmin-0_fmax-0-5 cohmag_multitaper_max_fs-1_fmin-0_fmax-0-25 cohmag_multitaper_max_fs-1_fmin-0-25_fmax-0-5 icoh_multitaper_mean_fs-1_fmin-0_fmax-0-5
icoh_multitaper_mean_fs-1_fmin-0_fmax-0-25 icoh_multitaper_mean_fs-1_fmin-0-25_fmax-0-5 icoh_multitaper_max_fs-1_fmin-0_fmax-0-5 icoh_multitaper_max_fs-1_fmin-0_fmax-0-25
icoh_multitaper_max_fs-1_fmin-0-25_fmax-0-5 psi_multitaper_mean_fs-1_fmin-0_fmax-0-5 psi_multitaper_mean_fs-1_fmin-0_fmax-0-25 psi_multitaper_mean_fs-1_fmin-0-25_fmax-0-5
plv_multitaper_mean_fs-1_fmin-0_fmax-0-5 plv_multitaper_mean_fs-1_fmin-0_fmax-0-25 plv_multitaper_mean_fs-1_fmin-0-25_fmax-0-5 plv_multitaper_max_fs-1_fmin-0_fmax-0-5
plv_multitaper_max_fs-1_fmin-0_fmax-0-25 plv_multitaper_max_fs-1_fmin-0-25_fmax-0-5 pli_multitaper_mean_fs-1_fmin-0_fmax-0-5 pli_multitaper_mean_fs-1_fmin-0_fmax-0-25
pli_multitaper_mean_fs-1_fmin-0-25_fmax-0-5 pli_multitaper_max_fs-1_fmin-0_fmax-0-5 pli_multitaper_max_fs-1_fmin-0_fmax-0-25 pli_multitaper_max_fs-1_fmin-0-25_fmax-0-5
wpli_multitaper_mean_fs-1_fmin-0_fmax-0-5 wpli_multitaper_mean_fs-1_fmin-0_fmax-0-25 wpli_multitaper_mean_fs-1_fmin-0-25_fmax-0-5 wpli_multitaper_max_fs-1_fmin-0_fmax-0-5
wpli_multitaper_max_fs-1_fmin-0_fmax-0-25 wpli_multitaper_max_fs-1_fmin-0-25_fmax-0-5 dspli_multitaper_mean_fs-1_fmin-0_fmax-0-5 dspli_multitaper_mean_fs-1_fmin-0_fmax-0-25
dspli_multitaper_mean_fs-1_fmin-0-25_fmax-0-5 dspli_multitaper_max_fs-1_fmin-0_fmax-0-5 dspli_multitaper_max_fs-1_fmin-0_fmax-0-25 dspli_multitaper_max_fs-1_fmin-0-25_fmax-0-5
dswpli_multitaper_mean_fs-1_fmin-0_fmax-0-5 dswpli_multitaper_mean_fs-1_fmin-0_fmax-0-25 dswpli_multitaper_mean_fs-1_fmin-0-25_fmax-0-5 dswpli_multitaper_max_fs-1_fmin-0_fmax-0-5
dswpli_multitaper_max_fs-1_fmin-0_fmax-0-25 dswpli_multitaper_max_fs-1_fmin-0-25_fmax-0-5 ppc_multitaper_mean_fs-1_fmin-0_fmax-0-5 ppc_multitaper_mean_fs-1_fmin-0_fmax-0-25
ppc_multitaper_mean_fs-1_fmin-0-25_fmax-0-5 ppc_multitaper_max_fs-1_fmin-0_fmax-0-5 ppc_multitaper_max_fs-1_fmin-0_fmax-0-25 ppc_multitaper_max_fs-1_fmin-0-25_fmax-0-5
gd_multitaper_delay_fs-1_fmin-0_fmax-0-5 gd_multitaper_delay_fs-1_fmin-0-25_fmax-0-5 sgc_parametric_mean_fs-1_fmin-0_fmax-0-25_order-1 sgc_parametric_max_fs-1_fmin-1e-05_fmax-0-5_order-1
psi_wavelet_mean_fs-1_fmin-0_fmax-0-25_mean psi_wavelet_mean_fs-1_fmin-0-25_fmax-0-5_mean psi_wavelet_max_fs-1_fmin-0_fmax-0-5_max psi_wavelet_max_fs-1_fmin-0_fmax-0-25_max
psi_wavelet_max_fs-1_fmin-0-25_fmax-0-5_max pec pec_orth pec_log
pec_orth_log pec_orth_abs pec_orth_log_abs cov_GraphicalLassoCV
cov-sq_GraphicalLassoCV prec_GraphicalLassoCV prec-sq_GraphicalLassoCV spearmanr-sq
spearmanr pdist_euclidean dcorr dcorr_biased
mgc hsic hsic_biased hhg
mgcx_maxlag-1 mgcx_maxlag-10 dcorrx_maxlag-1 dcorrx_maxlag-10
dtw dtw_constraint-itakura dtw_constraint-sakoe-chiba softdtw
softdtw_constraint-itakura softdtw_constraint-sakoe-chiba lcss lcss_constraint-itakura
bary_dtw_mean bary_dtw_max bary_sgddtw_mean bary_sgddtw_max
bary_softdtw_mean bary_softdtw_max bary-sq_dtw_mean bary-sq_dtw_max
bary-sq_sgddtw_mean bary-sq_sgddtw_max bary-sq_softdtw_mean bary-sq_softdtw_max
anm cds reci igci
ccm_E-None_mean ccm_E-None_max ccm_E-None_diff ccm_E-1_mean
ccm_E-1_max ccm_E-1_diff ccm_E-10_mean ccm_E-10_max
ccm_E-10_diff je_gaussian je_kozachenko ce_kozachenko
cce_gaussian cce_kozachenko cce_kernel_W-0.5 xme_kozachenko_k1
xme_kernel_W-0.5_k1 xme_kozachenko_k10 xme_kernel_W-0.5_k10 di_gaussian
di_kozachenko di_kernel_W-0.5 si_gaussian_k-1 si_kozachenko_k-1
si_kernel_W-0.5_k-1 mi_kraskov_NN-4 mi_kraskov_NN-4_DCE mi_kernel_W-0.25
tlmi_kraskov_NN-4 tlmi_kraskov_NN-4_DCE tlmi_kernel_W-0.25 te_kraskov_NN-4_k-max-10_tau-max-4
te_kraskov_NN-4_DCE_k-max-10_tau-max-4 te_kraskov_NN-4_DCE_k-2_kt-1_l-1_lt-1 te_kraskov_NN-4_DCE_k-1_kt-1_l-1_lt-1 te_kraskov_NN-4_k-1_kt-1_l-1_lt-1
phi_star_t-1_norm-0 phi_star_t-1_norm-1 phi_Geo_t-1_norm-0 phi_Geo_t-1_norm-1
dtf_multitaper_mean_fs-1_fmin-0_fmax-0-5 dtf_multitaper_mean_fs-1_fmin-0_fmax-0-25 dtf_multitaper_mean_fs-1_fmin-0-25_fmax-0-5 dtf_multitaper_max_fs-1_fmin-0_fmax-0-5
dtf_multitaper_max_fs-1_fmin-0_fmax-0-25 dtf_multitaper_max_fs-1_fmin-0-25_fmax-0-5 dcoh_multitaper_mean_fs-1_fmin-0_fmax-0-5 dcoh_multitaper_mean_fs-1_fmin-0_fmax-0-25
dcoh_multitaper_mean_fs-1_fmin-0-25_fmax-0-5 dcoh_multitaper_max_fs-1_fmin-0_fmax-0-5 dcoh_multitaper_max_fs-1_fmin-0_fmax-0-25 dcoh_multitaper_max_fs-1_fmin-0-25_fmax-0-5
pdcoh_multitaper_mean_fs-1_fmin-0_fmax-0-5 pdcoh_multitaper_mean_fs-1_fmin-0_fmax-0-25 pdcoh_multitaper_mean_fs-1_fmin-0-25_fmax-0-5 pdcoh_multitaper_max_fs-1_fmin-0_fmax-0-5
pdcoh_multitaper_max_fs-1_fmin-0_fmax-0-25 pdcoh_multitaper_max_fs-1_fmin-0-25_fmax-0-5 gpdcoh_multitaper_mean_fs-1_fmin-0_fmax-0-5 gpdcoh_multitaper_mean_fs-1_fmin-0_fmax-0-25
gpdcoh_multitaper_mean_fs-1_fmin-0-25_fmax-0-5 gpdcoh_multitaper_max_fs-1_fmin-0_fmax-0-5 gpdcoh_multitaper_max_fs-1_fmin-0_fmax-0-25 gpdcoh_multitaper_max_fs-1_fmin-0-25_fmax-0-5
ddtf_multitaper_mean_fs-1_fmin-0_fmax-0-5 ddtf_multitaper_mean_fs-1_fmin-0_fmax-0-25 ddtf_multitaper_mean_fs-1_fmin-0-25_fmax-0-5 ddtf_multitaper_max_fs-1_fmin-0_fmax-0-5
ddtf_multitaper_max_fs-1_fmin-0_fmax-0-25 ddtf_multitaper_max_fs-1_fmin-0-25_fmax-0-5 gd_multitaper_delay_fs-1_fmin-0_fmax-0-25 sgc_nonparametric_mean_fs-1_fmin-0_fmax-0-5
sgc_nonparametric_mean_fs-1_fmin-0_fmax-0-25 sgc_nonparametric_mean_fs-1_fmin-0-25_fmax-0-5 sgc_nonparametric_max_fs-1_fmin-0_fmax-0-5 sgc_nonparametric_max_fs-1_fmin-0_fmax-0-25
sgc_nonparametric_max_fs-1_fmin-0-25_fmax-0-5 sgc_parametric_mean_fs-1_fmin-0_fmax-0-5_order-None sgc_parametric_mean_fs-1_fmin-0_fmax-0-25_order-None sgc_parametric_mean_fs-1_fmin-0-25_fmax-0-5_order-None
sgc_parametric_mean_fs-1_fmin-1e-05_fmax-0-5_order-1 sgc_parametric_mean_fs-1_fmin-0-25_fmax-0-5_order-1 sgc_parametric_mean_fs-1_fmin-1e-05_fmax-0-5_order-20 sgc_parametric_mean_fs-1_fmin-0_fmax-0-25_order-20
sgc_parametric_mean_fs-1_fmin-0-25_fmax-0-5_order-20 sgc_parametric_max_fs-1_fmin-1e-05_fmax-0-5_order-None sgc_parametric_max_fs-1_fmin-0_fmax-0-25_order-None sgc_parametric_max_fs-1_fmin-0-25_fmax-0-5_order-None
sgc_parametric_max_fs-1_fmin-0_fmax-0-25_order-1 sgc_parametric_max_fs-1_fmin-0-25_fmax-0-5_order-1 sgc_parametric_max_fs-1_fmin-1e-05_fmax-0-5_order-20 sgc_parametric_max_fs-1_fmin-0_fmax-0-25_order-20
sgc_parametric_max_fs-1_fmin-0-25_fmax-0-5_order-20 psi_wavelet_mean_fs-1_fmin-0_fmax-0-5_mean lmfit_Ridge lmfit_Lasso
lmfit_SGDRegressor lmfit_ElasticNet lmfit_BayesianRidge gpfit_DotProduct
gpfit_RBF coint_johansen_max_eig_stat_order-0_ardiff-10 coint_johansen_trace_stat_order-0_ardiff-10 coint_johansen_max_eig_stat_order-0_ardiff-1
coint_johansen_trace_stat_order-0_ardiff-1 coint_johansen_max_eig_stat_order-1_ardiff-10 coint_johansen_trace_stat_order-1_ardiff-10 coint_johansen_max_eig_stat_order-1_ardiff-1
coint_johansen_trace_stat_order-1_ardiff-1 coint_aeg_tstat_trend-c_autolag-aic_maxlag-10 coint_aeg_tstat_trend-ct_autolag-aic_maxlag-10 coint_aeg_tstat_trend-ct_autolag-bic_maxlag-10
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H COMPUTATIONAL COMPLEXITY ANALYSIS

H.1 COMPUTATIONAL COMPLEXITY AND SELECTION OF SPIS

We compute all Statistical Pairwise Interactions (SPIs) using the open-source Python library
pyspi (Cliff et al., 2023), which provides a unified implementation of 284 diverse measures.
To ensure numerical stability, we exclude 18 SPIs that produced invalid matrix entries (NaN values),
resulting in a final set of |S| = 266 methods for our benchmark.

For a single multivariate time series (MTS) sample X ∈ RN×T , where N is the number of regions
of interest (ROIs) and T is the number of time points, the time complexity of a typical SPI compu-
tation scales as O(N2L), where L reflects the method-specific internal dependency length. When
considering the entire benchmarking task over a dataset X and the full suite of SPIs S, the overall
computational complexity lower bound becomes O(|X | · |S| ·N2L).

To quantify this theoretical burden in practical terms, we benchmarked each of the 266 SPIs on
a representative sample (size 33 × 240). Using a 128 vCPU cluster as a concrete example, the
resulting time distribution is shown in Figure A1. Based on these timings, we can estimate the
total cost for our full dataset of |X | = 4520 samples. The time to process one sample with all
266 SPIs is approximately 18, 950 CPU-seconds (summing estimates from different time bins:
14 methods× 1000s+45× 100s+27× 10s+180× 1s). Extrapolating to the full dataset, the total
computational cost is a staggering 4520× 18, 950 ≈ 8.57× 107 CPU-seconds, equivalent to over
990 CPU-days (≈ 7.7 CPU-days on a 128 vCPU). Even with access to massively parallelized cluster
environments, this enormous consumption of resources makes a full benchmark practically infeasible
and time-prohibitive.

This severe computational bottleneck motivates our core research question: how can we drastically
reduce the number of samples while preserving a robust and reliable evaluation of the SPIs? This
challenge naturally leads to our investigation of core-set selection for fMRI-based SPI benchmarking.
As calculated, on a 10% core-set the load reduces to ≈ 99 CPU-days (10% of the full cost). On
the same 128-vCPU cluster, this would take: 99 CPU-days / 128 cores = ≈ 0.77 days (or ≈ 18.5
hours). To validate our approach, we necessarily performed this exhaustive computation to establish a
ground-truth ranking. However, for the purpose of evaluating core-set quality in our experiments, we
restrict our analysis to a tractable subset of SPIs that take less than one second per sample, enabling
rapid yet informative evaluation. The full list of 284 SPIs is summarized in Table A1, with those used
for our core-set evaluation highlighted in bold.

H.2 COMPUTATIONAL COST OF SELECTION METHODS

To complete our analysis of efficiency, we provide an empirical comparison of the computational
cost for SCLCS and the baseline methods. Table A2 details the practical time consumption required
for each method. The ‘Time per Epoch’ reflects the average wall-clock time to complete a single
training epoch. The ‘Score Calculation Time’ is the specific, one-time overhead for computing the
final selection metric after the training phase is complete.

Table A2: Computational cost for core-set selection methods.
Method Time per Epoch (s) Score Calculation Time (s)
Forgetting 1.8708 0.0000
Entropy 1.9851 2.1588
EL2N 2.5309 0.3420
AUM 2.8389 0.0957
CCS 2.8389 11.9414
EVA 2.5964 0.6479
BOSS 2.0952 61.5406
SCLCSDense 6.9296 249.8204

As the results indicate, all core-set selection methods incur a modest, one-time computational cost.
This up-front investment is negligible when contrasted with the over 990 CPU-days required for a full
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downstream benchmark (as detailed in Appendix H). It is worth noting that the score calculation for
SCLCSDense, which computes the SPS metric by measuring differences between attention matrices
across epochs, represents a fixed, post-training overhead. While this step appears slower than other
methods’ scoring, it is a one-time process that is highly parallelizable. These findings confirm that
investing a small computational budget in core-set selection is a practical and efficient solution.
This validates our proposed paradigm for tackling the intractable problem of large-scale model
benchmarking.

I INFLUENCE OF LABELS ON BASELINES

In the main paper, we report results of baseline methods trained using labels aligned with the
evaluation objective. However, our proposed SCLCS framework uniformly adopts subject identity as
the supervisory signal, which raises the question of training-evaluation label misalignment. To provide
a more comprehensive analysis, this section further investigates the influence of such misalignment
on baselines.

I.1 USING MDD LABEL FOR BRAIN FINGERPRINTING RANKING

Table A3: Comparison of brain fingerprinting ranking with subject and with MDD labels (mean ±
std). Arrows indicate change under MDD supervision.

Method Label nDCG@5 nDCG@10 nDCG@20
0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

Forgetting Subject 14.41±7.84 54.43±13.26 43.36±3.35 15.49±7.83 48.57±7.85 49.87±4.66 20.23±7.21 55.80±6.72 49.70±4.60
MDD 14.41±7.84↓ 54.43±13.26↓ 43.36±3.34↑ 15.49±7.83↓ 48.57±7.85↓ 49.87±4.66↓ 20.23±7.21↓ 55.80±6.72↓ 49.70±4.60↓

Entropy Subject 47.40±40.26 22.84±13.20 59.95±26.99 37.73±25.94 32.05±15.22 58.68±23.71 36.05±18.11 35.90±16.19 57.72±21.84
MDD 24.38±23.28↓ 36.60±9.47↑ 68.74±19.96↑ 29.45±28.94↓ 44.86±25.46↑ 58.27±13.07↓ 33.17±25.94↓ 46.55±13.74↑ 59.05±11.16↑

El2N Subject 35.56±36.16 20.30±5.77 31.03±34.57 36.51±25.38 33.18±14.68 32.70±30.84 33.30±21.55 35.82±12.10 40.06±32.08
MDD 4.51±4.67↓ 19.27±15.05↓ 44.09±25.52↑ 14.67±20.47↓ 22.51±11.13↓ 47.17±20.08↑ 14.60±18.20↓ 24.27±10.47↓ 48.58±17.72↑

AUM Subject 65.92±33.80 56.68±11.11 38.17±13.94 60.95±30.91 62.05±4.91 36.83±8.78 51.75±22.42 59.09±5.72 38.34±6.88
MDD 42.32±42.32↓ 72.58±23.18↑ 48.75±30.04↑ 36.06±29.57↓ 63.74±19.11↑ 53.60±25.75↑ 36.70±19.54↓ 65.14±17.92↑ 53.85±22.38↑

CCS Subject 1.90±2.07 30.53±14.15 46.65±22.32 2.92±3.24 29.13±8.00 51.78±24.12 16.24±13.34 32.56±14.15 52.18±20.20
MDD 11.75±11.52↑ 41.01±24.51↑ 24.68±20.39↓ 12.93±12.11↑ 44.33±21.58↑ 33.11±26.79↓ 18.45±10.26↑ 44.20±22.46↑ 33.65±26.74↓

EVA Subject 38.40±40.57 62.03±26.64 37.80±42.45 43.37±19.92 55.01±20.05 49.56±33.28 43.22±15.28 53.51±14.70 65.49±21.99
MDD 31.99±32.72↓ 30.57±29.76↓ 42.34±42.47↑ 30.85±30.00↓ 31.90±30.09↓ 42.55±25.48↓ 41.33±15.02↓ 28.07±23.41↓ 53.45±16.83↓

BOSS Subject 15.98±25.58 42.11±24.33 35.36±9.21 29.44±11.05 40.57±23.37 39.15±6.71 31.45±9.45 38.24±19.65 38.92±5.97
MDD 22.90±23.99↑ 51.70±13.14↑ 40.08±31.21↑ 22.92±18.55↓ 51.87±12.74↑ 39.62±29.12↑ 29.20±17.36↓ 51.71±10.03↑ 40.14±28.44↑

We first evaluate the performance of baseline methods trained with MDD diagnosis labels for core-set
selection in the brain fingerprinting ranking task, using the results from subject-identity supervision
(as reported in the main paper) as reference. This alternative labeling scheme aligns with the intended
design of most baseline algorithms, which aim to select core-sets based on the target task labels (i.e.,
MDD vs. HC diagnosis labels from the REST-meta-MDD dataset).

As shown in Table A3, this supervision shift generally leads to performance degradation across
most methods, suggesting a potential mismatch between the binary nature of MDD labels and the
requirements of brain fingerprinting, which involves a one-vs-all subject-level identification task.
Specifically, training with MDD labels provides weaker sample-level supervision due to reduced
class granularity, potentially limiting the diversity captured during core-set selection. Consequently,
the selected samples may fail to adequately support the subject-wise discriminative capacity of SPIs.

Nevertheless, certain methods such as AUM and BOSS exhibit improved ranking stability at higher
sampling ratios. This may be attributed to their scoring strategies, which explicitly account for sample
diversity or informativeness. Under this paradigm, incorporating diagnosis-based labels introduces an
additional semantic dimension that enhances the selection process, enabling these methods to better
preserve the representational structure of the full dataset.

I.2 USING SUBJECT LABEL FOR MDD RANKING

As a complementary analysis, we also evaluate the performance of baselines trained with subject
identity labels for core-set selection in the MDD diagnosis ranking task. This setting closely aligns
with our proposed SCLCS framework and allows us to investigate whether individual-level supervision
provides a stronger basis for core-set construction.
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Table A4: Comparison of MDD diagnosis ranking with MDD labels and with subject identities(mean
± std). Arrows indicate change under subject supervision.

Method Label nDCG@5 nDCG@10 nDCG@20
0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

Forgetting MDD 28.70±28.06 41.60±28.08 61.42±4.31 40.56±28.06 50.27±32.37 66.72±8.60 44.37±28.07 57.02±33.39 75.70±7.58
Subject 24.64±28.64↓ 43.69±36.57↑ 87.74±10.67↑ 28.52±30.48↓ 46.33±37.31↓ 88.57±11.93↑ 32.88±32.35↓ 51.60±38.74↓ 90.93±8.89↑

Entropy MDD 29.00±45.10 31.84±46.19 57.48±29.81 29.17±43.24 40.75±44.05 63.23±23.44 30.30±43.52 45.85±45.00 70.79±18.00
Subject 53.09±17.82↑ 46.99±34.99↑ 66.46±19.72↑ 58.79±16.78↑ 52.25±36.91↑ 75.19±18.27↑ 65.36±13.54↑ 56.61±37.02↑ 81.40±14.68↑

El2N MDD 30.93±41.17 51.70±28.14 68.85±12.46 36.05±24.41 58.54±27.55 72.96±15.77 41.04±39.61 64.68±26.25 78.85±14.56
Subject 68.75±21.44↑ 42.90±32.24↓ 60.18±17.44↓ 71.38±22.07↑ 50.92±30.16↓ 66.67±18.04↓ 77.12±16.54↑ 56.72±28.89↓ 73.55±15.61↓

AUM MDD 36.07±12.59 42.68±46.16 35.49±14.37 39.17±14.58 44.41±44.05 58.14±16.54 44.94±18.48 48.44±42.48 64.36±14.40
Subject 41.59±10.89↑ 52.72±39.35↑ 65.20±46.67↑ 53.62±5.24↑ 58.66±37.39↑ 67.17±44.70↑ 53.62±5.24↑ 65.26±36.40↑ 70.07±41.78↑

CCS MDD 55.95±16.28 59.92±30.08 74.73±12.46 59.25±16.26 67.01±24.61 75.41±18.08 68.98±15.67 71.62±21.15 78.77±13.49
Subject 47.81±27.72↓ 25.25±8.66↓ 56.95±27.90↓ 55.46±21.63↓ 32.40±8.73↓ 62.59±25.19↓ 62.04±17.97↓ 41.36±7.82↓ 69.14±19.28↓

EVA MDD 31.80±17.70 66.81±9.12 70.07±6.05 36.11±14.79 72.61±8.73 76.26±6.17 48.39±19.48 75.34±8.48 81.73±5.61
Subject 21.25±11.48↓ 67.32±30.66↑ 75.63±16.84↑ 28.40±10.75↓ 73.84±21.80↑ 79.06±15.46↑ 36.98±10.08↓ 80.82±15.48↑ 83.18±12.42↑

BOSS MDD 42.44±24.37 57.52±20.11 79.57±16.62 50.64±25.12 64.86±21.86 84.70±14.07 58.11±23.22 71.36±18.94 88.95±9.49
Subject 39.60±37.05↓ 67.40±13.42↑ 79.51±17.82↓ 45.30±31.25↓ 68.47±15.58↑ 86.21±9.45↑ 54.29±2.51↓ 77.59±11.02↑ 87.29±8.34↓

Compared to the MDD-supervised setting, we observe that a greater number of methods benefit
from improved ranking stability under subject identity supervision. For instance, Entropy, AUM,
and El2N exhibit consistent performance gains at higher sampling ratios (e.g., AUM improves from
58.14% to 67.17% in nDCG@10@0.5, and Entropy from 63.23% to 75.19%). This trend suggests
that supervision aligned with subject-level heterogeneity may better preserve fine-grained information
necessary for identifying high-quality representative samples.

Despite these improvements, a clear performance gap remains between all baselines and our method,
as shown in Table 3. This highlights the non-trivial advantage of SCLCS, where structural perturba-
tion scoring and density-aware sampling jointly enforce both informativeness and diversity in selected
subsets.

Interestingly, AUM shows consistent gains across nearly all metrics, suggesting that its original
scoring, formulated under task-specific supervision, may underestimate structural variation among
samples. Subject-based training appears to compensate for this limitation by injecting more diverse
contrastive signals during scoring, revealing a potential direction for enhancing its robustness.

Entropy also achieves performance gains across the board, with improvements as high as 11.6% in
nDCG@20 (from 70.79% to 81.40%). However, as shown in Figure 2, Entropy consistently selects
highly imbalanced subsets regardless of supervision label, often dominated by a small number of
subjects. This structural bias undermines its utility for benchmarking core-set methods, as it fails
to preserve a representative distribution of the dataset. Thus, despite the numerical improvements,
Entropy remains unsuitable for core-set-based SPI evaluation.

These findings reinforce the need to consider both label alignment and structural diversity in core-set
selection. Subject-level supervision offers a promising direction, but our method’s explicit modeling
of structure-aware consistency and coverage remains critical for reliable benchmarking.

J INFLUENCE OF THE PROPOSED DENSITY-BALANCED SAMPLING ON
BASELINES

As stated in Section 4.3, our proposed density-based sampling strategy is not only central to the
SCLCS framework, but also generalizable to other score-based core-set selection methods. To evalu-
ate its applicability beyond our method, we visualize comparative results on the Brain Fingerprinting
and MDD Diagnosis tasks in Figure A2 and Figure A3, respectively. We exclude CCS and BOSS
from this analysis due to their use of task-specific sampling designs.

On the Brain Fingerprinting task, density-based sampling frequently alters SPI ranking performance
across baselines. For example, El2N underperforms in multiple metrics when density is applied (e.g.,
nDCG@5 at ratio 0.1 drops from ∼40 to ∼20), while EVA shows inconsistent trends across sampling
ratios. This instability may be attributed to the fact that, when supervised with subject identity,
score-based methods tend to prioritize samples that support subject-level diversity. Replacing this
priority with a density-based criterion may inadvertently distort the structural balance of the selected
subset.
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Rank Comparison on Brain Fingerprin�ng using Rank/Density-based Sampling Strategies

Figure A2: Rank comparison on brain fingerprinting using rank/density-based sampling strategies.

Conversely, in the MDD Diagnosis setting, density-based sampling consistently improves perfor-
mance. Baselines such as EVA and Entropy show marked gains in ranking stability, with EVA’s
nDCG@10 increasing from ∼70 to ∼90 at sampling ratio 0.5. This contrast suggests that when
supervision involves fewer discrete classes (e.g., binary labels), the density structure becomes easier
to estimate and more semantically aligned with the downstream evaluation objective.

An interesting deviation is observed in the Forgetting method. At high sampling ratios in both tasks,
its performance noticeably declines under density-based sampling. This may stem from Forgetting’s
underlying assumption: that low-confidence samples correspond to noisy or uninformative data, which
does not hold well for fMRI. Due to the complex nature of brain dynamics, such samples may actually
be densely clustered and structurally meaningful. Consequently, density-based sampling could
overemphasize regions marked by high forgetting scores, thereby degrading ranking consistency.

In summary, density-based sampling demonstrates strong compatibility with several baseline strate-
gies, highlighting its potential as a general-purpose augmentation. However, the interaction between
density criteria and different scoring heuristics can be nontrivial, and may lead to unintended trade-
offs in performance. These results underscore the importance of further empirical studies to better
understand the conditions determining whether density-based selection benefits or interferes with
score-driven core-set construction.

K EMPIRICAL RESULTS FOR THEOREMS

K.1 CONVERGENCE OF UNIVERSAL APPROXIMATION

Experimental Setup To empirically validate the universal approximation capability of our modified
Transformer architecture, as posited in Theorem 2, we designed and conducted a direct fitting
experiment. The theorem states that our model architecture is, in principle, capable of approximating
any continuous Statistical Pairwise Interaction (SPI) operator.
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Rank Comparison on MDD using Rank/Density-based Sampling Strategies

Figure A3: Rank comparison on MDD diagnosis using rank/density-based sampling strategies.

Figure A4: Training and validation MSE loss convergence curves for the 16 SPI operators used in the
empirical validation of Theorem 2.

The core objective of this experiment was to train instances of our model to directly mimic the
Functional Connectivity (FC) matrices produced by specific SPI operators. We trained a separate
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model instance for each operator in a diverse set of 16 representative SPIs. The experimental setup
was as follows:

• Input: The input for each model was an fMRI time series sample X ∈ RN×T , consistent
with the primary data used in our paper.

• Target: For each model, the learning target was the "ground-truth" FC matrix AS ∈ RN×N ,
computed for that specific fMRI sample using the corresponding SPI operator.

• Loss Function: We optimized the model parameters by directly minimizing the Mean
Squared Error (MSE) between the model’s output adjacency matrix A and the target matrix
AS . Specifically, we use MSE((A +AT )/2, (AS +AT

S )/2) to ensure the symmetry of
the adjacencies.

• Training and Validation: We partitioned the dataset into training, validation, and testing
sets with a 70%/10%/20% split. During training, we employed early stopping (patience=10)
based on the validation set performance to ensure the model learned a generalizable trans-
formation rather than merely overfitting to the training data.

Results and Analysis Figure A4 displays the convergence curves from the training process for
all 16 SPI operators. Each subplot in the figure represents an independent model instance, with the
x-axis denoting the training epoch and the y-axis representing the MSE Loss. The blue line indicates
the MSE on the training set, while the orange line represents the MSE on the validation set.

As the plots clearly demonstrate, our model architecture exhibits a strong capacity to fit all 16 SPIs,
regardless of their diverse underlying computational principles. Key observations include:

1. Successful Convergence: In all experiments, both the training and validation MSE decrease
rapidly from a high initial value and eventually converge to a stable, low level. This indicates
that the optimization process was successful and that the model effectively learned the
mapping from the fMRI time series to the target FC matrix.

2. Good Generalization: The validation loss curves closely track the training loss curves
without significant divergence. This confirms that the models did not overfit and that the
learned approximations generalize well to unseen data.

These convergence curves, combined with the low final test MSE values reported in Table 4 of the
main text, provide strong empirical support for Theorem 2. The results collectively confirm that our
proposed modified Transformer architecture possesses the practical expressive power required to
represent the diverse functional forms inherent to our benchmarking task.

K.2 STATIONARY AND CONVERGENCE ANALYSIS

Figure A5: Convergence dynamics of SCLCS. (Left) Perturbation trends show that the mean SPS
stabilizes relatively early in training. (Right) The training loss converges more gradually over 1000
epochs. The different x-axes are used to visualize the distinct convergence timescales of each metric.

As demonstrated in Lemma 1, the reliability of the Structural Perturbation Score (SPS) relies on the
assumption that the per-epoch difference ∆e(X) = ∥A(e)

(X) −A
(e−1)
(X) ∥

2
F is stationary and ergodic.
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Table A5: Performance comparison: brain fingerprinting vs. MDD diagnosis
Method Brain Fingerprinting MDD Diagnosis

nDCG@5 nDCG@10 nDCG@20 nDCG@5 nDCG@10 nDCG@20

Ratio 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

SECTION A: Slow-Only SPIs

Random 0.883 0.863 0.805 0.903 0.898 0.835 0.921 0.923 0.863 0.946 0.998 0.997 0.962 0.998 0.998 0.975 0.999 0.998
Forgetting 0.591 0.441 0.837 0.614 0.478 0.871 0.642 0.514 0.898 0.781 0.946 0.997 0.839 0.965 0.998 0.886 0.977 0.999
Entropy 0.544 0.963 0.907 0.615 0.970 0.977 0.683 0.975 0.982 0.604 0.636 0.941 0.619 0.640 0.959 0.628 0.652 0.973
EI2N 0.887 0.852 0.928 0.912 0.884 0.945 0.928 0.909 0.958 0.967 0.897 0.994 0.976 0.930 0.996 0.983 0.957 0.997
AUM 0.835 0.983 0.808 0.866 0.984 0.848 0.905 0.983 0.881 0.934 0.849 0.933 0.953 0.890 0.955 0.963 0.923 0.971
CCS 0.785 0.737 0.845 0.822 0.790 0.880 0.859 0.832 0.908 0.840 0.966 0.999 0.887 0.978 0.999 0.923 0.985 0.999
EVA 0.628 0.906 0.650 0.663 0.923 0.707 0.701 0.935 0.761 0.795 0.997 0.999 0.848 0.998 0.999 0.895 0.999 0.999
BOSS 0.385 0.956 0.602 0.444 0.951 0.656 0.521 0.945 0.710 0.636 0.968 0.992 0.760 0.976 0.995 0.843 0.988 0.995
SCLCS 0.879 0.941 0.999 0.907 0.955 0.999 0.932 0.961 0.999 0.874 0.983 0.997 0.916 0.989 0.998 0.945 0.993 0.999
SCLCSDense 0.903 0.962 0.943 0.922 0.967 0.956 0.935 0.969 0.964 0.954 0.999 0.999 0.969 0.999 0.999 0.979 0.999 0.999

SECTION B: Mixture SPIs

Random 0.280 0.680 0.646 0.389 0.689 0.715 0.392 0.765 0.722 0.504 0.242 0.718 0.601 0.263 0.779 0.633 0.306 0.828
Forgetting 0.323 0.464 0.711 0.421 0.485 0.742 0.465 0.497 0.749 0.255 0.415 0.634 0.380 0.502 0.670 0.432 0.563 0.758
Entropy 0.442 0.660 0.663 0.485 0.656 0.678 0.551 0.668 0.684 0.289 0.327 0.565 0.291 0.414 0.621 0.307 0.467 0.702
EI2N 0.485 0.441 0.531 0.552 0.515 0.570 0.564 0.570 0.623 0.310 0.522 0.656 0.360 0.576 0.705 0.416 0.646 0.761
AUM 0.491 0.680 0.870 0.565 0.737 0.882 0.604 0.767 0.877 0.361 0.415 0.536 0.403 0.435 0.585 0.452 0.478 0.640
CCS 0.228 0.480 0.495 0.345 0.478 0.507 0.352 0.576 0.549 0.469 0.599 0.747 0.519 0.670 0.754 0.628 0.699 0.790
EVA 0.193 0.527 0.601 0.362 0.597 0.622 0.396 0.640 0.655 0.274 0.529 0.688 0.353 0.570 0.755 0.440 0.616 0.812
BOSS 0.438 0.592 0.505 0.433 0.662 0.531 0.428 0.687 0.561 0.373 0.620 0.796 0.435 0.620 0.859 0.519 0.721 0.879
SCLCS 0.790 0.704 0.785 0.795 0.734 0.807 0.823 0.755 0.819 0.279 0.703 0.631 0.303 0.708 0.613 0.368 0.764 0.680
SCLCSDense 0.442 0.758 0.812 0.552 0.751 0.827 0.576 0.750 0.827 0.447 0.449 0.716 0.522 0.533 0.706 0.621 0.594 0.752

Since our training does not incorporate validation-based early stopping, we use model convergence as
an implicit criterion for termination. To empirically support this, Figure A5 visualizes the convergence
trends of structural perturbation and training loss.

Notably, these two metrics converge on different effective timescales. The left panel shows that the
mean SPS (blue curve), which reflects the stability of the learned connectivity structures, reaches
a stable plateau relatively early (around epoch 500). The initial spike in perturbation reflects an
expected "burn-in" phase before the model learns stable representations. In contrast, the right panel
shows that the training loss continues to decrease more gradually over the full 1000 epochs as the
model makes finer adjustments to the embedding space to fully optimize the contrastive objective.

The clear convergence of both metrics, despite their different timescales, provides strong empirical
validation for the assumptions in Lemma 1. This confirms that SPS is a stable and consistent measure
of structural influence, and the overall loss convergence supports the robustness of our end-to-end
training pipeline for core-set selection.

L GENERALIZATION AND ROBUSTNESS ANALYSIS

This section provides experiment results to address the concerns regarding site-level generalization
and SPI subset bias to prove the impact of the proposed task.

L.1 EXTENSION ON SPI PROPERTIES

We create two new benchmark sets: (1) A "Slower-Only" set containing 50 SPIs with > 1s compute
time (up to 10s), and (2) A "Mixture" set combining these 50 slow SPIs with our original 130 fast
SPIs (Total = 180). Results are reported in Table A5.

The findings are two-fold:

• On "Slow-Only": Surprisingly, the ranking task becomes "easier." Even the Random baseline
performs robustly (e.g., nDCG@5 > 0.9 on the MDD task). This suggests that for this
specific subset of slower methods, performance is less sensitive to specific data selection.

• On "Mixture" (Full Benchmark): However, when combining fast and slow SPIs, SCLCS
re-emerges as the clear winner. On the Brain Fingerprinting task (10% ratio), SCLCS
achieves an nDCG@5 of 0.79, whereas Random collapses to 0.28.
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It proves that simple heuristics (like Random) are brittle and fail in realistic, heterogeneous bench-
marking scenarios (the "Mixture" case). SCLCS is necessary because it robustly handles the full
spectrum of SPI behaviors, effectively weighting the top-performing methods that researchers care
about most. More importantly, it suggests that different properties of the candidate models may affect
the difficulty of the proposed problem. Exploring such effect is a promising future direction.

Table A6: Site balance on core-set (L1 distance, lower better)
Method L1 Distance @ 0.1 ratio L1 Distance @ 0.3 ratio L1 Distance @ 0.5 ratio

Sample Level Subject Level Sample Level Subject Level Sample Level Subject Level

Forgetting 0.239 0.243 0.184 0.107 0.126 0.048
Entropy 0.186 0.139 0.149 0.112 0.146 0.157
EI2N 0.303 0.350 0.260 0.220 0.235 0.195
AUM 0.157 0.143 0.094 0.181 0.057 0.176
CCS 0.202 0.183 0.143 0.175 0.103 0.148
EVA 0.111 0.101 0.047 0.017 0.024 0.081
BOSS 0.737 0.362 0.457 0.107 0.248 0.022
SCLCS 0.127 0.146 0.096 0.039 0.068 0.011
SCLCSDense 0.195 0.146 0.112 0.054 0.071 0.017

L.2 EXTENSION ON DATA PROPERTIES

We further explore the relationship between ’site ID’ and the core-sets selected by all the baseline
methods and the proposed SCLCS (which is blind to site). Performances are quantified by calculating
the L1 Distance between the site distribution of the original dataset and the site distribution of the
selected core-set. The samples of each subject are same on the original dataset but vary on the
core-set. Thus we provide two levels of result based on sample and subject, respectively. Results are
reported in Table A6.

SCLCS demonstrates robustness to site imbalance. For example, at a 30% sampling ratio, SCLCS
achieves an L1 distance of ≈ 0.096, ranking second only to the variance-based method EVA (≈
0.047). Crucially, SCLCS significantly outperforms other baselines like Entropy (0.149), which
tend to be more biased towards specific sites. This is an interesting finding. It necessitates exploring
methods to balance different data properties and the performance on the proposed ranking preservation
task, which is beyond the scope of our current paper.

L.3 ROBUSTNESS TO WINDOW SIZE

We re-process the entire dataset using a different sliding window configuration (Window Size = 50
TRs, Stride = 45 TRs), which differs significantly from the setting used in the main paper (Window
Size = 70, Stride = 35). We then re-calculated all 130 SPIs and re-evaluated the ranking consistency
of SCLCS against all baselines on both downstream tasks.

The results, detailed in Table A7, empirically demonstrate that SCLCS maintains its superior
performance and ranking stability regardless of the window size, confirming that our method captures
intrinsic structural patterns rather than artifacts of specific preprocessing parameters.

On MDD diagnosis task, even with shorter window lengths (which can introduce more noise), SCLCS
and SCLCSDense consistently outperform all baselines. Notably, at the challenging 0.1 sampling
ratio, SCLCSDense achieves an nDCG@5 of 0.661, which is significantly higher than the strongest
baselines like AUM (0.452) and CCS (0.464). This confirms that our density-aware selection strategy
is highly robust to variations in temporal segmentation.

On brain fingerprinting task, SCLCS continues to show state-of-the-art performance, particularly
at the 0.1 ratio with an nDCG@5 of 0.475, far exceeding Random (0.206). While baselines like
El2N show high variance (performing well at 0.3 but dropping significantly at 0.5), SCLCS and
SCLCSDense exhibit a more stable performance trajectory as the sampling ratio increases (e.g.,
SCLCS improves from 0.475 to 0.673).
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Table A7: Robustness of different methods to window size
Method Robustness on MDD Diagnosis Task Robustness on Brain Fingerprinting Task

nDCG@5 nDCG@10 nDCG@20 nDCG@5 nDCG@10 nDCG@20

Ratio 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

Random 0.213 0.498 0.802 0.413 0.611 0.843 0.558 0.707 0.886 0.206 0.285 0.282 0.234 0.386 0.353 0.270 0.443 0.376
Forgetting 0.234 0.190 0.637 0.336 0.287 0.689 0.469 0.376 0.745 0.252 0.478 0.417 0.287 0.525 0.461 0.324 0.556 0.500
Entropy 0.258 0.467 0.566 0.293 0.506 0.633 0.360 0.533 0.717 0.227 0.474 0.576 0.243 0.526 0.582 0.347 0.544 0.591
EI2N 0.174 0.007 0.531 0.253 0.199 0.567 0.344 0.250 0.597 0.372 0.670 0.333 0.366 0.638 0.395 0.374 0.631 0.405
AUM 0.452 0.631 0.701 0.490 0.725 0.784 0.528 0.797 0.852 0.291 0.690 0.399 0.324 0.684 0.483 0.332 0.728 0.522
CCS 0.464 0.596 0.727 0.554 0.682 0.794 0.625 0.757 0.853 0.240 0.502 0.473 0.282 0.560 0.506 0.306 0.566 0.523
EVA 0.347 0.422 0.513 0.456 0.496 0.597 0.560 0.580 0.663 0.430 0.456 0.444 0.417 0.510 0.476 0.474 0.517 0.488
BOSS 0.281 0.369 0.833 0.380 0.430 0.867 0.468 0.493 0.899 0.062 0.364 0.669 0.110 0.379 0.747 0.151 0.416 0.752
SCLCS 0.621 0.834 0.708 0.662 0.818 0.766 0.735 0.849 0.826 0.475 0.569 0.673 0.491 0.569 0.750 0.495 0.593 0.762
SCLCSDense 0.661 0.732 0.836 0.718 0.781 0.885 0.778 0.826 0.917 0.420 0.593 0.712 0.459 0.617 0.707 0.496 0.657 0.705

These empirical results directly demonstrate that SCLCS is not sensitive to the choice of window
size and can reliably select high-quality core-sets across different pipeline configurations. We believe
this evidence strongly supports the practical reliability of SCLCS in diverse experimental settings.

M REPRODUCIBILITY INFORMATION

M.1 DATA PREPROCESSING

We use a subset of 904 subjects (458 MDD, 446 controls) from the REST-meta-MDD consortium,
selected via a two-stage filtering process. First, we adopt the quality-controlled cohort defined in Yan
et al. (2019), which retains 1, 642 subjects across 17 sites. Second, we intersect this cohort with the
9-site subset used in Long et al. (2020), chosen for consistent acquisition parameters (3T scanners,
240 time points, TR = 2000 ms). This yields a final sample from 7 sites with harmonized imaging
protocols.

The analysis focuses on 33 regions of interest (ROIs) associated with the default mode network
(DMN), as defined in the Dosenbach-160 atlas (Dosenbach et al., 2010). ROI-level time series were
obtained directly from the preprocessed data released by REST-meta-MDD. We use the version with
global signal regression (GSR) applied, consistent with prior findings (Yan et al., 2019).

Our decision to focus on the DMN-33 ROI was a principled decision based on scientific control,
reproducibility, and computational feasibility:

• Scientific Control: To validate the proposed new ’ranking preservation’ task, our first
priority was to isolate variables. Our primary goal is to define the "Ranking Preservation"
problem and prove that a "structure-based" approach is a feasible path. Introducing multiple
atlases or pipelines would change our scenario from Benchmark (SPIs) to a different,
combinatorially explosive scenario of Benchmark (SPIs x atlases/pipelines), which is a
valuable, promising but separate scientific task.

• Reproducibility: This scientific control principle is reinforced by the dataset itself. To en-
sure the highest standard of reproducibility, we used the official, standardized pre-processed
data from the REST-meta-MDD consortium. This setting ensures the results are not affected
by personally defined preprocessing pipelines.

• The Computational Infeasibility: Finally, even if we were to use an official atlas like
AAL-90 (N = 90), an average complexity of each SPI would increase compute time by ≈ 9x
(from N = 33).

Each subject is represented by a multivariate time series of T ×R, where T is the number of time
points and R = 33. To standardize downstream sampling, we truncate all time series to 210 time
points. We apply a sliding window of length 70 TRs with a step of 35 TRs, yielding five overlapping
temporal segments per subject. This configuration is consistent with prior dynamic connectivity
studies (Allen et al., 2014; Preti et al., 2017; Long et al., 2020), and provides a balance between
temporal resolution and estimation reliability. These segments serve as dynamic samples for our
core-set selection framework, alongside static networks built from each subject’s full time series.
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Table A8: Acquisition details of the 7 selected REST-meta-MDD sites. All data were collected using
3T scanners and have consistent TR (2, 000 ms). Minor variation exists in number of time points.

Site ID Institution MDD HC Scanner TR (ms) TE (ms) Timepoints
15 Zhongda Hospital, Southeast University 37 30 Siemens Verio 3T 2000 25.0 240
17 First Affiliated Hospital of Chongqing Medical

University
41 41 GE Signa 3T 2000 40.0 240

19 Anhui Medical University 31 18 GE Signa 3T 2000 22.5 240
20 Southwest University 229 250 Siemens Tim Trio 3T 2000 30.0 242
21 Beijing Anding Hospital, Capital Medical Uni-

versity
65 79 Siemens Tim Trio 3T 2000 30.0 240

22 Second Xiangya Hospital, Central South Uni-
versity

20 18 Philips Gyroscan Achieva 3.0T 2000 30.0 250

23 West China Hospital, Sichuan University 23 22 Philips Achieva 3.0T TX 2000 30.0 240

Across the selected sites in the REST-meta-MDD consortium, the number of retained time points after
preprocessing slightly varies due to site-specific acquisition protocols. While most sites provided
230 time points, others contributed data with 232 or 240 time points. These variations are a result of
both initial protocol settings and preprocessing procedures (e.g., discarding initial scans to ensure
magnetization equilibrium). A summary of time point lengths by site is given in Table A9.

Table A9: Post-preprocessing time point lengths across selected sites.

Site ID Institution Timepoints (after preprocessing)
15 Zhongda Hospital, Southeast University 230
17 First Affiliated Hospital of Chongqing Medical

University
230

19 Anhui Medical University 230
20 Southwest University 232
21 Beijing Anding Hospital, Capital Medical Uni-

versity
230

22 Second Xiangya Hospital, Central South Uni-
versity

240

23 West China Hospital, Sichuan University 230

To ensure consistency in downstream dynamic sampling, all time series were uniformly truncated to
the first 210 time points. This guarantees a consistent sampling space across all subjects regardless of
site-specific acquisition length.

We then applied a sliding window with a fixed length of 70 TRs and a step size of 35 TRs. This
configuration yields exactly five overlapping segments per subject, each representing a snapshot of
short-term functional dynamics. These segments serve as candidate samples for evaluating structural
stability and selecting representative subjects in our core-set selection framework.

We used 33 regions of interest (ROIs) associated with the default mode network (DMN), selected
from the Dosenbach-160 atlas (Dosenbach et al., 2010) following the specification provided by Yan
et al. (2019). These ROIs were identified using public scripts available at https://github.com/
Chaogan-Yan/PaperScripts/tree/master/Yan_2019_PNAS/Dos160 and used con-
sistently in REST-meta-MDD-related studies.

M.2 BASELINE INTRODUCTION AND PARAMETER SETTINGS

Baseline Introduction

• Random: Uniformly samples instances without considering model behavior or data statis-
tics.

• k-Means (Hartigan & Wong, 1979): An unsupervised clustering algorithm that partitions
data into k clusters based on feature similarity, with the core-set formed by selecting samples
closest to the cluster centroids.
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Table A10: List of 33 DMN-related ROIs selected from the Dosenbach-160 atlas.
ROI Index ROI Type Yeo Network (Label)

1 vmPFC 7 (DMN)
4 mPFC 7 (DMN)
5 aPFC 7 (DMN)
6 vmPFC 7 (DMN)
7 vmPFC 7 (DMN)
11 vmPFC 7 (DMN)
13 vmPFC 7 (DMN)
14 ACC 7 (DMN)
15 vlPFC 7 (DMN)
17 sup frontal 7 (DMN)
20 sup frontal 7 (DMN)
25 vFC 7 (DMN)
63 inf temporal 7 (DMN)
72 inf temporal 7 (DMN)
73 post cingulate 7 (DMN)
85 precuneus 7 (DMN)
90 post cingulate 7 (DMN)
91 inf temporal 7 (DMN)
93 post cingulate 7 (DMN)
94 precuneus 7 (DMN)

100 sup temporal 7 (DMN)
102 angular gyrus 7 (DMN)
104 IPL 7 (DMN)
105 precuneus 7 (DMN)
108 post cingulate 7 (DMN)
111 post cingulate 7 (DMN)
112 precuneus 7 (DMN)
115 post cingulate 7 (DMN)
117 angular gyrus 7 (DMN)
124 angular gyrus 7 (DMN)
132 precuneus 7 (DMN)
134 IPS 7 (DMN)
137 occipital 7 (DMN)

• Forgetting (Toneva et al., 2018): Ranks samples by the number of times they transition
from correct to incorrect predictions during training.

• Entropy (Coleman et al., 2020): Scores samples using the entropy of model output proba-
bilities to reflect prediction uncertainty.

• Area Under the Margin (AUM) (Pleiss et al., 2020): Computes the average margin between
the true class probability and the highest non-true probability across epochs.

• Example-Level L2 Norm (EL2N) (Paul et al., 2021): Measures the L2 norm between
model predictions and true labels over early training epochs as a proxy for example difficulty.

• Coverage-Centric Selection (CCS) (Zheng et al., 2022): Stratifies samples by importance
scores (e.g., AUM) and performs balanced sampling across strata to preserve distributional
coverage.

• Evolution-aware Variance (EVA) (Hong et al., 2024b): Aggregates prediction error vari-
ances within early and late training windows to capture evolving sample dynamics.

• Balanced One-shot Subset Selection (BOSS) (Acharya et al., 2024): Greedily selects a
subset by maximizing a Beta-weighted objective over feature similarity, label variability,
and difficulty-based scores.
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Parameter Settings All baseline methods are evaluated using a unified training setup. The classifi-
cation model is a compact residual network designed for multivariate time series inputs. It consists
of a stem convolution followed by three residual blocks with output channels of 32, 64, and 128,
respectively. A global average pooling layer and a fully connected classifier complete the architecture.
This design balances expressiveness and efficiency for medium-scale time series classification.

The model is trained for 200 epochs using the Adam optimizer with a learning rate of 0.01, weight
decay of 1e-4, and a batch size of 256. All methods, including full-data training and subset-based
training, use identical configurations.

Per-sample importance scores are derived from training dynamics and used to evaluate a range of
sampling strategies. For EVA, we compute the variance of the prediction error vector within two
non-overlapping windows: epochs 100–109 and 190–199, following the original protocol.

Hyper parameters of SCLCS are optimized using grid searching in the flowing spaces:

1. Dimension of Transformer: [4, 8, 16, 32, 64, 128, 256].

2. Head Number: [2, 4, 8, 16, 32, 64].

3. Epochs for calculating SPS: [50, 100, 150, 200].

M.3 ENVIRONMENT

Experiments are performed on an 8-GPU (H20) high-performance computing cluster provided by the
Large-scale Instrument Sharing Platform of Southwest University.

N LIMITATIONS

While this work establishes a new paradigm for efficient FC benchmarking, we identify several
exciting avenues for future investigation that build upon our findings:

• Deepening the SPS-SPI Connection: Our results demonstrate a strong empirical link
between low SPS (structural stability) and effective core-set selection. However, the precise
theoretical mechanism connecting the training dynamics of our encoder to the performance
ranking of diverse, external SPI models warrants deeper investigation. Future work could
explore this link to build a more formal bridge between learnable latent structures and
statistical model behavior.

• Developing an Adaptive Sampling Strategy: Our experiments show that the optimal choice
between simple low-SPS ranking (SCLCS) and density-aware sampling (SCLCS_Dense)
is task-dependent. A key next step is to develop heuristics or a meta-learning framework
to automatically select the optimal sampling strategy based on dataset characteristics (e.g.,
class structure, sample heterogeneity), removing the need for manual selection.

• Broader Generalization and Application: While our evaluation on the large-scale, het-
erogeneous REST-meta-MDD dataset provides a strong test of robustness, the framework’s
generalizability should be further validated. A full study of supervision (site-ID, multi-task,
and more) and how SPI properties modulate task difficulty is a valuable future direction.
The relationship between the RP problem and data properties is another major extension
to our work. Future studies should also apply SCLCS to fMRI datasets from different
clinical populations (e.g., Alzheimer’s disease, ADHD), other imaging modalities, or even
entirely different domains of multivariate time-series analysis to establish the full scope of
its applicability.

• More Heterogeneous Scenarios: Simply pulling resting-state and task-fMRI scans together
into the contrastive loss would be problematic, as the functional state changes. This poses
a more complex heterogeneous data fusion challenge. Exploring model benchmarking
problem on heterogeneous scan types is a valuable future direction.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, we utilize Large Language Models (LLMs) in a supportive
capacity. Specifically, their use is confined to the following areas:

• Writing and Editing: LLMs are employed to enhance the clarity, grammar, and style of the
text, ensuring the manuscript’s readability.

• Assistance with Theorem Proofs: LLMs serves as an assistive tool to verify the logical
consistency and correctness of individual steps within our mathematical derivations and
proofs.

The core scientific ideas, the structure of the proofs, the experimental design, and all final conclusions
presented in this paper are conceived and developed entirely by the authors.
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