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ABSTRACT

Benchmarking the hundreds of functional connectivity (FC) modeling methods
on large-scale fMRI datasets is critical for reproducible neuroscience. However,
the combinatorial explosion of model-data pairings makes exhaustive evaluation
computationally prohibitive, preventing such assessments from becoming a rou-
tine pre-analysis step. To break this bottleneck, we reframe the challenge of FC
benchmarking by selecting a small, representative core-set whose sole purpose
is to preserve the relative performance ranking of FC operators. We formalize
this as a ranking-preserving subset selection problem and propose Structure-aware
Contrastive Learning for Core-set Selection (SCLCS), a self-supervised framework
to select these core-sets. SCLCS first uses an adaptive Transformer to learn each
sample’s unique FC structure. It then introduces a novel Structural Perturbation
Score (SPS) to quantify the stability of these learned structures during training,
identifying samples that represent foundational connectivity archetypes. Finally,
while SCLCS identifies stable samples via a top-k ranking, we further introduce
a density-balanced sampling strategy as a necessary correction to promote di-
versity, ensuring the final core-set is both structurally robust and distributionally
representative. On the large-scale REST-meta-MDD dataset, SCLCS preserves
the ground-truth model ranking with just 10% of the data, outperforming state-of-
the-art (SOTA) core-set selection methods by up to 23.2% in ranking consistency
(nDCG@Xk). To our knowledge, this is the first work to formalize core-set selection
for FC operator benchmarking, thereby making large-scale operators comparisons a
feasible and integral part of computational neuroscience. Code is publicly available
onhttps://github.com/l1zhan94swu/SCLCS

1 INTRODUCTION

Methodological choices can substantially affect scientific reproducibility, as reflected in highly
variable outcomes obtained from the same dataset, making systematic benchmarking increasingly
important (Kohli et al. 2024;|Qiu et al.,|2024; Marek et al.| 2022)). This issue is especially acute in
functional connectivity (FC) modeling, where hundreds of candidate statistical pairwise interactions
(SPIs) require careful evaluation to ensure reliable conclusions (Liu et al., 2025} |Roell et al., [2025).
Yet the computational cost of exhaustive evaluation makes it impractical to run as a routine pre-
analysis step for data-driven model selection (Ying et al., 2024} Zhou et al., 2021) (see the complexity
analysis in Appendix [H). To address this bottleneck, we propose a two-stage workflow: we first
benchmark all candidate SPIs on a small, representative core-set to identify top performers, and then
evaluate the selected SPI(s) on the full dataset for downstream analysis. This workflow hinges on
selecting a core-set that preserves the relative performance ranking of SPIs.
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Figure 1: Overview of the SCLCS framework for ranking-preserving core-set selection. Contrasting
with selection for single-model classification (top left), our task is to preserve the performance ranking
of SPIs (top right). Our method (bottom) achieves this using a Transformer to learn structures, our
novel SPS metric to ensure stability, and a density-aware strategy to promote diversity.

While core-set selection is well studied, most existing methods target a different goal: constructing
a small training proxy for a single predictive model (Feldman| |2020; |Lee et al.l2024; Hong et al.,
2024b). In our setting (Figure|[T), the core-set must preserve the relative performance ranking across
hundreds of candidate SPIs (Liu et al., 2025}, |Cliff et al.l 2023)). This ranking-preservation objective
raises three challenges: (1) Formulating a selection criterion that targets cross-SPI ranking stability
rather than single-model training loss. (2) Defining a principled, structure-aware notion of sample
importance based on FC patterns (the targets of SPIs). (3) Reducing the brittleness of score-based
top-k selection, which can fail to generalize across sampling ratios and distort rankings.

In this work, we cast core-set selection for FC benchmarking as a ranking-preserving subset selection
problem. Rather than training a predictive model, we seek a subset that preserves the SPI ordering
from the full dataset (Figure[T). We evaluate on the REST-meta-MDD dataset (Yan et al.l 2019; Cong
et al.} 2020), a large multi-site resting-state fMRI dataset for MDD, which captures heterogeneity
across acquisition sites and a large cohort. We instantiate benchmarking with two tasks, brain fin-
gerprinting (Van De Ville et al., [2021) and MDD diagnosis (Gallo et al., [2023)), both widely used in
FC research (Lu et al., [2024; Otte et al., |2016). For each task, we score each SPI by how well the
resulting FC matrices separate within-class from between-class pairs using Spearman’s rank correla-
tion (Sedgwick, [2014), yielding an SPI ranking. Core-set quality is measured by nDCG @k (Wang
et al.| 2013) between the SPI rankings induced by the core-set and the full dataset.

We use SPIs as a validation case because benchmarking FC operators has been formalized as a
well-defined task in recent work (Liu et al.l 2025} |Cliff et al.,[2023; [Honari et al.,[2021)). Based on
this formulation, we propose Structure-aware Contrastive Learning for Core-set Selection (SCLCS).
As shown in Figure |l SCLCS is built around a Transformer-based encoder that encodes sample-
specific synchronization structure via an adaptively weighted fusion of attention heads. Under
the assumptions of Theorem [2| we show this encoder has universal approximation capacity for
continuous SPI mappings. We then define a Structure Perturbation Score (SPS) to quantify the
stability of these structures, and prioritize low-SPS samples to form a robust core-set. Because
naive top-k selection can be brittle for certain task structures, SCLCS augments it with a density-
aware sampling strategy to improve diversity. SCLCS learns in an identity-supervised contrastive
manner, using subject identities to encourage stable “brain fingerprints”’(Van De Ville et al., [2021)
that SPI-based analyses aim to capture(Liu et al.l 2025} [Luppi et al., 2024). This yields task-agnostic
representations suitable for benchmarking. Finally, SCLCS is a pre-analysis acceleration tool
that makes large-scale benchmarking computationally feasible, rather than a method for the final
neuroscientific discovery task.

Our theoretical analysis and empirical results on 130 candidate SPIs support our design choices and
show consistent improvements over strong baselines. The main contributions are: (1) We formulate
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core-set selection for efficient FC operator (SPI) benchmarking as a ranking-preservation problem. (2)
We propose SCLCS, a structure-aware framework for selecting stable and diverse samples for ranking-
based benchmarking. (3) We provide a universal approximation result for continuous SPI mappings
(Theorem [2) and introduce SPS, a new use of attention dynamics to quantify structural heterogeneity.
(4) We show that SCLCS enables reliable benchmarking at a fraction of the computational cost,
making large-scale comparisons practical.

2 RELATED WORK

Benchmarking in Functional Connectivity. Selecting an appropriate SPI (i.e., a network modeling
method) is a central challenge in modern FC research. Prior studies show that different SPIs can
yield divergent FC topologies and, consequently, different scientific conclusions (Smith et al., 2011}
2013;Bobadilla-Suarez et al., [2020; Mohanty et al.,|2020; [Honari et al., 2021} |Luppi et al.| [2024]),
contributing to long-standing concerns about reproducibility (Collaboration, [2015; Botvinik-Nezer
et al., [2020; Marek et al., 2022)). Meanwhile, comprehensive libraries such as pyspi(Cliff et al.,
2023), which include hundreds of SPIs, highlight the methodological richness of the field and
magnify the scale of the selection problem(Liu et al.| [2025; Roell et al.||2025)). These works motivate
systematic benchmarking, but the computational cost of evaluating large SPI suites remains a key
practical bottleneck. We address this bottleneck by introducing a core-set selection approach for
efficient SPI benchmarking.

Core-set Selection. Core-set selection is a fundamental problem in machine learning (Guo et al.,
2022; [Feldman| [2020; |[Ros & Guillaume, |2019). Most score-based (Coleman et al., 2020; [Feldman &
Zhang| 2020; |Paul et al.| 2021}, [Toneva et al., 2019) and diversity-based (Sener & Savaresel, [2018};
Xia et al.| [2022)) methods construct proxy datasets for training a single predictive model, which
mismatches our ranking-preservation objective over many SPIs. Their criteria are often model-
dependent (e.g., EVA (Hong et al.l [2024b)) and typically assume static i.i.d. inputs, overlooking
the temporal dependencies in fMRI time series from which FC structure is derived. Consequently,
selected core-sets may not transfer to ranking-based evaluation over large SPI suites (Liu et al.,
2024; Lee et al.,[2024)). Training-acceleration methods (Hong et al.| 2024a; Killamsetty et al.| 2021}
Mirzasoleiman et al., 2020; Wei et al., 20135) share the same single-model focus and thus do not
directly address our setting.

To our knowledge, SCLCS is among the first methods tailored for accelerating benchmarking of
FC operators (SPIs) via core-set selection. It uses the stability of learned synchronization structures
during training as a selection criterion, which is particularly natural for neuroimaging. While related
to graph structure learning (Li et al., 2023} |Zhou et al., 2023} [Zong et al.| [2024)), SCLCS treats
learned structure as a diagnostic probe rather than an inference output. We therefore do not review
general-purpose structure learning in depth.

3 PRELIMINARIES

Benchmarking FC modeling. The goal of FC benchmarking is to produce a principled ranking of
statistical pairwise interaction (SPI) operators from a set S. For a given fMRI dataset X', where each
sample X € X is a matrix in RV X7, each operator S € S maps X to an FC matrix S(X) € RV*H,
An evaluation index, Z : & — R, assigns a score to each SPI under a chosen evaluation protocol.
This process induces a ranking over all SPIs in S, which we denote as Rank(S, X'), to guide the
selection of a suitable SPI for subsequent analysis.

Core-set Selection for Benchmarking FC Modeling. Computing the full-dataset ranking
Rank(S, X) is often computationally prohibitive. We therefore introduce the task of core-set selection
for benchmarking, which seeks to identify a small subset of samples X, C X where |X,| < |X|
that acts as an efficient proxy. Formally, a high-quality core-set is the solution to the following
optimization problem:

XY= argmin D(Rank(S,X), Rank(S, X”)). (1

X/CX, | X |=c

where D(-, -) is a ranking discrepancy metric (e.g., based on nDCG@Xk) and c is the core-set budget.
The goal is to preserve the full-dataset ranking while using only ¢ samples.
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Directly optimizing this objective is intractable, as it requires exhaustively evaluating an exponential
number of subsets, with each evaluation incurring the very computational cost we aim to avoid. We
therefore propose a practical proxy: selecting a structurally representative subset. The core hypothesis
is that preserving the distribution of functional connectivity structures also preserves the SPI ranking.
Our SCLCS framework, detailed next, is designed to find such a subset.

4 METHOD

In this section, we introduce the detailed formulation of the proposed SCLCS. SCLCS consists
of four modules: (1) attention-based FC learning, (2) structural perturbation score calculation, (3)
structure-aware density-balanced sampling, and (4) contrastive learning.

4.1 ATTENTION-BASED FC LEARNING

To select a rank-preserving core-set, our framework first requires an encoder that can learn a general
and expressive representation of each sample’s FC structure. The self-attention mechanism within
Transformers is a natural candidate for this task, as it can model complex inter-regional relation-
ships (Vaswani et al.,|2017). However, naive fusion of multiple attention heads via uniform averaging
is insufficient, as it can obscure distinct structural patterns learned by individual heads Theorem I
(proved in Appendix|[A].

Theorem 1 (Interference of Averaged Attention). Let {Aj,}:L | be row-stochastic attention matrices.
Assume disjoint structural masks: for each row i there exist pairwise-disjoint sets {S ,(LZ)}thl such
that Ay, (i,7) = 0forall j ¢ S,(lz). Let A := L Z,I;Izl Ay, Then for every row i:

H
a) =159 and 5() ; (DY ip OV H ¢ all identical
supp(a'”) hL_Jl W, and  H(a) > 151LI£HH(ah ) if {a;’ }1,=1 are not all identical.
In particular, if H > 2, naive averaging expands support beyond any single head’s mask and inflates
entropy, blurring head-specific structure.

Theorem [T pertains strictly to the internal attention maps and explains the empirical failure of
directly applying the traditional Transformer on core-set selection for benchmarking FC modeling. It
motivates us to propose an adaptive fusion mechanism that aggregates head-specific attention matrices
via learnable weights. This modification is not merely an engineering choice: we prove it endows
the architecture with the power of a universal approximator for the class of continuous FC operators
as formalized in Theorem 2| (proved in Appendix [B). This provides a theoretical foundation for its
ability to capture the diverse synchronization patterns required for our benchmarking task.

Theorem 2 (Universal Approximation of Continuous Stochastic SPI{]). Let X C RN*T be compact.
Let S : X — AN=YN pe continuous, where AN"1XN .= (P ¢ RVN*N . P1 =1, P > 0}
denotes the set of row-stochastic matrices. Consider the adaptive multi-head attention family

XWEWENXD) - ae Al 70 0

H
Ay(X) = Zah softmax( —
h=1
where softmax is applied row-wise. Then for every € > 0 there exist H, 7, and parameters
{W,?, WIEYH | and o such that

sup [|[Ag(X) — S(X)||,, <e. 3)
Xex

Our implementation is as follows: for each fMRI sample X € RV X" we treat the N ROISs as input
tokens, where each token has a feature dimension of 7'. Each attention head independently projects

queries and keys using learnable linear maps, parameterized by matrices WS and W{f :

Q,=XW¢ K, =XWE W WEcrP*! h=1,.. H. )

'This statement is for continuous targets on compact domains. If an SPI uses discrete thresholds (hard masks),
the guarantee applies to any continuous relaxation (e.g., finite-temperature softmax / sigmoid gates) and then a
limiting argument is required to justify the hard-threshold limit.
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The attention matrix from head h is computed as:

KT
A, = softmax (Q}\L/gh ) , A, e RNV, (5)

Motivated by Theorem uniform head averaging is a structural constraint: vy, = 1/H forces every
sample to use the same (high-entropy) centroid of head-wise attention patterns. By strict concavity of
Shannon entropy, this averaging inflates uncertainty and smears head-specific structure. Learnable
fusion weights o relax the constraint, enabling sparse/peaked mixtures (up to single-head selection)
to reduce interference while still combining complementary patterns. Thus the operator class strictly
expands: by Theorem [2| an adaptive fusion module can approximate continuous FC operator on
compact domains.

Thus, we propose a learnable fusion mechanism that aggregates head-specific attention matrices via
adaptive weights, formulated as:

H H
A=> apA,, with Y o, =1, a,>0, (6)
h=1 h=1

where the weight « is normalized via softmax. The resulting matrix A € RV*V serves as

the operational definition of a sample’s FC structure, forming the basis for our selection criteria.
Importantly, we treat these attention maps as a normalized structural probe—a sample-specific proxy
for synchronization structure—not as an attempt to replicate the raw outputs of any particular SPI.

4.2 STRUCTURAL PERTURBATION SCORE (SPS)

Having established an encoder that is expressive enough to capture diverse FC structures, the next
challenge is to define a criterion for identifying the most fundamental samples for a robust benchmark.
Our central hypothesis is that samples representing common, foundational connectivity patterns will
induce stable structural representations during training, while noisy or atypical samples will cause
greater fluctuations. To quantify this phenomenon, we propose the Structural Perturbation Score
(SPS), a metric grounded in the principle that perturbation magnitude reflects structural heterogeneity
(Proposition [I).

Proposition 1 (Mixture-driven perturbation magnitude). Let SV, ..., S(K) € RNXN pe distinct
prototypes and Dy, = HS(’“) — S(l)||§7 (Dyy > 0 for k #1). Let (Z.)e>1 be i.id. with Pr[Z, =
S®) = N\, 3o, Ax = 1, and define A, := || Ze — Zo—1]|%.

Then
E[A,] = Z)\k/\le.l = QZAk/\le.l. (7
k.l

k<l
With D,y = 1nink<l Dy and Dy = maxp«<i Dy,

D (1= 3°02) S EIA] < D (1= D 22). ®)
k k

In particular, E[A.] scales with the Gini impurity 1 — %", A\? up to constants set by prototype
separation. If Dy = D for all k # 1, then

E[A.] = D(l - Z)\i). )
k
(Proof in Appendix|[C])

Proposition [T]indicates samples that are a purer representation of a single archetype will be more
stable (low SPS). The SPS for a sample X € &’ is thus defined as the cumulative structural instability
across L training epochs:

) (10)

L
_ 1 () (e—1)[|?
SPS(X) = 7 Z; HA(X) ~ Al HF
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where AE% denotes the attention-based structure matrix of sample X € X at training epoch

e€{l,...,L} and || - ||r denotes the Frobenius norm. Specifically, AE%

representation, not a proposed network model. In this way, SPS captures the structural volatility
of the sample-specific synchronization graph during training, not fidelity to any specific SPI. Our
rationale is that a robust and reliable benchmark is built upon foundational, structurally stable samples.
As supported by Proposition [T} low-SPS samples exhibit less internal structural conflict and thus
represent stable archetypes of functional connectivity. Therefore, our primary selection strategy is to
rank samples by their SPS and select those with the lowest SPS.

is a proxy for structural

For SPS to be a reliable metric, however, we must ensure that it is a consistent estimator that does
not depend on the arbitrary length of the training process. Lemma [] (in Appendix D) provides
this theoretical guarantee: Under stable perturbation dynamics, the assumptions of Lemma [I] are
satisfied. We used extensive grid search to find a configuration that achieves optimal performance
on the downstream ranking preservation task as detailed in Appendix [M| Notably, the assumptions
of that configuration’s stationarity and ergodicity in Lemma [I] are empirically supported by our
convergence analysis in Appendix [K.2] where we show that the perturbation dynamics stabilize as
the model converges. This standard procedure sufficiently validates the feasibility of SPS.

4.3 STRUCTURE-AWARE DENSITY-BALANCED SAMPLING

While selecting for structurally stable (low-SPS) samples provides a robust foundation, a naive top-k
selection risks creating a core-set with low diversity by over-selecting from dense clusters of typical
patterns. This lack of diversity can cause the core-set benchmark to diverge from the full-dataset
ranking (Theorem 3).

Theorem 3 (Persistent bias of top-k selection). Let X' contain two clusters C,, C, with proportions
Tp, Tq. Givenx € C.. (1 € {p, q}), let the score s(x) have continuous CDF F,, and assume scores
are independent across samples. Select the k = | pN | samples with the smallest scores (p € (0,1)),
and write T, := | S, N C..|/k.

Let T satisfy the mixture-quantile equation

TpFp(T) + maFy(T) = p, (11)
and assume strict separation at T:
v 1= F,(1) — Fy(1) > 0. (12)
Then
r F, . Pr F,
TR 20O S N 221CO Y N B R G
P P P

Consequently, the representation error Ay, := |, — m,| + |Ty — m4| satisfies Ay, L%y 95 > 0. (See
Appendix [E])

To explicitly balance stability with diversity, we introduce a density-aware sampling scheme, yielding
the SCLCSpense variant. This scheme first ensures robustness by retaining a pool of the most stable
samples (the bottom 1 — /3 quantile of SPS scores), then promotes diversity by applying Kernel
Density Estimation (KDE) (Weglarczyk, |2018)) to up-weight samples from sparser regions within
that stable pool. This mitigates redundancy and ensures the core-set captures a broader range of
structurally distinct subtypes, which is crucial for including less common but potentially critical
neural patterns often associated with clinical biomarkers.

Specifically, given the set of SPS for all samples in X', we first discard the top 3 quantile of the most
unstable samples to form a stable candidate pool X. This is formally defined as:

X ={X e X|SPS(X) < Qi s}, (14)

where ()1_ 3 is the empirical quantile. On X, we fit a Gaussian KDE to the empirical distribution of
{SPS(X) : X € X'}, and define the local density of a sample as the KDE evaluated at its SPS:

ﬁsps(s) = KDE({SPS(X)}XGX), p(X) = f)sps(SPS(X)) (15)
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To promote diversity, weights are set inversely proportional to p(X) and normalized over X

1 w(X)

wX) = ——— w(X) « m (16)

We then select m samples without replacement from X using weights {w(X)}. This yields a
structurally diverse subset that up-weights samples in low-density regions of the SPS distribution
within the stable pool. Theoretical guarantees on coverage and benchmarking consistency are
demonstrated in Theorem [4] and Theorem [5| respectively (provided and proved in Appendix
and Appendix G| respectively). Notably, this scheme is applicable to other score-based methods by
replacing SPS to different metrics as shown in Appendix[J]

4.4 STRUCTURE-AWARE CONTRASTIVE LEARNING

To learn structural representations, we train the encoder with a structure-aware contrastive objective.
Motivated by FC evaluation practices that exploit inter-subject differences (Liu et al., 2025} |[Luppi
et al., |2024), we enforce consistency among samples drawn from the same subject within a scan
session. This identity-supervised setup encourages the model to capture stable, person-specific traits
(“brain fingerprints” (Lu et al.| [2024))), providing a task-agnostic signal for structure-based selection.

First, to obtain a graph-level embedding for each sample, we compute node-level embeddings
Z € RN*4 by applying the learned attention matrix to the value embeddings and projecting the
result through a final linear layer. A global mean pooling is then applied to obtain the graph-level
embedding z € R?, which captures the sample’s global topological semantics and serves as input to
our contrastive loss:

1 i Y

Lomias = 0 D, —og 5= P (Slm((z?’ =)/T) (17)
(i,5)EP kEN (i) exp Slm(zlv Zk)/T)

where sim(-, -) is cosine similarity, 7 is a temperature parameter, and the pairs are defined across a

batch. Positive pairs (i, j) € P consist of two different temporal segments from the same subject,

while for a given anchor sample i, the negative sample k € N/ (4) are all other samples in the batch

from different subjects. All the trainable parameters are optimized using Adam (Kingma & Ba, |2015)).

5 EXPERIMENT

In this section, we present empirical results to validate our proposed framework. We first detail
the experimental settings and then present the main quantitative and qualitative results comparing
SCLCS to SOTA baselines. Due to space constraints, several important settings and supplemen-
tary analyses, including detailed experimental settings for reproduction (Appendix[M)), a detailed
computational cost breakdown (Appendix [H)), the effect of supervised information on baselines
(Appendix I, the application of our density-aware sampling to other baselines (Appendix [J), empiri-
cal results (Appendix [K) for supporting Theorem [2]and the assumptions in Lemma([l] and additional
generalization and robustness analysis (Appendix L.

5.1 EXPERIMENTAL SETTINGS

Data We validate our framework on the REST-meta-MDD dataset (Yan et al.| [2019), a large-
scale, multi-site resting-state fMRI collection comprising 1,642 subjects from 17 sites. This highly
heterogeneous collection was released with a standardized preprocessing pipeline, providing a
rigorous testbed for core-set selection. For efficiency and consistency with prior work, we focus
on a subset of 904 subjects (Long et al.,|2020). To capture dynamic patterns, each subject’s fMRI
record is segmented into overlapping temporal samples via a sliding window, yielding 4,520 samples.
Demographic statistics are in Table[I} Complete data and preprocessing details are in Appendix [ML.1]

Baselines Following the experimental setup in|Hong et al.| (2024b), we extend their comparison
with two additions (k-Means and BOSS), evaluating against 9 baselines in total: (1) Random; (2)
k-Means (Hartigan & Wong, |1979); (3) Forgetting score (Toneva et al.,[2019); (4) Entropy (Coleman



Published as a conference paper at ICLR 2026

Table 1: Summary of the used subset of REST-meta-MDD.
Site | #Samples | #HC | #MDD | #Male | #Female | Age Range | Education Range (Years)

15 335 37 30 26 41 19-65 5-21
17 410 41 41 27 55 18-30 9-17
19 245 31 18 19 30 18-51 5-15
20 2395 229 250 157 322 18-65 3-20
21 720 65 79 62 82 18-65 5-15
22 190 20 18 21 17 19-47 8-17
23 225 23 22 18 27 19-54 6-20
Overall 4520 458 446 330 574 18-65 3-21

et al., 2020); (5) EL2N (Paul et al., 2021); (6) AUM (Pleiss et al., [2020); (7) CCS (Zheng et al.,
2023); (8)EVA (Hong et al., |2024b);(9) BOSS (Acharya et al., 2024). The latter 7 of them are SOTA
methods designed for core-set selection. Detailed introduction is summarized in Appendix [M.2]

Environment Experiments are performed on an 8-GPU (H20) high-performance computing cluster
provided by the Large-scale Instrument Sharing Platform of Southwest University.

Evaluation Protocol Our goal is to select a subset that preserves model ranking, not to train a
single predictive model. Therefore, our evaluation deviates from the standard train/test split. The
protocol is as follows: (1) Each method selects a core-set of a given size from the entire dataset. (2)
We then compute the SPI performance ranking on both the full dataset (ground truth) and the selected
core-set. (3) The quality of the core-set is measured by the consistency between these two rankings.

Task We use two distinct downstream tasks to evaluate SPI discriminability: brain fingerprinting
(distinguishing individuals based on subject ID), which probes for fine-grained, subject-specific
structures, and MDD diagnosis, which relies on cohort-level patterns.

Metrics We use two primary metrics. (1) Discriminability Score, a metric based on Spearman’s
rank correlation (Sedgwickl] 2014) that quantifies the class separability (within- vs. between-class) of
the resulting FC matrices. (2) Ranking Consistency, the concordance between the full-dataset and
core-set SPI rankings using nDCG@5/10/20 (Wang et al.,|2013).

5.2 QUANTITATIVE RESULTS

We present the primary quantitative results in Table 2 and Table[3] The evaluation includes SCLCS
(using low-SPS top-k selection), SCLCSpepse (density-aware selection), and SPSyia (a variant using
naive attention averaging to empirically test Theorem T).

Table 2: Performance of different methods on brain fingerprinting ranking task (mean + std) and
nDCG @k is reported as percentage (x 100).

¥ \ nDCG@5 \ nDCG@10 \ nDCG@20
ethod
|~ o1 03 05 | o1 03 05 | o1 03 05

Random 151711397 69.5740469  66.6042021 | 17.97 41750 711940095 66.98 41947 | 21.9740101 716342127  68.134 1750
k-Means 173241153 657241005 672941141 | 21.2341530  64.3540483  63.371992 | 221541519 62.5811920  66.7841528
Forgetting 1444li7_g4 54.43;{:13,25 43.363:3_35 15'49i7.83 48.5717_35 49.87i4_(,(, 20-23i7.21 55.80;{:(,_72 49»7014.60
Entropy 474014006  22.8441320 59.9512699 | 377310504 32.0549520  58.6812371 | 36.0541811 359011610 577242184
EI2N 355643616 20.304s577  31.0343457 | 36.5140535  33.1841468 327043084 | 33.3042155 35.8241210 40.0643208
AUM 659243380 56.68+11.11 381711304 | 60.9543001  62.051491  36.831878 | 517540040 59.09i570 38341688
CCS 1901207  30.5341415 46.65:23 | 2924324 29134800 517840412 | 162411334 32.5641415  52.1840020
EVA 38.4044057 62.0310660 378044245 | 43.371£1992  55.0142005 49.5643308 | 43.2241508 535141470 654942199
BOSS 159810555 421140433 35.361921 | 294441105 40.5712337 39154671 | 31454045 382441065 38.924597
SCLCS 81.21158¢ 50.2411316 72.6812083 | 66.54;10 494511418 71864435 | 57464050 534011627 70131157
SCLCSpense | 357343118 79184620  S1.5441383 | 35.8410543 73454140 505411516 | 41.0343580 72961335 554341364
SPSuvua 1.324907 12233511 15624633 | 2921003 13124113 11.28443 1214104 12134317 12.184723

Brain Fingerprinting This task rewards subject-specific patterns, which aligns with our identity-
supervised objective. As shown in Table [2) SCLCS achieves stronger performance with lower
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variance at sampling ratios 0.1 and 0.5, suggesting that selecting structurally stable samples via
low-SPS top-k ranking is effective. In contrast, SPSyga performs poorly, consistent with Theorem[I}
At the moderate ratio 0.3, SCLCS degrades, whereas SCLCSpepse performs best. This pattern
supports Theorem [3; when stability ranking alone is insufficient, explicitly promoting structural
diversity provides a corrective signal.

Table 3: Performance of different methods on MDD diagnosis ranking task (mean + std) and
nDCG @k is reported as percentage (x 100).

vethod | nDCG@S \ nDCG@10 \ nDCG@20
| o1 03 05 | ol 0.3 05 | o1 03 0.5

Random 495843378 237743585 317641583 | 60.5043336 25.81u3610  77.9541177 | 67.0442703  30.3013067  82.714g50
k-Means 513241747 324543346 373311700 | 30.1811065 404741481 437542084 | 28.6211433  37.8711a77 798315024
Forgetting 28.7010806 41.6042808 61.424431 | 40.5640506 50.2713237  66.724860 | 44.3742807 57.0213330  75.70175ss
Entropy 29.0014510 31.8414610 574812981 | 29.1714324  40.7514405 63.2319344 | 303014350 45.8514500 70.79+18.00
EI2N 309344117 517040814 688511046 | 36.0510441  58.5440755 729641577 | 41.0413061  64.6810625  78.8511456
AUM 36.0741259 42.6814616 3549411437 | 39.17 11458 44414405 581441654 | 44.94 11848 484414048 643611440
CCS 559511608 599243008 747311246 | 592541626 67.0110461 754111508 | 689841567 716240105 787741349
EVA 308011770 6681s01>  70.071005 | 36.11x1a70 72.6lag7s 76261617 | 483911048 75341548 817345
BOSS 424415437 575240011 195711662 | 50.6410512  64.8612156 84.7041407 | 581142320  71.3641504 88954949
SCLCS 483842300 702742327 64.1842508 | 50.5910170 73.8641567 66.1540196 | 61.1211675  76.894955  68.431175
SCLCSpense | 572942407 74.62118020 81.871965 | 64.3d11697 77.52117.15  86.25172 | 698411471 827041104 8945651
SPSyvuA 19.1311536  26.8241634 274541931 | 20.1341227 227541433 23.1941322 | 25.7311192  17.8511203  20.7311490

MDD Diagnosis This cohort-level task requires broader structural coverage than fingerprinting. As
shown in Table SCLCSpense achieves superior performance with lower variance across sampling
ratios and evaluation depths, highlighting the benefit of density-aware sampling for capturing diverse
patterns in group-comparison benchmarking. In this setting, the standard SCLCS (top-k) is less
effective, suggesting that the best sampling strategy depends on the task’s structural demands. Finally,
simpler heuristics such as k-Means and class-imbalance—prone criteria such as Entropy (Figure[2)
perform less competitively, reinforcing the need for structure-aware selection.

The behavior of the Random baseline suggests that ranking-preserving selection differs from tradi-
tional single-model core-set objectives, and that methods designed for the latter may not transfer well.
The non-monotonic trend (30% < 10%) observed for SCLCS and SCLCSpense is consistent with The-
orem [3] indicating that naive score-based top-k sampling can be brittle: it may over-represent dense
clusters of typical patterns while missing rarer but important structures. This motivates SCLCSpepge,
which mitigates this failure mode via density-aware sampling.

Table 4: Empirical validation of Theorem 2. Our modified Transformer approximates a diverse set
of SPIs. The model demonstrates effective fitting and generalization.

SPI Operator | Train MSE (Start) | Train MSE (End) | Test MSE || SPI Operator | Train MSE (Start) | Train MSE (End) | Test MSE
pec_orth 0.0605 0.0584 0.0584 plv_multitaper_mean 0.3122 0.0588 0.0585
phase_multitaper_mean 0.0295 0.0264 0.0265 cohmag_multitaper_max 0.5721 0.0055 0.0057
pli_multitaper_mean 0.0239 0.0221 0.0222 te_kernel 0.8513 0.0181 0.0182
wpli_multitaper_mean 0.0237 0.0221 0.0222 bary_euclidean_max 1.9840 0.1164 0.1153
psi_wavelet_max 6.0959 3.5522 3.5789 Xme_gaussian 0.9223 0.0155 0.0158
ppc_multitaper_mean 0.2082 0.1391 0.1382 je_kernel 7.5831 0.1021 0.1025
gwtau 6.4630 1.8087 1.8124 ce_kernel 0.9243 0.0141 0.0144
icoh_multitaper_mean 0.0797 0.0206 0.0206 Icss_constraint 0.2608 0.0020 0.0020

Empirical Validation of Theorem[2] To empirically test the approximation capacity implied by
Theorem 2] we train our modified Transformer to approximate the FC matrices produced by 16
representative SPI operators selected from the taxonomy of |Cliff et al.|(2023). For each target SPI,
we train a separate model on fMRI time series by minimizing the mean squared error (MSE) to the
SPI-generated FC matrices. Table [4|shows low final test MSE across all 16 targets, indicating that the
model can closely approximate a diverse set of SPIs. Approximation fidelity varies by SPI, but the
overall trend supports Theorem

Together, Theorem [2] and Table 4] suggest that the architecture is expressive enough to serve as a
structural probe for fMRI time series. Small approximation errors (e.g., imperfect emulation of
discrete statistical tests) need not invalidate our stability signal: SPS aims to distinguish structurally
stable samples (low SPS) from unstable ones (high SPS), rather than to maximize approximation
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fidelity. Quantifying how approximation error propagates to ranking preservation is an important
direction for future work. Full details and convergence curves are provided in Appendix [K.1]
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Figure 2: Sample coverage balance on subjects and MDD/HC of baselines.

Sample Coverage Balance Analysis Beyond performance, we assess the reliability and repre-
sentativeness of selection by analyzing sample coverage balance (Figure ). We introduce two
metrics: S-I Balance (selected samples per subject, lower indicates broader subject coverage) and
M-H Balance (MDD-to-HC ratio; deviation from 1 indicates class imbalance). As shown in Figure 2]
SCLCS and SCLCSpense maintain balanced coverage with low variance on both metrics, whereas
several baselines are unstable. Entropy is particularly sensitive to class-label effects, selecting almost
exclusively MDD subjects at low ratios. This produces a skewed, unrepresentative core-set and can
make downstream benchmarking misleading, highlighting the risk of naive score-based selection.

5.3 QUALITATIVE RESULTS: VISUALIZING SPS DYNAMICS

To provide an intuitive check of the SPS metric, we visualize the evolution of the learned attention
map Afy, over the early training epochs e. While the results in Appendix [K|indicate that attention
maps typically stabilize after ~ 50 epochs, Figure3]shows that the stabilization dynamics vary across
samples: a low-SPS sample (top row) rapidly converges to a stable structural pattern, whereas a
high-SPS sample (bottom row) exhibits sustained fluctuations. These observations suggest that SPS
reflects a stable, sample-specific property rather than transient optimization noise, supporting its use
for identifying foundational samples for benchmarking.

Epoch 0 Epoch 10

Epoch 30 Epoch 40 Epoch 50 Epoch 60 Epoch 70

Epoch 20

Min Score

Max Score

Figure 3: The evolution of the learned attention map Afx) across training epochs.

6 CONCLUSION

In this work, we address the computational bottleneck of large-scale FC operator (SPI) benchmarking
by casting core-set selection as a ranking-preservation task. Our key technical contributions are:
(1) A modified Transformer architecture with a universal approximation guarantee for continuous
SPI mappings under our assumptions. (2) The SPS metric to identify structurally stable samples.
(3) The SCLCS framework, which outperforms 9 baselines in ranking-preservation evaluation. By
accelerating FC benchmarking, SCLCS makes large-scale, pre-analysis SPI comparisons practical
and supports more reproducible computational neuroscience.

10
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REPRODUCIBILITY STATEMENT

To ensure our research is fully reproducible, we have made our code, data sources, and experimental
details available as follows:

* Code: The complete source code for our SCLCS framework and all experiments is publicly
available on https://github.com/lzhan94swu/SCLCS.

» Dataset and Preprocessing: The REST-meta-MDD (Yan et al.,|2019)) dataset is publicly ac-
cessible at https://rfmri.org/REST-meta-MDD. Our detailed data preprocessing
pipeline is described in Appendix [M.1]

* External Libraries: Our analysis relies on the pyspi library (Cliff et al., 2023)), which
is publicly available at https://github.com/DynamicsAndNeuralSystems/
pyspi. The specific criteria used to select SPIs for our benchmark are detailed in Ap-

pendix [H]
* Experimental Settings: A summary of the experimental setup is presented in Section [5.1]
with a comprehensive breakdown of all parameters and configurations available in Ap-

pendix M|
* Theoretical Proofs: Complete proofs for all theorems, propositions, and lemmas presented
in this paper can be found in Appendix[AHG]

ETHICS STATEMENT

Our work provides a framework for evaluating and selecting computational models used in neu-
roimaging analysis, which can be applied to clinical tasks such as disease diagnosis. Therefore,
it is important to consider the potential societal impacts of the models ultimately chosen via our
benchmarking process. A potential negative impact could arise if a core-set, while efficient, is not
perfectly representative of the full dataset’s diversity, leading to the selection of a model that is biased
or performs suboptimally on underrepresented demographic or clinical groups. To mitigate this, we
emphasize that our framework is a tool for pre-clinical scientific validation. Any model selected
using our approach for real-world medical scenarios must undergo its own rigorous, independent
clinical validation, and the final diagnostic decision must always remain with a qualified physician.
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A PROOF OF THEOREM [I]

Theorem (Interference of Averaged Attention, full version). Let {A,}/_, be a collection of row
stochasticﬂ attention matrices with Aj, € RVN*N_ For every row index i € {1,..., N} assume there

exist sets S,(f) C {1,..., N} that are pairwise disjoint, meaning S,(j) N S,(LZ;) = @ forall h # b/, and
such that )
An(i,j) =0 forallj¢ S\,

Define the uniform average A = % ZhH:1 Ay,. Then for every row i:

(a) Support expansion. supp(a®) = (J;_, S,(f). If H > 2, then for every h, supp(a()) ¢
S,

(b) Entropy inflation. With H(p) := — Zjvzl p; logpj,

H
—(3 1 % . i
H(a()) > Ehil?-l(agl)) >  min 'r'-l(agb))7

1<h<H

and strict inequality holds whenever the vectors {agj) }hH:1 are not all identical. In particular,
under the disjoint mask assumption, strict inequality holds for every i whenever H > 2.

Proof. Fix arow index i and write py, 1= as) € AN~1, By definition,

H

H
) 1 1

—._—(1)_7§: —__72: .

p=a"’ = Hh_lph, P; = Hh_l(Ph)g~

(a) Support expansion. All entries are nonnegative, so p; > 0 if and only if there exists a head h
with (pp); > 0. Under the masking assumption, (pp); > 0 implies j € S,(j). Conversely, since each

P is a probability vector supported on .S ,(f), every j € S ,(f) with nonzero mass in head h contributes
a positive term to p;. Therefore,

H H
supp(p) = | supp(pr) € |J S5
h=1 h=1
Moreover, because py, is row stochastic and supported inside S}(Li), we have supp(pn) # < and

supp(pn) C S}(f), so supp(p) equals the union of the head supports and is contained in the union of
the masks. If, as in the theorem statement, the intended structural supports are exactly the mask sets

2Each row is a probability distribution produced by a softmax: Ay (i,5) > 0 and Zj.vzl Ap(i,j) =1.
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(that is, the mask defines which indices can receive positive mass), then supp(py) = S,(f) and hence
supp(p) = U™, 5. When H > 2 and the sets {S\” }/__, are pairwise disjoint, the union strictly
contains each S,(f), so supp(p) & S,(f) for every h.

(b) Entropy inflation. The Shannon entropy H is strictly concave on the probability simplex. By
Jensen’s inequality,

1<h<H

H
H(p) = ;;H(ph> > min H(pn),

and the first inequality is strict unless p; = --- = py. Under the disjoint mask assumption with
H > 2, the vectors cannot all be identical: if p,, = pj- for some h = ', then their supports coincide

and are nonempty, so S f(f) ns f(f,) # @, contradicting disjointness. Hence p1, ..., py are not all
identical, so H(p) > + S H(pp) and therefore H(p) > miny, H(ps).

Together, (a) and (b) show that uniform averaging introduces additional nonzero entries and increases
entropy, which blurs head specific structural patterns. O

B PROOF OF THEOREM 2]

Proof. We use an existing attention-only universal approximation result as the main engine and then
specialize it to row-stochastic matrix-valued targets.

Step 1 (Reduce to sequence-to-sequence approximation). View X € RV*T as a length-N
sequence with token dimension T'. Likewise, view S(X) € RY*¥ as a length-N sequence of row
vectors in RY. Since X is compact and S is continuous, this is a continuous sequence-to-sequence
map on a compact domain.

Step 2 (Attention-only universality on compact sets). Recent results show that (softmax-
)attention-only architectures with linear projections are universal approximators for continuous
sequence-to-sequence maps on compact domains (Hu et al.| 2025)). In particular, attention modules
can simulate piecewise-linear bases and hence achieve uniform approximation without requiring
feed-forward sublayers. We invoke such a theorem.

Step 3 (Constrain the output to be row-stochastic). Our target operator satisfies S(X) €
AN=IXN for all X. The model family in equation [2|is also row-stochastic by construction: each
head output is row-stochastic (row-wise softmax), and the convex mixture with o € A” 1 preserves
row-stochasticity. Therefore the approximating attention-only construction can be chosen to lie
entirely inside AN ~1XV,

Step 4 (Uniform approximation in Frobenius norm). The cited attention-only universality

provides uniform approximation in a sup norm over the compact domain. Since || |7 < VN||*||s0,00
the same parameter choice yields

sup || Ag(X) — S(X)||, <€
Xex
after tightening constants.

This completes the proof. O

C PROOF OF PROPOSITION[I]

Proof. Because Z. and Z._; arei.i.d.,

K K
Y oPrlZ. =W, z, 4 = sO]|s® — O3
l

E[Ae] =

Il
-

M= I
M=

AN Dy,

~
Il
-
Il
-
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which gives the first equality in equation Since Dy = 0 and Dy; = Dy,

K K
ZZ)\]C)\ZDM = 22)\k>\le:l7

k=11=1 k<l
proving the second equality in equation|[7
For the bounds equation [8] note that for all k < I, Dyin < Dii < Dpax, hence
2Dmin Y MM < 2D MANDi < 2Dpmax D M
k<l k<l k<l
Finally,

K 9 K K
23" M = (;)\k) 7;&:17;)@,

k<l
which is the Gini impurity of {\;}. This yields equation
If Dy; = D for all k # [, then equationbecomes

K

E[A] =203 M =D(1-3"23),

k<l k=1

establishing equation 9] O

D LEMMA [ AND PROOF

Lemma 1 (Consistency of SPS). Let {AE;‘())}QZO be the sequence of attention-based structure
matrices for a fixed sample X generated by a stochastic optimization algorithm. Assume the sequence

of differences
e e—1)(12
Ac(X) = ||AE>2) *AEX) )HF (18)
forms a stationary and ergodic process with finite mean 0?(X) = E[A.(X)]. Then the empirical SPS
estimator

L
— 1
SPSL(X) = ;Ae(X) (19)
converges almost surely to 0%(X) as L — oo: ﬁL(X) — 0%(X) a.s.

Proof. Because {A.(X)} is assumed stationary and ergodic with finite first moment, Birkhoff’s
pointwise ergodic theorem (Birkhoff,|[1931) applies:

L
1
I > 1 A(X) 25 ElA(X)] = 0%(X). (20)
But the left-hand side is precisely SPS 1.(X). Hence the estimator is strongly consistent. O

E PROOF OF THEOREM[3]

Proof. Write the scores as {s;}; and let s(;) be the k-th order statistic. Equivalently, Sy, = {x; :
si < 5 k)} up to tie-breaking on a null event (because the score distributions are continuous).

Step 1: Identify the population selection threshold. Let 7 satisfy equation [T} Intuitively, 7 is the
population score threshold whose expected accepted fraction is p:

1 N
E{N S 1{si < T}} = 1, By (1) + g Fy(7) = p.

i=1

17
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Step 2: The empirical threshold concentrates. Define the empirical accepted fraction at threshold
t:

1 N

Gn(t) =+ 2‘1 1{s; < t}.
i—
Because scores are independent across samples and each indicator is bounded, a standard concen-
tration argument (e.g., Hoeffding) yields that G (¢) concentrates uniformly on compact intervals
around its mean G(t) := m,F},(t) +myFy(t). Since F),, F, are continuous and G is strictly increasing
at 7 (under mild regularity), it follows that the empirical quantile s, converges in probability to 7:

Pr
. 21
) N T @D

Step 3: Selected cluster counts converge to their expectations. Conditional on sy, the number
of selected points from cluster C), is

1Sk N Cpl = > 1{s(x) < 51}
xeC)p

Given sy, the indicators in the sum are i.i.d. Bernoulli with parameter F,(s(1)), so by the law of
large numbers (and Slutsky using equation 21},

15k NGyl By (r). (22)
Tp
Similarly,
1560 Cq| r, Fy(7). (23)
g

Step 4: Convert to selected proportions and compute the bias. Divide equationby k/N — p:
7,(Sk) = Sk N Cy| _ Sk N Cp|/N _ (np/N) - (1S N Cpl/mp) Pr, ﬂpr(T).
k k/N k/N p
Using equation[TT]} we compute
mpFp(7) F,(t)—p F,(7) — mpFp(1) — mgFy(7) T,
p; *7771:7"17( . P ):7717( . - pp = ): ppq(Fp(T)*Fq(T))'

Under equation [12| this equals § := ”"—pﬂ‘w > 0, establishing the first limit in equation The
statement for 7, (S) follows since 7, (Sy) = 1 — 7p(Sk), and then Ay, = 2|7, (Sk) — 7| P05 >
0.

F THEOREM 4] AND PROOF

Theorem 4 (c-coverage of density-reweighted sampling). Fix 0 < § < 1 and e > 0. Let X, be the
candidate pool with n = |X.|, and let S C X, be the subset of size m returned by the proposed
sampling procedure. Let N, be the e-covering number of X, under d(A,A’) = |A — A'||p. Under
Assumption[T] if

n(pmax + T)
S — (1og N. +10g(1/0) ), (24)

then S is an e-cover of X, with probability at least 1 — §.

m >

Define the structure-representation space (M, d) with metric d(A, A’) = ||A — A'|| . Fore > 0 let
N be the covering number of X, C M. That is, the smallest number of closed d-balls of radius &
needed to cover all subjects in X.

Assumption 1. After the B-filter step, define the KDE-induced density p(X) := psps(SPS(X)),
where psps is a Gaussian KDE fit on {SPS(X) : X € X~C}. Assume the estimator is bounded on the
candidate pool: 0 < ppmin < p(X) < pmax < 00 for every X € X...
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Assumption [1|is mild because Gaussian KDE with finite bandwidth produces a bounded, strictly
positive estimate on any finite sample.

Proof. Define the (normalized) sampling weight for X & X, as

1
w(X) = 22— (25)
ZZGXC p(Z)+1

. 1 1 1 n :
By.Assumptlon for all X, X > p— and ), 2 < p— Hence every point has
weight bounded below by

1/(pmax + T) Pmin + 7

w(X) > n/(pmin+7) = n(pmax-l-T) =! Wmnin- (26)

Let {Bi,...,Bn.} be a collection of closed d-balls of radius e covering X,.. Since X, C )?C,
each B; contains at least one candidate point. Therefore its total sampling mass satisfies W; :=

ZXijm)?c w(X) = Win-

Consider sequential sampling without replacement where at each draw we sample from the remaining
points proportionally to their weights (renormalized). If we have not yet sampled from B, then
removing points outside B; can only increase the renormalized mass of B;; thus, at every draw the
conditional probability of selecting a point outside B; is at most 1 — W; < 1 — wpin. Therefore

PriB;NS=02] < (1 —wnin)™ < exp(—Wminm). 27
Choose m so that exp(—wminm) < §/Ng, i.e. m > wl_ (log N. + log(1/4)). A union bound over
the N, balls yields Pr[3j : B; NS = @] < J. Hence with probability at least 1 — ¢, every ball

contains at least one sampled point, so S is an e-cover of X. O

G THEOREM[3 AND PROOF

Theorem 5 (Expectation discrepancy under e-coverage). Let (M, d) be the structure-representation
space with d(A, A') = ||A—A’|| ¢ and representation map X — AX) € M. Let P be a probability
distribution supported on X. Assume X C X is an e-cover of X in M: for every X € X there exists
X € X with d(AX) AX)) < ¢,

Let  : X — X be any (measurable) selection satisfying d(A AT < ¢ for all X, and
define the push-forward measure P, := P o = on X. Then for any function f : X — R that is
L-Lipschitz w.rt. d,

[Ex~p[f(X)] — Ex~p,[f(X)]]| < Le. (28)
Proof. Because f is L-Lipschitz w.r.t. d, for every X € X,
|f(X) = f(r(X))| < LA ATE)) < Le.

Taking expectation under P and using Jensen/triangle inequality,

|Ex~r[f(X)] — Ex~p[f(7(X))] ’ < Ex~p[|lf(X) = f(m(X))]] < Le.

Finally, by definition of the push-forward measure Py,

Exc~p[f(m(X))] = Ex~p.[f(X)]-

Combining completes the proof. O
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Computation Time Distribution of SPIs

Total SPI Methods: 266
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=<10s: 180 methods

=<1s: 130 methods

Figure Al: Time consumption of different SPIs on a single sample.

Table Al: SPIs included in pyspi (bolded ones are used in this paper).

cov_EllipticEnvelope

cov_OAS

cov-sq_GraphicalLasso
cov_PearsonCorrelation

prec_GraphicalLasso

prec_ShrunkCovariance

prec-sq_LedoitWolf

kendalltau-sq

xcorr_mean_sig-True

pdist_cityblock

pdist_brayeurtis

bary-sq_euclidean_mean

ce_gaussian

mi_gaussian

ge_gaussian_k-1_kt-1_L-1_lt-1
phase_multitaper_mean_fs-1_fmin-0_fmax-0-25
phase_multitaper_max_fs-1_fmin-0-25_fmax-0-5

dswpli_multitaper_max_fs-1_fmin-0_f
ppe_multitaper_mean_fs-1_fmin-0-25_fmax-0-5
gd_multitaper_delay_fs-1_fmin-0_fmax-0-5
psi_wavelet_mean_fs-1_fmin-0_fmax-0-25_mean
psi_wavelet_max_fs-1_fmin-0-25_fmax-0-5_max
pec_orth_log

cov-sq_GraphicalLassoCV

spearmanr

mge

mgex_maxlag-1

dtw

softdiw_constraint-itakura

bary_dtw_mean

bary_softdtw_mean

bary-sq_sgddtw_mean

anm

cem_E-None_mean

cem_E-1_max

cem_E-10_diff

cee_gaussian

xme_kernel _W-0.5_k1

di_kozachenko

si_kernel_W-0.5_k-1

timi_kraskov_NN-4
te_kraskov_NN-4_DCE_k-max-10_tau-max-4

dtf_multitaper_max_fs-1_fmin-0_fmax-0-25
deoh_multitaper_mean_fs-1_fmin-0-25_fmax-0-5
pdcoh_multitaper_mean_fs-1_fmin-0_fmax-0-5
pdcoh_multitaper_max_fs-1_fmin-
gpdcoh_multitaper_mean_fs-1_fmin-0-25_fmax-0-5

_mean_fs-1_fmin-0-25_fmax-0-5_order-20
max_fs-1_fmin-0_fmax-0-25_order-1
-_max_fs-1_fmin-0-25_fmax-0-5_order-20
Imfit_SGDRegressor

epfit_RBF

coint_johansen_trace_stat_order-0_ardiff-1
coint_johansen_trace_stat_order-1_ardiff-1

cov_GraphicalLasso

cov_ShrunkCovariance

cov-sq_LedoitWolf

cov-sq_ShrunkCovariance

prec_LedoitWolf

prec-sq_EmpiricalCovariance
prec-sq_MinCovDet

kendalltau

xcorr-sq_mean_sig-True

pdist_cosine

less_constraint-sakoe-chiba
bary-sq_euclidean_max

ce_kernel W-0.5

timi_gaussian

te_symbolic_k-1_kt-1_l-1_It-1
phase_multitaper_mean_fs-1_fmin-0-25_fmax-0-5
cohmag_multitaper_mean_fs-1_fmin-0_fmax-0-5
cohmag_multitaper_max_fs-1_fmin-0_fmax-0-25
icoh_multitaper_mean_fs-1_fmin-0-25_fmax-0-5
psi_multitaper_mean_fs-1_fmin-0_fmax-0-5
plv_multitaper_mean_fs-1_fmin-0_fmax-0-25
plv_multitaper_max_fs-1_fmin-0-25_fmax-0-5

dspli_mut -_max_fs-1_fmin-0_fmax-0-5
dswpli_multitaper_mean_fs-1_fmin-0_fmax-0-25
fi

psi_wavelet_mean_fs-1_fmin-0-25_fmax-0-5_mean
pec

pec_orth_abs
prec_GraphicalLassoCV
pdist_euclidean

hsic

mgex_maxlag-10
dtw_constraint-itakura
softdtw_constraint-sakoe-chiba
bary_diw_max
bary_softdiw_max
bary-sq_sgddiw_max

cds
cem_E-None_max
com_E-1_diff

je_gaussian
cee_kozachenko

xme_kozachenko_k10

di_kernel_W-0.5

_kraskov_NN-4
tImi_kraskov_NN-4_DCE
te_kraskov_NN-4_DCE_k-2_kt-1_I-1_li-1
phi_star_t-1_norm-1
dif_multitaper_mean_fs-1_fmin-0_fmax-0-25
dif_multitaper_max_fs-1_fmin-0-25_fmax-0-5
fmax-0-5

‘gpdcoh_multitaper_max_fs-1_i
ddif_multitaper_mean_fs-1_fmin-0_fmax-0-25
ddif_multitaper_max_fs-1_fmin-0-25_fmax-0-5
sge_nonparametric_mean_fs-1_fmin-0-25_fmax-0-5
sge_parametric_mean_fs-1_fmin-0_fmax-0-5_order-None
sge_parametric_mean_fs-1_fmin-0-25_fmax-0-5_order-1
sge_parametric_max_fs-1_fmin-le-05_fmax-0-5_order-None
sge_parametric_max_fs-1_fmin-0-25_fmax-0-5_order-1
psi_wavelet_mean_fs-1_fmin-0_fmax-0-5_mean
Imfit_ElasticNet
coint_johansen_max_eig_stat_order-0_ardiff-10
coint_johansen_max_eig_stat_order-1_ardiff-10
coint_aeg_tstat_trend-c_autolag-aic_maxlag-10

cov_LedoitWolf

prec_EmpiricalCovariance
prec_MinCovDet
prec-sq_EllipticEnvelope
prec-sq_OAS
xcorr_max_sig-True
xcorr_mean_sig-False
_chebyshey
bary_cuclidean_mean
gwtau

xme_gaussian_k1

te_symbolic_k-10_kt-1_I-1_It-1

psi_multitaper_mean_fs-1_fmin-0_fmax-0-25
plv_multitaper_mean_fs-1_fmin-0-25_fmax-0-5
pli_multitaper_mean_fs-1_fmin-0_fmax-0-5
pli_multitaper_max_fs-1_fmin-0_fmax-0-25

Pl - max_|
dswpli_multitaper_mean_fs-1_fmin-0-25_fmax-0-5
aper_mean_fs-1_fmin-0_fmax-0-5
ppe_multitaper_max_fs-1_fmin-0_fmax-0-25
sge_parametric_mean_fs-1_fmin-0_fmax-0-25_order-1
psi_wavelet_max_fs-1_fmin-0_fmax-0-5_max
pec_orth

pec_orth_log_abs

prec-sq_GraphicalLassoCV

deorr

hic_biased

deorrx_maxlag-1

dtw_constraint-sakoe-chiba

less

bary_sgddiw_mean

bary-sq_dtw_mean

bary-sq_softdtw_mean

reci

cem,

None_diff

cem_E-10_mean

je_kozachenko

cee_kernel_W-0.5

xme_kernel_W-0.5_k10

si_gaussian_k-1

i_kraskov_NN-4_DCE

tImi_kernel_W-0.25

te_kraskov_NN-4_DCE_k-1_kt-1_l-1_li-1

phi_Geo_t-1_norm-0

dtf_multitaper_mean_fs-1_fmin-0-25_fmax-0-5

deoh_multitaper_mean_fs-1_fmin-0_fmax-0-5

_fmin-0_fmax-0-25

\_fs-1_fmin-0-25_fmax-0-5

1_fmin-0_fmax-0-5

gpdcoh_multitaper_max_fs-1_fmin-0_fmax-0-25

ddif_multitaper_mean_fs-1_fmin-0-25_fmax-0-5

ed_multitaper_delay_fs-1_fmin-0_fmax-0-25
onparametric_max_fs-1_fmin-0_fmax-0-5

sge_parametric_mean_fs-1_fmin-0_fmax-0-25_order-None

arametric_mean_fs-1_fmin-1e-05_fmax-0-5_order-20

sge_parametric_max_fs-1_fmin-0_fmax-0-25_order-None

c_parametric_max_fs-1_fmin-le-05_fmax-0-5_order-20

5
Imfit_Ridge

Imfit_BayesianRidge
coint_johansen_trace_stat_order-0_ardiff-10

coint_aeg_tstat_trend-ct_autolag-aic_maxlag-10

cov_MinCovDet

prec-sq_GraphicalLasso
prec-sq_ShrunkCovariance
xeorr-sq_max_sig-True
xcorr-sq_mean_sig-False
pdist_canberra
bary_euclidean_max
Je_kernel W.
xme_gaussian_k10
ge_gaussian_k-max-10_tau-max-2
phase_multitaper_mean_fs-1_fmin-0_fmax-0-5

phase_multitaper_max_fs-1_fmin-0_fmax-0-25
i 1_fmin-0-25_fmax-0-5
)_fmax-0-5

icoh_multitaper_max_fs-1_fmin-0_fmax-0-25
psi_multitaper_mean_fs-1_fmin-0-25_fmax-0-5
plv_multitaper_max_fs-1_fmi

0_fmax-0-5

wpli_multitaper_max_fs-1_fmin-0_fmax-0-5
ds per_mean_fs-1_fmin-0_fmax-0-25
dspli_multitaper_max_fs-1_fmin-0-25_fmax-0-5
dswpli_multitaper_max_fs-1_fmin-0_fmax-0-5
ppe_multitaper_mean_fs-1_fmin-0_fmax-0-25
ppe_multitaper_max_fs-1_fmin-0-25_fmax-0-5
sge_parametric_max_fs-1_fmin-1e-05_fmax-0-5_order-1
psi_wavelet_max_fs-1_fmin-0_fmax-0-25_max

pec_log

cov_GraphicalLassoCV

spearmanr-sq

deorr_biased

deorrx_maxlag-10
softdtw
less_constraint-itakura
bary_sgddiw_max
bary-sq_dtw_max

com_E-10_max
ce_kozachenko
xme_kozachenko_k1

aussian

si_kozachenko_k-1

mi_kernel_W-0.25

te_kraskov_NN-4_k-max-10_tau-max-4
k-1 kt-1 1111

25_fmax-0-5_order-None
fmax-0-25_order-20
sge_parametric_max_fs-1_fimin-0-25_fmax-0-5_order-None
sge_parametric_max_fs-1_fmin-0_fmax-0-25_order-20
Imfit_Lasso

‘gpfit_DotProduct

_johansen_max_eig_stat_order-0_ardiff-1
(_johansen_max_eig_stat_order-1_ardiff-1
_aeg_tstal_trend-ct_autolag-bic_maxlag-10
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H COMPUTATIONAL COMPLEXITY ANALYSIS

H.1 COMPUTATIONAL COMPLEXITY AND SELECTION OF SPIs

We compute all Statistical Pairwise Interactions (SPIs) using the open-source Python library
pyspi (CUff et al.| 2023), which provides a unified implementation of 284 diverse measures.
To ensure numerical stability, we exclude 18 SPIs that produced invalid matrix entries (NaN values),
resulting in a final set of |S| = 266 methods for our benchmark.

For a single multivariate time series (MTS) sample X € RY*T where N is the number of regions
of interest (ROIs) and T is the number of time points, the time complexity of a typical SPI compu-
tation scales as O(N?2L), where L reflects the method-specific internal dependency length. When
considering the entire benchmarking task over a dataset X" and the full suite of SPIs S, the overall
computational complexity lower bound becomes O(|X| - |S| - N2L).

To quantify this theoretical burden in practical terms, we benchmarked each of the 266 SPIs on
a representative sample (size 33 x 240). Using a 128 vCPU cluster as a concrete example, the
resulting time distribution is shown in Figure Based on these timings, we can estimate the
total cost for our full dataset of |X'| = 4520 samples. The time to process one sample with all
266 SPIs is approximately 18,950 CPU-seconds (summing estimates from different time bins:
14 methods x 1000s + 45 x 100s + 27 x 10s + 180 x 1s). Extrapolating to the full dataset, the total
computational cost is a staggering 4520 x 18,950 ~ 8.57 x 107 CPU-seconds, equivalent to over
990 CPU-days (= 7.7 CPU-days on a 128 vCPU). Even with access to massively parallelized cluster
environments, this enormous consumption of resources makes a full benchmark practically infeasible
and time-prohibitive.

This severe computational bottleneck motivates our core research question: how can we drastically
reduce the number of samples while preserving a robust and reliable evaluation of the SPIs? This
challenge naturally leads to our investigation of core-set selection for fMRI-based SPI benchmarking.
As calculated, on a 10% core-set the load reduces to ~ 99 CPU-days (10% of the full cost). On
the same 128-vCPU cluster, this would take: 99 CPU-days / 128 cores = ~ (.77 days (or =~ 18.5
hours). To validate our approach, we necessarily performed this exhaustive computation to establish a
ground-truth ranking. However, for the purpose of evaluating core-set quality in our experiments, we
restrict our analysis to a tractable subset of SPIs that take less than one second per sample, enabling
rapid yet informative evaluation. The full list of 284 SPIs is summarized in Table[AT] with those used
for our core-set evaluation highlighted in bold.

H.2 COMPUTATIONAL COST OF SELECTION METHODS

To complete our analysis of efficiency, we provide an empirical comparison of the computational
cost for SCLCS and the baseline methods. Table [A2|details the practical time consumption required
for each method. The ‘Time per Epoch’ reflects the average wall-clock time to complete a single
training epoch. The ‘Score Calculation Time’ is the specific, one-time overhead for computing the
final selection metric after the training phase is complete.

Table A2: Computational cost for core-set selection methods.

Method Time per Epoch (s) Score Calculation Time (s)
Forgetting 1.8708 0.0000

Entropy 1.9851 2.1588

EL2N 2.5309 0.3420

AUM 2.8389 0.0957

CCS 2.8389 11.9414

EVA 2.5964 0.6479

BOSS 2.0952 61.5406
SCLCSpense 6.9296 249.8204

As the results indicate, all core-set selection methods incur a modest, one-time computational cost.
This up-front investment is negligible when contrasted with the over 990 CPU-days required for a full

21



Published as a conference paper at ICLR 2026

downstream benchmark (as detailed in Appendix [H). It is worth noting that the score calculation for
SCLCSpense, which computes the SPS metric by measuring differences between attention matrices
across epochs, represents a fixed, post-training overhead. While this step appears slower than other
methods’ scoring, it is a one-time process that is highly parallelizable. These findings confirm that
investing a small computational budget in core-set selection is a practical and efficient solution.
This validates our proposed paradigm for tackling the intractable problem of large-scale model
benchmarking.

I INFLUENCE OF LABELS ON BASELINES

In the main paper, we report results of baseline methods trained using labels aligned with the
evaluation objective. However, our proposed SCLCS framework uniformly adopts subject identity as
the supervisory signal, which raises the question of training-evaluation label misalignment. To provide
a more comprehensive analysis, this section further investigates the influence of such misalignment
on baselines.

I.1 USING MDD LABEL FOR BRAIN FINGERPRINTING RANKING

Table A3: Comparison of brain fingerprinting ranking with subject and with MDD labels (mean +
std). Arrows indicate change under MDD supervision.

) nDCG@S5 nDCG@10 nDCG@20
Method ‘ Label ‘ 0.1 03 05 0.1 03 05 0.1 03 05

Foreettin: Subject 14.41 1784 544341326 43.36+335 15.491733 48.57 1735 49.87 466 20.234721 55804672 49.70 1460

& 2 | MDD 14414744 54.43 41326 43.3643347 15494783 48.57 1785 49.87 £4.66 20.23475; 55.804672 49.70+4.60
Entro Subject | 47.4014026  22.8411320  59.9512699 | 37.7312504 320541520  58.681237 360541811 359011610 577242184
Py MDD 243812328 366049477  68.7411906T | 294540804 44.8640546T 5827113070 | 331740504  46.5511374T  59.0511146T
EDN Subject | 355643616 20301577 31.03134s57 | 36510533 33.0841468 327043084 | 33.3012155 358241210 40.0643208
MDD 4514467 192711505 44.09405507 | 14.6710047) 2251411030 4717400087 | 14.6041820)  24.2711047)  48.58117.727

AUM Subject | 65.92433380 56.68+11.11 38.17 41394 60.95130.91 62.051491 36.831578 51.7542042 59.094572 38.344 6388
MDD 423214030 7258403187  48.7513004T | 36.0612057) 6374119117 53.6012575T | 36.7011054] 6514117007  53.85120387T

ccs Subject 1.9042.07 305341415 46.65123 2.924324 29134800 517842412 | 162441334  32.5645415 521842020
MDD 117511507 41.01asiT 24.68100300 | 1293110111 44.33401587  33.1110679) | 1845110067 4420120461  33.6512674

EVA Subject | 384014057  62.0312664  37.8014245 | 433711900 550140005  49.5643328 | 432211508 535141470 654910190
MDD 319913720 30.5710076 4234140477 | 3085130000 31.9043000) 42.55+0548) | 41.3311500)  28.07403411 534514683

BOSS Subject | 15.9817553 42.1142433 35.361921 29.44 41105 40.57 42337 39.154671 31455945 38.24 41965 38.92,4597
MDD | 2290423997 S51.7041314T  40.08431217 | 22.9241855)  51.87 4127417 39.62420.127 | 29.2011736)  S1.7141005T  40.14405447

We first evaluate the performance of baseline methods trained with MDD diagnosis labels for core-set
selection in the brain fingerprinting ranking task, using the results from subject-identity supervision
(as reported in the main paper) as reference. This alternative labeling scheme aligns with the intended
design of most baseline algorithms, which aim to select core-sets based on the target task labels (i.e.,
MDD vs. HC diagnosis labels from the REST-meta-MDD dataset).

As shown in Table [A3] this supervision shift generally leads to performance degradation across
most methods, suggesting a potential mismatch between the binary nature of MDD labels and the
requirements of brain fingerprinting, which involves a one-vs-all subject-level identification task.
Specifically, training with MDD labels provides weaker sample-level supervision due to reduced
class granularity, potentially limiting the diversity captured during core-set selection. Consequently,
the selected samples may fail to adequately support the subject-wise discriminative capacity of SPIs.

Nevertheless, certain methods such as AUM and BOSS exhibit improved ranking stability at higher
sampling ratios. This may be attributed to their scoring strategies, which explicitly account for sample
diversity or informativeness. Under this paradigm, incorporating diagnosis-based labels introduces an
additional semantic dimension that enhances the selection process, enabling these methods to better
preserve the representational structure of the full dataset.

1.2 USING SUBJECT LABEL FOR MDD RANKING

As a complementary analysis, we also evaluate the performance of baselines trained with subject
identity labels for core-set selection in the MDD diagnosis ranking task. This setting closely aligns
with our proposed SCLCS framework and allows us to investigate whether individual-level supervision
provides a stronger basis for core-set construction.
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Table A4: Comparison of MDD diagnosis ranking with MDD labels and with subject identities(mean
=+ std). Arrows indicate change under subject supervision.

nDCG@5 nDCG@10 nDCG@20
Method ‘ Label ‘ 0.1 03 05 0.1 03 05 0.1 03 05
Forgetting MDD 287042806  41.6042808  61.42443 40.56.42806 502743237 66.724g60 | 443710807  57.0243330  75.70475s8
Subject | 24.6410864 ) 43.69136577  87.74110677 | 28.5243045)  46.33437310 8857111037 | 32.8843035)  51.6043874) 909315507
Entropy MDD 29.0044510  31.8414619 574810081 | 291714304 40.7544405 632310344 | 303014350 458544500  70.79+1800
Subject | 53.09417517 46.9943199T 6646119727 | 58.7941678T  52.2543601T  75.1941827T | 65.3611354T  56.6143700T 8140414687
E2N MDD 309344117 517040814  68.8511246 | 36.05i2441 585449755 729641577 | 41.044306  64.6812625  78.85i1456
Subject | 68.7542144T 429013004 601841744 | 713812077  50.9243006. 66.6711504) | 7712116547  56.7240889  73.5511561
AUM MDD 36.07+1250  42.6814616 354941437 | 391711458 4441lias0s  S58.14p16s54 | 449441848 48441448 6436011440
Subject | 41.5941080T  52.72430357 6520446671 | 536245247  58.6043730T 6717444701 | 53.624504T  65.26436407  70.074178T
ccs MDD 559541628 599243008 747311246 | 592511626 67.01io461 TS4liig0s | 689811567 716240105 787711349
Subject | 47.81427720) 25254866 56.9542700. | 5546421631  32404573)  62.5912500) | 62.0441707)  41.36475 0  69.144 1008
EVA MDD 31.80+17.70 66.8119 12 70.07 +6.05 36.1141479 72.6145873 76.26£6.17 48.39+ 1948 75.34 13438 81.73 4561
Subject | 21.254 148  67.32130667 75.63116847 | 2840110751  73.8419180T  79.0611546T | 36.9841008) 80.8211548T  83.1811240T
BOSS MDD 424415457 575240011 795741662 | 50.6410500  64.8642186  84.7041407 | 58.1142320 713641504 88.951049
Subject | 39.6043705) 67.40113407 79.5ls1782) | 45.3043105) 6847115587 86.21p0asT | 54.29405 7759411027 87294834

Compared to the MDD-supervised setting, we observe that a greater number of methods benefit
from improved ranking stability under subject identity supervision. For instance, Entropy, AUM,
and EI2N exhibit consistent performance gains at higher sampling ratios (e.g., AUM improves from
58.14% to 67.17% in nDCG@ 10@0.5, and Entropy from 63.23% to 75.19%). This trend suggests
that supervision aligned with subject-level heterogeneity may better preserve fine-grained information
necessary for identifying high-quality representative samples.

Despite these improvements, a clear performance gap remains between all baselines and our method,
as shown in Table[3] This highlights the non-trivial advantage of SCLCS, where structural perturba-
tion scoring and density-aware sampling jointly enforce both informativeness and diversity in selected
subsets.

Interestingly, AUM shows consistent gains across nearly all metrics, suggesting that its original
scoring, formulated under task-specific supervision, may underestimate structural variation among
samples. Subject-based training appears to compensate for this limitation by injecting more diverse
contrastive signals during scoring, revealing a potential direction for enhancing its robustness.

Entropy also achieves performance gains across the board, with improvements as high as 11.6% in
nDCG @20 (from 70.79% to 81.40%). However, as shown in Figure 2] Entropy consistently selects
highly imbalanced subsets regardless of supervision label, often dominated by a small number of
subjects. This structural bias undermines its utility for benchmarking core-set methods, as it fails
to preserve a representative distribution of the dataset. Thus, despite the numerical improvements,
Entropy remains unsuitable for core-set-based SPI evaluation.

These findings reinforce the need to consider both label alignment and structural diversity in core-set
selection. Subject-level supervision offers a promising direction, but our method’s explicit modeling
of structure-aware consistency and coverage remains critical for reliable benchmarking.

JINFLUENCE OF THE PROPOSED DENSITY-BALANCED SAMPLING ON
BASELINES

As stated in Section[4.3] our proposed density-based sampling strategy is not only central to the
SCLCS framework, but also generalizable to other score-based core-set selection methods. To evalu-
ate its applicability beyond our method, we visualize comparative results on the Brain Fingerprinting
and MDD Diagnosis tasks in Figure [A2]and Figure [A3] respectively. We exclude CCS and BOSS
from this analysis due to their use of task-specific sampling designs.

On the Brain Fingerprinting task, density-based sampling frequently alters SPI ranking performance
across baselines. For example, EI2N underperforms in multiple metrics when density is applied (e.g.,
nDCG@5 at ratio 0.1 drops from ~40 to ~20), while EVA shows inconsistent trends across sampling
ratios. This instability may be attributed to the fact that, when supervised with subject identity,
score-based methods tend to prioritize samples that support subject-level diversity. Replacing this
priority with a density-based criterion may inadvertently distort the structural balance of the selected
subset.
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Rank Comparison on Brain Fingerprinting using Rank/Density-based Sampling Strategies
Rank-based Density-based
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Figure A2: Rank comparison on brain fingerprinting using rank/density-based sampling strategies.

Conversely, in the MDD Diagnosis setting, density-based sampling consistently improves perfor-
mance. Baselines such as EVA and Entropy show marked gains in ranking stability, with EVA’s
nDCG@10 increasing from ~70 to ~90 at sampling ratio 0.5. This contrast suggests that when
supervision involves fewer discrete classes (e.g., binary labels), the density structure becomes easier
to estimate and more semantically aligned with the downstream evaluation objective.

An interesting deviation is observed in the Forgetting method. At high sampling ratios in both tasks,
its performance noticeably declines under density-based sampling. This may stem from Forgetting’s
underlying assumption: that low-confidence samples correspond to noisy or uninformative data, which
does not hold well for fMRI. Due to the complex nature of brain dynamics, such samples may actually
be densely clustered and structurally meaningful. Consequently, density-based sampling could
overemphasize regions marked by high forgetting scores, thereby degrading ranking consistency.

In summary, density-based sampling demonstrates strong compatibility with several baseline strate-
gies, highlighting its potential as a general-purpose augmentation. However, the interaction between
density criteria and different scoring heuristics can be nontrivial, and may lead to unintended trade-
offs in performance. These results underscore the importance of further empirical studies to better
understand the conditions determining whether density-based selection benefits or interferes with
score-driven core-set construction.

K EMPIRICAL RESULTS FOR THEOREMS

K.1 CONVERGENCE OF UNIVERSAL APPROXIMATION

Experimental Setup To empirically validate the universal approximation capability of our modified
Transformer architecture, as posited in Theorem 2] we designed and conducted a direct fitting
experiment. The theorem states that our model architecture is, in principle, capable of approximating
any continuous Statistical Pairwise Interaction (SPI) operator.
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Rank Comparison on MDD using Rank/Density-based Sampling Strategies
Rank-based WM Density-based
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Figure A3: Rank comparison on MDD diagnosis using rank/density-based sampling strategies.
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Figure A4: Training and validation MSE loss convergence curves for the 16 SPI operators used in the
empirical validation of Theorem 2.

The core objective of this experiment was to train instances of our model to directly mimic the
Functional Connectivity (FC) matrices produced by specific SPI operators. We trained a separate
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model instance for each operator in a diverse set of 16 representative SPIs. The experimental setup
was as follows:

RNXT

* Input: The input for each model was an fMRI time series sample X € , consistent

with the primary data used in our paper.

» Target: For each model, the learning target was the "ground-truth" FC matrix Ag € RV*V,
computed for that specific fMRI sample using the corresponding SPI operator.

* Loss Function: We optimized the model parameters by directly minimizing the Mean
Squared Error (MSE) between the model’s output adjacency matrix A and the target matrix
A 5. Specifically, we use MSE((A + AT)/2, (As + AL)/2) to ensure the symmetry of
the adjacencies.

* Training and Validation: We partitioned the dataset into training, validation, and testing
sets with a 70%/10%/20% split. During training, we employed early stopping (patience=10)
based on the validation set performance to ensure the model learned a generalizable trans-
formation rather than merely overfitting to the training data.

Results and Analysis Figure displays the convergence curves from the training process for
all 16 SPI operators. Each subplot in the figure represents an independent model instance, with the
x-axis denoting the training epoch and the y-axis representing the MSE Loss. The blue line indicates
the MSE on the training set, while the orange line represents the MSE on the validation set.

As the plots clearly demonstrate, our model architecture exhibits a strong capacity to fit all 16 SPIs,
regardless of their diverse underlying computational principles. Key observations include:

1. Successful Convergence: In all experiments, both the training and validation MSE decrease
rapidly from a high initial value and eventually converge to a stable, low level. This indicates
that the optimization process was successful and that the model effectively learned the
mapping from the fMRI time series to the target FC matrix.

2. Good Generalization: The validation loss curves closely track the training loss curves
without significant divergence. This confirms that the models did not overfit and that the
learned approximations generalize well to unseen data.

These convergence curves, combined with the low final test MSE values reported in Table 4] of the
main text, provide strong empirical support for Theorem 2] The results collectively confirm that our
proposed modified Transformer architecture possesses the practical expressive power required to
represent the diverse functional forms inherent to our benchmarking task.

K.2 STATIONARY AND CONVERGENCE ANALYSIS
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Figure A5: Convergence dynamics of SCLCS. (Left) Perturbation trends show that the mean SPS
stabilizes relatively early in training. (Right) The training loss converges more gradually over 1000
epochs. The different x-axes are used to visualize the distinct convergence timescales of each metric.

As demonstrated in Lemma [Il, the reliability of the Structural Perturbation Score (SPS) relies on the

assumption that the per-epoch difference A, (X) = HAE% - AE;)D |% is stationary and ergodic.
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Table A5: Performance comparison: brain fingerprinting vs. MDD diagnosis

Method Brain Fingerprinting MDD Diagnosis
nDCG@5 nDCG@10 nDCG@20 nDCG@5 nDCG@10 nDCG@20
Ratio [0o1 03 05 01 03 05 01 03 05]01 03 05 01 03 05 01 03 05

SECTION A: Slow-Only SPIs

Random 0.883 0.863 0.805 0.903 0.898 0.835 0.921 0.923 0.863|0.946 0.998 0.997 0.962 0.998 0.998 0.975 0.999 0.998
Forgetting {0.591 0.441 0.837 0.614 0.478 0.871 0.642 0.514 0.898|0.781 0.946 0.997 0.839 0.965 0.998 0.886 0.977 0.999
Entropy 0.544 0.963 0.907 0.615 0.970 0.977 0.683 0.975 0.982]0.604 0.636 0.941 0.619 0.640 0.959 0.628 0.652 0.973

EI2N 0.887 0.852 0.928 0.912 0.884 0.945 0.928 0.909 0.958|0.967 0.897 0.994 0.976 0.930 0.996 0.983 0.957 0.997
AUM 0.835 0.983 0.808 0.866 0.984 0.848 0.905 0.983 0.881[0.934 0.849 0.933 0.953 0.890 0.955 0.963 0.923 0.971
CCS 0.785 0.737 0.845 0.822 0.790 0.880 0.859 0.832 0.908|0.840 0.966 0.999 0.887 0.978 0.999 0.923 0.985 0.999
EVA 0.628 0.906 0.650 0.663 0.923 0.707 0.701 0.935 0.761]0.795 0.997 0.999 0.848 0.998 0.999 0.895 0.999 0.999
BOSS 0.385 0.956 0.602 0.444 0.951 0.656 0.521 0.945 0.710]0.636 0.968 0.992 0.760 0.976 0.995 0.843 0.988 0.995

SCLCS 0.879 0.941 0.999 0.907 0.955 0.999 0.932 0.961 0.999|0.874 0.983 0.997 0.916 0.989 0.998 0.945 0.993 0.999
SCLCSpense |0.903 0.962 0.943 0.922 0.967 0.956 0.935 0.969 0.964|0.954 0.999 0.999 0.969 0.999 0.999 0.979 0.999 0.999

SECTION B: Mixture SPIs

Random 0.280 0.680 0.646 0.389 0.689 0.715 0.392 0.765 0.722]0.504 0.242 0.718 0.601 0.263 0.779 0.633 0.306 0.828
Forgetting  {0.323 0.464 0.711 0.421 0.485 0.742 0.465 0.497 0.749|0.255 0.415 0.634 0.380 0.502 0.670 0.432 0.563 0.758
Entropy 0.442 0.660 0.663 0.485 0.656 0.678 0.551 0.668 0.684|0.289 0.327 0.565 0.291 0.414 0.621 0.307 0.467 0.702

EI2N 0.485 0.441 0.531 0.552 0.515 0.570 0.564 0.570 0.623]0.310 0.522 0.656 0.360 0.576 0.705 0.416 0.646 0.761
AUM 0.491 0.680 0.870 0.565 0.737 0.882 0.604 0.767 0.877[0.361 0.415 0.536 0.403 0.435 0.585 0.452 0.478 0.640
CCS 0.228 0.480 0.495 0.345 0.478 0.507 0.352 0.576 0.549]0.469 0.599 0.747 0.519 0.670 0.754 0.628 0.699 0.790
EVA 0.193 0.527 0.601 0.362 0.597 0.622 0.396 0.640 0.655[0.274 0.529 0.688 0.353 0.570 0.755 0.440 0.616 0.812
BOSS 0.438 0.592 0.505 0.433 0.662 0.531 0.428 0.687 0.561[0.373 0.620 0.796 0.435 0.620 0.859 0.519 0.721 0.879

SCLCS 0.790 0.704 0.785 0.795 0.734 0.807 0.823 0.755 0.819]0.279 0.703 0.631 0.303 0.708 0.613 0.368 0.764 0.680
SCLCSpense | 0.442 0.758 0.812 0.552 0.751 0.827 0.576 0.750 0.827]0.447 0.449 0.716 0.522 0.533 0.706 0.621 0.594 0.752

Since our training does not incorporate validation-based early stopping, we use model convergence as
an implicit criterion for termination. To empirically support this, Figure[A5]visualizes the convergence
trends of structural perturbation and training loss.

Notably, these two metrics converge on different effective timescales. The left panel shows that the
mean SPS (blue curve), which reflects the stability of the learned connectivity structures, reaches
a stable plateau relatively early (around epoch 500). The initial spike in perturbation reflects an
expected "burn-in" phase before the model learns stable representations. In contrast, the right panel
shows that the training loss continues to decrease more gradually over the full 1000 epochs as the
model makes finer adjustments to the embedding space to fully optimize the contrastive objective.

The clear convergence of both metrics, despite their different timescales, provides strong empirical
validation for the assumptions in Lemmal(I] This confirms that SPS is a stable and consistent measure
of structural influence, and the overall loss convergence supports the robustness of our end-to-end
training pipeline for core-set selection.

L GENERALIZATION AND ROBUSTNESS ANALYSIS

This section provides experiment results to address the concerns regarding site-level generalization
and SPI subset bias to prove the impact of the proposed task.

L.1 EXTENSION ON SPI PROPERTIES

We create two new benchmark sets: (1) A "Slower-Only" set containing 50 SPIs with > 1s compute
time (up to 10s), and (2) A "Mixture" set combining these 50 slow SPIs with our original 130 fast
SPIs (Total = 180). Results are reported in Table[A3]

The findings are two-fold:

* On "Slow-Only": Surprisingly, the ranking task becomes "easier." Even the Random baseline
performs robustly (e.g., nDCG@5 > 0.9 on the MDD task). This suggests that for this
specific subset of slower methods, performance is less sensitive to specific data selection.

e On "Mixture" (Full Benchmark): However, when combining fast and slow SPIs, SCLCS
re-emerges as the clear winner. On the Brain Fingerprinting task (10% ratio), SCLCS
achieves an nDCG @5 of 0.79, whereas Random collapses to 0.28.
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It proves that simple heuristics (like Random) are brittle and fail in realistic, heterogeneous bench-
marking scenarios (the "Mixture" case). SCLCS is necessary because it robustly handles the full
spectrum of SPI behaviors, effectively weighting the top-performing methods that researchers care
about most. More importantly, it suggests that different properties of the candidate models may affect
the difficulty of the proposed problem. Exploring such effect is a promising future direction.

Table A6: Site balance on core-set (L1 distance, lower better)

Method L1 Distance @ 0.1 ratio L1 Distance @ 0.3 ratio L1 Distance @ 0.5 ratio
Sample Level ~ Subject Level ~Sample Level  Subject Level ~Sample Level  Subject Level
Forgetting 0.239 0.243 0.184 0.107 0.126 0.048
Entropy 0.186 0.139 0.149 0.112 0.146 0.157
EI2N 0.303 0.350 0.260 0.220 0.235 0.195
AUM 0.157 0.143 0.094 0.181 0.057 0.176
CCS 0.202 0.183 0.143 0.175 0.103 0.148
EVA 0.111 0.101 0.047 0.017 0.024 0.081
BOSS 0.737 0.362 0.457 0.107 0.248 0.022
SCLCS 0.127 0.146 0.096 0.039 0.068 0.011
SCLCSpense 0.195 0.146 0.112 0.054 0.071 0.017

L.2 EXTENSION ON DATA PROPERTIES

We further explore the relationship between ’site ID’ and the core-sets selected by all the baseline
methods and the proposed SCLCS (which is blind to site). Performances are quantified by calculating
the L1 Distance between the site distribution of the original dataset and the site distribution of the
selected core-set. The samples of each subject are same on the original dataset but vary on the
core-set. Thus we provide two levels of result based on sample and subject, respectively. Results are
reported in Table[A6]

SCLCS demonstrates robustness to site imbalance. For example, at a 30% sampling ratio, SCLCS
achieves an L1 distance of ~ 0.096, ranking second only to the variance-based method EVA (=~
0.047). Crucially, SCLCS significantly outperforms other baselines like Entropy (0.149), which
tend to be more biased towards specific sites. This is an interesting finding. It necessitates exploring
methods to balance different data properties and the performance on the proposed ranking preservation
task, which is beyond the scope of our current paper.

L.3 ROBUSTNESS TO WINDOW SIZE

We re-process the entire dataset using a different sliding window configuration (Window Size = 50
TRs, Stride = 45 TRs), which differs significantly from the setting used in the main paper (Window
Size = 70, Stride = 35). We then re-calculated all 130 SPIs and re-evaluated the ranking consistency
of SCLCS against all baselines on both downstream tasks.

The results, detailed in Table empirically demonstrate that SCLCS maintains its superior
performance and ranking stability regardless of the window size, confirming that our method captures
intrinsic structural patterns rather than artifacts of specific preprocessing parameters.

On MDD diagnosis task, even with shorter window lengths (which can introduce more noise), SCLCS
and SCLCSpepse consistently outperform all baselines. Notably, at the challenging 0.1 sampling
ratio, SCLCSpense achieves an nDCG @5 of 0.661, which is significantly higher than the strongest
baselines like AUM (0.452) and CCS (0.464). This confirms that our density-aware selection strategy
is highly robust to variations in temporal segmentation.

On brain fingerprinting task, SCLCS continues to show state-of-the-art performance, particularly
at the 0.1 ratio with an nDCG@5 of 0.475, far exceeding Random (0.206). While baselines like
EI2N show high variance (performing well at 0.3 but dropping significantly at 0.5), SCLCS and
SCLCSpepse exhibit a more stable performance trajectory as the sampling ratio increases (e.g.,
SCLCS improves from 0.475 to 0.673).
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Table A7: Robustness of different methods to window size

Method Robustness on MDD Diagnosis Task Robustness on Brain Fingerprinting Task
nDCG@5 nDCG@10 nDCG@20 nDCG@5 nDCG@10 nDCG@20
Ratio [01 03 05 01 03 05 01 03 05]01 03 05 01 03 05 01 03 05

Random 0.213 0.498 0.802 0.413 0.611 0.843 0.558 0.707 0.886|0.206 0.285 0.282 0.234 0.386 0.353 0.270 0.443 0.376
Forgetting  |0.234 0.190 0.637 0.336 0.287 0.689 0.469 0.376 0.745]0.252 0.478 0.417 0.287 0.525 0.461 0.324 0.556 0.500
Entropy 0.258 0.467 0.566 0.293 0.506 0.633 0.360 0.533 0.717]0.227 0.474 0.576 0.243 0.526 0.582 0.347 0.544 0.591

EI2N 0.174 0.007 0.531 0.253 0.199 0.567 0.344 0.250 0.597|0.372 0.670 0.333 0.366 0.638 0.395 0.374 0.631 0.405
AUM 0.452 0.631 0.701 0.490 0.725 0.784 0.528 0.797 0.852]0.291 0.690 0.399 0.324 0.684 0.483 0.332 0.728 0.522
CCS 0.464 0.596 0.727 0.554 0.682 0.794 0.625 0.757 0.853]0.240 0.502 0.473 0.282 0.560 0.506 0.306 0.566 0.523
EVA 0.347 0.422 0.513 0.456 0.496 0.597 0.560 0.580 0.663|0.430 0.456 0.444 0.417 0.510 0.476 0.474 0.517 0.488
BOSS 0.281 0.369 0.833 0.380 0.430 0.867 0.468 0.493 0.899|0.062 0.364 0.669 0.110 0.379 0.747 0.151 0.416 0.752

SCLCS 0.621 0.834 0.708 0.662 0.818 0.766 0.735 0.849 0.826(0.475 0.569 0.673 0.491 0.569 0:750 0:495 0.593 0.762
SCLCSpense | 0.661 0.732 0.836 0.718 0.781 0.885 0.778 0.826 0.917|0.420 0.593 0.712 0.459 0.617 0.707 0.496 0.657 0.705

These empirical results directly demonstrate that SCLCS is not sensitive to the choice of window
size and can reliably select high-quality core-sets across different pipeline configurations. We believe
this evidence strongly supports the practical reliability of SCLCS in diverse experimental settings.

M REPRODUCIBILITY INFORMATION

M.1 DATA PREPROCESSING

We use a subset of 904 subjects (458 MDD, 446 controls) from the REST-meta-MDD consortium,
selected via a two-stage filtering process. First, we adopt the quality-controlled cohort defined in Yan
et al.| (2019), which retains 1, 642 subjects across 17 sites. Second, we intersect this cohort with the
9-site subset used in|Long et al.|(2020), chosen for consistent acquisition parameters (3T scanners,
240 time points, TR = 2000 ms). This yields a final sample from 7 sites with harmonized imaging
protocols.

The analysis focuses on 33 regions of interest (ROIs) associated with the default mode network
(DMN), as defined in the Dosenbach-160 atlas (Dosenbach et al.,2010). ROI-level time series were
obtained directly from the preprocessed data released by REST-meta-MDD. We use the version with
global signal regression (GSR) applied, consistent with prior findings (Yan et al.,[2019).

Our decision to focus on the DMN-33 ROI was a principled decision based on scientific control,
reproducibility, and computational feasibility:

* Scientific Control: To validate the proposed new ’ranking preservation’ task, our first
priority was to isolate variables. Our primary goal is to define the "Ranking Preservation"
problem and prove that a "structure-based" approach is a feasible path. Introducing multiple
atlases or pipelines would change our scenario from Benchmark (SPIs) to a different,
combinatorially explosive scenario of Benchmark (SPIs x atlases/pipelines), which is a
valuable, promising but separate scientific task.

* Reproducibility: This scientific control principle is reinforced by the dataset itself. To en-
sure the highest standard of reproducibility, we used the official, standardized pre-processed
data from the REST-meta-MDD consortium. This setting ensures the results are not affected
by personally defined preprocessing pipelines.

* The Computational Infeasibility: Finally, even if we were to use an official atlas like
AAL-90 (N =90), an average complexity of each SPI would increase compute time by ~ 9x
(from N = 33).

Each subject is represented by a multivariate time series of 7' x R, where 7' is the number of time
points and R = 33. To standardize downstream sampling, we truncate all time series to 210 time
points. We apply a sliding window of length 70 TRs with a step of 35 TRs, yielding five overlapping
temporal segments per subject. This configuration is consistent with prior dynamic connectivity
studies (Allen et al.| 2014} [Preti et al.l 2017 [Long et al.l [2020)), and provides a balance between
temporal resolution and estimation reliability. These segments serve as dynamic samples for our
core-set selection framework, alongside static networks built from each subject’s full time series.
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Table AS8: Acquisition details of the 7 selected REST-meta-MDD sites. All data were collected using
3T scanners and have consistent TR (2, 000 ms). Minor variation exists in number of time points.

Site ID | Institution | MDD | HC | Scanner | TR (ms) | TE (ms) | Timepoints
15 Zhongda Hospital, Southeast University 37 30 Siemens Verio 3T 2000 25.0 240
17 First Affiliated Hospital of Chongqging Medical 41 41 GE Signa 3T 2000 40.0 240

University
19 Anhui Medical University 31 18 GE Signa 3T 2000 225 240
20 Southwest University 229 | 250 Siemens Tim Trio 3T 2000 30.0 242
21 Beijing Anding Hospital, Capital Medical Uni- | 65 79 Siemens Tim Trio 3T 2000 30.0 240
versity
22 Second Xiangya Hospital, Central South Uni- | 20 18 | Philips Gyroscan Achieva 3.0T 2000 30.0 250
versity
23 ‘West China Hospital, Sichuan University 23 22 Philips Achieva 3.0T TX 2000 30.0 240

Across the selected sites in the REST-meta-MDD consortium, the number of retained time points after
preprocessing slightly varies due to site-specific acquisition protocols. While most sites provided
230 time points, others contributed data with 232 or 240 time points. These variations are a result of
both initial protocol settings and preprocessing procedures (e.g., discarding initial scans to ensure
magnetization equilibrium). A summary of time point lengths by site is given in Table[A9)

Table A9: Post-preprocessing time point lengths across selected sites.

Site ID \ Institution \ Timepoints (after preprocessing)
15 Zhongda Hospital, Southeast University 230
17 First Affiliated Hospital of Chongqing Medical 230

University
19 Anhui Medical University 230
20 Southwest University 232
21 Beijing Anding Hospital, Capital Medical Uni- 230
versity
22 Second Xiangya Hospital, Central South Uni- 240
versity
23 West China Hospital, Sichuan University 230

To ensure consistency in downstream dynamic sampling, all time series were uniformly truncated to
the first 210 time points. This guarantees a consistent sampling space across all subjects regardless of
site-specific acquisition length.

We then applied a sliding window with a fixed length of 70 TRs and a step size of 35 TRs. This
configuration yields exactly five overlapping segments per subject, each representing a snapshot of
short-term functional dynamics. These segments serve as candidate samples for evaluating structural
stability and selecting representative subjects in our core-set selection framework.

We used 33 regions of interest (ROIs) associated with the default mode network (DMN), selected
from the Dosenbach-160 atlas (Dosenbach et al., 2010) following the specification provided by Yan
et al[(2019). These ROIs were identified using public scripts available athttps://github.com/
Chaogan—-Yan/PaperScripts/tree/master/Yan_2019_PNAS/Dos160|and used con-
sistently in REST-meta-MDD-related studies.

M.2 BASELINE INTRODUCTION AND PARAMETER SETTINGS
Baseline Introduction

* Random: Uniformly samples instances without considering model behavior or data statis-
tics.

* k-Means (Hartigan & Wong|,[1979): An unsupervised clustering algorithm that partitions
data into k clusters based on feature similarity, with the core-set formed by selecting samples
closest to the cluster centroids.
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Table A10: List of 33 DMN-related ROIs selected from the Dosenbach-160 atlas.
ROIIndex | ROIType | Yeo Network (Label)

1 vmPFC 7 (DMN)
4 mPFC 7 (DMN)
5 aPFC 7 (DMN)
6 vmPFC 7 (DMN)
7 vmPFC 7 (DMN)
11 vmPFC 7 (DMN)
13 vmPFC 7 (DMN)
14 ACC 7 (DMN)
15 vIPFC 7 (DMN)
17 sup frontal 7 (DMN)
20 sup frontal 7 (DMN)
25 vFC 7 (DMN)
63 inf temporal 7 (DMN)
72 inf temporal 7 (DMN)
73 post cingulate 7 (DMN)
85 precuneus 7 (DMN)
90 post cingulate 7 (DMN)
91 inf temporal 7 (DMN)
93 post cingulate 7 (DMN)
94 precuneus 7 (DMN)
100 sup temporal 7 (DMN)
102 angular gyrus 7 (DMN)
104 IPL 7 (DMN)
105 precuneus 7 (DMN)
108 post cingulate 7 (DMN)
111 post cingulate 7 (DMN)
112 precuneus 7 (DMN)
115 post cingulate 7 (DMN)
117 angular gyrus 7 (DMN)
124 angular gyrus 7 (DMN)
132 precuneus 7 (DMN)
134 1PS 7 (DMN)
137 occipital 7 (DMN)

* Forgetting (Toneva et al.,[2018): Ranks samples by the number of times they transition
from correct to incorrect predictions during training.

* Entropy (Coleman et al.||2020): Scores samples using the entropy of model output proba-
bilities to reflect prediction uncertainty.

* Area Under the Margin (AUM) (Pleiss et al.,|2020): Computes the average margin between
the true class probability and the highest non-true probability across epochs.

¢ Example-Level L2 Norm (EL2N) (Paul et al., [2021): Measures the L2 norm between
model predictions and true labels over early training epochs as a proxy for example difficulty.

* Coverage-Centric Selection (CCS) (Zheng et al.,[2022)): Stratifies samples by importance
scores (e.g., AUM) and performs balanced sampling across strata to preserve distributional
coverage.

* Evolution-aware Variance (EVA) (Hong et al., 2024b): Aggregates prediction error vari-
ances within early and late training windows to capture evolving sample dynamics.

* Balanced One-shot Subset Selection (BOSS) (Acharya et al.| 2024): Greedily selects a
subset by maximizing a Beta-weighted objective over feature similarity, label variability,
and difficulty-based scores.
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Parameter Settings All baseline methods are evaluated using a unified training setup. The classifi-
cation model is a compact residual network designed for multivariate time series inputs. It consists
of a stem convolution followed by three residual blocks with output channels of 32, 64, and 128,
respectively. A global average pooling layer and a fully connected classifier complete the architecture.
This design balances expressiveness and efficiency for medium-scale time series classification.

The model is trained for 200 epochs using the Adam optimizer with a learning rate of 0.01, weight
decay of le-4, and a batch size of 256. All methods, including full-data training and subset-based
training, use identical configurations.

Per-sample importance scores are derived from training dynamics and used to evaluate a range of
sampling strategies. For EVA, we compute the variance of the prediction error vector within two
non-overlapping windows: epochs 100-109 and 190-199, following the original protocol.

Hyper parameters of SCLCS are optimized using grid searching in the flowing spaces:

1. Dimension of Transformer: [4, 8, 16, 32, 64, 128, 256].
2. Head Number: [2, 4, 8, 16, 32, 64].
3. Epochs for calculating SPS: [50, 100, 150, 200].

M.3 ENVIRONMENT

Experiments are performed on an 8-GPU (H20) high-performance computing cluster provided by the
Large-scale Instrument Sharing Platform of Southwest University.

N LIMITATIONS

While this work establishes a new paradigm for efficient FC benchmarking, we identify several
exciting avenues for future investigation that build upon our findings:

* Deepening the SPS-SPI Connection: Our results demonstrate a strong empirical link
between low SPS (structural stability) and effective core-set selection. However, the precise
theoretical mechanism connecting the training dynamics of our encoder to the performance
ranking of diverse, external SPI models warrants deeper investigation. Future work could
explore this link to build a more formal bridge between learnable latent structures and
statistical model behavior.

* Developing an Adaptive Sampling Strategy: Our experiments show that the optimal choice
between simple low-SPS ranking (SCLCS) and density-aware sampling (SCLCS_Dense)
is task-dependent. A key next step is to develop heuristics or a meta-learning framework
to automatically select the optimal sampling strategy based on dataset characteristics (e.g.,
class structure, sample heterogeneity), removing the need for manual selection.

* Broader Generalization and Application: While our evaluation on the large-scale, het-
erogeneous REST-meta-MDD dataset provides a strong test of robustness, the framework’s
generalizability should be further validated. A full study of supervision (site-ID, multi-task,
and more) and how SPI properties modulate task difficulty is a valuable future direction.
The relationship between the RP problem and data properties is another major extension
to our work. Future studies should also apply SCLCS to fMRI datasets from different
clinical populations (e.g., Alzheimer’s disease, ADHD), other imaging modalities, or even
entirely different domains of multivariate time-series analysis to establish the full scope of
its applicability.

* More Heterogeneous Scenarios: Simply pulling resting-state and task-fMRI scans together
into the contrastive loss would be problematic, as the functional state changes. This poses
a more complex heterogeneous data fusion challenge. Exploring model benchmarking
problem on heterogeneous scan types is a valuable future direction.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, we utilize Large Language Models (LLMs) in a supportive
capacity. Specifically, their use is confined to the following areas:

* Writing and Editing: LLMs are employed to enhance the clarity, grammar, and style of the
text, ensuring the manuscript’s readability.

* Assistance with Theorem Proofs: LLMs serves as an assistive tool to verify the logical
consistency and correctness of individual steps within our mathematical derivations and
proofs.

The core scientific ideas, the structure of the proofs, the experimental design, and all final conclusions
presented in this paper are conceived and developed entirely by the authors.
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