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POSITIVITY IN LINEAR GAUSSIAN STRUCTURAL EQUATION

MODELS

ASAD LODHIA, JAN-CHRISTIAN HÜTTER, CAROLINE UHLER, AND PIOTR ZWIERNIK

Abstract. We study a notion of positivity of Gaussian directed acyclic graph-
ical models corresponding to a non-negativity constraint on the coefficients
of the associated structural equation model. We prove that this constraint is
equivalent to the distribution being conditionally increasing in sequence (CIS),
a well-known subclass of positively associated random variables. These distri-
butions require knowledge of a permutation, a CIS ordering, of the nodes for
which the constraint of non-negativity holds. We provide an algorithm and
prove in the noise-less setting that a CIS ordering can be recovered when it
exists. We extend this result to the noisy setting and provide assumptions
for recovering the CIS orderings. In addition, we provide a characterization
of Markov equivalence for CIS DAG models. Further, we show that when a
CIS ordering is known, the corresponding class of Gaussians lies in a family of
distributions in which maximum likelihood estimation is a convex problem.

1. Introduction

Many random systems exhibit some form of positive dependence. Examples
in statistical physics include the ferromagnetic Ising Model [9] as well as general
classes of lattice gas models and percolation models [8]. In fields such as finance [2],
psychometrics [25, 29, 21] and biology (see [18] and further discussion in [17, Section
1.1]), positive dependence naturally arises [3]. In recent years, there has been an
increased interest in exploiting this and related notions of positive dependence in
statistical modelling and in machine learning.

This research direction has been particularly fruitful in the context of Gaussian
and related distributions. Well studied examples of positive dependence in Gauss-
ian models include: positive association defined by nonnegativity of all correlations
[23], totally positive distributions (also known as MTP2 distributions) defined by
nonnegativity of all partial correlations [27, 16], and mixtures of these two scenarios
as discussed in [17]. Various methods have been developed for covariance matrix
estimation in the Gaussian setting [5, 2, 28, 33]. In applications, where the assump-
tion of positive dependence is appropriate, these methods perform extremely well
with no need for explicit regularization [2, 24].

An important problem, which motivates our work, is that none of these notions of
positive dependence are suitable in the context of directed acyclic graphical models,
also known as Bayesian networks1. For a simple example, consider a Gaussian vector
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1For background on Bayesian networks and associated graphical models, see e.g. [14].
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X = (X1, X2, X3) such that all partial correlations are non-negative. In other
words, expressing partial correlations in terms of marginal correlation coefficients
ρij = corr(Xi, Xj), we require that

ρ12 − ρ13ρ23 ≥ 0, ρ13 − ρ12ρ23 ≥ 0, ρ23 − ρ12ρ13 ≥ 0.

If X is Markov to the DAG 2 → 1← 3, or equivalently, if ρ23 = 0, then, from the
last inequality, we necessarily have that ρ12ρ13 = 0. In other words, a Bayesian
network with a v-structure cannot have all partial correlations non-negative. Given
that two DAGs are Markov equivalent if and only if they have the same skeleton
and v-structures (see Theorem 4.1), adding the MTP2 constraint would severely
restrict the class of Bayesian networks.

In this paper, we study a natural form of directional positive dependence that
is suitable for Gaussian models on directed acyclic graphs (DAGs). We introduce
the model through its representation via linear structural equations [22]. If G is
a DAG with m nodes representing the Gaussian vector X = (X1, . . . , Xm), then
the distribution of X lies in the associated DAG model if it admits the stochastic
representation

Xi =
∑

j∈Pa(i)

ΛijXj + εi for all i = 1, . . . ,m, (1.1)

where Pa(i) denotes the set of parents of the node i in the DAG G, Λij ∈ R, and
εi ∼ N(0, σ2

i ) are mutually independent. In matrix form, this can be written as
X = ΛX + ε, where Λij = 0 unless j → i in G.

Remark 1.1. Let D be a diagonal matrix representing the covariance matrix of
ε. Denoting the covariance matrix of X by Σ (we assume throughout that it is full
rank), then (1.1) implies

Σ = (I − Λ)−1D(I − Λ)−⊤,

which is equivalent to the following equality for the precision matrix K = Σ−1:

K = (I − Λ)⊤D−1(I − Λ).

The following natural notion of positivity in Gaussian DAG models is the central
theme of our paper.

Definition 1.2. A Gaussian vector X is positively DAG dependent with respect to
a DAG G if X admits the stochastic representation (1.1) with all Λij nonnegative.
We denote the subset of Gaussian DAG models M(G) over G that satisfy this
property by M+(G).

Other approaches have been proposed to define positive dependence on DAGs;
see, for example, [30, 32] and references therein. To explain the relationship between
these different notions, we note that positive DAG dependence is closely related to
the following classical notion of positive dependence.

Definition 1.3. A random vector X = (X1, . . . , Xm) is conditionally increasing in
sequence (CIS ) if for every i ∈ [m] and every fixed xi ∈ R, it holds that

P
(
{Xi ≥ xi}

∣∣(Xj = xj)j<i

)

is a non-decreasing function in (x1, . . . , xi−1), when equipped with the coordinate-
wise partial order.
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In the context of DAGs, the papers [30, 32] investigated a similar notion which
they called a “weak monotonic effect” or “positive influence”. If a parent k ∈ Pa(i)
of a particular vertex i has the property that

P

(
{Xi ≥ xi}

∣∣∣
⋂

j∈Pa(i)

(Xj = xj)
)

is a non-decreasing (non-increasing) function in xk then k is said to have a weak
monotonic positive effect on i. Notably, this condition can be used to infer the
presence/absence of certain edges in the graph. To provide a specific example,
consider the DAG from [30, Example 5] with variables A denoting air pollution
levels, E denoting antihistamine treatment, D denoting asthma incidence, and C
denoting bronchial reactivity in the following figure.

C

E

D

A

From context, it is reasonable to assume that the directed edges (A,D), (A,E)
and (A,C) are weak positive monotonic effects, and similarly the edges (C,E) and
(C,D) are weak positive monotonic effects. The following argument can be used
to test the causal relationship E → D: From [30, Theorem 4] it follows that the
covariance of E and D must be non-negative due to the weak positive monotonic
effects of the other edges. Thus if the observed covariance of E and D was negative
(which is the desired medical objective), we would conclude the presence of the
edge E → D even without measuring the variables A and C.

We will show that the notion of positive dependence of a DAG considered in this
work (stated in Definition 2.6) is the same as assuming a weak positive monotonic
effect of every parent on its child. This example showing how positive dependence
can be used to derive causal relationships motivates our study of Markov equivalence
of these models.

In this work, we link the class of CIS models (which a priori make no reference
to any DAG structure) to positive DAG dependence. In particular, we will discuss
the problem of ordering the variables in such a way that it is CIS and identifying
when there exists such an ordering. The resulting DAG could be used for causal
inference.

In Theorem 2.1 below, we show that a Gaussian vector X is CIS if and only if
it is positively DAG dependent with respect to the full DAG with arrows i → j
for all i < j. It follows that the Gaussian CIS condition has a simple algebraic
formulation. Let K = UUT be the Cholesky decomposition (U is upper triangular
with positive diagonal entries) and K = Σ−1 is the inverse covariance matrix of
X . Then our notion of positive dependence restricts the signs of the off-diagonal
entries of U to be non-positive. This constraint is convex, which makes computing
the maximum likelihood estimator (MLE) particularly tractable.

In practice, K may admit such a signed Cholesky factorization only after per-
muting its rows and columns. Thus, part of the problem is to recover a permutation
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matrix P that makes such a signed factorization possible. Maximizing the likeli-
hood over all m! permutation matrices is infeasible. Instead, we propose a simple
algorithm for learning such a permutation, and we provide statistical guarantees
for the proposed algorithm.

We will often contrast the class of CIS Gaussian vectors X with the well-
known and well-studied class of multivariate totally positive distributions of order
2 (MTP2), which requires that its density p on R

m satisfies

p(x)p(y) ≤ p(x ∨ y)p(x ∧ y) for all x, y ∈ R
m,

where ∨ is the componentwise maximum and ∧ is the componentwise minimum.
This inequality appeared in [8], where it was shown to imply positive association
for general distributions. In the Gaussian case MTP2 was shown to be equivalent
to the precision matrix (inverse covariance matrix) being an M-matrix [12].

Definition 1.4 (M-matrix). A positive definite m×m matrix A = [ai,j ]1≤i,j≤m is
an M-matrix if the entries satisfy ai,j ≤ 0 for all i 6= j. The space of symmetric,
positive definite M-matrices of dimension m×m is denotedMm(R).

1.1. Outline. Section 2 expounds upon the relationship between CIS distributions
and DAG models while also providing motivating examples both in the Gaussian
and non-Gaussian settings. Section 3 provides examples that distinguish CIS dis-
tributions from MTP2 and other positively associated distributions along with an
illustration that CIS orderings may not provide sufficient information to recover the
underlying Markov equivalence class. Section 4 dives deeper into Markov equiv-
alence for CIS orderings. Section 5 shifts the focus to parameter estimation and
fitting: Cholesky factor models are introduced for the purpose of characterizing the
MLE of Λ and D of a CIS distributed vector assuming the underlying CIS ordering
is known. Section 6 concerns recovering a CIS ordering, first in the population case
and then proving consistency of a noisy version of our proposed algorithm under
simple assumptions on Λ. In this section, we also prove results on what sorts of
CIS orderings are possible for a distribution.

1.2. Notation. For a DAG G = (V,E), we denote the set of parent nodes of a
vertex i by Pa(i) and the set of children nodes of a vertex i by Ch(i). If there are
several DAGs over the same vertex set V under consideration, we write PaG(i) and
ChG(i) to indicate the dependence on the particular DAG G. We will mostly use
V = [m] = {1, . . . ,m} or subsets of [m].

When we say a function f : Rk → R is increasing (non-decreasing) in R
k, we

mean that f is increasing (non-decreasing) in each variable. Moreover for a subset
A ⊂ [k], if we write (xj)j∈A, or equivalently, xA, we mean the tuple formed by
taking the entries of x that are indexed by A, keeping the original order.

We denote the set of m × m positive semidefinite matrices by Sm(R) and the
subset of positive definite matrices by S+m(R). Further, I always denotes the identity
matrix. When M is an s × t matrix with A ⊂ [s] and B ⊂ [t], then MA,B is the
submatrix of size |A| × |B| with entries Mi,j with i ∈ A and j ∈ B. Following [14,

Section 5.1.1], if a matrix operation appears with the subset indices, e.g., M−1
A,A the

matrix operation is performed first — so M−1
A,A is the submatrix of M−1 indexed

by A, whereas (MA,A)
−1 is the inverse of the submatrix of M indexed by A. We

will use the shorthand \i for [m]\i.
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When we consider collections of permutations, we use one line notation and
use parentheses around those elements that can be ordered in any way, so for
instance (123)45 is the set of permutations for which σ(4) = 4 and σ(5) = 5
and 1, 2, 3 can be arbitrarily assigned to the values σ(1), σ(2) and σ(3), that is,
(123)45 = {12345, 13245, 21345, 23145, 31245, 32145}.

2. Structure of Positive Dependence on a DAG

2.1. Basic results and definitions. We start by stating the main result of this
section, which links the classical concept of CIS dependence and positive DAG
dependence.

Theorem 2.1. A Gaussian vector X is CIS if and only if it is positively DAG
dependent with respect to the full DAG with i→ j for all i < j.

The proof relies on a lemma that we prove first.

Lemma 2.2. Let Z = (Z1, . . . , Zm) ∼ Nm(µ,Σ) be a Gaussian random vector on
R

m with mean µ ∈ R
m and covariance Σ ∈ S+m(R) , let K = Σ−1 be the precision

matrix. The function

P

(
{Zi ≥ xi}

∣∣∣
⋂

j 6=i

{Zj = xj}
)

(2.1)

is non-decreasing in (xj)j 6=i if and only if Ki,j ≤ 0 for all j 6= i. Moreover, this
statement is equivalent to the following two statements:

(a) E[Zi|Z\i] is a non-decreasing function in (Zj)j 6=i.
(b) Zi =

∑
j 6=i ΛijZj + εi with Λij ≥ 0 and εi Gaussian and independent of

(Zj)j 6=i.

Proof. It is a classic result [19, Theorem 1.2.11 (b)] that

Zi|Z\i ∼ N
(
µi +Σi,\i(Σ\i,\i)

−1(Z\i − µ\i),Σi,i − Σi,\i(Σ\i,\i)
−1Σ⊤

i,\i

)
,

but note that by the Schur complement formula,

Ki,i =
(
Σi,i − Σi,\i

(
Σ\i,\i

)−1
Σ⊤

i,\i

)−1

,

Ki,\i = −Ki,iΣi,\i

(
Σ\i,\i

)−1
,

and Ki,i > 0 by positive definiteness. Hence we may rewrite the mean of Zi|Z\i as

µi −
Ki,\i

Ki,i
(Z\i − µ\i).

It is then clear that the function in the statement of the lemma is non-decreasing
in x\i only if the entries of Ki,\i are all non-positive. Note that this is also the
condition on the conditional mean in (a). Equivalence with (b) follows from the
fact that

εi := Zi − E[Zi|Z\i]

is a mean zero Gaussian variable. Since E[εiZj ] = 0 for all j 6= i, and all (ε, Z) are
jointly Gaussian, it follows that εi is independent of Z\i as claimed. �
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Proof of Theorem 2.1. Using Lemma 2.2(b) recursively starting with i = m we get
that X is CIS if and only if

Xi =
i−1∑

j=1

ΛijXj + εi for all i = 1, . . . ,m

with Λij ≥ 0 and εi independent of X1, . . . , Xi−1. This is precisely (1.1) when
applied to the full DAG with j → i for all j < i. �

Theorem 2.1 together with Remark 1.1 gives the following important algebraic
characterization of Gaussian CIS distributions.

Corollary 2.3. The vector X ∼ Nm(µ,Σ) is CIS if and only if K = UU⊤ with U
upper triangular with positive diagonal and non-positive off-diagonal entries.

Note that the CIS property relies on the ordering of the variables in the vector
X . The following definition is a natural extention of the CIS property; see also [20].

Definition 2.4. If there exists a permutation σ of [m] such that (Xσ(1), . . . , Xσ(m))
is CIS, then we say σ is a CIS ordering of X . If for every permutation σ of [m] we
have that the vector (Xσ(1), . . . , Xσ(m)) is also CIS, then we say X is conditionally
increasing (CI).

Interestingly, in the Gaussian case CI equals MTP2 (see Section 3). Next, let
G = (V,E) be a DAG. A permutation σ of V is a topological ordering if a → b
implies σ(a) < σ(b). It is well-known that if G is a DAG, there exists a permu-
tation of V that is a topological ordering. In relation to the structural equation
model, it is useful to recall that if a DAG is topologically ordered then Remark 1.1
takes on a particularly nice form with Λ lower triangular. Denote by CISσ the
set of all Gaussian distributions such that (Xσ(1), . . . , Xσ(m)) is CIS. The following
result gives an important characterization of Gaussian positive DAG dependent
distributions M+(G).

Theorem 2.5. For a DAG G it holds that

M+(G) = M(G) ∩CISσ,

where σ is any topological ordering of G.

Proof. We first showM+(G) ⊆M(G)∩CISσ. The inclusionM+(G) ⊆M(G) follows

by definition. To argue that M+(G) ⊆ CISσ let Ĝ be the complete DAG whose only

topological ordering is σ. It is clear that M+(G) ⊆M+(Ĝ) and M+(Ĝ) = CISσ by
Theorem 2.1. Consequently, M+(G) ⊆M(G) ∩ CISσ.

To show the opposite inclusion, note that if X has distribution in M(G) then
the representation (1.1) holds. Since X is CISσ and σ is a topological ordering, we
get from Lemma 2.2(b) that the coefficients Λij must be non-negative and so the
distribution of X lies in M+(G). �

Although we focus in this paper on the Gaussian case, we note that Lemma 2.2
suggests a more general definition, which is in line with [30, 32]. Consider a random
vector X with values in X =

∏m
i=1 Xi where Xi ⊆ R. We always assume that X

admits a density function with respect to some product measure on X .
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Definition 2.6. Suppose that X is a distribution that is Markov to a directed
acyclic graph G. Then X is positively DAG dependent with respect to G if, for
every i the condition survival function

P

(
{Xi ≥ xi}

∣∣∣
⋂

j∈Pa(i)

{Xj = xj}
)

is non-decreasing in (xj)j∈Pa(i).

We will use this more general definition to motivate some non-Gaussian examples
int he following discussion.

2.2. Motivating examples. Positive DAG dependence is often present in small,
well-designed studies. Some examples of datasets that both are well modeled by
DAGs and the variables in the system are positively correlated, can be found in
educational research or medical psychology; see, e.g., [1, 13]. There are also two
general popular datasets, where DAG positive dependence appears naturally. These
are fictitious datasets that were constructed to mimic real processes. The first
dataset was introduced in [15]. It consists of sequences of “yes” and ”no” responses
from patients with suspected lung disease to the following questions:

(D) Has shortness-of-breath
(A) Had a recent trip to Asia
(L) Has Lung Cancer
(T) Has Tuberculosis
(E) Either (T) or (L), or both, are true
(X) Has a chest X-ray with a positive test
(S) Is a smoker
(B) Has Bronchitis

In modeling the relationships of these variables, we take 1 to be the response “yes”
and 0 to be “no” and use a binary-valued Bayesian network illustrated in Figure 1
below to encode the relationships between variables, following [15].

A S

T
L

E B

X D

Figure 1. The node letters are the parenthetical letters in the list
above. The variable E represents the logical statement “Tubercu-
losis (T) or Lung Cancer (L)”.
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In [15, Table 1], a ground truth joint distribution was defined for this example
using the conditional probabilities

P
(
{A = 1}

)
= .01 P

(
{S = 1}

)
= .50

P
(
{T = 1}|{A = 1}

)
= .05 P

(
{L = 1}|{S = 1}

)
= .10

P
(
{T = 1}|{A = 0}

)
= .01 P

(
{L = 1}|{S = 0}

)
= .01

P
(
{E = 1}|{L = 1} ∩ {T = 1}

)
= 1 P

(
{B = 1}|{S = 1}

)
= .60

P
(
{E = 1}|{L = 1} ∩ {T = 0}

)
= 1 P

(
{B = 1}|{S = 0}

)
= .30

P
(
{E = 1}|{L = 0} ∩ {T = 1}

)
= 1 P

(
{X = 1}|{E = 1}

)
= .98

P
(
{E = 1}|{L = 0} ∩ {T = 0}

)
= 0 P

(
{X = 1}|{E = 0}

)
= .05

P
(
{D = 1}|{E = 1} ∩ {B = 1}

)
= .90 P

(
{D = 1}|{E = 1} ∩ {B = 0}

)
= .70

P
(
{D = 1}|{E = 0} ∩ {B = 1}

)
= .80 P

(
{D = 1}|{E = 0} ∩ {B = 0}

)
= .10.

It is clear that the above model is positive dependent with respect to the given
DAG by inspecting the probabilities directly and checking that the condition in
Definition 2.6 holds.

Another dataset that is used in the context of Gaussian DAGs is the crop anal-
ysis dataset discussed in Section 2.1 in [26]. The underlying DAG and the node
descriptions is given in Figure 2. The dataset assumes the following conditional
node distributions:

E ∼ N (50, 100)

G ∼ N (50, 100)

V | G,E ∼ N (−10.36 + 0.5G + 0.77E, 25)

N | V ∼ N (45 + 0.1V, 99)

W | V ∼ N (15 + 0.7V, 51)

C | N,W ∼ N (0.3N + 0.3W, 39.06)

Here, again, positive DAG dependence is part of the construction because all the
conditional means depend positively on the conditioning variables.

E G

V

N W

C

Figure 2. The DAG representing the crop dataset from [26]. The
nodes are: E (environmental potential), G (genetic potential), V
(vegetative organs), N (number of seeds), W (seeds mean weight),
C (crop).
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3. Illustrative theoretical examples

Denote MTP2 to be the set of all MTP2 Gaussians, and PA to be the set of all
positively associated Gaussians; see [6] for a discussion of association. In [20] it is
shown that for general distributions, the MTP2 property implies CI which in turn
implies CIS, and CI is equal to MTP2 in the Gaussian case. Thus, in the Gaussian
case, for every permutation σ we have:

MTP2 =
⋂

τ

CISτ ⊂ CISσ ⊂
⋃

τ

CISτ ⊂ PA, (3.1)

where the intersection and the union are taken over all orderings. As we will see,
even in the Gaussian case, all the inclusions are strict. We first give a simple
example which is not MTP2 but is CIS.

Example 3.1. Consider the upper triangular matrix

U =



1 0 −a
0 1 −b
0 0 1




with a, b > 0. If K = UU⊤ is the precision matrix of a Gaussian X = (X1, X2, X3),
then X is CIS by Corollary 2.3. However,

K =



1 0 −a
0 1 −b
0 0 1






1 0 0
0 1 0
−a −b 1


 =



1 + a2 ab −a
ab 1 + b2 −b
−a −b 1


 ,

which is not an M-matrix, therefore X is not MTP2. As a structural equation
model, we may write X as

X1 = ε1

X2 = ε2

X3 = aX1 + bX2 + ε3,

where (ε1, ε2, ε3) is a standardN (0, I3) Gaussian. This is a DAG with a v-structure,
1 → 3 ← 2. Note that K12 > 0 and so 123 and 213 are the only possible CIS
orderings.

The above example is significant in that it shows that for Gaussian distributions,
the class of CIS ordered graphical models is substantially larger than MTP2 Gaus-
sians. In particular it is known that v-structures cannot occur for MTP2 graphical
models in a very general setting [7]. From this standpoint, it is quite appealing to
be able to extend from MTP2 distributions to CIS distributions, since v-structures
are significant in determining Markov equivalence classes, which we discuss in the
next section.

Example 3.1 shows that a distribution that is CIS may not be CIS with respect
to other orderings. In consequence, the inclusion CISσ ⊂

⋃
τ CISτ is also strict

(unless m = 2). As a demonstration that the last inclusion in (3.1) is strict, we give
the following example which is a positive associated Gaussian where no reordering
of X is CIS.
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Example 3.2. Let X be a centered Gaussian with covariance

Σ =




5 4 7 8
4 9 8 7
7 8 11 11
8 7 11 14


 .

Since all entries of Σ are positive, by [23], X is a positive associated Gaussian.
However,

K =




94 25 −55 −23
25 7 −15 −6
−55 −15 33 13
−23 −6 13 6


 ,

since each row of the above matrix has a positive off-diagonal entry it follows that
there is no j ∈ [4] such that E[Xj |X\j ] is a non-decreasing function in X\j , from
which we conclude that there is no CIS ordering of X .

The next result studies the relation between CISσ models.

Proposition 3.3. Suppose X = (X1, . . . , Xm) has a Gaussian distribution. If m =
2 then (X1, X2) is CIS if and only if (X2, X1) is CIS. If m ≥ 3 then CISσ = CISσ′

if and only if σ(k) = σ′(k) for k = 3, . . . ,m.

Proof. The bivariate case follows because (X1, X2) is CIS if and only if Cov(X1, X2) ≥
0, which is symmetric in (X1, X2). Suppose m ≥ 3. The “if” implication follows
directly from the definition and from the m = 2 case. For the ”only if“ implication
assume with no loss in generality that σ′ = id. We construct a distribution that lies
in CISid and show that it lies in CISσ if and only if σ = id or σ = (2, 1, 3, . . . ,m).
Let U be an upper triangular matrix of the form

U =




1 0 −1 −2 · · · −(m− 3) −(m− 2)
0 1 −1 −1 · · · −1 −1
0 0 1 −1 · · · −1 −1
...

...
. . .

. . .

0 0 0 0 · · · 1 −1
0 0 0 0 · · · 0 1




.

The distribution we construct has covariance Σ such that K = Σ−1 = UU⊤. Since
all the upper off-diagonal entries are non-positive, this distribution is CISid. Denote
the rows of U by U1, . . . , Um. Note that

U⊤
1 U2 > · · · > U⊤

1 Um−1 = 1 > 0,

and so K1i > 0 for all i = 2, . . . ,m − 1. This shows that every CIS ordering of
this random vector must have m as the last index. If m = 3, then we are done. If
m ≥ 4, consider the marginal distribution over A = {1, . . . ,m− 1}. Because U is
upper triangular, we get that (ΣA,A)

−1 = UA,AU
⊤
A,A. Note that UA,A has the same

form as U but with m− 1 replacing m. Thus, by the same argument as above,

(ΣA,A)
−1
1i > 0 for all i = 2, . . . ,m− 2.

This shows that every CIS ordering of our constructed distribution must have m−1
as the penultimate index. If m = 4, we are done. If m ≥ 5, take A \ {m− 1} as the
new A and proceed as above. In this way we show that for this distribution σ is a
CIS ordering only if σ(k) = k for k = 3, . . . ,m. �
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There are qualitative properties of CIS distributions that contrast with MTP2

distributions. It is known ([11, Proposition 3.2]) that if X is MTP2 distributed
then any marginal distribution of X also satisfies the MTP2 property. The next
example shows that a Gaussian CIS random variable does not satisfy this property.

Example 3.4. Let X = (X1, X2, X3, X4) be a centered Gaussian with covariance

Σ =




1
4

1
4

3
4

29
16

1
4

5
4

7
4

77
16

3
4

7
4

17
4

167
16

29
16

77
16

167
16

1737
64


 .

It can be checked directly that (X1, X2, X3, X4) is CIS. However, the inverse of
Σ134 is 



205
24 − 23

12
1
6

− 23
12

14
3 − 5

3
1
6 − 5

3
2
3


 .

Since the last row of this matrix has a positive off-diagonal entry, we conclude that
(X1, X3, X4) is not CIS.

However, the following result, which follows immediately from the definition,
shows that certain conditionals and marginals preserve the CIS property. result .

Proposition 3.5. Let X be a CIS distributed centered Gaussian. Then the follow-
ing distributional properties hold:

(1) The conditional distribution of (Xk+1, . . . , Xm) given (X1, . . . , Xk) is CIS.
(2) The vector (X1, . . . , Xk) is CIS for every 1 ≤ k ≤ m.

Theorem 2.5 shows a relation between CIS orderings and positive DAG depen-
dence. The following example describes a complication that can arise. Namely, we
consider a DAG whose possible topological orderings are 1(23)4, the union of all CIS
orderings for all Markov equivalent DAGs is (123)4, but for special distributions in
the model it is possible that 4321 is a valid CIS ordering.

Example 3.6. Consider the DAG model defined by the upper triangular matrix

U =




1 −a −b 0
0 1 0 −c
0 0 1 −d
0 0 0 1




with a, b, c, d > 0. The Markov equivalence class of this DAG consists of the
following three DAGs.

1

2 3

4

1

2 3

4

1

2 3

4
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The corresponding precision matrix is given by

K = UU⊤ =




1 + a2 + b2 −a −b 0
−a 1 + c2 cd −c
−b cd 1 + d2 −d
0 −c −d 1




Since K23 = cd > 0, it is clear that any CIS ordering has 1 or 4 as the last element
and 1 is actually possible. Since (X1, X2, X3) is always CI, we conclude that all
orderings (123)4 are CIS2. By direct computation we see that for Σ = K−1,

(Σ234)
−1 =




(a2+1)c2+b2(c2+1)+1
1+a2+b2

a2cd−ab+(b2+1)cd
1+a2+b2 −c

a2cd−ab+(b2+1)cd
1+a2+b2

a2(d2+1)+(b2+1)d2+1
1+a2+b2 −d

−c −d 1


 .

In particular, if a, b are sufficiently large and c, d are sufficiently small such that
a2cd− ab+ (b2 + 1)cd ≤ 0, we also have that (X2, X3, X4) is CI. In this case, each
ordering (234)1 is also a CIS ordering. Thus the CIS orderings are of the form
1(23)4, 4(23)1 and (23)(14). Note that only the DAG with topological ordering
1(23)4 is in the Markov equivalence class, while the DAGs with topological ordering
4(23)1 and (23)(14) are not. This shows that the set of all CIS orderings contains
only limited information about the underlying DAG.

The situation is not always that complicated. In Proposition 4.5 we will show
that there is a large class of interesting hierarchical networks for which the possible
CIS orderings are exactly the topological orderings.

Another property worth noting is that the space of MTP2 Gaussian distributions
amounts to the M-matrix constraint on K, which is convex in K. We can show
that the space of K for which X is a CIS Gaussian is not convex in K.

Example 3.7. Let K1 and K2 be the precision matrices

K1 =




1 −1 −1 −4
0 1 0 0
0 0 1 −3
0 0 0 1







1 −1 −1 −4
0 1 0 0
0 0 1 −3
0 0 0 1




⊤

=




19 −1 11 −4
−1 1 0 0
11 0 10 −3
−4 0 −3 1


 ,

K2 =




1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1







1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1




⊤

=




2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1


 .

Clearly, by Corollary 2.3, we must have that Gaussians with precision matrices K1

or K2 are CIS ordered. However consider the sum

K = K1 +K2 =




21 −2 11 −4
−2 3 −1 0
11 −1 12 −4
−4 0 −4 2


 .

2The notation (123) stands for any permutation of these three.
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Then if Σ = K−1, by the Schur Complement formula

(
Σ[3],[3]

)−1
= K[3],[3] −

K[3],4K4,[3]

K4,4
=



13 −2 3
−2 3 −1
3 −1 4




which means that if X has covariance Σ, then E[X3|X1, X2] is not a non-decreasing
function of X1 and X2 due to the third row of the above matrix having an off-
diagonal that is positive — the same will be true if we were to replace K by K

2 ,
which implies that the convex combination of K1 and K2 does not stay in the class
of precision matrices of CIS Gaussians.

The above example shows that even if we assume that a Gaussian is CIS ordered
under a known permutation σ, we do not have convexity in the space of precision
matrices K that parameterize this model. In Section 5, we show that there is a
broad class of models, under which Gaussians that are CIS for a known permutation
σ are included, for which computing the MLE is a convex optimization problem.
While the results of Section 5 may be familiar to many practitioners, we did not
find a direct reference and thought it worthwhile to specify these models explicitly.
Most importantly for us however, is that computationally, once a CIS ordering is
known, calculating the MLE for a CIS Gaussian can be done with similar efficiency
as restricting to the MTP2 class.

4. Markov equivalence for CIS models

One of the most fundamental limitations of Bayesian networks is that two differ-
ent DAGs may represent the same conditional independence model, in which case
we say that they are Markov equivalent. We recall the following classical result [31]
that uses the concept of a skeleton, which for a DAG G is the undirected graph
obtained from G by forgetting the directions of all arrows.

Theorem 4.1. Two DAGs G and H are Markov equivalent if and only if they have
the same skeleton and v-structures. For a Gaussian X, we have M(G) = M(H) if
and only if G and H are Markov equivalent.

If G is a DAG then by [G] we denote the set of all DAGs Markov equivalent
to G. There is another useful characterization of Markov equivalence proposed
in [4], which describes elementary operations on DAGs that transform a DAG into
a Markov equivalent DAG in such a way that G can be transformed to any graph
in [G] by a sequence of these elementary operations. This elementary operation is
given by flipping the arrow i→ j whenever the pair i, j satisfies {i}∪Pa(i) = Pa(j).
More specifically, given a DAG G over V , we say that an arrow i→ j in G is covered
if the graph H obtained from G by replacing i→ j with j → i is also acyclic, and
also Pa(i) = Pa(j) \ {i}. result of [4] states:

Theorem 4.2. We have H ∈ [G] if and only if H can be obtained from G by a
sequence of flips of covered arrows.

We say that H is CIS-Markov equivalent to G if M+(G) = M+(H). We offer
a similar characterization of CIS-Markov equivalence. An edge i → j is trivially
covered if Pa(i) ∪ {i} = Pa(j) = {i}.

Theorem 4.3. For a Gaussian X, we have M+(G) = M+(H) if and only if H can
be obtained from G by a sequence of flips of trivially covered arrows.
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Note that whenG is a complete DAG (with all possible
(
m
2

)
edges), thenM+(G) =

CISσ, where σ is the unique topological ordering of this DAG. This shows that The-
orem 4.3 generalizes Proposition 3.3.

Proof. For the “if” part, it is enough to consider the case whenH is obtained fromG
by a single flip of a trivially covered pair i → j. By Theorem 4.2, M(G) = M(H).
Since i has no parents and it is the only parent of j, there is a permutation σ
with σ(1) = i, σ(2) = j that forms a topological ordering of G. Moreover, the
permutation σ′ obtained from σ by swapping i and j is a topological ordering of
H . By Proposition 3.3, CISσ = CISσ′ . By Theorem 2.5, M+(G) = M+(H).

To show the “only if” part, first note that if M+(G) = M+(H) then necessarily
M(G) = M(H). Via a contrapositive argument, suppose G and H are Markov
equivalent butH is not obtained fromG by a sequence of trivially covered edge flips.
This means that there exists an arrow i→ j in G and k with k ∈ PaG(i) ∩ PaG(j)
such that i← j in H . To get a contradiction, it is enough to construct a distribution
in M+(G) such that in every CIS ordering j must come after i.

Let σ be a topological ordering of G. Without loss of generality assume σ = id
and let i, j, k be as above. In particular, 1 ≤ k < i < j ≤ m. Let U be upper
triangular such that Ull = 1 for all l = 1, . . . ,m, Uij = −1, Ukj = −1 and U is zero
otherwise. Note that by the above, this U corresponds to a distribution in M+(G)
where some of the edges in G have zero coefficients. We will show that for any A
containing {i, j, k}, neither i nor k can be the last one in a CIS ordering. To show
this, note that UA,Ac = 0, UAc,A = 0, and UAc,Ac = I. It follows that

(ΣA,A)
−1 = UA,AU

⊤
A,A

and so (ΣA,A)
−1
ik = 1 > 0 showing that neither i nor k can be the last element in

any CIS ordering of XA. Using this recursively, starting from A = {1, . . . ,m}, we
conclude that j must appear after i, k in every CIS ordering. �

In Gaussian Bayesian networks the crucial observation is that if the Markov
equivalence classes [G] and [H ] are not equal then the Gaussian models M(G) and
M(H) intersect at a measure zero set (we think about the geometry of these models
as embedded in the space of covariance matrices). This means that for almost all
ground-truth models we can learn the equivalence classes from the data. The
analogous statement is unfortunately not true for CIS-Markov equivalence classes.
For example, if m = 3, the following two graphs lie in the same Markov equivalence
class and different CIS-Markov equivalence classes

1

2 3

1

2 3

The intersection of M+(G) and M+(H) for these two graphs has full dimension and
it contains the set of all inverse M -matrices.

Lemma 4.4. Suppose the distribution of X lies in M+(G). Suppose that there
exists k such that i → k ← j is a v-structure in G and suppose that Kij 6= 0 (this
holds generically). Then no CIS ordering of X finishes with i or j.
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Proof. Without loss of generality assume that the trivial ordering 1 < 2 < . . . < m
is a topological ordering of G. In this case the matrix Λ in (1.1) is lower triangular.
Then let K = UU⊤, with U upper triangular, be the precision matrix of X . By
Remark 1.1 we have U = (I −Λ)⊤D−1/2 and so for i 6= j have Uuv ≤ 0 if u→ v in
G and Uuv = 0 otherwise. We have

Kij =
∑

l

UilUjl =
∑

l∈Ch(i)∩Ch(j)

UilUjl.

This expresses Kij as a sum of non-negative terms. Since this sum is non-zero by
assumption, it must be strictly positive and so, neither i nor j can be the last ones
in a CIS ordering. �

As a corollary we get the following result.

Proposition 4.5. Consider a DAG G consising of k layers V1, . . . , Vk such that:

(1) V = V1 ⊔ · · · ⊔ Vk,
(2) only arrows from Vi to Vi+1 are allowed in G,
(3) |Vi| ≥ 2 for all i = 1, . . . , k − 1 (only the last layer may contain one node),
(4) every v ∈ Vi for i = 1, . . . , k− 1 is contained in a v-structure (as a parent).

If the distribution of X lies in M+(G) and Kij 6= 0 unless i, j ∈ Vk (this holds
generically), then the only possible CIS orderings of X are (V1) · · · (Vk), where the
notation (Vi) means that the vertices in Vi can be ordered in an arbitrary way. In
particular, any possible CIS ordering of X is a topological ordering of G.

5. Maximum likelihood estimation in M+(G)

In this section we show that maximum likelihood estimation in the model M+(G)
for a given G is straightforward and amounts to solving a convex optimization
problem. Consider a Gaussian vector X ∼ Nm(0,Σ) and let K = Σ−1. Since K is
positive definite, by [10, Corollary 3.5.6] we have that there exists a unique upper
triangular matrix U whose diagonals are all 1, and a diagonal matrixD with strictly
positive diagonals such that K = UDU⊤. Moreover, the relation between K and
the pair (D,U) is one-to-one. Equivalently, we obtain the stochastic representation

X = ΛX + ε, (5.1)

where Λ = (Im−U)⊤ is lower triangular with zero diagonals, and ε ∼ Nm(0, D−1).

Definition 5.1. Let Li ⊆ R
i be sets for each i = 1, . . . ,m− 1. A Cholesky factor

model consists of all Gaussian distributions such that the inverse-covariance matrix
satisfies K = UDU⊤ with D a diagonal matrix and U = (Im − Λ)⊤ with

Λi := (Λi,1, . . . ,Λi,i−1) ∈ Li−1 for i = 2, . . . ,m.

Remark 5.2. In the case that Li = [0,∞)i, we recover the CIS model on X . If
Li = R

i we simply have the space of all covariance matrices.

Remark 5.3. If the DAG G is known, we can always assume without loss of
generality that the id permutation is a topological ordering of G. In other words,
the matrix Λ in Remark 1.1 is lower triangular. Thus M(G) is a Cholesky factor
model with the support of Λi equal to the parent set Pa(i). The model M+(G) is
obtained by additional non-negativity constraints.
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If we want to make the constraints on Λ explicit we denote the model by
F (L1, . . . ,Lm−1). Maximum likelihood estimation for such models links to the
problem of least squares estimation in linear regression as follows. Given n inde-
pendent observations ofX from this model, we stack them in the matrixX ∈ R

n×m.
We denote by x1, . . . ,xm the columns of X and by Zi := X[n],[i−1] the R

n×(i−1)

matrix obtained from the first i− 1 columns of X.

Theorem 5.4. If (D̂, Λ̂) is the maximum likelihood estimator for a Cholesky factor

model F (L1, . . . ,Lm−1), then each Λ̂i for i = 2, . . . ,m− 1 is given as a minimizer
of the quadratic problem

minimize 1
n‖xi − ZiΛ

⊤
i ‖

2 subject to Λi ∈ Li−1 ⊆ R
i−1.

Moreover,

D̂ii = n‖xi − ZiΛ̂
⊤
i ‖

−2

for all i = 1, . . . ,m.

Proof. We have K = (Im−Λ)⊤D(Im−Λ), where Λ is strictly lower triangular with
Λi ∈ Li−1 for i = 2, . . . ,m. As before, set U = (Im − Λ)⊤. Since det(U) = 1 and
D is diagonal, the corresponding log-likelihood function log det(K)− 1

n tr(X
⊤XK)

can be written as
m∑

i=1

logDii −
1

n

m∑

i=1

Dii((XU)⊤XU)ii. (5.2)

The expression ((XU)⊤XU)ii is simply the squared-norm of the i-th column of
XU , which is equal to

xi −
i−1∑

j=1

Λijxj = xi − ZiΛ
⊤
i .

Thus, maximizing (5.2) is equivalent to minimizing

−
m∑

i=1

logDii +

m∑

i=1

Dii

n
‖xi − ZiΛ

⊤
i ‖

2. (5.3)

The i-th squared term in (5.3) depends only on Λi. This means that minimizing
(5.3) in a Cholesky factor model can be done term by term. Once the optimizer for
Λ is found, D can be handled in a straightforward way. �

Theorem 5.4 gives also a simple condition on the existence of the MLE.

Proposition 5.5. The MLE in Theorem 5.4 exists if and only if each set Li is
closed and for every i = 1, . . . ,m− 1,

xi /∈ {ZiΛ
⊤
i : Λi ∈ Li}.

In particular, if there are subsets Ai ⊆ [i − 1] such that Li = span{xj : j ∈ Ai},
then the MLE exists with probability 1 as long as n ≥ maxi |Ai|.

It is now straightforward to compute the optimal value for the log-likelihood.

Corollary 5.6. If the MLE exists, then the optimal value of the log-likelihood is

−
m∑

i=1

log

(
1

n
‖xi − ZiΛ̂

⊤
i ‖

2

)
−m.
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Recall that in the linear regression problem, given a vector xi ∈ R
n and the

matrix Zi ∈ R
n×(i−1), the least squares estimator is given precisely as the minimizer

of ‖xi − Ziθ‖2 over θ ∈ R
i−1. If this minimizer is unique, it is given by the well-

known formula

θ̂ = (Z⊤
i Zi)

−1Z⊤
i xi. (5.4)

If Zi does not have full column rank, the optimum is obtained over an affine space.
Replacing the inverse above with the pseudo-inverse gives the solution with the
smallest norm. The following result follows almost immediately.

Proposition 5.7. If the constraints L1, . . . ,Lm−1 are all linear, then the MLE

(D̂, Λ̂) in the Cholesky factor model F (L1, . . . ,Lm−1) can be given in closed form.

6. Finding a CIS ordering

Having established that the MLE can be easily computed in M+(G) for any fixed
G, we now explore the harder problem of estimating Σ knowing that the distribution
of X lies in M+(G) for some G. By Theorem 2.5, M+(G) = M(G) ∩ CISσ for
any topological ordering σ of G. Thus, if we know a topological ordering of G
the problem can be solved by running regressions in the order given by σ and
adding a LASSO penalty to learn a sparse representation. Using the fact that
M+(G) = M(G)∩CISσ for any topological ordering σ of G, we do not need to search
over all orderings but can restrict ourselves to CIS orderings for the underlying
distribution. In this section, we show that these can be efficiently recovered.

6.1. Recovering a CIS ordering in the population case. In the following, we
provide an algorithm that, given K, recovers a CIS ordering given that such an
ordering exists. The algorithm is based on the following lemma.

Lemma 6.1. Suppose X is a CIS m-variate Gaussian. Suppose there exists k ∈
[m− 1] such that Kk,\k ≤ 0. Then (X1, . . . , Xk−1, Xk+1, . . . , Xm, Xk) is CIS.

Proof. Recalling Lemma 2.2, we have thatX being a centered CIS ordered Gaussian
is equivalent to

E[Xj |X[j−1]] = −

(
Σ[j],[j]

)−1

j,[j−1](
Σ[j],[j]

)−1

j,j

X[j−1]

being a non-decreasing function in (X1, . . . , Xj−1) for all j ∈ [m]. We only need to
check that the functions

E[Xj |X[j−1]\{k}] j = k + 1, . . . ,m, (6.1)

E[Xk|X\k] (6.2)

are non-decreasing in their arguments, which, at least for the second function, fol-
lows automatically by the assumption Kk,\k ≤ 0. We now proceed by an induction
argument starting from j = m working downward, to prove that the functions (6.1)
are all non-decreasing in their arguments. We have

E
[
Xm|X[m−1]\{k}

]
= −

(
Σ\k,\k

)−1

m,[m−1]\{k}(
Σ\k,\k

)−1

m,m

X[m−1]\{k},
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then the Schur complement formula gives the following two statements:

(
Σ\k,\k

)−1
= K\k,\k −

K\k,kKk,\k

Kk,k
,

(
Σ[m−1],[m−1]

)−1
= K[m−1],[m−1] −

K[m−1],mKm,[m−1]

Km,m
.

By our assumption Kk,\k ≤ 0, we have that
K\k,kKk,\k

Kk,k
is a non-negative rank-one

matrix. Similarly, since Xm is the last in a CIS ordering of X , we have Km,\m ≤ 0

and
K[m−1],mKm,[m−1]

Km,m
is a non-negative matrix. It follows then that

(
Σ\k,\k

)−1

m,[m−1]\{k}
≤ 0,

(
Σ[m−1],[m−1]

)−1

k,[m−1]\{k}
≤ 0.

(6.3)

The first inequality in (6.3) implies that the function in equation (6.1) for j = m
is non-decreasing in its arguments. Our induction hypothesis is that for some
j∗ ≥ k + 1 we have shown for every j = j∗ + 1, . . . ,m, that

(
Σ[j]\{k},[j]\{k}

)−1

j,[j−1]\{k}
≤ 0,

(
Σ[j−1],[j−1]

)−1

k,[j−1]\{k}
≤ 0.

(6.4)

We will now prove that both of these inequalities are true for j = j∗ as well. By the
second inequality in (6.4) (setting j = j∗ + 1), and the fact that X is CIS ordered,
we have that

(
Σ[j∗],[j∗]

)−1

k,[j∗]\{k}
≤ 0,

(
Σ[j∗],[j∗]

)−1

j∗,[j∗−1]
≤ 0.

(6.5)

The Schur complement formula implies the following two equalities

(
Σ[j∗]\{k},[j∗]\{k}

)−1
=

(
Σ[j∗],[j∗]

)−1

[j∗]\{k},[j∗]\{k}
−

(
Σ[j∗],[j∗]

)−1

[j∗]\{k},k

(
Σ[j∗],[j∗]

)−1

k,[j∗]\{k}(
Σ[j∗],[j∗]

)−1

k,k

,

and

(
Σ[j∗−1],[j∗−1]

)−1
=

(
Σ[j∗],[j∗]

)−1

[j∗−1],[j∗−1]
−

(
Σ[j∗],[j∗]

)−1

[j∗−1],j∗

(
Σ[j∗],[j∗]

)−1

j∗,[j∗−1](
Σ[j∗],[j∗]

)−1

j∗,j∗

.

By the inequality of equation (6.5), it follows that
(
Σ[j∗],[j∗]

)−1

[j∗]\{k},k

(
Σ[j∗],[j∗]

)−1

k,[j∗]\{k}(
Σ[j∗],[j∗]

)−1

k,k

≥ 0,

(
Σ[j∗],[j∗]

)−1

[j∗−1],j∗

(
Σ[j∗],[j∗]

)−1

j∗,[j∗−1](
Σ[j∗],[j∗]

)−1

j∗,j∗

≥ 0,



POSITIVITY IN LINEAR GAUSSIAN STRUCTURAL EQUATION MODELS 19

from which the inequalities in equation (6.4) are proven for j = j∗. Given that
the first inequality in equation (6.4) is equivalent to the function in (6.1) being
non-decreasing in its arguments, we have proven the required result. �

Lemma 6.1 allows us to find a row of the precision matrix K whose off-diagonals
are non-positive and assume it is the last element of a CIS ordering. This is the
basis of our algorithm.

Theorem 6.2. Suppose X is a centered multivariate Gaussian for which there
exists a CIS ordering. Then the following procedure produces a permutation σ such
that Xσ is CIS.

(1) Initialize O(1) = [m] as the “leftover” set, K(1) = K as the current precision
matrix, and C(1) = {j : Kj,\j ≤ 0} as the current candidate set.

(2) For i = 1, . . . ,m, take an element of k ∈ C(i) and set σ(m − i + 1) = k.
Compute

O(i+1) = O(i)\{k},

K(i+1) =
(
ΣO(i+1),O(i+1)

)−1

,

C(i+1) = {j : K
(i+1)
j,\j ≤ 0}.

Proof. We must simply show that at each step C(i) is not empty, since at each

step, the condition K
(i)
j,\j ≤ 0 is sufficient for the variable Xj to be a non-decreasing

function in the variables Xv with v ∈ O(i)\{j} by Lemma 2.2. This follows by
existence of a CIS ordering along with Theorem 6.1. Indeed if a CIS ordering
exists, then C(1) 6= ∅, in which case, an arbitrary element of C(1) can be taken to
be σ(m). A simple induction argument shows that this is true for each C(i). �

We illustrate this algorithm with an example.

Example 6.3. Consider the four dimensional Gaussian distribution with covari-
ance and precision matrix

Σ =




1 0.75 0.50 0.14
0.75 1 0.81 0.50
0.50 0.81 1 0.75
0.14 0.50 0.75 1


 , K =




2.77 −2.51 0 0.88
−2.51 5.49 −3.2 0

0 −3.2 5.49 −2.51
0.88 0 −2.51 2.77


 .

The matrix K has two rows with only non-positive off-diagonal entries. We choose
i1 = 2 and consider the marginal distribution over {1, 3, 4}. The matrix

(Σ134)
−1 =




1.61 −1.47 0.88
−1.47 3.62 −2.51
0.88 −2.51 2.77




has one row with nonpositive off-diagonal entries; so we take i2 = 3. This shows
that both (1, 4, 3, 2) and (4, 1, 3, 2) are CIS orderings. Beginning with i1 = 3 shows
that also (1, 4, 2, 3) and (4, 1, 2, 3) are CIS orderings and there are no other CIS
orderings of X .
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6.2. Noisy CIS Recovery. In the noisy setting, we are given a matrix of obser-
vations X ∈ R

n×m where the rows are i.i.d and distributed according to Nm(0,Σ),
where Σ is such that the distribution admits a CIS ordering. As in Section 5,
we let xt refer to the t-th column of X. For any i ∈ {1, . . . ,m} and any non-
empty A ⊆ {1, . . . ,m} \ {i}, denote by β(i,A) the vector of coefficients of the linear
regression of xi on X[n],A. Then we have that

β(i,A) = Σi,AΣ
−1
A,A.

When β(i,A) ≥ 0, we say xi can be positively regressed on X[n],A. For α > 0,

an estimator β̂(i,A) (we suppress n-dependence for ease) of β(i,A) is said to be nα,
consistent if

nα(β̂(i,A) − β(i,A))→ 0

in probability as n → ∞. Our noisy CIS recovery algorithm presented in the
Theorem below will mimic the method of the previous section by inspecting the

entries of β̂(i,A) at each step, assuming a bound on the entries of β(i,A).

Theorem 6.4. Assume that there exists a CIS ordering of the distribution Nm(0,Σ)
and there exists an ǫ∗ = ǫ∗(Σ) > 0 such that for any i ∈ V and A ⊆ V \ {i}, either

β(i,A) is a non-negative vector or minj β
(i,A)
j < −2ǫ∗. For an α > 0, let β̂(i,A) be an

nα-consistent estimators of β(i,A) and let ǫn be a sequence such that ǫn → 0 while
nαǫn →∞.

We define an estimator σ̂ through the following algorithm:

(1) Initialize A1 = [m] to be the set of active variables and set t = 1.

(2) If t ≤ m− 2, for each i ∈ At, we compute β̂(i,At\{i}). At the first instance3

of i∗ such that all entries of β̂(i∗,At\{i
∗}) are greater than −ǫn we define

σ̂(m− t+ 1) = i∗.

Define At+1 = At\{i∗} and increment t and repeat this step until t = m−1.
(3) When t = m− 1 it must be that |At| = 2, in which case, we take σ̂(1) and

σ̂(2) to be arbitrary.

As n→∞, σ̂ will be a valid CIS ordering of Nm(0,Σ) with probability going to 1.

Proof. Depending on the sample size n, consider the event

E(n) =
⋂

i,A

E
(n)
i,A , E

(n)
i,A := {‖β̂(i,A) − β(i,A)‖∞ < ǫn}. (6.6)

By nα-consistency of the estimators and the fact that nαǫn → ∞, P(E(n)) → 1
as n → ∞4. Note that, by the definition of ǫ∗ and the fact that ǫn < ǫ∗ if n is
sufficiently large, conditionally on E(n), this is equivalent to the fact that xi can be
positively regressed on X[n],A. More specifically, let Rt for t = 1, . . . ,m− 3, be the
event that says that at the t-th step of the algorithm:

(a) X[n],At
admits a CIS ordering,

(b) the algorithm correctly finds an xi that can be positively regressed on
X[n],At\{i}.

3In practice we could score different potential choices to further improve the power of the
method.

4Indeed if An, Bn are sequences of events such that P(An) → 1 and P(Bn) → 1 then P(An ∩
Bn) → 1 simply because P((An ∩ Bn)c) = P(Ac

n
∪ Bc

n
) ≤ P(Ac

n
) + P(Bc

n
) → 0.
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Note that (a) is automatically satisfied if t = 1. Similarly, for an arbitrary t,
(a) holds automatically conditionally on R1 ∩ . . . ∩ Rt−1, by Theorem 6.1. The
probability of recovering a CIS ordering is P(R1 ∩ . . . ∩Rm−3) and we have

P(R1 ∩ . . . ∩Rm−3) = P(R1)P(R2|R1) · · ·P(Rm−3|R1 ∩ . . . ∩Rm−4).

Denote P
(n)(·) = P(·|E(n)). We also have

P
(n)(R1 ∩ . . . ∩Rm−3) = P

(n)(R1)P
(n)(R2|R1) · · ·P

(n)(Rm−3|R1 ∩ . . . ∩Rm−4).

As we said earlier, after conditioning on E(n), Xi can be positively regressed on XA

if and only if all coefficients of β̂(i,A) are greater than −ǫ. This means that

P
(n)(R1) = P

(n)(R2|R1) = · · · = P
(n)(Rm−3|R1 ∩ . . . ∩Rm−4) = 1

implying that P(n)(R1∩ . . .∩Rm−3) = 1. This implies that P(R1∩ . . .∩Rm−3)→ 1
as n→∞5, which completes the proof. �

Remark 6.5. The event E(n) in (6.6) may have small probability for finite sample
sizes. However, for the proof it is not necessary to define E(n) as an intersection
over all pairs (i, A). For example, it is sufficient to include only the pairs (i, A)
such that X[n],A∪{i} admits a CIS ordering but xi cannot be positively regressed
on X[n],A (if Σ is an inverse M-matrix then there are no such pairs).
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point processes. Adv. in Appl. Probab., 15(4):726–751, 1983.

[22] J. Pearl. Causality. Cambridge University Press, Cambridge, second edition, 2009.

[23] L. D. Pitt. Positively correlated normal variables are associated. The Annals of Probability,
pages 496–499, 1982.

[24] D. Rossell and P. Zwiernik. Dependence in elliptical partial correlation graphs. Electronic
Journal of Statistics, 15(2):4236–4263, 2021.

[25] G. F. Schwarz and A. Tversky. On the reciprocity of proximity relations. J. Math. Psych.,
22(3):157–175, 1980.

[26] M. Scutari and J.-B. Denis. Bayesian networks. Texts in Statistical Science Series. CRC
Press, Boca Raton, FL, 2015.

[27] M. Slawski and M. Hein. Estimation of positive definite M-matrices and structure learning
for attractive Gaussian Markov random fields. Linear Algebra Appl., 473:145–179, 2015.

[28] J. A. Soloff, A. Guntuboyina, and M. I. Jordan. Covariance estimation with nonnegative
partial correlations. arXiv preprint arXiv:2007.15252, 2020.

[29] A. Tversky, Y. Rinott, and C. M. Newman. Nearest neighbor analysis of point processes:
applications to multidimensional scaling. J. Math. Psych., 27(3):235–250, 1983.

[30] T. J. VanderWeele and J. M. Robins. Signed directed acyclic graphs for causal inference. J.
R. Stat. Soc. Ser. B Stat. Methodol., 72(1):111–127, 2010.

[31] T. S. Verma and J. Pearl. Equivalence and synthesis of causal models. In Probabilistic and
Causal Inference: The Works of Judea Pearl, pages 221–236. Association for Computing
Machinery, 2022.

[32] M. P. Wellman. Fundamental concepts of qualitative probabilistic networks. Artificial intel-
ligence, 44(3):257–303, 1990.

[33] R. Zhou, J. Ying, and D. P. Palomar. Covariance matrix estimation under low-rank factor
model with nonnegative correlations. IEEE Trans. Signal Process., 70:4020–4030, 2022.


	1. Introduction
	1.1. Outline
	1.2. Notation

	2. Structure of Positive Dependence on a DAG
	2.1. Basic results and definitions
	2.2. Motivating examples

	3. Illustrative theoretical examples
	4. Markov equivalence for CIS models
	5. Maximum likelihood estimation in M+(G)
	6. Finding a CIS ordering
	6.1. Recovering a CIS ordering in the population case
	6.2. Noisy CIS Recovery

	References

