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ABSTRACT

Molecular Relational Learning (MRL), focused on understanding interactions
between molecular pairs, is essential for drug design with both structural and
textual information, i.e., molecular structures and textual documents. However,
most existing MRL methods assume identical molecular distributions, failing in
the ubiquitous real-world scenarios involving new drugs with distribution shift,
which is mainly due to the reason that they heavily reply on variant correlations
between structures and texts regarding interactions that tend to change when new
drugs or molecules come. To solve this problem, we investigate zero-shot MRL,
by leveraging invariant relationships between molecular texts and structures w.r.t
interactions in the course of time, which is largely unexplored in the literature
and is highly non-trivial with the following challenges: 1) How to disentangle
molecular structure components between each pair that intrinsically determine
interactions, and address potential structural distribution shift issues for new drugs?
2) How to align molecular structures with semantic textual information to achieve
invariant molecular relation predictions for new drugs? To tackle these challenges,
we propose a novel Causally Disentangled Invariant Graph Large Language Model
for Molecular Relational Learning (CALMOL), capable of exploiting invariant
molecular relationships to predict interactions for new drugs. In particular, we
propose Causal Molecule Substructure Disentanglement to capture the invariant
well-recognized substructure pair for a specific molecule interaction. Then, we
propose Molecule Structure and Property aware LLM Alignment to use molecule
(with invariant substructure)-textual property pair to align structure information
to semantic information, and utilize them together to guide the interaction pre-
diction. On this basis, LLM can also provide further explanations. Extensive
experiments on qualitative and quantitative tasks including 7 datasets demon-
strate that our proposed CALMOL achieves advanced performance on predicting
molecule interactions involving new molecules.

1 INTRODUCTION

Molecular Relational Learning (MRL), aiming to understand interactions between molecular pairs,
plays a pivotal role in advancing biochemical research with both structural and textual information,
i.e., molecular structures and documents. For example, in drug discovery, it is crucial to consider the
interactions between molecules, based on both their structural and textual properties (Chang & Ye,
2024; Jin et al., 2020; Dou et al., 2022).

As the development of new molecules, such as drugs, accelerates, the challenge of evaluating
interactions involving these novel compounds becomes increasingly critical (Zhu et al., 2024).
However, most existing MRL methods assume identical molecular distributions and struggle in
situations where limited information is available about new molecules, including their relationships
with previously known compounds. A key problem is that they tend to rely on either variant
molecular structures, which might dominate the molecular space (Yang et al., 2022), or associated
textual information (Dou et al., 2022), leading to difficulties in prediction, especially when confronted
with distribution shift and evolving information.

To solve this problem, we investigate zero-shot MRL, i.e., predicting relations involving new
molecules, by leveraging invariant relationships between molecular texts and structures w.r.t interac-
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tions in the course of time. This is a largely unexplored area in the literature and presents several
highly non-trivial challenges:

• How to disentangle structural components between molecule pair that inherently determine
interactions and mitigate potential distribution shifts in molecular structures for new drugs?

• How to align molecular structures with semantic textual information to achieve invariant molec-
ular relation predictions for new drugs?

To address these challenges, we propose a novel Causally Disentangled Invariant GrAph Large
Language Model for Molecular Relational Learning (CALMOL), capable of exploiting invariant
molecular relationships for predicting interactions involving new drugs. Our method leverages the
complementary strengths of Graph Neural Networks (GNNs) for molecule structural learning and
Large Language Models (LLMs) for text processing, information retrieval and integration (Lyu
et al., 2023; Li et al., 2024), aiming to provide a more comprehensive understanding of molecular
interactions across diverse scenarios, particularly when dealing with both known and novel molecules.

Particularly, we propose Causal Molecule Substructure Disentanglement to identify invariant, well-
recognized motif pairs that govern molecule interactions. This is achieved by decomposing molecules
into chemically coherent motifs and applying causal constraint along with Gumbel-Sigmoid Reparam-
eterization masking method to disentangle causal motif-interaction information from the entangled
molecular embeddings. Given the causal motif pairs obtained from the above module, we introduce
Molecule Structure and Property aware LLM Alignment to align molecular structural information
(with invariant substructures) to semantic information, using the structure-property pairs, and further
incorporate them to guide interaction predictions. The motivation behind this is that different motifs
within a molecule may be responsible for various molecular properties. By focusing on the causal
motif pairs, we can encourage the LLM to identify relevant properties and make predictions based
on the causal motif and property, as depicted in figure 1. This approach also enables the LLM to
offer additional explanations for the interactions. Empirical validation across both qualitative and
quantitative tasks including 7 datasets demonstrate that our proposed CALMOL achieves advanced
performance on predicting molecule interactions involving new molecules. Detailed ablation studies
further verify our designs. The contributions of this paper are summarized as follows:

• We study Graph LLM for zero-shot MRL, which is largely unexplored, by proposing novel
Causally Disentangled Invariant GrAph Large Language Model for Molecular Relational
Learning (CALMOL), capable of exploiting invariant molecular relationships for predicting
interactions involving new drugs.

• We propose two modules: i) Causal Molecule Substructure Disentanglement to capture the
invariant well-recognized substructure pair for a specific molecule interaction; and ii) Molecule
Structure and Property aware LLM Alignment to use molecule (with the obtained invariant
substructure)-textual property pair to align structure information to semantic information, and
guide interaction prediction. On this basis, LLM can further provide meaningful explanations.

• Extensive experiments on qualitative and quantitative tasks including 7 datasets demonstrate that
our proposed CALMOL achieves advanced performance on predicting molecule interactions
involving new molecules. 1

2 PRELIMINARY

2.1 PROBLEM FORMALIZATION

Molecular Relational Learning (MRL) seeks to predict the interaction (either classification or re-
gression) between a pair of molecules used together. Since new molecules are continuously being
developed and emerging, learning interactions involving these novel molecules poses a significant
challenge. To address this, we focus on this largely unexplored area by framing it as a zero-shot learn-
ing problem. During the training phase, interactions are observed among a set of known molecules.
In the inference phase, the goal is to predict interactions involving either a new molecule paired with
a known one or between two entirely new molecules. Formally, we define the task as follows:

1We provide codes of our paper in the anonymous link.
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Definition 1 (Zero-shot Molecular Relational Learning)

Let M denote the set of all molecules, Mnew ⊂ M the set of novel molecules, and I the set of
interaction outcomes, where I can represent either qualitative classification labels or quantitative
regression values. Formally, the zero-shot molecular relational learning task is to learn a mapping
F : (Mnew ×M) ∪ (M×Mnew) → I, where F maps a molecule pair (u, v) ∈ ((Mnew ×M) ∪
(M×Mnew)) to an interaction outcome i ∈ I, which can be either a qualitative interaction type
(for a classification task) or a quantitative value (for a regression task).

2.2 CAUSAL MOLECULE SUBSTRUCTURE AS A BRIDGE

INTERACTION

Warfarin Fluconazole

Imidazole 
Ring

Isopropanol 
Group

1,4-
Difluoroben

zene

Acetone or 
Ketone Group

Benzene Ring

Coumarin 
Core

CYP2C9 enzyme

inhibit
metabolize

causal
substructure
pair

Figure 1: MRL is driven by causal substructure pair and related property. The interaction
between these two drugs is primarily driven by the imidazole ring in fluconazole, which inhibits the
CYP2C9 enzyme responsible for metabolizing the coumarin core in warfarin. This inhibition slows
down the breakdown of warfarin, causing its concentration to increase in the bloodstream, which
heightens the risk of excessive anticoagulation and bleeding.

To harness the structural modeling capabilities of Graph Neural Networks (GNNs) alongside the
information integration and textual processing strengths of Large Language Models (LLMs)—which
complement each other in Molecular Relational Learning (MRL)—we propose using core, well-
recognized molecular substructures as a bridge to integrate these two powerful models for interaction
prediction. Specifically, we outline the process of abstracting these substructures in Section 3.1, and
explain how they serve as a bridge between the GNN and LLM, facilitating interaction prediction in
Sections 3.2 and 3.3.

3 METHODOLOGY

In this section, we introduce our CALMOL in detail. Since it is difficult to directly decompose
a molecule and extract the causal part for predicting interaction between a pair of molecules, we
utilize a GNN-based model to learn to extract the causal part when encoding a molecule structure
at first, which then serves as the graph encoder and causal substructure pair extractor in our Graph
LLM CALMOL. Specifically, we introduce the proposed causal molecule substructure disentangling
module in section 3.1, then the molecule substructure & property aware LLM alignment module in
3.2, and finally sum up the entire training and inference procedure of CALMOL in section 3.3.

3.1 CAUSAL MOLECULE MOTIF-INTERACTION DISENTANGLING

Molecule Decomposition. Previous work in Graph Learning often abstracts core subgraphs by
selecting nodes and edges of high importance based on specific regularizers (Li et al., 2022; Wu et al.,
2022). However, subgraphs obtained in this manner may appear fragmented, especially in molecular
graphs, where the resulting subgraphs often lack the chemical coherence of meaningful substructures.
To address this, we propose using the BRICS algorithm (Degen et al., 2008) to decompose molecules

3
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Figure 2: CALMOL framework. As for a molecule pair, the Causal Molecule Substructure Dis-
entanglement module first identify invariant, well-recognized motif-interaction pair that inherently
governs interaction, by decomposing molecules into chemically coherent motifs and applying causal
constraint along with Gumbel-Sigmoid Reparameterization masking method to disentangle causal
motif-interaction information. Based on the trained GNN encoders and causal motif pair calculator
from above, the Molecule Structure and Property aware LLM Alignment module aligns molecular
structural information (with causal motifs) to semantic information, using the structure-property pairs,
and further incorporate them to guide interaction predictions. The detailed training procedure is in
figure 3.

into chemically meaningful motifs. Since BRICS cleaves bonds based on a predefined set of chemical
reactions, the resulting motifs retain chemical integrity and are more easily recognized by LLMs.
Given molecular pairs M1 and M2, we fragment their respective molecular graphs G1 and G2 into
motif sets {Ui}, i ∈ [1, N1] and {Vj}, j ∈ [1, N2], where N1 and N2 denote the total number of
motifs corresponding to G1 and G2, respectively.

Molecule and Motif Representation. Given each original molecule G1 and G2, and their respective
motifs Ui and Vj , we first derive atom-level representations using shared GNN encoder. Specifically,
the embedding are obtained as follows:

E1 = GNN1(G1),E2 = GNN2(G2),EUi = GNN1(Ui),EVj = GNN2(Vj). (1)

Note that for the drug-drug interaction task, we use the same GNN encoder for both molecules and
their corresponding motifs. However, in the solute-solvent interaction task, we employ two different
GNN encoders for the solute and solvent molecules, respectively, since their structures can vary
significantly. Next, we compute the graph representations h1 and h2 for the molecules G1 and G2, as
well as hUi

and hVj
for each motif, using the Set2Set readout function (Vinyals et al., 2015).

Causal Motif Pair Disentangling with Gumbel Matrix. Considering the influence of micro
interaction between all possible motif pairs P = {(Ui,Vj)}, (i ∈ [1, N1], j ∈ [1, N2]) on macro
molecule relation, we propose to separate the causal motif pair C = (C1, C2) and the shortcut motif
pair S = (S1,S2) from P in latent space. In detail, we first form a motif-interaction representation
matrix T ∈ RN1×N2×2d, in which Tij = hUi ||hVj is the concatenation of two motifs’ embedding
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for pair (Ui,Vj). Based on it, we disentangle causal part C and spurious part S from T by masking
it with a differentiable Gumbel matrix Λ ∈ RN1×N2 as follow:

Cij = λijTij + (1− λij)ϵ, Sij = (1− λij)Tij , (2)

in which λij ∼ Bernoulli(pij), ϵ ∼ N (µ, σ2) is the noisy motif-interaction feature, and µ, σ2 denote
the mean and variance of T. To be specific, sampling λij from Bernoulli distribution, which is a
non-differentiable operation, can be avoid through Gumbel-Sigmoid Reparameterization (Jang et al.,
2016; Maddison et al., 2016) as follows:

λij = sigmoid
(
log(pij/(1− pij)) + g

τ

)
, g = − log(− log(u)), (3)

where pij is the Bernoulli probability, τ is the temperature parameter, g is the Gumbel noise and
u ∼ Uniform(0, 1). Mention that, since pij indicates the probability of λij being 1, we regard it as
the importance/probability of the motif pair (Ui,Vj) being a causal part in final prediction, and learn
it from the motif-interaction representation with MLP:

pij = MLP(Tij), P ∈ RN1×N2 . (4)

Causal Constraint Optimization. We compel the above section to disentangle the causal pair by
optimizing the following objective function:

L = Lorg(Y, Ŷ ) + Lcausal(Y, ŶC) + k · LKL(Yr, ŶS), (5)

C as the causal part in T, is guaranteed by Lcausal(Y, ŶC) to solely determine the final prediction.
On the other hand, S is expected to contain no predictive information by optimizing LKL, which
forces the distribution of predictions from S to resemble a random distribution.

3.2 MOLECULE SUBSTRUCTURE AND PROPERTY AWARE LLM ALIGNMENT

This section is motivated by the observation that different molecular substructures are linked to
distinct properties, which, in turn, influence molecular interactions. For instance, in a drug molecule,
the primary structure responsible for therapeutic effects typically governs its key properties and
interactions with other molecules. Meanwhile, secondary functional groups, such as those that
impart hydrophilicity, may affect solubility but are not directly involved in the molecular reaction.
Understanding these specific roles allows the model to more effectively align substructures with
molecular properties, enhancing predictions in molecular pair interactions.

Molecule Structure Embedding. Given the original molecule graph pair, we first utilize the frozen
GNN encoders to obtain atom-level representations of the original molecule graphs E1 and E2, as
well as the atom-level representations of their motifs, denoted as EUi for i ∈ [1, N1] and EVj for
j ∈ [1, N2]. Next, we compute the importance matrix P ∈ RN1×N2 for motif pairs (Ui,Vj) based
on motif-interaction representations using the corresponding frozen importance calculator MLP, as
described in Equations 2, 3, and 4. Given the significant difference in importance scores within P,
we select the motif pair (Uc,Vc) corresponding to the highest score pmax, and use their embeddings
EUc and EVc for further processing in the LLM pipeline.

Molecule Representation Projector. Given the atom-level representations E1, E2, EUc and EVc ,
the next step is to map them into the backbone LLM’s hidden space using the projectors fpro1 and
fpro2. These projectors take essential responsibility for aligning GNN language E1, E2, EUc

and EVc

into corresponding encodings Q1, Q2, QUc
and QVc

that are compatible with the LLM. Following
the approach of state-of-the-art vision-language models, we implement fpro1 and fpro2 using Querying
Transformers (Q-Formers), as in the works of Li et al. (2023a) and Dai et al. (2023). Specifically, the
encodings are defined as

Q1 = [q1i ] = fpro1(E1),QUc = [qui ] = fpro1(EUc), (6)

Q2 = [q2i ] = fpro2(E2),QVc
= [qvi ] = fpro2(EVc

), i ∈ [1, l]

with l representing the number of learnable query tokens in the Q-Former. The projectors, built on the
BERT architecture, incorporate a cross-attention module between the self-attention and feed-forward
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layers, which enables complex alignment between molecule structural information, especially the
causal substructure pair, and molecule property. It also accommodates flexible input graph embedding
sizes, with learnable query token dimensions adjustable to match the token embedding size of the
language model. This architecture enhances effective interactions between multi-modal molecular
information during LLM inference.

SMILES Tokenization. SMILES tokenization helps distinguish molecules in a pair by providing a
unique, linear representation for each molecule. This structured notation not only maintains molecule
identity but also embeds their sequential order clearly. We utilizes SMILES for its widespread use
and precision, allowing the molecule’s information to link effectively with the LLM’s biochemical
knowledge. Additionally, the BRICS decomposition method in Section 3.1 enables us to derive
SMILES for molecular substructures, further aiding the model in recognizing the key components of
each molecule. Finally, CALMOL directly input the four SMILES strings of G1,G2,Uc,Vc into the
backbone LLM, leveraging the encoder to capture their tokenized representations R1,R2,RUc ,RVc ,
which ensures accurate molecule identification.

Choice of LLM. Following MolTC (Fang et al., 2024), CALMOL utilizes Galactica, a decoder-only
transformer based on the OPT architecture, as its core language model. Trained on an extensive dataset
of scientific texts, Galactica excels in biochemistry, particularly in interpreting molecular sequences
like SMILES and molecular property from various documents. This specialized information allows it
to effectively capture key properties related to molecular structures and interactions. By leveraging
Galactica’s huge biochemical knowledge repositories, strong biochemical information integration
and inferential capabilities, CALMOL can analyze and interpret the contextual interactions between
two basic molecular token sets, {R1,Q1,RUc

,QUc
} and {R2,Q2,RVc

,QVc
}.

Prompt for Molecule Structure and Property Aware Alignment

Input Prompt: The first molecule is <SMILES1>, <GraEmb1>, with its core substructure
<CauSMILES1>, <CauGraEmb1>, and the second molecule is <SMILES2>, <GraEmb2>,
with its core substructure <CauSMILES2>, <CauGraEmb1>. Please provide the biochemi-
cal properties of the two molecules one by one.
Target Answer: The properties of the first molecule are [Property1], and the proper-
ties of the second molecule are [Property2].

3.3 TRAINING AND INFERENCE PROCEDURE OF CALMOL

To conclude the above modules, we introduce the complete training and inference procedure of
CALMOL in this section.

BRICS

LLM backbone

The property of 
mol1 is [Property1]

The property of 
mol2 is [Property2]

Step1: Causal Molecule Motif-
Interaction Disentanglement Pretraining

Step2: Molecule Substructure and 
Property aware LLM Alignment

Step3: Downstream Task Fine-tuning

BRICS

GNN Encoder1

Causal Importance Calculator

Predictor

Downstream Task Prediction

𝑯𝟏

BRICS

Causal Importance Calculator
𝒉𝟏,𝟐 𝑯𝟐

HProj1

LLM backbone

𝒉𝟐,𝟑

[Property1]

HProj2hProj1 hProj2

Motif1

[Property2]

Motif2 Explanation

[Interaction]

GNN Encoder2

GNN Encoder1 GNN Encoder2

𝑯𝟏

Causal Importance Calculator
𝒉𝟏,𝟐 𝑯𝟐

HProj1

𝒉𝟐,𝟑

HProj2hProj1 hProj2

GNN Encoder1 GNN Encoder2

Figure 3: Three steps in training procedure.
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Training Procedure. The training process is divided into three steps:

1. The first step involves pretraining the Causal Molecule Motif-Interaction Disentangling module,
as outlined in Section 3.1. Directly training the full hybrid Graph-LLM model to embed molecules
and extract causal motifs is highly resource-intensive and may impede the model’s ability to
concentrate on specific structural causal learning tasks. To address this, we first pretrain this
module independently, ensuring it effectively captures structural information and causal motif
interactions. This enhances the overall performance of CALMOL when integrated into the
subsequent training phases. After the pretraining of the module in Section 3.1, we freeze the
GNN encoders from Equation 1 and the importance calculator from Equation 4, to retain their
ability on structural modeling and causal motif pair identifying, then incorporate them into our
Graph LLM, CALMOL.

2. The second step involves training the Molecule Substructure and Property Aware LLM Alignment
module, as detailed in Section 3.2. In this step, we adopt the frozen GNN encoder and causal
importance calculator obtained from the first step, along with the frozen backbone LLM. The
focus here is solely on training the projectors. This setup allows us to refine the alignment of
(causal) structures and properties within the molecular embeddings without overloading the model
with the complexities of the full architecture. By isolating the projectors, we ensure that they
effectively map the GNN outputs to the LLM space, improving downstream performance.

3. The third step involves fine-tuning the integrated model on specific downstream tasks, such
as DDI classification or SSI regression prediction. In this step, beyond further refining the
projectors to better suit the downstream task, we primarily focus on fine-tuning the LLM to adapt
to task-specific output formats. For instance, the LLM is trained to generate specific classification
sentences for DDI prediction or to produce precise numerical values for SSI regression. This
targeted fine-tuning ensures that the LLM effectively interprets and outputs results that align with
the requirements of each downstream task, enhancing both the accuracy and interpretability of
predictions.

Prompt for molecule structure and property aware alignment is shown in Section 3.2, and prompts for
downstream tasks fine-tuning are shown as below.

Prompt for Drug-Drug Interaction

Input Prompt: The first molecule is <SMILES1>, <GraEmb1>, with causal substructure
<CauSMILES1>, <CauGraEmb1>, and the second molecule is <SMILES2>, <GraEmb2>,
with causal substructure <CauSMILES2>, <CauGraEmb1>. What are the side effects of
these two drugs?
Target Answer: The first molecule has causal substructure [CauSMILES1] and prop-
erty [Property1]. The second molecule has causal substructure [CauSMILES2]
and property [Property2]. Therefore, the drug1 may increase the photosensitizing ac-
tivities of drug2. Explanation based on their causal substructures and properties is that
[Explanation].

Prompt for Solute-Solvent Interaction

Input Prompt: The first molecule is <SMILES1>, <GraEmb1>, with causal substructure
<CauSMILES1>, <CauGraEmb1>, and the second molecule is <SMILES2>, <GraEmb2>,
with causal substructure <CauSMILES2>, <CauGraEmb1>. What is the solvation Gibbs
free energy of these two molecules?
Target Answer: The first molecule has causal substructure [CauSMILES1] and property
[Property1]. The second molecule has causal substructure [CauSMILES2] and prop-
erty [Property2]. Therefore, the solvation Gibbs free energy of these two molecules is
[VALUE]

Inference Procedure. The inference process go through our designed and tuned models following
the path: {SMILES1, G1, SMILES2, G2} −→ [BRICS] −→ [GNN encoder] −→ [importance calcula-
tor] −→ {SMILES1,E1,SMILESUc

,EUc
and SMILES2,E2,SMILESVc

,EVc
} −→ [LLM backbone]

−→ {R1,Q1,RUc ,QUc and R2,Q2,RVc ,QVc}.

7
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4 EXPERIMENT

In this section, we conduct extensive experiments on real-world molecular relation learning datasets,
including drug-drug interaction (DDI) and solute-solvent interaction (DDI) prediction tasks, to
verify the design of our method in comparisons with state-of-the-art Graph-based, ML-based, and
LLM-based MRL baselines.

4.1 EXPERIMENTAL SETTING

Construction of zero-shot datasets Inspired by Zhu et al. (2024), we construct each dataset for
zero-shot molecular relational learning (MRL) by dividing the set of molecules, M, into three disjoint
sets: Mtrain, Mval, and Mtest. Denote the total number of interactions as S = {(u, i, v) : u, v ∈
M, i ∈ I}. Based on this molecule split, the training, validation, and test sets are defined as follows:

• Strain = {(u, i, v) ∈ S : u, v ∈ Mtrain};
• Sval = {(u, i, v) ∈ S : (u ∈ Mtrain ∪Mval) ∧ (v ∈ Mtrain ∪Mval) ∧ (u, i, v) /∈ Strain};
• Stest = {(u, i, v) ∈ S : (u ∈ Mtrain ∪Mtest) ∧ (v ∈ Mtrain ∪Mtest) ∧ (u, i, v) /∈ Strain}.

In this way, we ensure that novel molecules remain unseen during CALMOL’s training process. The
statistics of each zero-shot datasets are summarized in Table 1.

Table 1: Dataset statistics.

Task Dataset Original Dataset Molecule Split Zero-shot Dataset

M1 M2 Pairs Mtrain Mval Mtest Pairs train Pairs val Pairs test

DDI
Classification

ZhangDDI 542 543 95245 435 65 44 60780 19812 14653
ChChMiner 871 905 32735 767 115 77 20759 6948 5099
DeepDDI 1704 1704 313220 1363 204 137 195893 68852 48475

SSI
Regresssion

FreeSolv 560 1 560 448 45 68 447 45 68
CompSol 442 259 3548 50 33 50 2681 342 525
Abraham 1038 122 6091 988 44 66 5016 410 665
CombiSolv 1415 309 8780 1521 67 102 7111 744 925

Baselines We perform a thorough evaluation using a variety of baseline methods as benchmarks,
including coventional GNN based models, non-GNN ML based models, and state-of-the-art LLMs.
In the DDI task, baselines include CIGIN (Pathak et al. (2020)), MHCADDI (Deac et al. (2019)),
DeepDDI (Ryu et al. (2018)), SSI-DDI (Nyamabo et al. (2021)), CGIB (Lee et al. (2023a)), CMRL
(Lee et al. (2023b)), and DSN-DDI (Li et al. (2023b)), while SSI tasks utilize D-MPNN (Vermeire &
Green (2021)), CIGIN, CGIB, and CMRL. Across all downstream tasks, LLM-based methods like
MolTC (Fang et al. (2024)) is implemented for further comparison.

Metrics For qualitative tasks, we employ prediction Accuracy and AUC-ROC (Area Under the
Receiver Operating Characteristic curve) as comparative metrics, while for quantitative tasks, MAE
(Mean Absolute Error) and RMSE (Root Mean Square Error) are utilized as the standards.

Training Details During the LLM training process, the choice of our optimizer is AdamW
(Loshchilov (2017)), configured with a weight decay of 0.05. Our learning rate schedule starts
with linear warm-up to accelerate initial training, then shifts to a cosine decay that gently reduces the
learning rate, allowing for smoother fine-tuning of the model. Moreover, we implement LoRA via the
Open Delta library (Ding et al. (2022)) and PEFT library (Mangrulkar et al. (2022)). It is configured
with a rank of 16 and is implemented on Galactica’s layers with a sequence of q-proj, v-proj, out-proj,
fc1 and fc2, as described in (Liu et al. (2023)).

For pretraining causal GNN module, we apply graph encoder instantiated by the three-layer GINE (Hu
et al. (2019)). In parallel, the projectors are initialized with Sci-BERT, an encoder-only transformer
pretrained on scientific texts (Beltagy et al. (2019)). The cross-attention layers are randomly initialized.
For the LLM-based baselines, the backbone LLMs are fine-tuned on task-relevant datasets to ensure
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a fair comparison. Accuracy is achieved when predictions include only the correct interaction details,
with no mention of alternative interactions.

As for the training epochs, we typically perform 10 epochs for alignment module and 100 epochs for
fine-tuning each datasets and test on the best epoch. Most datasets can reach best performance within
20 epochs. The optimizer and learning rate scheduler, as outlined in the preceding paragraph, are
configured consistently for alignment-training and fine-tuning.

4.2 QUALITATIVE ZERO-SHOT DDI RESULTS

As for qualitative zero-shot DDI classification task, Table 2 demonstrates CALMOL’s outstand-
ing performance in terms of both accuracy and AUC-ROC on qualitative zero-shot DDI tasks, in
comparison with a majority of baseline methods.

Table 2: Comparative performance of various methods in qualitative zero-shot DDI tasks. The
best-performing methods are in bold, while the second-best methods are underlined for emphasis.

Setting Model ZhangDDI ChChMiner DeepDDI

Accuracy↑ AUC-ROC↑ Accuracy↑ AUC-ROC↑ Accuracy↑ AUC-ROC↑

GNN
Based

CIGIN 67.26±1.39 72.12±1.05 79.65±0.29 80.78±0.02 73.68±0.10 84.49±0.87

SSI-DDI 54.73±0.03 55.82±0.06 59.56±0.37 63.64±0.39 58.01±0.04 62.14±0.11

DSN-DDI 55.04±0.59 60.48±0.06 62.35±0.28 67.48±0.41 67.12±0.50 74.52±0.21

CMRL 67.03±1.15 70.56±1.65 78.72±1.14 82.66±2.31 75.39±1.58 84.67±1.00

CGIB 69.26±0.42 74.68±0.74 79.88±0.35 81.75±0.91 76.38±0.12 84.15±0.02

ML
Based

DeepDDI 57.36±0.73 51.44±1.05 63.28±1.70 54.42±1.80 60.55±0.27 56.09±0.98

MHCADDI 63.48±0.82 64.03±1.72 72.80±0.89 68.30±1.80 69.68±0.47 72.40±0.57

LLM
Based

MolTC 66.44±0.38 64.77±0.39 79.26±1.87 71.34±3.84 69.69±0.00 74.06±0.12

CALMOL 70.69±0.24 67.32±0.88 81.12±0.56 82.81±1.05 77.85±0.63 78.92±0.36

An in-depth analysis of the experimental results is provided as follows: The proposed CALMOL
surpasses all benchmark methods in accuracy, showing a consistent improvement of over 1% across
various categories of baselines. Notably, it achieves accuracy rates exceeding 70% on each dataset, a
performance level that none of the benchmark models were able to reach. Furthermore, the method
we propose shows substantial and broad enhancements compared to LLM-based alternatives. This
comprehensive improvement affirms the unique strengths of our model architecture in this domain.

Another point worth noting is the weaker and more fluctuating AUC-ROC metrics of LLM-based
models for DDI tasks. This phenomenon is explained by their evaluation based on discrete target
text matching, effectively interpreting results as a binary 0/1 classification. In contrast, GNN and
ML-based approaches leverage probabilistic predictions as computation, providing them with a
performance edge in AUC-ROC comparisons. This existing limitation does not diminish the overall
promise of our method in the LLM-based framework, highlighting its substantial areas of strength.

4.3 QUANTITATIVE ZERO-SHOT SSI RESULTS

Table 3 highlights the dominant regression performance of our model in quantitative SSI tasks.
CALMOL consistently outperforms other SSI baseline models on all zero-shot datasets, as evaluated
by MAE and RMSE metrics. These experimental results highlight the robustness of our model in
handling quantitative tasks, particularly in zero-shot scenarios. This underscores the model’s efficacy
and strong generalization capabilities to perform well on previously unseen data structures.

Additionally, it is worth emphasizing that our proposed approach demonstrates an extraordinary
enhancement over the innovative LLM-based model MolTC, with an over 50% reduction in MAE
and RMSE on average. When compared to GNN-based models, this figure stands at an approximately
10% to 20%. These statistics showcase the considerable strength of CALMOL’s method in the
optimal deployment of LLMs’ generalized proficiency and flexibility.

9
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Table 3: Comparative performance of various methods in quantitative zero-shot SSI tasks. The
best-performing methods are in bold, while the second-best methods are underlined for emphasis.

Setting Model FreeSolv Abraham CompSol CombiSolv

MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓

GNN
Based

CIGIN 0.557±0.334 0.856±0.092 0.467±0.016 0.779±0.008 0.472±0.038 0.856±0.059 0.502±0.029 0.829±0.029

D-MPNN 0.703±0.279 0.884±0.328 0.528±0.012 0.775±0.031 0.660±0.085 1.001±0.131 0.559±0.042 0.846±0.042

CMRL 0.510±0.041 0.862±0.035 0.390±0.022 0.660±0.021 0.435±0.038 0.669±0.057 0.428±0.024 0.727±0.029

CGIB 1.825±0.305 2.257±0.327 1.835±0.317 2.602±0.529 1.219±0.158 1.507±0.176 1.464±0.288 1.983±0.354

LLM
Based

MolTC 2.776±0.365 3.836±0.661 0.690±0.061 1.156±0.111 0.576±0.065 1.083±0.140 0.701±0.038 1.130±0.106

CALMOL 0.478±0.102 0.782±0.091 0.335±0.028 0.608±0.018 0.341±0.048 0.612±0.096 0.349±0.005 0.622±0.016

5 RELATED WORK

Traditional computational methods for Molecular Relational Learning (MRL), particularly those
based on Graph Neural Networks (GNNs) and Machine Learning (ML), primarily focus on molecule
structure modeling. These approaches, however, are often limited by their reliance on spurious
structural correlations and the inability to incorporate textual property information, which could
provide critical insights. For example, GNN-based methods such as DDIPrompt (Wang et al. (2024)),
which utilizes graph prompt learning, and SSI-DDI (Nyamabo et al. (2021)), focusing on substructure-
substructure interactions for drug-drug interaction (DDI) prediction, model only molecular structures.
Other works like SA-DDI (Yang et al. (2022)) and DSIL-DDI(Tang et al. (2023)) propose domain-
invariant substructure interaction learning, addressing explainability and generalizability, yet still fall
short in integrating complementary textual information or handling distribution shifts.

On the other hand, recent language model based approaches for MRL leverage the powerful
contextual understanding of large language models. However, these methods are prone to spurious
correlations in the textual data, which can lead to hallucination and inaccurate predictions. For
example, Zhu et al. (2024) explore zero-shot DDI prediction guided by textual drug description,
while MolTC (Fang et al. (2024)) investigates comprehensive molecular relational modeling using
language models and structure embedding from GNN. Despite their innovation, these approaches
still lack robust handling of structural information inherent in molecular graphs.

Our work addresses these limitations by studying Graph LLMs for zero-shot MRL, an area largely
unexplored in the literature. We propose a hybrid approach that leverages the complementary strengths
of GNNs for precise structure modeling and causal part disentangling, as well as LLMs for integrating
rich external information, enabling a more comprehensive and robust understanding of molecular
interactions.

6 CONCLUSION

Most existing Molecular Relational Learning (MRL) methods assume identical molecular distribu-
tions, which fall short in the ubiquitous scenarios involving new drugs with different distributions. In
this paper, we study zero-shot MRL to predict molecular relations for new molecules, by proposing
a novel Causally Disentangled Invariant Graph Large Language Model (CALMOL), designed to
leverage invariant molecular relationships for predicting interactions with new drugs. Specifically, we
first propose Causal Molecule Substructure Disentanglement, designed to identify and capture the
invariant, well-recognized substructure pairs critical for specific molecular interactions. Building
on this, we propose Molecule Structure and Property Aware LLM Alignment, to align molecular
structures, specifically those with invariant substructures, with their corresponding textual properties
to integrate structural and semantic information effectively. This alignment enhances prediction
performance and also allows the LLM to provide more detailed explanations based on the structured
alignment. Extensive experiments on qualitative and quantitative tasks including 7 datasets demon-
strate that CALMOL achieves significant performance in predicting molecule interactions involving
new molecules. In future, we leave extending our method to protein analysis for further explorations.
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A APPENDIX

A.1 EXPERIMENT SETTINGS

In this section, we introduce our experimental setups in detail with descriptions of used datasets along
with baseline models to benchmark the performance of our proposed method.

A.1.1 DATASETS

In our experiment, 7 diverse datasets are employed, encompassing both drug-drug interaction and
solute-solvent interaction tasks. Here we provide a brief overview of the original datasets. Detailed
statistical information on the datasets used in this study can be found in Table 1.

ZhangDDI (Zhang et al. (2017)). It consists of 548 drugs and 48,548 drug-drug interaction pairs in
total, along with multiple types of similarity information between drug pairs.

ChChMiner (Marinka Zitnik & Leskovec (2018)). This dataset contains 1,322 drugs and their labeled
DDIs, all of which have been extracted from official drug labels and validated through scientific
research.

DeepDDI (Ryu et al. (2018)). It collects 1704 various drugs with their labeled DDIs. The collec-
tion is gathered from DrugBank which features detailed DDI data alongside associated side-effect
annotations.

FreeSolv (Mobley & Guthrie (2014)). The dataset includes 643 hydration free energy measurements
for small molecules in water, both experimental and calculated. For our study, we focus on 560
experimental values, consistent with previous work.

CompSol (Moine et al. (2017)). This dataset aims to demonstrate the influence of hydrogen-bonding
interactions on solvation energies. It includes a total of 3,548 combinations involving 442 unique
solutes and 259 solvents, as referenced in earlier studies.

Abraham (Grubbs et al. (2010)). It compiles information published by the Abraham research group
at University College London. It includes 6,091 combinations of 1,038 unique solutes and 122
solvents, in accordance with prior studies.

CombiSolv (Vermeire & Green (2021)). It integrates data from the MNSol, FreeSolv, CompSol, and
Abraham datasets, resulting in 8780 unique pairings between 1,415 solutes and 309 solvents

A.1.2 BASELINES

In this section, we provide introduction of the baseline models utilized in our experiment. Both
traditional deep learning based methods and the recent biochemical LLMs are employed. For
qualitative tasks, we use the following baselines:

CIGIN (Pathak et al. (2020)). This model uses a three-phase framework—message passing, inter-
action, and prediction—to achieve high accuracy in solvation free energy predictions and provides
chemically interpretable insights into electronic and steric factors governing solubility.

SSI-DDI (Nyamabo et al. (2021)). This method applies a 4-layer GAT model to uncover substructures
across different layers, while the co-attention mechanism handles the final prediction.

DSN-DDI (Li et al. (2023b)). It persents a dual-view drug representation learning network that
integrates local and global drug substructure information from both individual drugs (‘intra-view’)
and drug pairs (‘inter-view’).

CMRL (Lee et al. (2023b)). The approach reveals the main substructure driving chemical reactions
through a conditional intervention model that adapts its intervention based on the paired molecule.

CGIB (Lee et al. (2023a)). It adapts the detected substructure depending on the paired molecule to
mimick real chemical reactions, based on the conditional graph information bottleneck theory.

DeepDDI (Ryu et al. (2018)). In this method, the structural similarity profile of the two drugs is first
evaluated against other drugs, after which a deep neural network is used to complete the prediction.
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MHCADDI (Deac et al. (2019)). The model utilizes a gated information transfer neural network to
manage substructure extraction, and interactions are guided by an attention mechanism.

MolTC (Fang et al. (2024)). It introduces a novel multi-modal framework that integrates molecular
graph structures and LLMs using Chain-of-Thought (CoT) theory.

As for quantitative tasks, the following baselines are employed besides CIGIN, CMRL, CGIB and
MolTC which are mentioned above:

D-MPNN (Vermeire & Green (2021)). This technique combines the fundamentals of quantum
calculations with the experimental precision of solvation free energy measurements, using a transfer
learning approach with the CombiSolv-QM and CombiSolv-Exp databases.

B ABLATION STUDY
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Figure 4: Ablation study.

The ablation studies we conducted are shown in Figure 4. A detailed evaluation was performed to
compare our approach with the standalone use of Causal Molecule Motif-interaction Disentangling
module proposed in Section 3.1, and the solely LM-based CALMOL without Causal GNN, across
diverse task settings and datasets. It is evident that full CALMOL excels in the context of both DDI
classification and SSI regression tasks on a wide range of datasets. The most striking difference can
be seen in quantitative SSI tasks, where its superiority are most pronounced.
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