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Abstract
Quantized neural networks employ reduced pre-
cision representations for both weights and acti-
vations. This quantization process significantly
reduces the memory requirements and computa-
tional complexity of the network. Binary Neural
Networks (BNNs) are the extreme quantization
case, representing values with just one bit. Since
the sign function is typically used to map real
values to binary values, smooth approximations
are introduced to mimic the gradients during error
backpropagation. Thus, the mismatch between
the forward and backward models corrupts the
direction of the gradient causing training incon-
sistency problems and performance degradation.
In contrast to current BNN approaches, we pro-
pose to employ a binary periodic (BiPer) function
for the forward pass to obtain the binary values
and employ the trigonometric sine function with
the same period of the square wave function as a
differentiable surrogate during the backward pass.
We demonstrate that this approach can control
the quantization error by using the frequency of
the periodic function and improves network per-
formance. Numerical experiments validate the
effectiveness of BiPer in the classification task
over ImageNet, with improvements of 0.69%.

1. Introduction
Deep Neural Networks (DNN) have achieved unprecedented
results in many high-level tasks, such as classification, seg-
mentation, and detection, with a tremendous concurrent im-
pact in computer vision, natural language processing, infor-
mation retrieval, and many others [1]. Typically, DNNs rely
on full-precision (32 bit) weights and activation functions.
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Accurate and precise models, however, become expensive
in terms of computation, storage and number of parameters.
For this reason, DNN deployment is usually prohibited for
devices with limited resources, such as mobile, hand-held
or wearables. Different approaches to reduce computation
requirements include efficient neural network architecture
design [2]–[4], network pruning [5], knowledge distillation
[6], hashing [7], and network quantization [8], [9]. Among
them, network quantization has become one of the most
promising techniques, aiming at compressing large models
usually stored as floating-point weights with low bitwidth
numbers. Binary Neural Networks (BNNs) are the extreme
quantization case, where weights and activation functions
are constrained to just one bit, i.e., binary values, typically
+1 or -1. In contrast to DNNs, BNNs replace heavy matrix
computations by bit-wise operations, yielding to 32× mem-
ory compression, and 58× speed-up on CPUs [10]. Thus,
this approach drastically reduces the computational require-
ments and accelerates inference, making BNNs particularly
appealing for resource-constrained environments such as
edge devices and mobile applications.

Despite significant advantages for efficient BNN deploy-
ment in hardware with limited capabilities, the binarization
of full-precision models severely degrades the accuracy per-
formance in high-level tasks such as object detection, classi-
fication, segmentation, and others [9]. For instance, in large
datasets such as ImageNet, one of the earliest BNN mod-
els, the XNOR-Net [10], achieved an accuracy degradation
of around 18% compared to the full precision ResNet-18
architecture. Recent efforts have been devoted to close the
performance gap of BNN with respect to their real-valued
counterparts. Nonetheless, state-of-the-art approaches still
exhibit accuracy degradations of approximately 8% [11].

Binarization of real-valued weights and activations is gen-
erally performed using the sign function during the feed-
forward procedure. A relevant limitation of the sign function
is that its gradient is null everywhere except in zero, which
makes it incompatible with error back-propagation methods,
due to the non-differentiability of binary operations. To
overcome this issue, various techniques like the straight-
through estimator (STE) and relaxed training approaches
have been adopted [12]. STE essentially substitutes the sign
function for the identity function to calculate the gradients
during the backwards process. Since there exists a mismatch
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between the forward and backward pass caused by the STE
approximation, research efforts have focused on designing
better smooth and differentiable functions to estimate the
gradient of the sign function [13], [14]. Although these
approaches have improved the accuracy of BNNs, gradient
instability persists when the quantization error is minimized.

Instead of using the Sign function, in this work, we pro-
pose to address the aforementioned issues of extreme 1-bit
quantization by using a binary periodic (BiPer) function
or square wave function to promote binary weight values.
Thus, opposite to the sign function which is always nega-
tive for negative values or positive for positive values, the
proposed periodic function can reach positive and negative
values in the whole domain of the latent weights. Since
the gradient of the periodic function still faces the prob-
lem of being zero almost everywhere, it cannot be directly
integrated within a back-propagation algorithm based on
gradient descent. We solved this problem by employing a
sinusoidal function with the same fundamental frequency
of the periodic function as a differentiable surrogate during
the backward pass. The continuity and differentiable charac-
teristics of the sine function, make it suitable for stochastic
gradient methods. In contrast to existing BNN methods that
smoothly and progressively approximate the sign function
to reduce the quantization error (QE), we will show that in
the proposed BiPer approach the QE can be controlled by
the frequency of the periodic function. We further leverage
this property to provide an initialization of the weights that
better balances the trade-off between the estimation error
and performance accuracy. Experimental results demon-
strate that BiPer provides the best network performance for
the classification task, with respect to state-of-the-art BNN
approaches on the CIFAR-10 and ImageNet data sets. The
contributions of our work are summarized as follows:

• We propose a simple yet powerful and effective modifi-
cation in the binarization process, by including a binary
periodic function.

• We introduce a continuous, periodic sinusoidal func-
tion as a differentiable surrogate of the binary periodic
function during the back-propagation process, suitable
for stochastic gradient methods.

• We mathematically analyze the quantization error of
BiPer and show that it can be controlled by the fre-
quency of the periodic function.

2. BiPer
To overcome the gradient and quantization error challenges
from existing binarization methods and their gradient ap-
proximation functions, we propose to use a binary periodic
function or square wave function (see Fig. 1) instead of just

the sign function to model the binary weights. In contrast
to the sign function depicted in Fig. 1(a), which is always
negative for negative values of w, the proposed periodic
function (Fig. 1(b)) can reach positive and negative values
in the whole domain of the latent weights.

Figure 1. (a) Sign function. (b) Binary periodic function.

It should be pointed out that the gradient of the periodic
function still faces the problem of being zero almost every-
where, therefore, it cannot be directly integrated within a
back-propagation algorithm based on gradient descent. To
solve this problem, we first rewrite the square wave function
as

wq = Sign (sin(ω0w)) , (1)

where ω0 = 2π
T is the angular frequency. We note that

this corresponds to applying the sign function to the first
harmonic of the periodic function. Based on (1), we can
approximate the gradient with respect to the weights as

∂L
∂w

=
∂L
∂wq

∂wq

∂w
≈ ∂L

∂wq

∂ŵ

∂w
(2)

where ŵ = sin(ω0w). Note that the last differential term
in (2) corresponds to the gradient of a continuous differen-
tiable sinusoidal function, which is also a smooth periodic
function, and proportional to the frequency ω0.

2.1. Quantization Error Analysis

This section shows that an additional advantage of using the
periodic function is its flexibility to control the quantization
error. In particular, we mathematically demonstrate how
a lower quantization error can be achieved by setting the
fundamental period of the wave function. To this end, let
us first assume that the latent weights roughly follow the
zero-mean Laplace distribution, i.e., W ∼ La(0, b) [15]–
[17]. Since the weights ŵ before quantization are a function
of a random variable, they are also a random variable Ŵ ∈
[−1, 1]. Computing the probability density function (pdf)
of a random variable Y = g(X ) from the pdf of X (fX (x))
can be easily done employing the method of transformation
[18], if the function g is differentiable and strictly increasing
or decreasing, i.e., strictly monotonic. Thus, the pdf of Y
can be computed as

fY(y) =

{
fX (x1)
|g′(x1)| = fX (x1) ·

∣∣∣dx1

dy

∣∣∣ where g (x1) = y

0 if g(x) ̸= y.
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The more general case in which g is not monotonic requires
splitting the domain into n intervals, so that g is strictly
monotonic and differentiable on each partition. Then, the
pdf can be obtained as

fY(y) =

n∑
k=1

fX (xk)

|g′ (xk)|
=

n∑
k=1

fX (xk) ·
∣∣∣∣dxk

dy

∣∣∣∣ , (3)

where x1, · · · , xn are real solutions to g(x) = y. For BiPer,
since the sin function is not monotonic, we can use (3)
to compute the pdf of Ŵ using the pdf of W . Letting
fW(w) = 1

b exp(|w|/b) denote the pdf of W , and setting
g as the sine function, we can divide the sinusoidal func-
tion into subsequent intervals of T/2 where it is strictly
increasing or decreasing, alternately. The summation in (3)
converges to the probability density function of the latent
weights before binarization ŵ for an arbitrary frequency ω0
given by

fŴ(ŵ) =
1

2bω0

1√
1− ŵ2

exp

(
−| arcsin(ŵ)|

bω0

)
+

1

2bω0

1√
1− ŵ2

cosh

(
arcsin(ŵ)

bω0

)
1

eπ/bω0 − 1
.

(4)

Figure 2. Probability density function of ŵ = sin(ω0w) assuming
that the random variable w follows a Laplace distribution with
parameter b and a fixed value of ω0 = 1.

Figure 2 depicts the distribution of the weights for different
values of the Laplace distribution parameter b and a fixed
frequency ω0 = 1. Note that different from the random
variable W which can take any real value, the codomain
of the random variable Ŵ is [−1, 1]. From Fig. 2 we can
observe that when the value of b increases the pdf of ŵ
behaves as an arcsin distribution with values concentrated
around -1 and 1. This reduces the quantization error in
comparison to the Laplacian distribution. Also, a similar
behavior occurs when the frequency value increases for a
fixed b. To further analyze these observations consider the
QE defined as

QE =

∫ +∞

−∞
fW (w) (sin(ω0w)− γ sign (sin(ω0w)))

2
dw,

(5)

where fW is the density distribution function of the latent
weights. Using the fact that |x| = xSign(x) along with the
properties of the absolute value, we can rewrite Eq. (5) as

QE =

∫ +∞

0

1

b
exp

(
−w

b

)
(|sin(ω0w)| − γ)

2
dw. (6)

The solution to this integral is given by

QE =
2(ω0b)

2

4(ω0b)2 + 1
−

2γω0b
(
eπ/ω0b + 1

)
(ω0b)2 + 1)

(
eπ/ω0b − 1

) + γ2.

(7)

On the other hand, the optimal solution of the scaling factor
γ in (5) can be computed as

γ = E{|sin(ω0w)|} =
ω0b

(
eπ/ω0b + 1

)
(ω0b)2 + 1)

(
eπ/ω0b − 1

) . (8)

Replacing γ from (8) into Eq. (7), we can rewrite the QE as
a function of the frequency ω0 and the parameter b. Figure
3 illustrates the QE as a function of the frequency ω0 for
different values of b. It can be seen that the maximum QE is
0.102835, which occurs when the product bω0 ≈ 0.954882
and can be reduced by varying the frequency.

Figure 3. Quantization error as a function of the frequency ω0 for
different values of b. The proposed BiPer approach is able to
control QE with the frequency of the periodic function.

It is worth noting that in contrast to current approaches that
progressively reduce the QE to zero, BiPer does not meet
this QE value. Nonetheless, further explorations can adapt
state-of-the-art surrogate estimators to smoothly converge
from the sine function to the square wave

3. Experiments
We evaluated BiPer for image classification with a widely
used neural network architecture, i.e., ResNet, trained on
Imagenet. In the following, we first describe the experiments
setup. Then, we compare BiPer with state-of-the-art BNN
approaches in terms of performance and complexity.
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3.1. Experiments Setup

Dataset: ImageNet [19] is a challenging data set be-
cause of its larger size and more diverse image categories.
Among its multiple versions, we adopted the widely used
ILSVRC12 version, divided into 1,000 categories, from
which 1.2 million are training images and, 50,000 test im-
ages. ImageNet is the most widely used data set to report
results on binary networks and, it allows us to show for the
first time that binary networks can perform competitively
on a large-scale data set.

Network Architectures We chose to binarize ResNet-
18/34. We adopted the double skip connections as in [20]
to provide fair comparisons. Following [21], the downsam-
pling layers are not quantized, and the double skip connec-
tions [20] were included. Following standard procedures of
the comparison methods, we binarized all layers but the first
and last.

Training Details and Procedures All experiments used
SGD optimization with 0.9 momentum. We followed the
data augmentation strategies in [22], which include random
crops and horizontal flips.

Two stage training: Recent works have shown that an ap-
propriate initialization is often required to improve network
performance. Two-stage training strategies are generally em-
ployed to alleviate feature quantization adverse effects, [23],
[24]. Particularly, in the first stage the network is trained
with real weights and binary features. Then, in the second
stage, a warm weight initialization is employed based on
the binary representation of the output weights from the first
stage, and the model is fully trained to binarize the weights.
In BiPer, we propose a two-stage training where the first
stage uses real-valued weights ŵ, and the second stage uses
the weight binarization from Eq. (1). By testing different
frequency values, we experimentally found that the hyperpa-
rameter frequency ω0 = 20 balances the QE and precision
of the full binary model. The frequency is the same and
fixed for both stages. The learning rate was set to 0.1 in the
first stage and, 0.01 in the second stage. In both stages the
learning rate was adjusted by the cosine scheduler.

3.2. Comparison with SOTA methods

We evaluate the proposed BiPer approach using ResNet-18
and ResNet-34, and training on the large-scale ImageNet
dataset. Table 1 shows a number of SOTA quantization
methods over ResNet-18 and ResNet-34, including XNOR-
Net [10], Bi-Real Net [20], PCNN [25], IR-Net [26], BONN
[27], LCR-BNN [28], HWGQ [29], RBNN [30], FDA [31],
ReSTE [32], ReCU [11], and DIR-Net [33]. We can ob-
serve that the proposed BiPer approach in the 1W/1A setting
achieves the best Top-1 and top-5 accuracy for both network
architectures. Specifically, for ResNet-18, we attained a top-
1 validation accuracy of 61.4%, outperforming the second-

Table 1. BiPer performance comparison with state-of-the-art BNN
on ImageNet. W/A: bit length of weights and activations. FP: full
precision model.

Network Method W/A Top-1 Top-5

ResNet-18

FP 32/32 69.6% 89.2%
XNOR-Net 1/1 51.2% 73.2%
Bi-Real Net 1/1 56.4% 79.5%
PCNN 1/1 57.3% 80.0%
IR-Net 1/1 58.1% 80.0%
BONN 1/1 59.3% 81.6%
LCR-BNN 1/1 59.6% 81.6%
HWGQ 1/1 59.6% 82.2%
RBNN 1/1 59.9% 81.9%
FDA 1/1 60.2% 82.3%
ReSTE 1/1 60.88% 82.59%
ReCU 1/1 61.0% 82.6%
DIR-Net 1/1 60.4% 81.9%
BiPer (Ours) 1/1 61.4% 83.14%

ResNet-34

FP 32/32 73.3% 91.3%
Bi-Real Net 1/1 62.2% 83.9%
IR-Net 1/1 62.9% 84.1%
RBNN 1/1 63.1% 84.4%
ReSTE 1/1 65.05% 85.78%
ReCU 1/1 65.1% 85.8%
DIR-Net 1/1 64.1% 85.3%
BiPer (Ours) 1/1 65.73% 86.39%

best result of 61.0% achieved by ReCu. Furthermore, our
top-5 performance reached 83.14%, surpassing the second-
best result of 82.6%, also achieved by ReCU. Likewise, for
ResNet-34, we achieved the highest top-1 and top-5 accu-
racies, namely 65.73% and 86.39%, respectively. These
results improve the second-best method (ReCU) by 0.63%
and 0.59% in top-1 and Top-5 accuracies, respectively.

4. Conclusions
An approach for neural network binarization using a binary
periodic function or square wave, dubbed BiPer, has been
proposed. To improve gradient stability we employed a
sinusoidal function with the same period of the square wave
as a differentiable surrogate during the backward pass. This
simple, yet powerful modification tackles the problem of
standard gradient mismatch between forward and backward
steps during network training, providing a suitable alter-
native that can be incorporated within back-propagation
algorithms based on stochastic gradient descent. Mathe-
matical analysis of BiPer quantization error demonstrated
that it can be controlled by the frequency of the periodic
function. Comparisons with respect to state-of-the-art BNN
approaches showed that BiPer outperforms prior works by
up to 0.63% on Imagenet. Although this work tested the
BiPer approach for classification, it can be easily extended
to other high-level tasks without increasing the complexity.
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