

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 VOG: ENHANCING LLM REASONING THROUGH STEP-WISE VERIFICATION ON KNOWLEDGE GRAPHS

Anonymous authors

Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) excel at various reasoning tasks but still encounter challenges such as hallucination and factual inconsistency in knowledge-intensive tasks, primarily due to a lack of external knowledge and factual verification. These challenges could be mitigated by leveraging knowledge graphs (KGs) to support more reliable LLM reasoning. However, existing KG-augmented LLM frameworks still rely on static integration mechanisms that cannot adjust reasoning in response to evolving context and retrieved evidence, resulting in error propagation and incomplete reasoning. To alleviate these issues, we propose **Verify-on-Graph (VoG)**, a scalable and model-agnostic framework to enhance LLM reasoning via iterative retrieval, stepwise verification, and adaptive revision. Besides performing KG retrieval guided by an initially generated reasoning plan, VoG iteratively verifies and revises the reasoning plan, correcting intermediate errors in consideration of the varying contextual conditions. During plan revision, VoG leverages a context-aware multi-armed bandit strategy, guided by reward signals that capture uncertainty and semantic consistency, to enhance the alignment between the reasoning plan and retrieved evidence in a more adaptive and reliable way. Experimental results across three benchmark datasets show that VoG consistently improves both reasoning accuracy and efficiency. Our code is available at <https://anonymous.4open.science/r/VoG-132C/>.

1 INTRODUCTION

Despite the impressive reasoning capabilities across various natural language understanding and generation tasks (Guo et al., 2025; OpenAI, 2023), large language models (LLMs) continue to face challenges in solving knowledge-intensive tasks that require multi-hop reasoning (Ji et al., 2023; Bang et al., 2023). The essential limitation lies in the lack of up-to-date or specialized knowledge not included in their pre-training stage and the limited transparency and explainability in their reasoning processes. To address these issues, Knowledge Graphs (KGs) (Bollacker et al., 2008; Auer et al., 2007; Suchanek et al., 2007) have been adopted as promising external knowledge sources due to their explicit, organized and updatable nature (Agrawal et al., 2024; Wang et al., 2023a; Pan et al., 2023).

Existing frameworks generally follow two main directions to enhance LLM reasoning with KG. Previous approaches equip LLMs with the ability to **plan** structured reasoning paths or logical forms, such as SPARQL (Pérez et al., 2009) queries, before interacting with the knowledge graph (Luo et al., 2024a; Li et al., 2023; Luo et al., 2024b; Gu et al., 2022). While planning approaches facilitate structured inference, they often require expensive fine-tuning and are vulnerable to retrieve-related errors, such as producing non-executable queries or referencing non-existent entities. Thus, several studies focus on optimizing the **retrieval** process to better support LLM reasoning. Typical methods including retrieving KG triplets and presenting them statically to the LLM (Zhang et al., 2024; Zhao et al., 2024; Wang et al., 2023b; Wen et al., 2024; Yasunaga et al., 2022) and conducting stepwise retrieval with LLM agent (SUN et al., 2024; Huang et al., 2024), both aiming to ground reasoning in structured knowledge of KG. Yet, these approaches still lack effective mechanisms to align retrieval with evolving subgoals. Therefore, recent work has attempted to integrate planning into the retrieval process to better guide multi-step inference (Jiang et al., 2024; Guan et al., 2024).

However, current KG-enhanced LLM frameworks still suffer from below challenges: (1) **Inflexible reasoning**: exiting works either rely on predefined reasoning paths or conduct graph search based

Figure 1: A comparison of existing KG-enhanced reasoning frameworks using a representative question example. Errors resulting from LLM hallucinations are highlighted in red. Text in green denotes LLM-generated content, while KG-retrieved triplets are shown in blue.

on predefined parameters (e.g., depth and width), as shown in Figure 1(b), leading to incomplete utilization of KG evidence and cascading errors during reasoning. (2) **Limited use of information**: Most current agent-based frameworks focus solely on the triplets retrieved at each local step, ignoring the global contextual information, such as prior reasoning steps and forward-looking relation, which makes them vulnerable to unrecognized entities at intermediate steps and prone to premature termination as illustrated in Figure 1(c).

To address these issues, we propose a novel Verify-on-Graph (VoG) framework that supports dynamic and context-aware LLM reasoning over KG. Specifically, VoG employs a framework involving three specialized LLM agents collaboratively perform retrieval, verification, and revision in an iterative manner. Initially, the *plan agent* generates a reasoning plan inspired by ReAct (Yao et al., 2023), which serve both as a global-level roadmap for retrieval and as contextual memory for maintaining coherence across long reasoning chains. To address the inflexible reasoning and mitigate the error propagation, VoG performs stepwise verification to detect reasoning inconsistencies as they arise and ensure the correctness of subsequent reasoning steps. Furthermore, to overcome the limitations of purely local reasoning, VoG strategically incorporates KG-grounded feedback and contextual information to revise its reasoning plan by proposing a multi-armed bandit (MAB) context selector. In summary, our main contributions are as follows:

- We propose a novel framework that enables stepwise verification on KG to mitigate error propagation during multi-hop reasoning. Through iterative refinement of reasoning plans, we process the adaptive KG retrieval to collect relevant KG feedback for the targeted question.
- We introduce a KG-aware multi-armed bandit (MAB) mechanism for adaptive context selection, which dynamically determines the maximally informative subset of KG feedback and reasoning history at each step to enhance factual consistency.
- We implement VoG and evaluate it on three KGQA datasets. Results on both open-source and closed-source LLMs validate that our framework outperforms the state-of-the-art baselines and generalizes robustly across diverse backbones.

108
109

2 PRELIMINARY

110
111
We introduce the preliminaries used in this paper as follows.112
113
Definition 1 (Knowledge Graph (KG): A knowledge graph \mathcal{G} is represented as a collection of
114
factual triplets, formally defined as $\mathcal{G} = \{(e_{\text{head}}, r, e_{\text{tail}})\}$, where each triplet consists of a head
entity e_{head} , a tail entity e_{tail} and their relation r .115
116
Definition 2 (Reasoning Plan:) Given a question Q , LLM generates a structured reasoning chain
117
 $S = [s_1, s_2, \dots, s_T]$, in which the t -th step s_t consists of the t -th thought, action, and corresponding
118
predicted observation, denoted as $(T_t, A_t, \text{Pred_}O_t)$.119
120
Definition 3 (KG Feedback:) At each reasoning step t , executing retrieval guided by the action A_t
121
retrieves a set of KG triplets relevant to the current reasoning context, denoted as $O_t = [o_1^{(t)}, o_2^{(t)}, \dots]$,
122
where each $o = (e_{\text{head}}, r, e_{\text{tail}})$ is a triplet in \mathcal{G} . These triplets serve as the KG feedback at depth t
123
to support verification and revision of the reasoning plan.124
125
Problem Statement: Given a question Q , a knowledge graph \mathcal{G} , and a set of topic entities explicitly
126
mentioned in Q , the goal of multi-hop knowledge graph question answering (KGQA) is to find the
127
answer entities are multiple hops away from the topic entities over the KG. Considering the flexibility
128
and the training cost, we follow previous agent-based work(Chen et al., 2024; SUN et al., 2024)
129
that iteratively retrieve and reason over KG. In this stepwise manner, we aim to guide retrieval with
130
reasoning plans and use the KG feedback to revise the reasoning plan in turns.131
132

3 METHOD

133
134
As mentioned in previous section, existing methods exhibit limited ability to adjust reasoning
135
dynamically based on KG feedback. To address this gap, we propose **VoG**, which first generates an
136
initial reasoning plan, retrieves supporting KG evidence for verification, and revises the plan upon
137
detecting inconsistencies. An overview framework is given in Figure 2.150
151
Figure 2: Overview of the VoG framework. An initial reasoning plan is first generated (§3.1) to guide
152
the *retrieve agent* to perform stepwise retrieval (§3.2). If the *Verify agent* gives the revision signal
153
based on retrieved feedback and plan (§3.3), the revision is conducted by the *plan agent* (§3.4).154
155

3.1 INITIALIZATION AND PLANNING

156
157
Given a question Q , we follow mainstream work and utilize a *plan agent* to generate a complete multi-
158
hop reasoning plan over the KG, which guide downstream retrieval and reasoning processes. The
159
initial plan is denoted as $S^{(0)} = [s_1, s_2, \dots, s_T]$, where T is the total number of steps. Based on
160
it, one can retrieve information from KG based on plan $S^{(0)}$ step by step. This iterative process
161
continues until all planned steps T are executed and verified. Note that T implicitly defines the
162
reasoning depth, which allows *plan agent* to adaptively adjust it dynamically based on the execution
163
of the plan itself, rather than relying on fixed-depth settings.

162 3.2 STEPWISE KG RETRIEVAL
163164 In this section, we design a two-stage retrieval mechanism guided by the reasoning plan.
165166 **Plan-Guided Relation Retrieval.** At each reasoning step t , VoG retrieves relevant KG relations
167 guided by the action A_t from the current plan step (Figure 3). Let $\mathcal{E}_{t-1} = \{e_1^{(t-1)}, \dots, e_N^{(t-1)}\}$ be
168 the set of entities obtained in the previous step. We execute structured KG queries (Appendix A.1)
169 to enumerate adjacent relations for each $e_i^{(t-1)}$, forming a candidate set $\mathcal{R}_t^{\text{cand}}$. The retrieve agent
170 is then prompted, with the current action A_t as input, to select a set of relations \mathcal{R}_t that are most
171 relevant to the reasoning objective. To mitigate noise in large candidate sets, we apply entropy-based
172 adaptive sampling using Sentence-BERT similarity scores (Reimers and Gurevych, 2019). Filtering
173 and prompt design details are provided in Appendix A.2 and A.3.2.
174175 **Plan-Guided Entity Retrieval.** Based on the selected relations, VoG retrieves new entities to
176 update KG feedback. For each selected $r \in \mathcal{R}_t$ and entity $e_i^{(t-1)}$, we query the KG using patterns
177 $(e_i^{(t-1)}, r, ?)$ and $(?, r, e_i^{(t-1)})$, yielding a
178 candidate entity set $\mathcal{E}_t^{\text{cand}}$. The same entropy-
179 based sampling is applied when needed,
180 helping the *retrieve agent* select from $e^{(t)} \in$
181 $\mathcal{E}_t^{\text{cand}}$ to obtain \mathcal{E}_t and append the correspond-
182 ing triplets $(e_i^{(t-1)}, r, e^{(t)})$ to O_t , using the
183 original question Q and predicted observation
184 $\text{Pred_}O_t$ as context. Prompt details
185 are in Appendix A.3.3. This process reduces
186 irrelevant expansions and ensures that sub-
187 sequent reasoning is well supported.
188

3.3 STEPWISE KG VERIFICATION

189 Most of the existing works conduct retrieval on KG simply following the initial reasoning plan (Jiang
190 et al., 2024; Chen et al., 2024) that could be non-optimal or even misleading. To mitigate error
191 propagation and enhance factual consistency, we introduce a stepwise KG verification mechanism
192 that integrates retrieved KG evidence as feedback.
193194 Specifically, given s_t in the generated plan S , VoG obtains a set of feedback $O_t = \{(e_{\text{head}}^{(t)}, r, e_{\text{tail}}^{(t)})\}$,
195 consisting of KG triplets. Using them as factual information, a *verify agent* is first prompted to
196 compare it against the predicted observation $\text{Pred_}O_t \in s_t$. To further enhance the reliability, we
197 additionally implement a pretrained DeBERTa verifier (He et al., 2021) as a secondary check. The
198 prompts are provided in the Appendix A.3.4. Formally, we define the revision signal as:
199

200
$$\mathcal{V}(Q, s_t, O_t) = \begin{cases} 1 & \text{if } \text{Pred_}O_t \in s_t \text{ is inconsistent with } O_t, \\ 0 & \text{otherwise.} \end{cases} \quad (1)$$

201 When $\mathcal{V}(Q, s_t, O_t) = 1$, VoG flags the current step as unreliable and triggers a revision process. This
202 mechanism ensures alignment between the reasoning and retrieved KG feedback, allowing the agent
203 to iteratively refine its plan before proceeding to the next step. Once we obtain a positive revision
204 signal from above verification, we can handle the inconsistency issue by revising the reasoning
205 plan. A detailed analysis of revision signal triggering is provided in Appendix E.1.
206207 3.4 STEPWISE PLAN REVISION
208209 Effective revision after verification hinges on addressing two central challenges. (i) The inherent
210 sensitivity of LLMs to contextual inputs and their unpredictable behavior necessitates a more dynamic
211 strategy that can explore diverse context configurations while exploiting the most effective ones to
212 support accurate revision. (ii) The potential of LLMs to generate hallucinated or redundant steps that
213 misguide later reasoning highlights the need for evaluation, ensuring that each revision step is well
214 aligned and verifiable against factual knowledge from KG.
215To address these challenges, we propose a dynamic revision framework that couples adaptive context
selection with explicit reward evaluation. At each revision step t , the *plan agent* proposes a revised

216 plan $S^{(t)}$ with selected context, which is executed from $t+1$ onward if meeting the reward criterion.
 217 In the following, we detail how VoG achieves stepwise revision by flexibly adjusting context use to
 218 mitigate (i) while ensuring conciseness and factual consistency with KG feedback to address (ii).
 219

220 **3.4.1 CONTEXT-AWARE UCB SCORING**

222 The sensitivity of LLMs to contextual inputs implies that static heuristics or fixed strategies are
 223 brittle. To adaptively select the best contextual scope at each step, we formulate context selection as a
 224 multi-armed bandit (MAB) problem. As shown in Sec 4.5, the high context-dependence of strategy
 225 effectiveness further underscores the necessity of an adaptive selector.

226 Specifically, we define three complementary strategies $\mathcal{C} = \{\text{Local}, \text{Lookahead}, \text{Global}\}$ corresponding
 227 to minimal, proactive, and comprehensive use of context. These capture the main modes of
 228 leveraging KG feedback and reasoning history, and thus serve as the candidate arms in our selector:

- 229 • **Local** that focuses solely on the immediate KG feedback O_t , resulting in the input form
 230 $f_{\text{revise}}(S^{(t)}, O_t)$, which can effectively correct hallucinations when explicit triples are available.
- 231 • **Lookahead** that further incorporates future relations R_{t+1} to the input $f_{\text{revise}}(S^{(t)}, O_t, R_{t+1})$,
 232 enabling proactive adjustment to avoid incomplete reasoning.
- 233 • **Global** which aggregates the full reasoning plan and all past KG feedback $O_{1:t}$, leading to the input
 234 $f_{\text{revise}}(S^{(t)}, O_{1:t})$. This strategy enables broader reassessment, which is particularly useful when
 235 accumulated errors or query intent drift occur.

237 To select among these strategies, we adopt the classical Upper Confidence Bound (UCB) algo-
 238 rithm (Kaufmann et al., 2012) and further extend it with context-aware priors. Formally, for each
 239 candidate context strategy $c \in \mathcal{C}$, we record the number of times it has been selected N_c and its
 240 cumulative reward R_c . At each step t , the UCB score is then defined as follows, with the robustness
 241 of this design further validated through ablation and sensitivity analyses in Appendix E.4 and E.5.
 242

$$243 \text{UCB}_t(c) = \underbrace{\frac{R_c}{N_c}}_{\text{Exploitation}} + \alpha \sqrt{\underbrace{\frac{\log N}{N_c}}_{\text{Exploration}} + \underbrace{\mathcal{B}_{\text{ent}}(H_t) + \mathcal{B}_{\text{KG}}(t, E_{\text{rep}}) + \mathcal{B}_{\text{div}}(c)}_{\text{Context-aware Priors}}}, \quad (2)$$

244 where α is a fixed constant and N is the number of total selection times. Here, H_t denotes the
 245 normalized entropy of the current answer distribution, which signals the level of uncertainty like in
 246 previous work (Kuhn et al., 2023), and E_{rep} denotes the set of entities repeatedly retrieved from the
 247 accumulated KG feedback $O_{1:t}$. We then incorporate three context-aware bonus terms: an entropy-
 248 based bonus $\mathcal{B}_{\text{ent}}(H_t)$ that promotes exploration under high answer uncertainty, a KG-aware bonus
 249 $\mathcal{B}_{\text{KG}}(t, E_{\text{rep}})$ that penalizes repetitive retrieval and a diversity bonus $\mathcal{B}_{\text{div}}(c)$ that discourages repeated
 250 selection of the same strategy. Precise definitions for each term and the full algorithm are detailed in
 251 Appendix B.1.
 252

253 **3.4.2 REWARD DESIGN**

254 To guide strategy selection, we assess the effectiveness of the chosen context strategy via the quality
 255 of its revised plan. Once a strategy $c_t \in \mathcal{C}$ is selected, the *plan agent* generates a candidate reasoning
 256 plan. Considering the inherent unreliability and instability of LLM outputs, we design a scalar reward
 257 ν_t that jointly captures step-level coherence and global answer stability as detailed below.

258 **Task-specific Reward.** The task-specific reward ν_{local} measures the local quality of a revision
 259 through heuristic signals derived from the reasoning process. The stepwise nature of VoG reveals a
 260 heterogeneous set of contextual evidence at each reasoning step, including KG feedback, historical
 261 reasoning steps, and the evolving reasoning plan that reflects the model’s interpretation of the question.
 262 This enables us to evaluate revisions from a broader range of perspectives, reducing the risk of any
 263 potentially biased single signal dominating the revision process. **We incorporate five key metrics to
 264 evaluate the quality of each revision as shown below:**

- 265 • **Validation:** Verifies the revision by assessing the consistency of revised observation Pred_t against KG feedback, which ensures that the revision is validated by factual knowledge in KG.

- **Quality:** Evaluates the semantic relevance between the revised observation $Pred_O_t$ and the question Q . This metric assesses the quality of revision process by ensuring that the revision aligns with the original query intent.
- **Question Alignment:** Ensures that the reasoning process maintains a consistent goal throughout multi-hop reasoning by measuring the similarity between reasoning sub-steps and the query.
- **Thought Coherence:** Ensures the alignment between the current reasoning step T_t and the relevant KG feedback, verifying that the reasoning is coherent with the knowledge provided.
- **Efficiency:** Penalizes reasoning steps that repeat or overlap significantly, reducing redundant reasoning and encouraging more efficient and progressive paths.

In contrast to prior work that relies on LLM-based scoring (Sui et al., 2025; Zheng et al., 2023), we adopt lightweight pre-trained models for these checks, which makes the evaluation both efficient and scalable without incurring additional inference overhead. Full details are provided in Appendix B.2.

Confidence-Based Reward. The confidence-based reward ν_{conf} measures the stability of the final answer across candidate reasoning plans generated during revision. Formally, let $\mathcal{P} = \{S_1, S_2, \dots, S_N\}$ denote the set of candidate reasoning plans generated during revision, and a_{S_i} be the final answer of plan S_i . To measure confidence here, we use subscript i exclusively to index all candidate plans in \mathcal{P} regardless of step. We use \sim to denote semantic equivalence between answers and define the reward ν_{conf} for a candidate plan S_i as:

$$\nu_{\text{conf}}(S_i) = \frac{1}{|\mathcal{P}|} \sum_{S \in \mathcal{P}} \mathbb{I}(a_S \sim a_{S_i}). \quad (3)$$

This reward encourages convergence toward stable, high-confidence answers that are consistently supported across multiple candidate plans.

Entropy-aware Integration. To adaptively balance local and global signals, we introduce an entropy-aware weighting scheme. Let $H_t \in [0, 1]$ denote the normalized entropy of the answer distribution at step t , and $\beta \in (0, 1)$ a scaling factor. We compute:

$$\lambda_t = \beta \cdot \exp(-H_t), \quad \nu_t = (1 - \lambda_t) \nu_{\text{local}} + \lambda_t \nu_{\text{conf}}. \quad (4)$$

Intuitively, when the answer distribution is uncertain (high H_t), the global consensus reward dominates; when the distribution is confident, local reasoning quality takes precedence. The resulting scalar reward is then accumulated as R_c to update the UCB score in Eq. (2), thus closing the loop between revision evaluation and adaptive strategy selection. Ablation on the reward design is provided in Appendix E.6.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Datasets. To evaluate the effectiveness of VoG in enhancing the reasoning capabilities of large language models on knowledge-intensive tasks, we conduct experiments across three widely-used datasets. Specifically, we conduct experiments on two multi-hop KGQA datasets, ComplexWebQuestions (CWQ) (Talmor and Berant, 2018) and WebQuestionsSP (WebQSP) (Yih et al., 2016), as well as the open-domain QA dataset WebQuestions (Berant et al., 2013). All datasets rely on Freebase (Bollicker et al., 2008) as the underlying factual source. Following previous studies (SUN et al., 2024; Chen et al., 2024), we adopt exact match accuracy (Hits@1) as our primary evaluation metric and also report F1 scores for completeness. We show the details of above datasets in Appendix C.

Baselines. To comprehensively evaluate our framework, we compare VoG against three major categories of baseline approaches: (i) *LLM-only methods*, (ii) *fine-tuned methods*, and (iii) *LLM agent+KG methods*. For *LLM-only* baselines, we adopt IO prompting (Brown et al., 2020) and CoT (Trivedi et al., 2023). For *fine-tuned methods*, we include KD-CoT (Wang et al., 2023b), DECAF (Yu et al., 2023), RoG (Luo et al., 2024b), UniKGQA (Jiang et al., 2022) and GNN-RAG (Mavromatis and Karypis, 2024). In addition, we further include methods that fine-tune only the retriever while keeping the LLM frozen, such as SubgraphRAG (Li et al., 2025) and the unfine-tuned LLM variant of GNN-RAG (Mavromatis and Karypis, 2024). For *LLM agent-based* approaches, we compare with ToG (SUN et al., 2024) and PoG (Chen et al., 2024). Full implementation details of all baselines are provided in the Appendix D.

324 4.2 MAIN RESULTS
325326 Table 1 summarizes the performance of VoG across three benchmark datasets compared to represen-
327 tative state-of-the-art (SOTA) baselines. Overall, VoG outperforms all included baselines across all
328 categories of methods.
329330 First, compared to *LLM-only* baselines, VoG significantly improves performance by incorporating
331 structured knowledge from external KGs. This highlights the importance of factual grounding
332 in multi-hop reasoning, particularly for complex questions where parametric knowledge alone is
333 insufficient. Second, we compare VoG to *fine-tuned methods*. Despite not requiring additional
334 fine-tuning, VoG achieves competitive or superior performance, demonstrating the effectiveness of its
335 verification-driven and plan-adaptive design.
336337 Finally, when compared to *agent-based reasoning frameworks*, VoG attains higher accuracy through
338 stepwise verification and adaptive context selection mechanisms. To assess generalizability and
339 effectiveness across different model sizes, we further evaluate VoG using smaller-scale LLMs (e.g.,
340 Qwen2.5-7B (Team, 2024)). Even under reduced model capacity, VoG achieves robust improvements
341 over baseline agents, confirming that its gains stem from methodological advances rather than reliance
342 on model scale. **Beyond our main experiment conducted on Freebase (Bollacker et al., 2008), we**
343 **further demonstrate VoG’s generalization ability on Wikidata (Vrandečić and Krötzsch, 2014), as**
344 **shown in Appendix G.**
345346 Table 1: Performance comparison of different methods across datasets. Bold indicates the best agent
347 performance for each backbone.
348

349 Method	350 CWQ		351 WebQSP		352 WebQuestions	
	353 EM	354 F1	355 EM	356 F1	357 EM	358 F1
<i>359 LLM-only</i>						
<i>360 GPT-3.5</i>						
361 IO prompt (Brown et al., 2020)	37.6	-	63.3	-	48.7	-
362 CoT (Trivedi et al., 2023)	38.8	-	62.2	-	48.5	-
363 SC (Wang et al., 2022)	45.4	-	61.1	-	50.3	-
<i>364 Fine-tuned methods</i>						
<i>365 KD-CoT (Wang et al., 2023b)</i>	55.7	-	68.6	52.5	-	-
366 <i>UniKGQA</i> (Jiang et al., 2022)	51.2	48.0	77.2	70.2	-	-
367 <i>RoG</i> (Luo et al., 2024b)	62.6	56.2	80.4	70.8	-	-
368 <i>DECAF</i> (Yu et al., 2023)	70.4	-	82.1	-	-	-
369 <i>KG-Agent</i> (Jiang et al., 2024)	72.2	-	83.3	-	-	-
370 <i>GNN-RAG+RA</i> (Mavromatis and Karypis, 2024)	68.7	60.4	90.7	73.5	-	-
<i>371 Fine-tuned Retriever + GPT-3.5</i>						
372 <i>GNN-RAG</i> (Mavromatis and Karypis, 2024)	64.1	-	85.3	-	-	-
373 <i>SubgraphRAG</i> (Li et al., 2025)	56.3	49.1	83.1	69.2	-	-
<i>374 LLM Agent + KG</i>						
<i>375 Qwen2.5-7B</i>						
376 ToG (SUN et al., 2024)	42.5	28.7	56.0	37.3	39.9	31.3
377 PoG (Chen et al., 2024)	46.0	31.4	58.5	40.4	46.2	30.3
378 <i>VoG (Ours)</i>	53.3	45.6	67.3	55.1	52.8	45.2
<i>379 GPT-3.5</i>						
380 ToG (SUN et al., 2024)	58.9	41.9	76.2	50.9	54.5	39.3
381 PoG (Chen et al., 2024)	63.2	43.7	82.0	58.1	61.7	44.3
382 <i>VoG (Ours)</i>	64.7	56.2	83.2	69.1	63.0	61.3
<i>383 GPT-4</i>						
384 ToG (SUN et al., 2024)	67.6	47.6	82.6	58.9	57.9	44.9
385 PoG (Chen et al., 2024)	75.0	42.1	87.3	59.8	71.7	44.5
386 <i>VoG (Ours)</i>	77.6	67.5	88.7	73.2	72.3	61.7

378 4.3 ABLATION STUDY
379380 We conduct the ablation studies on CWQ and WebQSP using GPT-3.5 as the backbone model to
381 provide a comprehensive view of how VoG achieves its performance gains.382 **Impact of the verification and adaptive revision.** We first examine the stepwise verification
383 mechanism and the contribution of context selector of VoG as shown in Table 2. In the *w/o Context*
384 *Selector* variant, the bandit-based adaptive strategy is replaced with a single fixed strategy, so revisions
385 are performed without dynamic strategy at each step. In the *w/o Verify+Revise* variant, the *plan agent*
386 directly outputs the answer from its initial plan without performing retrieval, verification, or revision
387 as the *plan-retrieve-revise* process in VoG constitutes a unified feedback loop. Interestingly, this plan-
388 only configuration still outperforms standard CoT and Self-Consistency baselines, suggesting that
389 LLM-internal planning alone offers strong multi-hop reasoning capabilities, but remains vulnerable
390 to error propagation without external verification and revision.
391392 Table 2: Ablation Study on VoG’s Stepwise Verification and Adaptive Revision.
393

Variant	CWQ	WebQSP	WebQuestions
VoG (Ours)	64.7	83.2	63.0
w/o Context Selector			
<i>Local</i>	60.1 (↓4.6)	80.6 (↓2.6)	58.2 (↓4.8)
<i>Lookahead</i>	63.6 (↓1.1)	81.4 (↓1.8)	59.9 (↓3.1)
<i>Global</i>	60.2 (↓4.5)	80.3 (↓2.9)	60.6 (↓2.4)
w/o Verify+Revise	51.7 (↓13.0)	72.1 (↓11.1)	55.8 (↓7.2)

395 **Effect of Different Context Strategies.** We further analyze the effectiveness of three fixed strategies
396 and compare them with our KG-aware context selector. Each variant in the *w/o Context Selector*
397 setting above corresponds to a fixed strategy applied end-to-end throughout the reasoning process. All
398 fixed strategies fall short, since none can adapt effectively across diverse reasoning scenarios. In
399 contrast, our method adaptively selects the most suitable context at each step to achieve more accurate
400 and flexible reasoning. A detailed analysis of strategy-level performance, including accuracy and
401 revision rates per iteration, is provided in Appendix E.3.
402403 4.4 EFFICIENCY ANALYSIS
404405 We further assess the
406 computational efficiency
407 of VoG by the average
408 token consumption and
409 inference time per query,
410 as conducted in prior
411 agent-based baselines. As
412413 Table 3: Efficiency analysis on average tokens calls, and time per query.
414

Method	CWQ			WebQSP		
	Tokens	Calls	Time (s)	Tokens	Calls	Time (s)
ToG	9669.4	22.6	96.5	6031.2	15.9	63.1
PoG	8156.2	13.3	34.3	5517.7	9.0	16.8
VoG (Ours)	6566.8	14.5	38.9	3439.0	9.4	17.9

415 shown in Table 3, VoG significantly reduces token usage and maintain comparable or lower levels
416 of LLM interaction and inference time. A detailed token breakdown across planning, retrieval,
417 verification, and revision steps is provided in Appendix E.2. We also analyze the trade-offs between
418 complexity and performance gains in Appendix E.7.
419420 This efficiency gain stems from two key aspects. From a methodological perspective, VoG adopts
421 an adaptive retrieval strategy to prioritizes relevant information and employs a context selector that
422 contributes to reducing unnecessary input. Moreover, its plan-guided retrieval enables adaptive
423 control over depth and breadth, avoiding the irrelevant exploration introduced by beam search in
424 ToG and thus improving overall retrieval efficiency. From an implementation standpoint, VoG stores
425 context implicitly within the reasoning plan, avoiding external memory modules as required in PoG
426 and enabling direct answer extraction without additional LLM calls. Together, these design choices
427 make VoG a more practical and lightweight solution for scalable KG reasoning, especially under
428 limited computational budgets.
429430 4.5 CASE STUDY
431432 In this section, we present a fine-grained case in Figure 4 using Qwen2.5-7B and visualized attention
433 heatmaps. In the presented case, the *Local* strategy, which is typically effective when explicit triples
434 are available, becomes limited here because the entity exists in the KG but lacks a resolvable name.
435

432 By contrast, the *Lookahead* strategy, which observes future relations, and the *Global* strategy, which
 433 helps avoid query intent drift, both succeed in revising the plan. However, providing all contextual
 434 information at once distracts the LLM and induces hallucinations. This case demonstrates how
 435 adaptively selecting complementary contexts can enhance plan refinement in unpredictable scenarios,
 436 such as incomplete KG signals or LLM hallucinations, without relying on manually predefined rules.
 437 Additional cases demonstrating how different strategies perform under varying conditions, along with
 438 comparisons to ToG and PoG and an analysis of recovered failure types, are provided in Appendix F.

459 Figure 4: Case comparison of revision behavior across context strategies and an mixed input.

462 5 RELATED WORK

464 5.1 LLM-BASED AGENTS

466 LLM-based agents have become a prominent paradigm for reasoning and decision-making, framing
 467 complex tasks as sequential interactions between planning, observation, and action. Early approaches
 468 such as ReAct (Yao et al., 2023) integrate chain-of-thought reasoning with tool use, enabling stepwise
 469 interaction with external environments. Subsequent frameworks extend this paradigm to various
 470 domains, such as web-based QA (Nakano et al., 2021), multimodal reasoning (Yang et al., 2023),
 471 social simulation (Park et al., 2023) and maths problem (Lei et al., 2024; Chen et al., 2025). However,
 472 these approaches lack mechanisms to learn from feedback and remain heavily dependent on the
 473 underlying LLM backbone. Therefore, researchers have incorporates self-evaluated feedback (Shinn
 474 et al., 2023; Yao et al., 2023; Madaan et al., 2023; Panickssery et al., 2024) and **external retrieval**
 475 **feedback** (Jin et al., 2025) into the reasoning loop to enhance LLM reasoning. In parallel, Monte
 476 Carlo Tree Search (MCTS)-style agents have been introduced to sample and select from multiple
 477 reasoning trajectories for robust decision-making (Hao et al., 2023; Hu et al., 2025; Luo et al., 2025;
 478 Sun et al., 2025). However, relying on unverified external feedback often introduces noise and factual
 479 gaps, increasing the risk of hallucinations during reasoning.

480 5.2 KG-ENHANCED LLM REASONING

482 To enhance the reliability of LLM reasoning, recent studies have incorporated KGs as structured
 483 external sources. We summarize representative KG-enhanced approaches in Table 4, which broadly
 484 focus on three key aspects: planning, retrieval, and verification. Planning-focused methods such as
 485 RoG (Luo et al., 2024b) and KG-Agent (Jiang et al., 2024) enhances the planning capabilities of
 LLMs by generating structured reasoning paths over KGs. While effective initially, such plans are

486 fixed once generated and cannot adapt to new evidence, leading to error accumulation in multi-hop
 487 inference. Retrieval-focused methods aim to improve the quality of KG evidence provided to the
 488 LLM. For example, KnowGPT (Zhang et al., 2024) applies reinforcement learning for knowledge
 489 extraction, KG-CoT (Zhao et al., 2024) retrieves high-quality multi-hop subgraphs with a graph
 490 reasoning model, and ToG (SUN et al., 2024) adopts an LLM agent to perform iterative retrieval.
 491 Building upon these, PoG (Chen et al., 2024) incorporates planning with iterative retrieval to better
 492 coordinate evidence gathering and reasoning.

493 Despite these advances, the above
 494 methods either lack explicit verifi-
 495 cation mechanisms or perform only
 496 global verification after completing
 497 the entire reasoning process. To
 498 address this gap, KD-CoT (Wang
 499 et al., 2023b) introduces a retriever-
 500 reader-verifier pipeline that verifies
 501 the factual consistency of final an-
 502 swers against KG evidence. While
 503 promising, their verification serves
 504 only as a passive check, providing a final validation that does not influence or revise subsequent
 505 reasoning steps. **As a result, errors in earlier steps can propagate without correction.** While PoG (Chen
 506 et al., 2024) introduces correction at the stepwise level, **its focus remains on refining local retrieval**
 507 **rather than the entire trajectory.** Without incorporating explicit stepwise adjustment, these methods
 508 overlook the assurance of the correctness and coherence of the full reasoning process.

510 6 CONCLUSION

511 In this paper, we propose **Verify-on-Graph (VoG)**, a unified framework that advances trustworthy
 512 LLM reasoning by coupling planning, retrieval, and verification into a closed-loop process over
 513 KGs. Specifically, VoG treats LLM-generated reasoning plans as tentative and refines them by
 514 detecting and correcting potential hallucinations that arise during multi-hop reasoning. Unlike prior
 515 frameworks that lack intermediate factual checking and adaptive revision, VoG enables stepwise
 516 verification and broader context integration at each step. Our experiments demonstrate that VoG
 517 significantly improves reasoning accuracy, robustness, and efficiency across multiple benchmarks,
 518 and generalizes well across LLM backbones without requiring additional training.

521 ETHICS STATEMENT

522 The research conducted in this paper adheres to the ICLR Code of Ethics in every respect. Our study
 523 focuses on enhancing the reasoning reliability of large language models by incorporating stepwise
 524 verification with knowledge graphs. As the framework does not involve human subjects, private data,
 525 or domain-specific sensitive material, it raises no immediate concerns regarding privacy, safety, or
 526 security. All experiments are conducted on publicly available benchmarks, which contain no personal
 527 or sensitive information, and we strictly comply with their licenses and intended use.

531 REPRODUCIBILITY STATEMENT

532 The paper fully discloses all the information needed to reproduce the main experimental results of the
 533 paper to the extent that it affects the main claims and conclusions. We provide our experimental results
 534 in Section 4, and an anonymous code repository with detailed instructions for reproducing them is
 535 referenced in the main text and also included in the supplementary materials. Detailed implementation
 536 notes and access to the models used in our framework are given in Appendix B.3. All datasets used in
 537 experiments are standard public benchmarks, with details described in Appendix C. As our framework
 538 is training-free, no model checkpoint is required, and reproducibility is ensured through the provided
 539 code, dataset references, and documented procedures.

Table 4: Comparison of recent KG-enhanced LLM reasoning methods from three perspectives.

Method	Plan	Retrieve	Verify
RoG (Luo et al., 2024b)	✓	✗	✗
KnowGPT (Zhang et al., 2024)	✗	✓	✗
KG-Agent (Zhao et al., 2024)	✓	✓	✗
KD-COT (Wang et al., 2023b)	✗	✓	✓
ToG (SUN et al., 2024)	✗	✓	✗
PoG (Chen et al., 2024)	✓	✓	✗
VoG (Ours)	✓	✓	✓

540 REFERENCES
541

542 Daya Guo, Dejian Yang, Huawei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
543 Shirong Ma, Peiyi Wang, Xiao Bi, and et al. Deepseek-r1: Incentivizing reasoning capability in
544 llms via reinforcement learning, 2025. URL <https://arxiv.org/abs/2501.12948>.

545 OpenAI. Gpt-4 technical report, 2023.

546 Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
547 Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. *ACM
548 Computing Surveys*, 55(12):1–38, March 2023. ISSN 1557-7341. doi: 10.1145/3571730. URL
549 <http://dx.doi.org/10.1145/3571730>.

550 Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Lovenia,
551 Ziwei Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan Xu, and Pascale Fung. A multitask,
552 multilingual, multimodal evaluation of chatgpt on reasoning, hallucination, and interactivity.
553 *ArXiv*, abs/2302.04023, 2023. URL <https://api.semanticscholar.org/CorpusID:256662612>.

554 Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a collabora-
555 tively created graph database for structuring human knowledge. In *Proceedings of the 2008 ACM
556 SIGMOD international conference on Management of data*, pages 1247–1250, 2008.

557 S. Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary G.
558 Ives. Dbpedia: A nucleus for a web of open data. In *ISWC/ASWC*, 2007. URL <https://api.semanticscholar.org/CorpusID:7278297>.

559 Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic knowledge. In
560 *Proceedings of the 16th international conference on World Wide Web*, pages 697–706, 2007.

561 Garima Agrawal, Tharindu Kumarage, Zeyad Alghamdi, and Huan Liu. Can knowledge graphs reduce
562 hallucinations in llms? : A survey, 2024. URL <https://arxiv.org/abs/2311.07914>.

563 Yu Wang, Nedim Lipka, Ryan A. Rossi, Alexa F. Siu, Ruiyi Zhang, and Tyler Derr. Knowledge graph
564 prompting for multi-document question answering. In *AAAI Conference on Artificial Intelligence*,
565 2023a. URL <https://api.semanticscholar.org/CorpusID:261076072>.

566 Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu. Unifying large
567 language models and knowledge graphs: A roadmap. *IEEE Transactions on Knowledge and
568 Data Engineering*, 36:3580–3599, 2023. URL <https://api.semanticscholar.org/CorpusID:259165563>.

569 Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity of sparql. *ACM
570 Transactions on Database Systems (TODS)*, 34(3):1–45, 2009.

571 Haoran Luo, Haihong E, Zichen Tang, Shiyao Peng, Yikai Guo, Wentai Zhang, Chenghao Ma,
572 Guanting Dong, Meina Song, Wei Lin, Yifan Zhu, and Anh Tuan Luu. ChatKBQA: A generate-
573 then-retrieve framework for knowledge base question answering with fine-tuned large language
574 models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, *Findings of the Association
575 for Computational Linguistics: ACL 2024*, pages 2039–2056, Bangkok, Thailand, August 2024a.
576 Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.122. URL <https://aclanthology.org/2024.findings-acl.122/>.

577 Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su, and Wenhui Chen. Few-shot in-context
578 learning for knowledge base question answering, 2023. URL <https://arxiv.org/abs/2305.01750>.

579 Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. Reasoning on graphs: Faithful
580 and interpretable large language model reasoning, 2024b. URL <https://arxiv.org/abs/2310.01061>.

581 Yu Gu, Xiang Deng, and Yu Su. Don’t generate, discriminate: A proposal for grounding language
582 models to real-world environments. In *Annual Meeting of the Association for Computational Lin-
583 guistics*, 2022. URL <https://api.semanticscholar.org/CorpusID:254853929>.

594 Qinggang Zhang, Junnan Dong, Hao Chen, Daochen Zha, Zailiang Yu, and Xiao Huang. Knowgpt:
 595 Knowledge graph based prompting for large language models, 2024. URL <https://arxiv.org/abs/2312.06185>.

596

597 Ruilin Zhao, Feng Zhao, Long Wang, Xianzhi Wang, and Guandong Xu. Kg-cot: Chain-of-thought
 598 prompting of large language models over knowledge graphs for knowledge-aware question answer-
 599 ing. In *Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence
 600 (IJCAI-24)*, pages 6642–6650. International Joint Conferences on Artificial Intelligence, 2024.

601

602 Keheng Wang, Feiyu Duan, Sirui Wang, Peiguang Li, Yunsen Xian, Chuantao Yin, Wenge Rong, and
 603 Zhang Xiong. Knowledge-driven cot: Exploring faithful reasoning in llms for knowledge-intensive
 604 question answering. *arXiv preprint arXiv:2308.13259*, 2023b.

605

606 Yilin Wen, Zifeng Wang, and Jimeng Sun. Mindmap: Knowledge graph prompting sparks graph of
 607 thoughts in large language models, 2024. URL <https://arxiv.org/abs/2308.09729>.

608

609 Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut, Percy Liang, and Jure Leskovec. Qa-gnn:
 610 Reasoning with language models and knowledge graphs for question answering, 2022. URL
<https://arxiv.org/abs/2104.06378>.

611

612 J SUN, C XU, L TANG, et al. Think-on-graph: Deep and responsible reasoning of large language
 613 model on knowledge graph [a/ol]. arxiv, 2024 [2024-07-08], 2024.

614

615 Xiang Huang, Sitao Cheng, Shanshan Huang, Jiayu Shen, Yong Xu, Chaoyun Zhang, and Yuzhong
 616 Qu. QueryAgent: A reliable and efficient reasoning framework with environmental feedback
 617 based self-correction. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, *Proceedings
 618 of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
 619 Papers)*, pages 5014–5035, Bangkok, Thailand, August 2024. Association for Computational
 620 Linguistics. doi: 10.18653/v1/2024.acl-long.274. URL <https://aclanthology.org/2024.acl-long.274/>.

621

622 Jinhao Jiang, Kun Zhou, Wayne Xin Zhao, Yang Song, Chen Zhu, Hengshu Zhu, and Ji-Rong Wen.
 623 Kg-agent: An efficient autonomous agent framework for complex reasoning over knowledge graph,
 624 2024. URL <https://arxiv.org/abs/2402.11163>.

625

626 Xinyan Guan, Yanjiang Liu, Hongyu Lin, Yaojie Lu, Ben He, Xianpei Han, and Le Sun. Mitigating
 627 large language model hallucinations via autonomous knowledge graph-based retrofitting. In
 628 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pages 18126–18134,
 629 2024.

630

631 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 632 React: Synergizing reasoning and acting in language models, 2023. URL <https://arxiv.org/abs/2210.03629>.

633

634 Liyi Chen, Panrong Tong, Zhongming Jin, Ying Sun, Jieping Ye, and Hui Xiong. Plan-on-graph:
 635 Self-correcting adaptive planning of large language model on knowledge graphs. *arXiv preprint
 636 arXiv:2410.23875*, 2024.

637

638 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
 639 In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing*.
 640 Association for Computational Linguistics, 11 2019. URL <http://arxiv.org/abs/1908.10084>.

641

642 Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
 643 with disentangled attention. In *International Conference on Learning Representations*, 2021. URL
<https://openreview.net/forum?id=XPZIaotutsD>.

644

645 Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On bayesian upper confidence bounds for
 646 bandit problems. In *Artificial intelligence and statistics*, pages 592–600. PMLR, 2012.

647

648 Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances
 649 for uncertainty estimation in natural language generation. *ArXiv*, abs/2302.09664, 2023. URL
<https://api.semanticscholar.org/CorpusID:257039062>.

648 Yuan Sui, Yufei He, Tri Cao, Simeng Han, and Bryan Hooi. Meta-reasoner: Dynamic guidance for
 649 optimized inference-time reasoning in large language models. *ArXiv*, abs/2502.19918, 2025. URL
 650 <https://api.semanticscholar.org/CorpusID:276647786>.
 651

652 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 653 Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Haotong Zhang, Joseph E. Gonzalez, and Ion Stoica.
 654 Judging llm-as-a-judge with mt-bench and chatbot arena. *ArXiv*, abs/2306.05685, 2023. URL
 655 <https://api.semanticscholar.org/CorpusID:259129398>.
 656

656 Alon Talmor and Jonathan Berant. The web as a knowledge-base for answering complex questions.
 657 *arXiv preprint arXiv:1803.06643*, 2018.
 658

659 Wen-tau Yih, Matthew Richardson, Christopher Meek, Ming-Wei Chang, and Jina Suh. The value
 660 of semantic parse labeling for knowledge base question answering. In *Proceedings of the 54th*
 661 *Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pages
 662 201–206, 2016.

663 Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on Freebase from
 664 question-answer pairs. In David Yarowsky, Timothy Baldwin, Anna Korhonen, Karen Livescu,
 665 and Steven Bethard, editors, *Proceedings of the 2013 Conference on Empirical Methods in Natural*
 666 *Language Processing*, pages 1533–1544, Seattle, Washington, USA, October 2013. Association
 667 for Computational Linguistics. URL <https://aclanthology.org/D13-1160/>.
 668

669 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 670 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 671 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

672 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving retrieval
 673 with chain-of-thought reasoning for knowledge-intensive multi-step questions, 2023. URL <https://arxiv.org/abs/2212.10509>.
 674

676 Donghan Yu, Sheng Zhang, Patrick Ng, Henghui Zhu, Alexander Hanbo Li, Jun Wang, Yiqun Hu,
 677 William Wang, Zhiguo Wang, and Bing Xiang. Decaf: Joint decoding of answers and logical
 678 forms for question answering over knowledge bases, 2023. URL <https://arxiv.org/abs/2210.00063>.
 679

680 Jinhao Jiang, Kun Zhou, Wayne Xin Zhao, and Ji-Rong Wen. Unikgqa: Unified retrieval and reasoning
 681 for solving multi-hop question answering over knowledge graph. *arXiv preprint arXiv:2212.00959*,
 682 2022.
 683

684 Costas Mavromatis and George Karypis. Gnn-rag: Graph neural retrieval for large language model
 685 reasoning, 2024. URL <https://arxiv.org/abs/2405.20139>.
 686

687 Mufei Li, Siqi Miao, and Pan Li. Simple is effective: The roles of graphs and large language models
 688 in knowledge-graph-based retrieval-augmented generation, 2025. URL <https://arxiv.org/abs/2410.20724>.
 689

690 Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.
 691

693 Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledgebase. *Commun.*
 694 *ACM*, 57(10):78–85, September 2014. ISSN 0001-0782. doi: 10.1145/2629489. URL <https://doi.org/10.1145/2629489>.
 695

696 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 697 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 698 *arXiv preprint arXiv:2203.11171*, 2022.
 699

700 Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
 701 Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
 question-answering with human feedback. *arXiv preprint arXiv:2112.09332*, 2021.

702 Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Ehsan Azarnasab, Faisal Ahmed, Zicheng Liu,
 703 Ce Liu, Michael Zeng, and Lijuan Wang. Mm-react: Prompting chatgpt for multimodal reasoning
 704 and action. *arXiv preprint arXiv:2303.11381*, 2023.

705 Joon Sung Park, Joseph O'Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S
 706 Bernstein. Generative agents: Interactive simulacra of human behavior. In *Proceedings of the 36th*
 707 *annual acm symposium on user interface software and technology*, pages 1–22, 2023.

708 Bin Lei, Yi Zhang, Shan Zuo, Ali Payani, and Caiwen Ding. Macm: Utilizing a multi-agent system
 709 for condition mining in solving complex mathematical problems. *arXiv preprint arXiv:2404.04735*,
 710 2024.

711 Xinyan Chen, Renrui Zhang, Dongzhi Jiang, Aojun Zhou, Shilin Yan, Weifeng Lin, and Hongsheng
 712 Li. Mint-cot: Enabling interleaved visual tokens in mathematical chain-of-thought reasoning, 2025.
 713 URL <https://arxiv.org/abs/2506.05331>.

714 Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
 715 Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL
 716 <https://arxiv.org/abs/2303.11366>.

717 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
 718 Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder,
 719 Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative
 720 refinement with self-feedback, 2023. URL <https://arxiv.org/abs/2303.17651>.

721 Arjun Panickssery, Samuel R. Bowman, and Shi Feng. Llm evaluators recognize and favor their own
 722 generations. *ArXiv*, abs/2404.13076, 2024. URL <https://api.semanticscholar.org/CorpusID:269293311>.

723 Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
 724 Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
 725 learning, 2025. URL <https://arxiv.org/abs/2503.09516>.

726 Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
 727 Reasoning with language model is planning with world model, 2023. URL <https://arxiv.org/abs/2305.14992>.

728 Yunhai Hu, Yilun Zhao, Chen Zhao, and Arman Cohan. Mcs-rag: Enhancing retrieval-augmented
 729 generation with monte carlo tree search. *arXiv preprint arXiv:2503.20757*, 2025.

730 Haoran Luo, Yikai Guo, Qika Lin, Xiaobao Wu, Xinyu Mu, Wenhao Liu, Meina Song, Yifan Zhu,
 731 Luu Anh Tuan, et al. Kbqa-o1: Agentic knowledge base question answering with monte carlo tree
 732 search. *arXiv preprint arXiv:2501.18922*, 2025.

733 ZhongXiang Sun, Qipeng Wang, Weijie Yu, Xiaoxue Zang, Kai Zheng, Jun Xu, Xiao Zhang, Song
 734 Yang, and Han Li. Rearter: Retrieval-augmented reasoning with trustworthy process rewarding.
 735 *ArXiv*, abs/2501.07861, 2025. URL <https://api.semanticscholar.org/CorpusID:275515946>.

736 Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
 737 problem. *Machine Learning*, 47:235–256, 2002. URL <https://api.semanticscholar.org/CorpusID:207609497>.

738 Manuel Alejandro Borroto Santana, Bernardo Cuteri, Francesco Ricca, and Vito Barbara. SPARQL-
 739 QA enters the QALD challenge. In Xi Yan, Meriem Beloucif, and Ricardo Usbeck, editors,
 740 *Proceedings of the 7th Natural Language Interfaces for the Web of Data (NLIWoD) co-located*
 741 *with the 19th European Semantic Web Conference (ESWC 2022), Hersonissos, Greece, May 29th,*
 742 *2022*, volume 3196 of *CEUR Workshop Proceedings*, pages 25–31. CEUR-WS.org, 2022. URL
 743 <https://ceur-ws.org/Vol-3196/paper3.pdf>.

744 Daniel Scott Himmelstein, Antoine Lizee, Christine Hessler, Leo Brueggeman, Sabrina L Chen,
 745 Dexter Hadley, Ari Green, Pouya Khankhanian, and Sergio E Baranzini. Systematic integration of
 746 biomedical knowledge prioritizes drugs for repurposing. *elife*, 6:e26726, 2017.

756 Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Cohen, and Xinghua Lu. PubMedQA: A
757 dataset for biomedical research question answering. In Kentaro Inui, Jing Jiang, Vincent Ng,
758 and Xiaojun Wan, editors, *Proceedings of the 2019 Conference on Empirical Methods in Natural
759 Language Processing and the 9th International Joint Conference on Natural Language Processing
760 (EMNLP-IJCNLP)*, pages 2567–2577, Hong Kong, China, November 2019. Association for
761 Computational Linguistics. doi: 10.18653/v1/D19-1259. URL <https://aclanthology.org/D19-1259/>.
762

763 Anastasia Krithara, Anastasios Nentidis, Konstantinos Bougiosiotis, and Georgios Paliouras. Bioasq-
764 qa: A manually curated corpus for biomedical question answering. *Scientific Data*, 10(1):170,
765 2023.

766 JiaShu He, Mingyu Derek Ma, Jinxuan Fan, Dan Roth, Wei Wang, and Alejandro Ribeiro. Give: Struc-
767 tured reasoning of large language models with knowledge graph inspired veracity extrapolation,
768 2025. URL <https://arxiv.org/abs/2410.08475>.

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 APPENDIX

811

812 This appendix provides additional implementation details, experimental configurations, full prompt
813 templates, ablation settings, and supplementary visualizations referenced throughout the main paper.
814

815

816

A FURTHER DETAILS OF VOG AGENTS

817

818

A.1 PRE-DEFINED SPARQL QUERY

819

820 For KG-based knowledge extraction, we use the following predefined SPARQL query templates to
821 access facts from Freebase.
822

823

824

SPARQL: Relation Retrieval

825

826 **Outgoing Relations:**

827

```

PREFIX ns: <http://rdf.freebase.com/ns/>
SELECT DISTINCT ?relation
WHERE {
  ns:mid ?relation ?x .
}
```

828

829 **Incoming Relations:**

830

```

PREFIX ns: <http://rdf.freebase.com/ns/>
SELECT DISTINCT ?relation
WHERE {
  ?x ?relation ns:mid .
}
```

831

832

SPARQL: Entity Search

833

```

(ehead, r, ?)
PREFIX ns: <http://rdf.freebase.com/ns/>
SELECT ?tailEntity
WHERE {
  ns:mid ns:relation ?tailEntity .
```

834

```

(?, r, etail)
PREFIX ns: <http://rdf.freebase.com/ns/>
```

835

```

SELECT ?tailEntity
WHERE {
  ?tailEntity ns:relation ns:mid .
```

836

```
}
```

837

838

SPARQL: Entity Name Search

839

```

PREFIX ns: <http://rdf.freebase.com/ns/>
SELECT DISTINCT ?tailEntity
WHERE {
  {
    ?entity ns:type.object.name ?tailEntity .
    FILTER(?entity = ns:mid)
  }
  UNION
  {
    ?entity <http://www.w3.org/2002/07/owl#\sameAs> ?tailEntity .
    FILTER(?entity = ns:mid)
```

```

864
865     }
866 }
867
868

```

At each reasoning depth t , VoG constructs structured KG queries based on the current action A_t from the reasoning plan $S^{(t)}$. These queries follow the pattern $(e_{head}, r, ?)$ or $(?, r, e_{tail})$ and are executed against the underlying KG. Entities from \mathcal{E}_{t-1} and filtered relations from $\mathcal{R}_t^{\text{cand}}$ are combined to form the query set.

A.2 ENTROPY-BASED FILTERING

To reduce prompt length and eliminate noise from large candidate sets, we apply entropy-based filtering to relation and entity candidates. Specifically, we first compute similarity scores between all candidates and a set of suggested relations using a pre-trained encoder `msmarco-bert-base-dot-v5`. For each candidate $c_i \in \mathcal{C}$, its weight is calculated as

$$w_i = \max_{r_j \in R} \text{sim}(M(c_i), M(r_j)), \quad (5)$$

where $M(\cdot)$ denotes the encoding function and $\text{sim}(\cdot, \cdot)$ the similarity measure.

We then normalize the weights via softmax:

$$p_i = \frac{\exp(w_i)}{\sum_j \exp(w_j)}, \quad (6)$$

and compute the normalized entropy over the distribution $\{p_i\}$:

$$H_{\text{norm}} = -\frac{\sum_i p_i \log(p_i)}{\log |\mathcal{C}|}. \quad (7)$$

Using H_{norm} , we adaptively determine the selection width k within bounds $[k_{\min}, k_{\max}]$ by

$$k = \max(k_{\min}, \min(\lfloor k_{\min} + (k_{\max} - k_{\min}) \cdot H_{\text{norm}} \rfloor, |\mathcal{C}|)). \quad (8)$$

Finally, we select the top- k candidates ranked by their weights w_i . The detailed procedure is summarized in Algorithm 1, where the above equations correspond to the respective steps of computing weights, normalizing via softmax, calculating entropy, determining adaptive width, and selecting candidates.

Algorithm 1: Entropy-Based Relation (or Entity) Filtering

Input: Candidate set $\mathcal{C} = \{c_1, \dots, c_n\}$, Suggested relations $R = \{r_1, \dots, r_m\}$, Similarity encoder M , Width bounds $[k_{\min}, k_{\max}]$

Output: Filtered subset $\mathcal{C}_{\text{selected}}$

- 1 Encode all candidates and suggestions using encoder M ;
- 2 Compute similarity scores w_i as in Equation equation 5;
- 3 Normalize weights via softmax according to Equation equation 6;
- 4 Compute normalized entropy H_{norm} as per Equation equation 7;
- 5 Compute adaptive width k following Equation equation 8;
- 6 Select top- k candidates $\mathcal{C}_{\text{selected}}$ by weights w_i ;
- 7 **return** $\mathcal{C}_{\text{selected}}$

918 A.3 PROMPT TEMPLATES
919920 A.3.1 PLAN GENERATION PROMPT
921

922 Prompt Template: Plan Generation

923 **Instruction:** You are an intelligent assistant tasked with answering the following question.
924 Your job is to understand the question and plan all the necessary steps to solve it. Do not
925 judge the question or give an unknown answer. You can only use the following two actions:
926 (1) Search[Keyword]: To retrieve relative information based on the given question.
927 (2) Finish[Answer]: When the observations are sufficient to answer the question, return the
928 final answer and finish the task.929 *Few-shot examples*
930931 **Inputs:**
932933 **Question:** { Q }
934 **Output:** Initial plan $S^{(t)}$ 935 A.3.2 RELATION SELECTION PROMPT
936937 Prompt Template: Relation Selection
938939 **Instruction:** Please provide the relevant relations to the question " $\{Q\}$ " and suggested
940 relation in current action " $\{A_t\}$ ".941 **Candidate Relations:** $\{r_1, r_2, \dots, r_n\}$ 942 *Few-shot examples*
943944 **Output:** { Relevant relations }
945946 A.3.3 ENTITY SELECTION PROMPT
947948 Prompt Template: Entity Selection
949950 **Instruction:** Based on the question " $\{Q\}$ " and predicted observation " $\{O_t\}$ ", choose the
951 most plausible target entities.952 **Candidate Entities:** $\{e_1, e_2, \dots, e_n\}$ 953 *Few-shot examples*
954955 **Output:** { Entities }
956957 A.3.4 VERIFICATION PROMPT
958959 Prompt Template: Stepwise Verification
960961 **Instructions:** You are given a set of knowledge triplets and an LLM-generated reasoning
962 step. Analyze whether it is necessary to revise the LLM's observation. Your response must be
963 in valid JSON format including keys "Revise" and "Reason". If "Revise" is "Yes",
964 include a corrected "Revised Observation" field.965 **Predicted observation from LLM:** {}
966967 **Knowledge Triplets:** []
968 *Few-shot examples*969 **Output Format (JSON):**
970

971 {

```

972
973     "Revise": "Yes" or "No",
974     "Reason": "...",
975     "Revised Observation": (only if "Yes")
976 }
977
978
979
980 A.3.5 REVISION PROMPT
981

```

Prompt Template: Local Revision

Instruction: You are provided with a reasoning plan for the following question. Based on the given context, revise the plan as needed to correctly answer the question. You can also adjust previous steps based on how the observation aligns with or contradicts existing steps.

Few-shot examples

Inputs:

Question: { Q }
Current plans: { $S^{(t-1)}$ }
Current observation: { O_t }

Output: Revised plan \hat{S}_t

Prompt Template: Global Revision

Instruction: You are provided with a reasoning plan for the following question and a set of knowledge graph (KG) triplets. The existing reasoning plan might have factual errors. Please revise the reasoning process completely from Thought 1.

Few-shot examples

Inputs:

Question: { Q }
Current plans: { $S^{(t-1)}$ }
KG triplets: { $O_{1:t}$ }

Output: Revised plan $S^{(t)}$

Prompt Template: Lookahead Revision

Instruction: You are provided with a reasoning plan for the following question and future relations as reference. Based on the given context, revise the plan as needed to correctly answer the question.

Few-shot examples

Inputs:

Question: { Q }
Current plans: { $S^{(t-1)}$ }
Lookahead relations: { R_{t+1} }

Output: Revised plan $S^{(t)}$

1026 Prompt Template: Mixed input

1028 **Instruction:** You are provided with a reasoning plan for the following question, a set of
1029 knowledge graph (KG) triplets, and future relations as reference. Based on the given context,
1030 revise the plan as needed to correctly answer the question.

1032 *Few-shot examples*

Inputs:

Question: { Q }

Current plans: $\{ S^{(t-1)} \}$

Lookahead relations: $\{ R_{t+1} \}$

KG triplets: $\{O_{1:t}\}$

Output: Revised plan $S^{(t)}$

B DETAILS OF CONTEXT SELECTOR

B.1 ALGORITHM AND BONUS FORMULATION

Our selection is performed via a modified UCB algorithm that incorporates reward-driven updates and KG-aware priors, as shown in Algorithm 2. We extend the classical Upper Confidence Bound (UCB) algorithm to incorporate domain-specific priors for KG reasoning. Specifically, for each context-selection strategy $c \in \mathcal{C}$, the score at step t is computed as Eq. (2) in Section 3.4, where each additional bonus term is defined below.

Entropy-aware Bonus. To encourage *global* planning under high answer uncertainty, we define a bonus term based on the entropy H_t of the answer distribution at step t :

$$\mathcal{B}_{\text{ent}}(H_t) = \lambda_{\text{ent}} \cdot [\mathbb{I}_{c=\text{global}} \cdot \sigma(a(H_t - b))], \quad (9)$$

where H_t is the normalized entropy of the current answer distribution. The sigmoid function $\sigma(x) = \frac{1}{1+e^{-x}}$ ensures a smooth transition of reward scaling. Constants $a = 6$ and $b = 0.5$ control the steepness and center of the response curve, respectively.

KG-aware Bonus. To prevent inefficient exploration due to over-deep search or entity redundancy, we incorporate a KG-aware penalty term that discourages excessive reasoning depth and repeated use of entities:

$$\mathcal{B}_{\text{KG}}(t, E_{\text{rep}}) = \lambda_{\text{KG}} \cdot \left[\mathbb{I}_{c=\text{global}} \cdot (\delta \cdot E_{\text{rep}}) - \mathbb{I}_{c=\text{lookahead}} \cdot \tanh\left(\kappa \cdot \frac{t}{T_d}\right) \right], \quad (10)$$

Here, $c \in \{\text{lookahead, global}\}$ denotes the current strategy, t is the current reasoning depth, and T_d is the expected maximum depth. The binary variable $E_{\text{rep}} \in \{0, 1\}$ indicates whether the *retrieve agent* revisits a previously retrieved entity and results in a loop. The constants δ and κ control the penalty strength for repeated entities and the steepness of the depth-based penalty curve, respectively. In our experiments, we set $\delta = 0.2$ and $\kappa = 4$. The indicator function $\mathbb{I}_{c=}$ activates the corresponding bonus based on the selected strategy.

Strategy Diversity Penalty. To avoid excessive reliance on a single context strategy, we incorporate a diversity-based penalty term that discourages repetitive selection. This is computed based on the number of times each strategy has been chosen within the past k revision steps:

$$\mathcal{B}_{\text{div}}(c) = -\lambda_{\text{div}}^{(c)} \cdot \text{count}_k(c), \quad (11)$$

where $\text{count}_k(c)$ denotes the number of times strategy c has been selected in the last k steps. We apply a strategy-specific coefficient $\lambda_{\text{div}}^{(c)}$, where $c \in \{\text{Local, Lookahead, Global}\}$, allowing differentiated regularization strength depending on the relative risk of overuse for each strategy.

Algorithm 2: KG-Aware Context Selection via Modified UCB

```

1: Input: Strategy set  $\mathcal{C} = \{\text{Local, Lookahead, Global}\}$ , initial plan steps  $T$ , expected depth  $T_d$  ;
2: Initialize:  $N[c] \leftarrow 0$ ,  $R[c] \leftarrow 0$ ,  $\text{count}_k[c] \leftarrow 0$ ,  $N \leftarrow 0$ ,  $\mathcal{P} \leftarrow \emptyset$ ;
3: for  $t = 1$  to  $T$  do
4:   Compute entropy  $H_t$  and normalized depth  $d_t = t/T_d$ ;
5:   while  $\nu_t < \text{reward\_threshold}$  do
6:     foreach  $c \in \mathcal{C}$  do
7:       if  $N[c] = 0$  then
8:          $\text{Score}[c] \leftarrow +\infty$  ; // Ensure initial exploration
9:         continue
10:        end
11:        Compute  $\text{UCB}_t(c)$  using Eq. 2;
12:        // Context-aware bonus terms:
13:        //  $\mathcal{B}_{\text{ent}}(H_t)$  from Eq. 9
14:        //  $\mathcal{B}_{\text{KG}}(t, \mathcal{E}_{\text{rep}})$  from Eq. 10
15:        //  $\mathcal{B}_{\text{div}}(c)$  from Eq. 11
16:         $\text{Score}[c] \leftarrow \text{UCB}_t(c)$ ;
17:      end
18:       $c_t \leftarrow \arg \max_{c \in \mathcal{C}} \text{Score}[c]$  ; // Select best context strategy
19:      Generate revised plan  $S$  using  $c_t$ ;
20:       $\mathcal{P} \leftarrow \mathcal{P} \cup \{S\}$  ; // Append revised plan to candidate pool
21:      Compute reward  $\nu_t$  using Eq. 4;
22:      Update:;
23:       $R[c_t] \leftarrow R[c_t] + \nu_t$ ;
24:       $N[c_t] \leftarrow N[c_t] + 1$ ,  $N \leftarrow N + 1$ ;
25:       $\text{count}_k[c_t] \leftarrow \text{count}_k[c_t] + 1$ ;
26:    end
27:     $T \leftarrow \text{len}(S)$  ; // Update plan length after success
28:  end

```

B.2 TASK-SPECIFIC REWARD

We define the task-specific reward ν_{local} as a weighted aggregation of five interpretable metrics, each designed to capture different aspects of reasoning quality at step t . These metrics jointly assess factual accuracy, semantic relevance, and reasoning efficiency, based on the alignment between the revised plan $S^{(t)}$, the question Q , and the knowledge graph feedback O_t .

- **Validation:** Measures the factual correctness of the predicted observation $Pred_O_t$ using a contradiction classifier. Specifically, we employ the DeBERTa-large-MNLI model to assess whether the prediction contradicts or aligns with the KG feedback. Additional penalties are applied for degenerate outputs such as “none,” “unknown,” or empty spans.
- **Quality:** Evaluates the semantic relevance between the predicted observation $Pred_O_t$ and the input question Q .
- **Question Alignment:** Measures the overall coherence of the reasoning step $S^{(t)}$ with respect to the original question Q . This is computed via embedding-level similarity to ensure that each revision remains question-centric.
- **Efficiency:** Penalizes redundancy across reasoning steps by comparing the semantic similarity of the current thought s_t with all previous thoughts $s_{1:t-1}$. High overlap in meaning reduces the reward, encouraging non-redundant, progressive reasoning.
- **Thought Coherence:** Assesses whether the current reasoning step is adequately grounded in the KG feedback O_t . We calculate the similarity between the step’s “Thought” component and the KG observations using the same embedding model.

For all similarity-based metrics, we compute cosine similarity between sentence embeddings obtained from a pretrained model (msmarco-bert-base-dot-v5).

1134 B.3 IMPLEMENTATION DETAILS
11351136 B.3.1 HYPERPARAMETER SETTINGS
11371138 We summarize below the hyperparameter settings used in our context selection and reward computa-
1139 tion modules.1140 For the UCB-based strategy selection, we use an exploration coefficient of $\alpha = 1.4$ to balance
1141 the trade-off between exploration and exploitation. With regard to the three context-aware bonus
1142 terms, we adopt default values based on practical intuition rather than extensive search. Specifically,
1143 the entropy-based bonus is scaled by $\lambda_{\text{ent}} = 0.1$, encouraging exploration under high uncertainty.
1144 The KG-based redundancy penalty is set with $\lambda_{\text{KG}} = 0.1$, discouraging repetitive or overly deep
1145 retrieval. For the diversity bonus, we assign strategy-specific coefficients $\lambda_{\text{div}}^{(c)} = \{0.05, 0.1, 0.2\}$ for
1146 the Local, Lookahead, and Global strategies respectively, reflecting varying tolerance for repetition.
1147 To evaluate the impact of these weights, we further perturbed them by $\pm 20\%$ and observed only
1148 marginal changes in accuracy ($\leq 1.2\%$) and stable strategy distributions in Appendix E.5, confirming
1149 that VoG’s performance is robust to hyperparameter variation.1150 The expected reasoning depth is set to $T_d = 5$ for CWQ, and $T_d = 3$ for both WebQSP and WebQues-
1151 tions, reflecting the variation in question complexity and the structural depth of their corresponding
1152 knowledge graphs. For instance, CWQ typically requires longer and more compositional reasoning
1153 plans compared to WebQuestions. In reward aggregation, we use an entropy-based interpolation
1154 factor $\beta = 0.4$ for CWQ, and $\beta = 0.2$ for both WebQSP and WebQuestions, to control the weighting
1155 between task-specific and confidence-based reward components. The final plan selection threshold is
1156 set to 0.73 for CWQ and 0.77 for the other two datasets, tuning the sensitivity of plan acceptance
1157 to dataset-specific characteristics. Above task-specific values were chosen based on the average
1158 plan lengths observed from a small sample of development questions, and no further tuning was
1159 performed.1160 B.3.2 EXPERIMENT SETTINGS
11611162 In our experiments, we evaluate VoG using three different language models: GPT-3.5 and GPT-4
1163 accessed via the OpenAI API,¹ and Qwen2.5, which is deployed locally.² We set the temperature to
1164 0.3 to reduce generation randomness, and restrict the maximum number of generation tokens to 1024
1165 across all experiments for consistency. The experiments are conducted on an NVIDIA A800 GPU
1166 server.1167 C DATASETS
11681169 We evaluate our method on three widely-used knowledge graph question answering (KGQA) bench-
1170 marks: **ComplexWebQuestions** (Talmor and Berant, 2018), **WebQSP** (Yih et al., 2016), and
1171 **WebQuestions** (Berant et al., 2013). All datasets are constructed on the external knowledge graph
1172 from Freebase(Bollacker et al., 2008) and require multi-hop reasoning to reach the answer. The
1173 statistics of the datasets used in this paper are shown in Table 5.1174
1175 Table 5: Dataset statistics.
1176

1177 Dataset	1178 Answer Type	1179 Train	1180 Test
1178 ComplexWebQuestions	1179 Entity	1180 27,734	1181 3,531
1179 WebQSP	1180 Entity / Number	1181 3,098	1182 1,639
1180 WebQuestions	1181 Entity/Number	1182 3738	1183 2,032

1184 D BASELINE DESCRIPTIONS
11851186 We compare VoG against three categories of baselines:
1187¹<https://platform.openai.com/docs>²<https://huggingface.co/Qwen>

1188 D.1 LLM-ONLY BASELINES
11891190 These methods test the inherent reasoning capabilities of LLMs without external knowledge.
11911192 • **IO Prompting** (Brown et al., 2020): This approach performs few-shot prompting using
1193 direct input-output examples without any intermediate reasoning steps.
1194 • **Chain-of-Thought (CoT)** (Trivedi et al., 2023): It generates intermediate reasoning chains
1195 that help the model arrive at a more accurate final answer.
1196 • **Self-Consistency (SC)** (Wang et al., 2022): This method samples multiple CoT reasoning
1197 chains and selects the most consistent final answer through majority voting.
11981199 D.2 FINE-TUNED METHODS
12001201 These methods incorporate KG information via supervised learning or fine-tuning strategies.
12021203 • **UniKGQA** (Jiang et al., 2022) unifies KG path retrieval and reasoning by introducing a
1204 pre-training objective based on question-relation matching, enabling shared representation
1205 learning.
1206 • **DECAF** (Yu et al., 2023) linearizes the knowledge base into text-like sequences and retrieves
1207 relevant subgraphs using text-based retrieval. It jointly generates both logical forms and
1208 direct answers, combining the strengths of symbolic and generative reasoning.
1209 • **KD-CoT** (Wang et al., 2023b) introduces a retrieval-augmented CoT framework, where an
1210 LLM queries a retriever for external knowledge and refines its reasoning chains based on
1211 returned answers, improving accuracy and credibility.
1212 • **RoG** (Luo et al., 2024b) employs a fine-tuned LLM to generate reasoning plans based on
1213 the KG. These plans guide the retrieval of faithful evidence from the KG, improving the
1214 factual alignment of the reasoning process.
1215 • **KG-Agent** (Zhao et al., 2024) uses a fine-tuned planner within a tool-augmented agent
1216 framework, enabling iterative interaction with KG APIs for multi-hop question answering.
1217 • **GNN-RAG** (Mavromatis and Karypis, 2024) employs lightweight graph neural networks
1218 to score nodes and their neighborhoods based on question relevance, enabling effective
1219 retrieval over long-range KG contexts.
1220 • **SubgraphRAG** (Li et al., 2025) employs a lightweight MLP with parallel triple-scoring
1221 and directional distance encoding to efficiently construct flexible subgraphs tailored to each
1222 query and model capacity.
12231224 D.3 AGENT-BASED KG-AUGMENTED METHODS
12251226 These methods utilize LLMs as agents to guide reasoning over KGs through prompting, without
1227 requiring fine-tuning.
12281229 • **ToG** (SUN et al., 2024) treats an LLM as a agent that performs beam search over the KG. It
1230 iteratively expands and scores candidate paths to discover the most promising reasoning
1231 trajectories.
1232 • **PoG** (Chen et al., 2024) decomposes the input question into structured subgoals, which are
1233 then used to guide step-by-step retrieval and reasoning. Additional memory and reflection
1234 mechanisms are introduced to enhance coherence and accuracy.
12351236 We emphasize that VoG is a model-agnostic framework that does not require fine-tuning, and is
1237 directly compatible with both open-source and proprietary LLMs.
12381239 E ADDITIONAL ANALYSIS AND ABLATION STUDY
12401241 In this section, we provide a deeper ablation to further examine the behavior and effectiveness of the
1242 proposed VoG framework beyond the main experimental results. All experiments are conducted with
1243 GPT-3.5 for consistency. Together, these ablation studies offer fine-grained insights into how each
1244 design choice contributes to VoG’s overall accuracy, robustness, and efficiency.
1245

1242 **E.1 REVISION SIGNAL ANALYSIS**

1244 To better understand the distribution and necessity of revision across reasoning steps, we analyze
 1245 how often the verification module flags reasoning steps for revision. We compare the revise signals
 1246 generated by the LLM-based verifier (GPT-3.5) and a lightweight PLM-based verifier (e.g., DeBERTa-
 1247 based NLI model(He et al., 2021)). Figure 5 visualizes the distribution of revision signals across
 1248 three datasets, segmented by the source of verification. The outer ring distinguishes between samples
 1249 that triggered a revision signal and those that did not, while the inner ring further breaks down the
 1250 revision-triggering cases into those suggested exclusively by the LLM verifier, the PLM verifier, or
 1251 by both. This visualization highlights the complementary nature of the two verifiers, as well as the
 1252 relative proportion of agreed versus disagreed signals.

1264 Figure 5: Distribution of revision signals across datasets. The outer ring shows the overall proportion
 1265 of examples requiring revision, while the inner ring indicates the source of the revision signal (LLM
 1266 only, PLM only, or both).

1269 **E.2 DETAILED EFFICIENCY ANALYSIS**

1271 To provide a finer-grained view of efficiency, we further analyze the token usage distribution across
 1272 different stages of VoG. Specifically, we separate the tokens consumed by planning, retrieval, verifica-
 1273 tion, and revision, and report their proportions relative to the total tokens. Figure 6 presents the
 1274 results on CWQ and WebQSP with GPT-3.5, based on a representative sample of test data. We find
 1275 that initial planning consistently accounts for only a small fraction of the total tokens, whereas the
 1276 relative costs of retrieval, verification, and revision vary across datasets.

1288 Figure 6: Stage-wise token distribution of VoG on CWQ and WebQSP. Each slice shows the proportion
 1289 of tokens consumed by initial planning, retrieval, verification, and revision relative to the total.

1292 **E.3 STRATEGY-LEVEL PERFORMANCE ANALYSIS**

1294 In contrast to the isolated strategy end-to-end comparison in Section 4.3, here we analyze the
 1295 effectiveness of different strategies under the adaptive MAB framework. We first compute the per-
 iteration *revision success rate*, defined as the percentage of revisions that successfully correct an

1296 initial error, considering only the instances where the prior plan’s answer was incorrect. As shown in
 1297 Table 6, all three strategies show comparable revision success rates.
 1298

1300 Table 6: Revision success rates (%) for each strategy, computed as the proportion of revisions that
 1301 successfully corrected an error in each attempt.

Strategy	CWQ	WebQSP	WebQuestions
Local	26.0	38.6	27.0
Lookahead	25.9	36.8	27.9
Global	26.1	33.6	28.5

1302 Beyond evaluating whether a revision leads to a correct final answer, we additionally assess whether
 1303 the model can correct incorrect intermediate reasoning steps by leveraging ground-truth SPARQL ex-
 1304 ecution paths. In this setup, we use GPT-3.5 to label each revised step as: (i) **CORRECT**, fully match-
 1305 ing the gold reasoning path; (ii) **IMPROVED**, an improvement over an originally incorrect step; or
 1306 (iii) **INCORRECT**. Table 7 summarizes the proportions of **CORRECT** and **CORRECT+IMPROVED**
 1307 steps for CWQ and WebQSP, indicating that the revision module successfully revises a large majority
 1308 of wrong intermediate steps.

1315 Table 7: Step-level correctness of revised reasoning steps using ground-truth SPARQL paths.

Metric	CWQ	WebQSP
CORRECT + IMPROVED	85.21%	99.50%
CORRECT only	44.36%	83.25%

1320 We then examine which strategy contributes to the correct answers produced under the MAB setting.
 1321 Figure 7 reports the proportion of correctly answered questions attributed to each strategy, highlighting
 1322 their complementary roles in the overall framework.

1341 Figure 7: Strategy-specific answer accuracy under the MAB framework across three datasets. Each
 1342 bar represents the proportion of correctly answered questions attributed to a given strategy.

1344 E.4 ABLATION ON BONUS TERMS

1346 We evaluate the contribution of each component in our KG-aware UCB scoring mechanism by
 1347 conducting ablation studies on the CWQ dataset. Specifically, we consider three variants: (i) removing
 1348 all KG-aware prior terms, (ii) removing only the diversity-aware bonus, and (iii) removing both,
 1349 effectively reducing our scoring function to the standard UCB formulation (Auer et al., 2002). Table 8
 reports the performance degradation under each variant. The results demonstrate that incorporating

1350 KG-specific priors and diversity control leads to more effective context selection, ultimately enhancing
 1351 reasoning accuracy.
 1352

1353
1354 Table 8: Ablation study of UCB bonus terms across datasets.

1355 UCB Variant	1356 CWQ	1357 WebQSP	1358 WebQuestions
1359 Modified UCB (all bonuses)	64.7	83.2	63.0
1360 w/o KG-aware priors	64.2	77.7	60.2
1361 w/o Diversity	63.8	77.3	59.4
1362 w/o both(UCB)	63.0	74.7	58.9

1363

E.5 ROBUSTNESS OF MODIFIED UCB

1364 To assess the robustness of our UCB formulation, we performed perturbation analysis on both the
 1365 context-aware bonus terms and the exploration weight. Specifically, we perturbed the weights of these
 1366 terms by $\pm 20\%$. Across all perturbation settings, VoG consistently outperforms other GPT-3.5-based
 1367 baselines, with performance fluctuations remaining marginal ($\leq 1.2\%$ in accuracy). These results
 1368 confirm that our approach is robust to moderate changes in weighting. Tables 9 and 10 report the
 1369 accuracy, average plan length, and average strategy counts under each perturbation for CWQ and
 1370 WebQSP, respectively.

1371
1372 Table 9: Robustness analysis of context-aware bonus weights on CWQ and WebQSP.

1373 Dataset	1374 Weight Perturbation	1375 Accuracy (%)	1376 Avg Plan Length	1377 Avg Strategy Counts (Local / Lookahead / Global)
1378 CWQ	+20%	63.5	3.49	1.60 / 1.22 / 1.21
	-20%	63.6	3.52	1.59 / 1.21 / 1.15
	0%	64.7	3.62	1.69 / 1.26 / 1.22
1379 WebQSP	+20%	82.4	2.76	1.35 / 0.83 / 0.70
	-20%	83.2	2.78	1.34 / 0.81 / 0.66
	0%	83.2	2.80	1.35 / 0.80 / 0.63

1380
1381 Table 10: Robustness analysis of exploration weights on CWQ and WebQSP.

1382 Dataset	1383 Weight Perturbation	1384 Accuracy (%)	1385 Avg Plan Length	1386 Avg Strategy Counts (Local / Lookahead / Global)
1387 CWQ	+20%	64.3	3.53	1.65 / 1.32 / 1.16
	-20%	63.6	3.62	1.61 / 1.29 / 1.15
	0%	64.7	3.62	1.69 / 1.26 / 1.22
1388 WebQSP	+20%	82.4	2.73	1.36 / 0.86 / 0.79
	-20%	83.3	2.79	1.33 / 0.84 / 0.61
	0%	83.2	2.80	1.35 / 0.80 / 0.63

1389

E.6 ABLATION STUDY ON REWARD DESIGN

1390 We conduct two sets of ablation experiments to evaluate the contribution of different reward components
 1391 used in our MAB-based context selection.

1392 **Task-Specific vs. Confidence-Based Reward.** We first compare the performance of the task-
 1393 specific reward and confidence-based reward in terms of their ability to guide the selection of
 1394 high-quality plans. Specifically, we report the accuracy of the highest-scoring plan from the full set
 1395 of candidates \mathcal{P} under each reward formulation. Note that this includes all plans proposed throughout
 1396 the iterative reasoning process, regardless of whether they were ultimately accepted or discarded. As
 1397 shown in Table 11, the confidence-based reward generally achieves better performance, indicating a
 1398 stronger alignment with answer correctness. Additionally, we compute the mean entropy of answer

distributions aggregated over all revision steps. This metric captures the average level of uncertainty during reasoning across datasets. It is important to distinguish this analysis from the actual decision process in our MAB-based controller. During inference, the final answer is produced by the plan selected at the last revision step. Specifically, the one that exceeds the reward threshold and is chosen based on dynamic strategy selection. In contrast, this ablation purely evaluates each reward’s ability to assign higher scores to more accurate plans within the full candidate pool.

Table 11: Accuracy (%) of the plan selected by different reward methods, and corresponding answer entropy.

Reward Method	CWQ	WebQSP	WebQuestions
Task-specific reward	56.5	75.9	59.1
Confidence reward	60.4	79.1	62.4
Entropy (avg.)	0.37	0.34	0.32

Component-wise Ablation of Task-Specific Reward. To understand the role of each component in the task-specific reward design, we perform a leave-one-out ablation study. As shown in Table 12, removing any individual component leads to a drop in accuracy, confirming the necessity of all five elements. These results highlight the importance of penalizing hallucinated or contradictory outputs and aligning the reasoning step with the input query.

Table 12: Ablation Accuracy (%) on Task-Specific Reward across Datasets

Setting	CWQ	WebQSP	WebQuestions
Full Reward	56.50	50.61	75.60
w/o Quality	52.41	49.47	71.45
w/o Thought Completion	52.66	49.82	70.35
w/o Efficiency	52.49	50.53	71.29
w/o Question Alignment	52.15	49.47	70.98
w/o Validation	51.13	48.07	68.61

E.7 TRADE-OFF ANALYSIS BETWEEN COMPLEXITY AND PERFORMANCE

This subsection provides a quantitative study of the trade-offs between model complexity and performance in the VoG framework. We examine several simplified variants of VoG to understand how individual components contribute to accuracy and computational cost. Specifically, we explore the effect of replacing the UCB with fixed local, global, and lookahead revision strategies, denoted as *local revision*, *global revision*, and *lookahead revision*, respectively, as well as substituting the *verify agent* with a *PLM-only verifier*. Table 13 reports the resulting accuracy changes, token usage differences, and the corresponding maximum LLM call complexity on the CWQ dataset.

Table 13: Trade-off analysis of simplifications in VoG on CWQ dataset.

Simplification	Δ Acc	Δ Token Usage	Maximum LLM Call (Simplified / Full)
<i>local revision</i>	-4.6%	-25.0%	$(1 + D(2k_{\max} + 2))/(1 + D(2k_{\max} + 1 + T))$
<i>global revision</i>	-4.5%	-29.1%	$(1 + D(2k_{\max} + 2))/(1 + D(2k_{\max} + 1 + T))$
<i>lookahead revision</i>	-1.1%	-21.1%	$(1 + D(2k_{\max} + 2))/(1 + D(2k_{\max} + 1 + T))$
<i>PLM-only verifier</i>	-2.2%	-21.1%	$(1 + D(2k_{\max} + T))/(1 + D(2k_{\max} + 1 + T))$

Note: D is the depth of reasoning plan, k_{\max} is the maximum width given in Algorithm 1, and T is the revision times.

1458 F ADDITIONAL CASE STUDY
14591460 F.1 ADDITIONAL CASES
1461

1462 Beyond the representative case analyzed in Section 4.5, we also examine additional examples that
1463 highlight how different revision strategies become effective under different conditions. Figure 8
1464 presents two additional cases using Qwen2.5-7B. The upper case shows how future relations provide
1465 useful guidance to revise the plan, while the lower case demonstrates that they may instead introduce
1466 distraction. We also observe that the *Local* strategy often works well in earlier steps when explicit
1467 evidence is available and competing candidates exist, as in the lower case, where lightweight local
1468 correction prevents unnecessary detours.

1469 Together, these examples highlight both the potential and risks of relying on broader context, further
1470 underscoring the importance of adaptive strategy selection. These examples further highlight the
1471 difficulty of predicting which context will be most effective, reinforcing the importance of dynamic
1472 strategy selection. We also note that although intermediate answers at non-terminal steps are not final
1473 outputs, their errors can mislead subsequent reasoning and incur unnecessary computational cost.

1500 Figure 8: Additional two case studies with Qwen2.5-7B, illustrating how different revision strategies
1501 become effective under different conditions.

1502 F.2 CASE COMPARISON WITH BASELINES

1503 While Section 4.5 presents a strategy-level case study highlighting VoG’s internal context selector,
1504 here we provide a complementary example comparing VoG against two external agent-based baselines,
1505 ToG and PoG. Figure 9 illustrates the question, retrieved triplets, and intermediate reasoning process
1506 for each method. This example highlights how VoG’s iterative verification and context-aware revision
1507 mechanisms help mitigate hallucinations and enable correction of intermediate errors.

1508 Both ToG and PoG fail to produce the correct answer in this example, but for different reasons. **ToG**,
1509 which conducts beam search over KG triplets by prompting an LLM to score candidate paths, retrieves
1510 facts such as *(France, location.location.containedby, Europe)* and *(Nijmegen, second_level_division,*

1512 *Netherlands*). However, lacking structured planning or subgoal decomposition, it prunes valid paths
 1513 prematurely and incorrectly concludes that insufficient information is available.

1514 **PoG** performs better in retrieval, identifying facts like (*Nijmegen*, *location.location.nearby_airports*,
 1515 *Weeze Airport*). However, it suffers from LLM hallucination, prematurely terminating the reasoning
 1516 process and erroneously predicting the *Netherlands* as the final answer without validating supporting
 1517 facts.

1518 In contrast, **VoG** successfully answers the question by employing three key mechanisms: (i) an initial
 1519 reasoning plan that explicitly outlines the intended depth or retrieval, (ii) stepwise verification that
 1520 checks the factual correctness of each intermediate step against retrieved KG triplets, and (iii) a
 1521 context-aware revision strategy, such as *lookahead*, which dynamically adapts retrieval and plan
 1522 updates. Moreover, because VoG performs verification and revision along the entire reasoning chain,
 1523 it is more tolerant to locally missing evidence "*Unnamed Entity*" as illustrated in ToG's case than
 1524 baselines that rely solely on local decisions. These allow VoG to refine incorrect steps and extend
 1525 reasoning depth when necessary, leading to a factually grounded and correct answer.

Q: What country bordering France contains an airport that serves <i>Nijmegen</i> ? Topic Entities: France, <i>Nijmegen</i>	
ToG	<p>Retrieved triples: [France, <i>location.location.containedby</i>, Europe], [France, <i>location.location.containedby</i>, Western Europe], [France, <i>location.location.geolocation</i>, Unnamed Entity], [Nijmegen, <i>second_level_division</i>, Netherland]</p> <p>Reasoning: Based on the given knowledge triplets, there is insufficient information to answer the question.</p>
PoG	<p>Retrieved triples (depth 1): [Nijmegen, <i>location.location.containedby</i>, Netherlands], [France, <i>location.location.containedby</i>, Europe], [Nijmegen, <i>location.location.nearby_airports</i>, Weeze Airport]</p> <p>Reasoning: [LLM hallucination about the stopping criterion]{ "A": { "Sufficient": "Yes", "Answer": "Netherland s" }, "R": "The country bordering France that contains an airport serving Nijmegen is the Netherlands." }</p>
VoG	<p>Thought 1: I need to find out which countries border France and contain an airport that serves Nijmegen Action 1: Search[airports serving Nijmegen, countries bordering France] Observation 1: (France, located in, Europe) (Nijmegen, located in, Netherlands) (Nijmegen, located near, Nijmegen Airport)</p> <p>Thought 2: The airport serving Nijmegen is Weeze Airport. I need to determine the country where Weeze Airport is located. Action 2: Search[Weeze airport] Observation 2: (Weeze airport, in Germany) Thought 3: I have found that Weeze Airport serves Nijmegen and is in Germany, which borders France. Action 3: Finish[Germany]</p>

Figure 9: Case study comparing VoG, ToG, and PoG.

F.3 ANALYSIS OF RECOVERED FAILURE TYPES

To further investigate which types of reasoning failures benefit most from VoG's verification mechanism, we conducted an additional error analysis. Failure cases were categorized into four types via annotation assisted by GPT-3.5, with spot-checking for consistency. Table 14 summarizes the results.

Table 14: Distribution of recovered failure cases using GPT-3.5 annotation.

Failure Type	Description	Proportion (%)
Hallucinated fact	LLM fabricates a fact not supported by KG evidence.	37.5
Incomplete evidence	Answer returned before all necessary evidence is collected and verified.	27.9
Entity disambiguation error	Incorrect entity chosen when multiple candidates exist.	21.7
Query intent drift	Reasoning plan deviates from the original query intent.	12.9

We find that hallucinated facts and incomplete evidence are the most effectively recovered failure types, which aligns with our main claim that stepwise verification and context-aware revision help mitigate hallucination and premature stopping.

1566 G CROSS-KG GENERALIZATION

1568 To examine VoG’s transferability beyond Freebase, we conduct two generalization experiments on
 1569 both an open-domain KG with a different schema and a domain-specialized biomedical KG.

1571 **Generalization to Wikidata.** We evaluate VoG on Wikidata (Vrandečić and Krötzsch, 2014) to
 1572 assess cross-KG robustness. We directly replace the KG-specific retrieval interface while keeping
 1573 the reasoning and verification modules unchanged. Experiments are conducted on the QALD-
 1574 10 (Santana et al., 2022) benchmark, showing that VoG achieves competitive performance without
 1575 any task-specific training as shown in Table 15.

1577 Table 15: The results comparison of different methods on the QALD10-en dataset.

1578 Model	1579 Method	1580 Accuracy (%)
1580 Fine-tuned	1581 SPARQL-QA (Santana et al., 2022)	1582 45.4
1581 GPT 3.5	1582 ToG	50.2
1582 GPT 3.5	1583 VoG	57.4

1584 **Generalization to Biomedical Knowledge.** Generalizing across domain KGs remains an open
 1585 challenge in the field due to the scarcity of high-quality multi-hop QA datasets outside open-domain
 1586 settings. Existing biomedical datasets are typically yes/no or long free-form question answering,
 1587 making controlled evaluation difficult. To enable a preliminary assessment, we construct a small
 1588 multi-hop biomedical QA benchmark based on Hetionet (Himmelstein et al., 2017), a UMLS-derived
 1589 KG containing 47,031 nodes and 2,250,197 edges. We extract multi-hop relational paths, filter
 1590 them for semantic coherence, and use GPT-3.5 rewriting to obtain 200 naturally phrased biomedical
 1591 questions (e.g., “Which genes interact with genes that are downregulated by Dacarbazine?”). Owing
 1592 to the reduced contextual variability in biomedical queries, we adopt our local revision strategy for
 1593 this study. Table 16 shows the accuracy gain of VoG on our test set.

1595 Table 16: The results on our test set.

1596 Setting	1597 Accuracy (%)
1598 GPT 3.5	1.0
1599 VoG	19.5
1600 Gain	+18.5

1602 We further evaluate VoG on two biomedical datasets, PubMedQA (Jin et al., 2019) and
 1603 BioASQ (Krithara et al., 2023), both consisting of yes/no type questions that do not require multi-hop
 1604 reasoning. The experiment is conducted under the sparse-KG setting introduced in GIVE (He et al.,
 1605 2025), using a UMLS-derived KG with only 135 nodes and 5,877 edges, which severely limits the
 1606 available triplets and path candidates. Table 17 shows the results comparison in terms of accuracy,
 1607 average token usage, and average inference time.

1609 Table 17: The results comparison of GIVE, ToG, and VoG on PubMedQA and BioASQ.

1610 Dataset	1611 Method	1612 Accuracy (%)	1613 Avg Tokens	1614 Avg Time (s)
1612 PubMedQA (Jin et al., 2019)	GIVE	53.6	14,701.5	33.6
	ToG	17.6	12,805.3	15.9
	VoG	45.3	1,653.2	12.1
1615 BioASQ (Krithara et al., 2023)	GIVE	88.2	8,050.3	15.3
	ToG	18.0	7,070.2	10.3
	VoG	93.5	1,862.6	14.1

1618 These results demonstrate that VoG can generalize beyond Freebase to KGs with different structural
 1619 and semantic characteristics. This transferability is primarily enabled by VoG’s training-free design,

1620 where retrieval relies on pretrained text embeddings that carry semantically transferable signals across
1621 heterogeneous schemas. The inherent cross-domain generalization capability of LLMs also stabilizes
1622 VoG’s reasoning on specific domains even when domain knowledge is sparse or noisy.
1623

1624 H LIMITATION 1625

1626 Despite the strong performance of VoG in multi-hop KG reasoning, several limitations remain:
1627

1628 **Reliance on KG Completeness:** VoG assumes access to a reliable and sufficiently complete KG.
1629 However, real-world KGs that constructed from web corpora are often noisy or incomplete, which
1630 may lead to retrieval failures or factual errors. In future work, we plan to incorporate KG confidence
1631 scores or external sources to mitigate such issues.
1632

1633 **Frozen LLM-based Verifier:** In this work, we leverage frozen LLMs and PLMs as verifiers, which
1634 may be limited by their pre-training distributions and lack of task-specific tuning. As a result, subtle
1635 inconsistencies may go undetected during stepwise verification. In the future, we plan to explore
1636 fine-tuning LLMs to act as more reliable verification modules and enable stronger factual validation
1637 and more accurate revision signals.
1638

1639 **Basic Context Selection Granularity:** Our current context selector relies on signals like entropy
1640 and step. Incorporating structural signals from the KG, such as node centrality or subgraph coherence,
1641 may offer finer-grained control over reasoning revision and is worth exploring in future.
1642

1643 I THE USE OF LARGE LANGUAGE MODELS 1644

1645 Large language models (LLMs) were used in this work as supportive tools to polish the writing. They
1646 assisted with grammar, clarity, and style, but did not contribute to the design of the methodology,
1647 implementation of experiments, or interpretation of results. Their role was limited to improving
1648 readability, without generating original research contributions.
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673