
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VOG: ENHANCING LLM REASONING THROUGH STEP-
WISE VERIFICATION ON KNOWLEDGE GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) excel at various reasoning tasks but still encounter
challenges such as hallucination and factual inconsistency in knowledge-intensive
tasks, primarily due to a lack of external knowledge and factual verification. These
challenges could be mitigated by leveraging knowledge graphs (KGs) to support
more reliable LLM reasoning. However, existing KG-augmented LLM frame-
works still rely on static integration mechanisms that cannot adjust reasoning in
response to evolving context and retrieved evidence, resulting in error propagation
and incomplete reasoning. To alleviate these issues, we propose Verify-on-Graph
(VoG), a scalable and model-agnostic framework to enhance LLM reasoning
via iterative retrieval, stepwise verification, and adaptive revision. Besides per-
forming KG retrieval guided by an initially generated reasoning plan, VoG iter-
atively verifies and revises the reasoning plan, correcting intermediate errors in
consideration of the varying contextual conditions. During plan revision, VoG
leverages a context-aware multi-armed bandit strategy, guided by reward signals
that capture uncertainty and semantic consistency, to enhance the alignment be-
tween the reasoning plan and retrieved evidence in a more adaptive and reliable
way. Experimental results across three benchmark datasets show that VoG consis-
tently improves both reasoning accuracy and efficiency. Our code is available at
https://anonymous.4open.science/r/VoG-132C/.

1 INTRODUCTION

Despite the impressive reasoning capabilities across various natural language understanding and
generation tasks (Guo et al., 2025; OpenAI, 2023), large language models (LLMs) continue to face
challenges in solving knowledge-intensive tasks that require multi-hop reasoning (Ji et al., 2023;
Bang et al., 2023). The essential limitation lies in the lack of up-to-date or specialized knowledge not
included in their pre-training stage and the limited transparency and explainability in their reasoning
processes. To address these issues, Knowledge Graphs (KGs) (Bollacker et al., 2008; Auer et al.,
2007; Suchanek et al., 2007) have been adopted as promising external knowledge sources due to their
explicit, organized and updatable nature (Agrawal et al., 2024; Wang et al., 2023a; Pan et al., 2023).

Existing frameworks generally follow two main directions to enhance LLM reasoning with KG.
Previous approaches equip LLMs with the ability to plan structured reasoning paths or logical forms,
such as SPARQL (Pérez et al., 2009) queries, before interacting with the knowledge graph (Luo
et al., 2024a; Li et al., 2023; Luo et al., 2024b; Gu et al., 2022). While planning approaches facilitate
structured inference, they often require expensive fine-tuning and are vulnerable to retrieve-related
errors, such as producing non-executable queries or referencing non-existent entities. Thus, several
studies focus on optimizing the retrieval process to better support LLM reasoning. Typical methods
including retrieving KG triplets and presenting them statically to the LLM (Zhang et al., 2024; Zhao
et al., 2024; Wang et al., 2023b; Wen et al., 2024; Yasunaga et al., 2022) and conducting stepwise
retrieval with LLM agent (SUN et al., 2024; Huang et al., 2024), both aiming to ground reasoning in
structured knowledge of KG. Yet, these approaches still lack effective mechanisms to align retrieval
with evolving subgoals. Therefore, recent work has attempted to integrate planning into the retrieval
process to better guide multi-step inference (Jiang et al., 2024; Guan et al., 2024).

However, current KG-enhanced LLM frameworks still suffer from below challenges: (1) Inflexible
reasoning: exiting works either rely on predefined reasoning paths or conduct graph search based

1

https://anonymous.4open.science/r/VoG-132C/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Retrieval + Plan + Verify (Ours)(c) Retrieval + Plan(b) Retrieval-only(a) Plan-only

Q：What currency is used in the country with Nobel Patria, tu hermosa as its national anthem? Answer: Costa Rican Colón

③ Unrecognized entity in KG
retrieved triplets：
(Noble patria, tu hermosa bandera, government.
national_anthem_of, m.0h_1h3x）

②Missing info due to fixed width or
depth setting in retrieval：
(Noble patria, tu hermosa bandera, topic.notable_types,
National Anthem), (Noble patria, tu hermosa bandera,
music.composition.lyricist, José María Zeledón Brenes）
Reasoning: Next, I need to know the
national anthem of Uruguay

Question

Triplets/
Subgraph

Path/
SPARQL

Answer

Question

Answer

Question

Depth 1

Depth 2

Answer

LLM agent

LLM agent

KG

Sub-
goal 1

Plan

Sub-
goal 2

Question

Verify
Step 1

Verify
Step 2

Answer

PLAN_1

PLAN_2

Verify Agent

Retrieve
Agent

Plan
Agent

Question

Depth 1

Depth 2

Answer

LLM agent

LLM agent

KG

If
revise

LLM

KG

KG

LLM

❌

① LLM
generated non-
executable path：

music.composition
.language ->
location.country.la
nguages_spoken

④ Early stop due to LLM
ignoring complete plan：

Initial Plan: (starting from depth 2)
Thought 2: I need to find out what currency is
used in Venezuela.
Action 2：search[currency used in Venezuela]
Observation 2: (Venezuela, uses, Bolívar)

Revised Plan：
Thought 2: I have identified that “Noble
patria, tu hermosa bandera” is the national
anthem of Costa Rica.
Action 2: search[currency used in Costa Rica]
Observation 2: (Costa Rica, uses, Costa
Rican colón)
Thought 3：I have confirmed that Costa Rica
uses the Costa Rican colón as its currency
Action 3: Finish[Costa Rican Colón]

m.0h_1h3x=
>governmen
t.national_an
them_of_a_c
ountry.count
ry->Costa
Rica

Retrieve
Agent

Need to revise!

Costa
Rica=>locat
ion.country.
currency_us
ed=>Costa
Rican colón

Verified

Subgoal 1: find the country
Subgoal 2: find the currency
Retrieved at depth 1: Noble patria, tu hermosa
bandera, government. national_anthem_of,
m.0h_1h3x
Reasoning: The evidence is sufficient.
The answer is Uruguayan peso.

Figure 1: A comparison of existing KG-enhanced reasoning frameworks using a representative
question example. Errors resulting from LLM hallucinations are highlighted in red˙ Text in green
denotes LLM-generated content, while KG-retrieved triplets are shown in blue .

on predefined parameters (e.g., depth and width), as shown in Figure 1(b), leading to incomplete
utilization of KG evidence and cascading errors during reasoning. (2) Limited use of information:
Most current agent-based frameworks focus solely on the triplets retrieved at each local step, ignoring
the global contextual information, such as prior reasoning steps and forward-looking relation, which
may lead to biased reasoning and premature termination as illustrated in Figure 1(c).

To address these issues, we propose a novel Verify-on-Graph (VoG) framework that supports dynamic
and context-aware LLM reasoning over KG. Specifically, VoG employs a framework involving three
specialized LLM agents collaboratively perform retrieval, verification, and revision in an iterative
manner. Initially, the plan agent generates reasoning chains inspired by ReAct (Yao et al., 2023),
which serve as dynamic plans guiding the multi-hop retrieval process. To address the inflexible
reasoning and mitigate the error propagation, VoG performs stepwise verification to detect reasoning
inconsistencies as they arise and ensure the correctness of subsequent reasoning steps. Furthermore,
to overcome the limitations of purely local reasoning, VoG strategically incorporates KG-grounded
feedback and contextual information to revise its reasoning plan by proposing a multi-armed bandit
(MAB) context selector. In summary, our main contributions are as follows:

• We propose a novel framework that enables stepwise verification on KG to mitigate error
propagation during multi-hop reasoning˙ Through iterative refinement of reasoning plans, we
process the adaptive KG retrieval to collect relevant KG feedback for the targeted question.

• We introduce a KG-aware multi-armed bandit (MAB) mechanism for adaptive context
selection, which dynamically determines the maximally informative subset of KG feedback
and reasoning history at each step to enhance factual consistency.

• We implement VoG and evaluate it on three KGQA datasets. Results on both open-source and
closed-source LLMs validate that our framework outperforms the state-of-the-art baselines
and generalizes robustly across diverse backbones.

2 PRELIMINARY

We introduce the preliminaries used in this paper as follows.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Definition 1 (Knowledge Graph (KG):) A knowledge graph G is represented as a collection of
factual triplets, formally defined as G = {(ehead, r, etail)}, where each triplet consists of a head
entity ehead, a tail entity etail and their relation r.

Definition 2 (Reasoning Plan:) Given a question Q, LLM generates a structured reasoning chain
S = [s1, s2, . . . , sT], in which the t-th step st consists of the t-th thought, action, and corresponding
predicted observation, denoted as (Tt, At, P red_Ot).

Definition 3 (KG Feedback:) At each reasoning step t, executing retrieval guided by the action At

retrieves a set of KG triplets relevant to the current reasoning context, denoted as Ot = [o
(t)
1 , o

(t)
2 , . . .],

where each o = (ehead, r, etail) is a triplet in G˙ These triplets serve as the KG feedback at depth t
to support verification and revision of the reasoning plan.

Problem Statement: Given a question Q, a knowledge graph G, and a set of topic entities explicitly
mentioned in Q, the goal of multi-hop knowledge graph question answering (KGQA) is to find the
answer entities are multiple hops away from the topic entities over the KG. Considering the flexibility
and the training cost, we follow previous agent-based work(Chen et al., 2024; SUN et al., 2024)
that iteratively retrieve and reason over KG. In this stepwise manner, we aim to guide retrieval with
reasoning plans and use the KG feedback to revise the reasoning plan in turns.

3 METHOD

As mentioned in previous section, existing methods exhibit limited ability to adjust reasoning
dynamically based on KG feedback. To address this gap, we propose VoG, which first generates an
initial reasoning plan, retrieves supporting KG evidence for verification, and revises the plan upon
detecting inconsistencies. An overview framework is given in Figure 2.

Stepwise	KG	Retrieval Stepwise LLM	Revision

KG

Guide

Update

Verify
Agent

History
plans

+

Future info

Triplets

Revised	plans

History	plans

𝑅𝑒𝑤𝑎𝑟𝑑	𝜈!(")

𝜈!"#$!(")

𝜈#"%&(")
Plan	
Agent

§3.2

S(()
S5(")

§3.3 §3.4

Select	&	
Return

Revision
signal

Verify

Retrieve
Agent

§3.1

Initial plan
S(*)

(𝑒!, 𝑟, 𝑒")1,	
(𝑒!, 𝑟, 𝑒")2,

……
O(Context	selector

Reward	Design

ℛ!"#$% ,	
ℇ!"#$%

Figure 2: Overview of the VoG framework. An initial reasoning plan is first generated (§3.1) to guide
the retrieve agent to perform stepwise retrieval (§3.2). If the Verify agent gives the revision signal
based on retrieved feedback and plan (§3.3), the revision is conducted by the plan agent(§3.4).

3.1 INITIALIZATION AND PLANNING

Given a question Q, we follow mainstream work and utilize a plan agent to generate a complete multi-
hop reasoning plan over the KG, which guide downstream retrieval and reasoning processes. The
initial plan is denoted as S(0) = [s1, s2, . . . , sT], where T is the total number of steps. Based on
it, one can retrieve information from KG based on plan S(0) step by step. This iterative process
continues until all planned steps T are executed and verified. Note that T implicitly defines the
reasoning depth, which allows plan agent to adaptively adjust it dynamically based on the execution
of the plan itself, rather than relying on fixed-depth settings.

3.2 STEPWISE KG RETRIEVAL

In this section, we design a two-stage retrieval mechanism guided by the reasoning plan.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Plan-Guided Relation Retrieval. At each reasoning step t, VoG retrieves relevant KG relations
guided by the action At from the current plan step (Figure 3). Let Et−1 = {e(t−1)

1 , . . . , e
(t−1)
N } be

the set of entities obtained in the previous step. We execute structured KG queries (Appendix A.1)
to enumerate adjacent relations for each e

(t−1)
i , forming a candidate set Rcand

t . The retrieve agent
is then prompted, with the current action At as input, to select a set of relations Rt that are most
relevant to the reasoning objective. To mitigate noise in large candidate sets, we apply entropy-based
adaptive sampling using Sentence-BERT similarity scores (Reimers and Gurevych, 2019). Filtering
and prompt design details are provided in Appendix A.2 and A.3.2.

Plan-Guided Entity Retrieval. Based on the selected relations, VoG retrieves new entities to
update KG feedback. For each selected r ∈ Rt and entity e

(t−1)
i , we query the KG using patterns

𝑟!𝑟"

Plan	at	depth t:
𝑠! = 𝑇!, 𝐴!, 𝑃𝑟𝑒𝑑_𝑂!
Thought	𝑇!: ……

Action	𝐴!:	Search[keywords]

Pred_Observation	t	 ∶	

ℇ!"#

ℇ!$%&'

ℛ!
$%&'

𝑒# 𝑒" 𝑒!

𝑟# 𝑟$

Guide

(𝑒!"#$
%&"$'() , 𝑟%&"$'() , 𝑒)#'*

%&"$'())1,	
(𝑒!"#$

%&"$'() , 𝑟%&"$'() , 𝑒)#'*
%&"$'())2,	

𝑒!"#$
%&"$'() , 𝑟%&"$'() , 𝑒)#'*

%&"$'()
3

……

𝑒%𝑒$ 𝑒&
Retrieve	
Agent

ℛ!

ℇ!

Figure 3: Plan-Guided Retrieval

(e
(t−1)
i , r, ?) and (?, r, e

(t−1)
i), yielding a

candidate entity set Ecand
t . The same entropy-

based sampling is applied when needed,
helping the retrieve agent select from e(t) ∈
Ecand
t to obtain Et and append the correspond-

ing triplets (e(t−1)
i , r, e(t)) to Ot, using the

original question Q and predicted observa-
tion Pred_Ot as context. Prompt details
are in Appendix A.3.3. This process reduces
irrelevant expansions and ensures that subse-
quent reasoning is well supported.

3.3 STEPWISE KG VERIFICATION

Most of the existing works conduct retrieval on KG simply following the initial reasoning plan (Jiang
et al., 2024; Chen et al., 2024) that could be non-optimal or even misleading. To mitigate error
propagation and enhance factual consistency, we introduces a stepwise KG verification mechanism
that integrates retrieved KG evidence as feedback.

Specifically, given st in the generated plan S, VoG obtains a set of feedback Ot = {(e(t)head, r, e
(t)
tail)},

consisting of KG triplets. Using them as factual information, a verify agent is first prompted to
compare it against the predicted observation Pred_Ot ∈ st. To further enhance the reliability, we
additionally implement a pretrained DeBERTa verifier (He et al., 2021) as a secondary check. The
prompts are provided in the Appendix A.3.4. Formally, we define the revision signal as:

V(Q, st, Ot) =

{
1 if Pred_Ot ∈ st is inconsistent with Ot,

0 otherwise.
(1)

When V(Q, st, Ot) = 1, VoG flags the current step as unreliable and triggers a revision process. This
mechanism ensures alignment between the reasoning and retrieved KG feedback, allowing the agent
to iteratively refine its plan before proceeding to the next step. Once we obtain a positive revision
signal from above verification, we can handle the inconsistency issue by revising the reasoning
plan. A detailed analysis of revision signal triggering is provided in Appendix E.1.

3.4 STEPWISE PLAN REVISION

Effective revision after verification hinges on addressing two central challenges. (i) The inherent
sensitivity of LLMs to contextual inputs and their unpredictable behavior necessitates a more dynamic
strategy that can explore diverse context configurations while exploiting the most effective ones to
support accurate revision. (ii) The potential of LLMs to generate hallucinated or redundant steps that
misguide later reasoning highlights the need for evaluation, ensuring that each revision step is well
aligned and verifiable against factual knowledge from KG.

To address these challenges, we propose a dynamic revision framework that couples adaptive context
selection with explicit reward evaluation. At each revision step t, the plan agent proposes a revised
plan S(t) with selected context, which is executed from t+1 onward if meeting the reward criterion.
In the following, we detail how VoG achieves stepwise revision by flexibly adjusting context use to
mitigate (i) while ensuring conciseness and factual consistency with KG feedback to address (ii).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.4.1 CONTEXT-AWARE UCB SCORING

The sensitivity of LLMs to contextual inputs implies that static heuristics or fixed strategies are
brittle. To adaptively select the best contextual scope at each step, we formulate context selection as a
multi-armed bandit (MAB) problem. As shown in Sec 4.5, the high context-dependence of strategy
effectiveness further underscores the necessity of an adaptive selector.

Specifically, we define three complementary strategies C = {Local,Lookahead,Global} correspond-
ing to minimal, proactive, and comprehensive use of context. These capture the main modes of
leveraging KG feedback and reasoning history, and thus serve as the candidate arms in our selector:
• Local that focuses solely on the immediate KG feedback Ot, resulting in the input form
frevise(S

(t), Ot), which can effectively correct hallucinations when explicit triples are available.

• Lookahead that further incorporates future relations Rt+1 to the input frevise(S
(t), Ot, Rt+1),

enabling proactive adjustment to avoid incomplete reasoning.
• Global which aggregates the full reasoning plan and all past KG feedback O1:t, leading to the input
frevise(S

(t), O1:t). This strategy enables broader reassessment, which is particularly useful when
accumulated errors or query intent drift occur.

To select among these strategies, we adopt the classical Upper Confidence Bound (UCB) algo-
rithm (Kaufmann et al., 2012) and further extend it with context-aware priors. Formally, for each
candidate context strategy c ∈ C, we record the number of times it has been selected Nc and its
cumulative reward Rc. At each step t, the UCB score is then defined as follows, with the robustness
of this design further validated through ablation and sensitivity analyses in Appendix E.4 and E.5.

UCBt(c) =
Rc

Nc︸︷︷︸
Exploitation

+α

√
logN

Nc︸ ︷︷ ︸
Exploration

+Bent(Ht) + BKG(t, Erep) + Bdiv(c)︸ ︷︷ ︸
Context-aware Priors

, (2)

where α is a fixed constant and N is the number of total selection times. Here, Ht denotes the
normalized entropy of the current answer distribution, which signals the level of uncertainty like in
previous work (Kuhn et al., 2023), and Erep denotes the set of entities repeatedly retrieved from the
accumulated KG feedback O1:t. We then incorporate three context-aware bonus terms: an entropy-
based bonus Bent(Ht) that promotes exploration under high answer uncertainty, a KG-aware bonus
BKG(t, Erep) that penalizes repetitive retrieval and a diversity bonus Bdiv(c) that discourages repeated
selection of the same strategy. Precise definitions for each term and the full algorithm are detailed in
Appendix B.1.

3.4.2 REWARD DESIGN

To guide strategy selection, we assess the effectiveness of the chosen context strategy via the quality
of its revised plan. Once a strategy ct ∈ C is selected, the plan agent generates a candidate reasoning
plan. Considering the inherent unreliability and instability of LLM outputs, we design a scalar reward
νt that jointly captures step-level coherence and global answer stability as detailed below.

Task-specific Reward. The task-specific reward νlocal measures the local quality of a revision by
checking its semantic relevance to the question, alignment with retrieved KG feedback, logical
coherence, and factual consistency. In contrast to prior work that relies on LLM-based scoring (Sui
et al., 2025; Zheng et al., 2023), we adopt lightweight pre-trained models for these checks, which
makes the evaluation both efficient and scalable without incurring additional inference overhead. Full
scoring details are provided in Appendix B.2.

Confidence-Based Reward. The confidence-based reward νconf measures the stability of the final an-
swer across candidate reasoning plans generated during revision. Formally, letP = {S1, S2, . . . , SN}
denote the set of candidate reasoning plans generated during revision, and aSi

be the final answer of
plan Si. To measure confidence here, we use subscript i exclusively to index all candidate plans in P
regardless of step. We use ∼ to denote semantic equivalence between answers and define the reward
νconf for a candidate plan Si as:

νconf(Si)) =
1

|P|
∑
S∈P

I(aS ∼ aSi) . (3)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

This reward encourages convergence toward stable, high-confidence answers that are consistently
supported across multiple candidate plans.

Entropy-aware Integration. To adaptively balance local and global signals, we introduce an entropy-
aware weighting scheme. Let Ht ∈ [0, 1] denote the normalized entropy of the answer distribution at
step t, and β ∈ (0, 1) a scaling factor. We compute:

λt = β · exp(−Ht), νt = (1− λt) νlocal + λt νconf. (4)

Intuitively, when the answer distribution is uncertain (high Ht), the global consensus reward dom-
inates; when the distribution is confident, local reasoning quality takes precedence. The resulting
scalar reward is then accumulated as Rc to update the UCB score in Eq. (2), thus closing the loop
between revision evaluation and adaptive strategy selection. Ablation on the reward design is provided
in Appendix E.6.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Datasets. To evaluate the effectiveness of VoG in enhancing the reasoning capabilities of large
language models on knowledge-intensive tasks, we conduct experiments across three widely-used
datasets. Specifically, we conduct experiments on two multi-hop KGQA datasets, ComplexWebQues-
tions (CWQ) (Talmor and Berant, 2018) and WebQuestionsSP (WebQSP) (Yih et al., 2016), as well as
the open-domain QA dataset WebQuestions (Berant et al., 2013). All datasets rely on Freebase (Bol-
lacker et al., 2008) as the underlying factual source. Following previous studies(SUN et al., 2024;
Chen et al., 2024), we adopt exact match accuracy (Hits@1) as our primary evaluation metric and
also report F1 scores for completeness. We show the details of above datasets in Appendix C.

Baselines. To comprehensively evaluate our framework, we compare VoG against three categories
of baseline approaches: (i) LLM-only methods, (ii) fine-tuned KG-enhanced LLM, and (iii) LLM
agent-based methods with KG integration. For LLM-only baselines, we adopt IO prompting (Brown
et al., 2020) and CoT (Trivedi et al., 2023). For fine-tuned LLM methods, we include KD-CoT (Wang
et al., 2023b), DECAF (Yu et al., 2023), RoG (Luo et al., 2024b), and UniKGQA (Jiang et al., 2022).
For agent-based methods, we compare with ToG(SUN et al., 2024) and PoG(Chen et al., 2024). Full
implementation details of all baselines are provided in the Appendix D.

4.2 MAIN RESULTS

Table 1 summarizes the performance of VoG across three benchmark datasets compared to represen-
tative state-of-the-art (SOTA) baselines. Overall, VoG outperforms all included baselines across all
categories of methods.

First, compared to LLM-only baselines, VoG significantly improves performance by incorporating
structured knowledge from external KGs. This highlights the importance of factual grounding
in multi-hop reasoning, particularly for complex questions where parametric knowledge alone is
insufficient. Second, we compare VoG to finetuned KG-enhanced LLMs approaches. Despite not
requiring additional fine-tuning, VoG achieves competitive or superior performance, demonstrating
the effectiveness of its verification-driven and plan-adaptive design.

Finally, when compared to agent-based reasoning frameworks, VoG attains higher accuracy through
stepwise verification and adaptive context selection mechanisms. To assess generalizability and
effectiveness across different model sizes, we further evaluate VoG using smaller-scale LLMs (e.g.,
Qwen2.5-7B (Team, 2024)). Even under reduced model capacity, VoG achieves robust improvements
over baseline agents, confirming that its gains stem from methodological advances rather than reliance
on model scale.

4.3 ABLATION STUDY

We conduct the ablation studies on CWQ and WebQSP using GPT-3.5 as the backbone model to
provide a comprehensive view of how VoG achieves its performance gains.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison of different methods across datasets. Bold indicates the best agent
performance for each backbone.

Method
CWQ WebQSP WebQuestions

EM F1 EM F1 EM F1
LLM-only

GPT-3.5
IO prompt (Brown et al., 2020) 37.6 - 63.3 - 48.7 -
CoT (Trivedi et al., 2023) 38.8 - 62.2 - 48.5 -
SC (Wang et al., 2022) 45.4 - 61.1 - 50.3 -

Fine-tuned LLM + KG
Finetuned Models
KD-CoT (Wang et al., 2023b) 55.7 - 68.6 52.5 - -
UniKGQA (Jiang et al., 2022) 51.2 48.0 77.2 70.2 - -
RoG (Luo et al., 2024b) 62.6 56.2 80.4 70.8 - -
DECAF (Yu et al., 2023) 70.4 - 82.1 - - -
KG-Agent (Jiang et al., 2024) 72.2 - 83.3 - - -

LLM Agent + KG
Qwen2.5-7B
ToG (SUN et al., 2024) 42.5 28.7 56.0 37.3 39.9 31.3
PoG (Chen et al., 2024) 46.0 31.4 58.5 40.4 46.2 30.3
VoG (Ours) 53.3 45.6 67.3 55.1 52.8 45.2
GPT-3.5
ToG (SUN et al., 2024) 58.9 41.9 76.2 50.9 54.5 39.3
PoG (Chen et al., 2024) 63.2 43.7 82.0 58.1 61.7 44.3
VoG (Ours) 64.7 56.2 83.2 69.1 63.0 61.3
GPT-4
ToG (SUN et al., 2024) 67.6 47.6 82.6 58.9 57.9 44.9
PoG (Chen et al., 2024) 75.0 42.1 87.3 59.8 71.7 44.5
VoG (Ours) 77.6 67.5 88.7 73.2 72.3 61.7

Impact of the verification and adaptive revision. We first examine the stepwise verification
mechanism and the contribution of context selector of VoG as shown in Table 2. In the w/o Context
Selector variant, the bandit-based adaptive strategy is replaced with a single fixed strategy, so revisions
are performed without dynamic strategy at each step. In the w/o Verify+Revise variant, the plan agent
directly outputs the answer from its initial plan without performing retrieval, verification, or revision
as the plan-retrieve-revise process in VoG constitutes a unified feedback loop. Interestingly, this plan-
only configuration still outperforms standard CoT and Self-Consistency baselines, suggesting that
LLM-internal planning alone offers strong multi-hop reasoning capabilities, but remains vulnerable
to error propagation without external verification and revision.

Table 2: Ablation Study on VoG’s Stepwise Verification and Adaptive Revision.
Variant CWQ WebQSP WebQuestions
VoG (Ours) 64.7 83.2 63.0
w/o Context Selector

Local 60.1 (↓4.6) 80.6 (↓2.6) 58.2 (↓4.8)
Lookahead 63.6 (↓1.1) 81.4 (↓1.8) 59.9 (↓3.1)
Global 60.2 (↓4.5) 80.3 (↓2.9) 60.6 (↓2.4)

w/o Verify+Revise 51.7 (↓13.0) 72.1 (↓11.1) 55.8 (↓7.2)

Effect of Different Context Strategies. We further analyze the effectiveness of three fixed strategies
and compare them with our KG-aware context selector. Each variant in the w/o Context Selector
setting above corresponds to a fixed strategy applied end-to-end throughout the reasoning process. All
fixed strategies fall short, since none can adapt effectively across diverse reasoning scenarios. In
contrast, our method adaptively selects the most suitable context at each step to achieve more accurate

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

and flexible reasoning. A detailed analysis of strategy-level performance, including accuracy and
revision rates per iteration, is provided in Appendix E.3.

4.4 EFFICIENCY ANALYSIS

Table 3: Efficiency analysis (average tokens per
query) compared with existing methods.

Method CWQ WebQSP
Tokens Calls Tokens Calls

ToG 9669.4 22.6 6031.2 15.9
PoG 8156.2 13.3 5517.7 9.0
VoG (Ours) 6566.8 14.5 3439.0 9.4

We further assess the computational efficiency
of VoG by measuring the average token con-
sumption per query, as conducted in prior agent-
based baselines. As shown in Table E.2, VoG
significantly reduces token usage and maintain
comparable or lower levels of LLM interac-
tion. A detailed token breakdown across plan-
ning, retrieval, verification, and revision steps is
provided in Appendix E.

This efficiency gain stems from two key aspects. From a methodological perspective, VoG adopts
an adaptive retrieval strategy to prioritizes relevant information and employs a context selector that
contributes to reducing unnecessary input. From an implementation standpoint, VoG stores context
implicitly within the reasoning plan, avoiding external memory modules as required in (Chen et al.,
2024) and enabling direct answer extraction without additional LLM calls. Together, these design
choices make VoG a more practical and lightweight solution for scalable KG reasoning, especially
under limited computational budgets.

4.5 CASE STUDY

In this section, we present a fine-grained case in Figure 4 using Qwen2.5-7B and visualized attention
heatmaps. In the presented case, the Local strategy, which is typically effective when explicit triples
are available, becomes limited here because the entity exists in the KG but lacks a resolvable name.
By contrast, the Lookahead strategy, which observes future relations, and the Global strategy, which
helps avoid query intent drift, both succeed in revising the plan. However, providing all contextual
information at once distracts the LLM and induces hallucinations. This case demonstrates how
adaptively selecting complementary contexts can enhance plan refinement in unpredictable scenarios,
such as incomplete KG signals or LLM hallucinations, without relying on manually predefined rules.
Additional cases demonstrating how different strategies perform under varying conditions, along with
comparisons to ToG and PoG and an analysis of recovered failure types, are provided in Appendix F.

Q：Who	was	the	vice	president	of	the	President	who	attended	Ramble	Elementary	School?

Current	depthNext	step	relations:

Co
nt
ex
t

Ramble	
Elementary

students_graduates
m.0b
6xs_g

Bill	
Clinton

people.perso
n.education

government.us_presiden
t.vice_president

government.us_vice_pre
sident.to_president

Retrieved	Chains: Current	plan:

Re
vi
si
on

MixedGlobalLookaheadLocal
Input：plan +	whole	KG	chains	
+next	step	relations
Output:
Thought	3:	I	have	found	that	Barack	Obama	
was	the	President,	and	his	Vice	President	was	
Joe	Biden.	
Action	3:	Finish[Joe	Biden]

Input：plan +	history	retrieved	
KG	chains
Output:
Thought	3:	I	have	identified	that	Bill	
Clinton	is	the	entity	who	attended	Ramble	
Elementary	School.
Action	3:	Search[Bill	Clinton	vice	president]

Input：plan +	current triplets
+next	step relations
Output:
Thought	3:	I	have	identified	that	Bill	Clinton	
is	the	entity	who	attended	Ramble	
Elementary	School.
Action	3:	Search[Bill	Clinton	vice	president]

Input：plan	+	current
triplets
Output:
Thought	3:	‘m.0b6xs_g’	refers	to	
Barack	Obama.
Action	3:	Search[Barack	Obama	vice	
president]

At
te
nt
io
n

……
Thought	2:	Now	that	I	have	identified	the	entity	
'm.0b6xs_g'	as	a	student	or	graduate	of	Ramble	
Elementary	School,	I	need	to	determine	who	this	entity	
is	and	if	they	were	a	President.
Action	2:	Search[entity	m.0b6xs_g	identity]
Observation	2:	('m.0b6xs_g',	'identity',	'Barack	
Obama’)”
……Depth	1 Depth	2

Predict	answer：Joe	Biden Predict	answer:		Al	Gore Predict	answer:		Al	Gore Predict	answer:	Joe	Biden ❌✅✅❌

𝑬𝑸：

Figure 4: Case comparison of revision behavior across context strategies and an mixed input.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 RELATED WORK

5.1 LLM-BASED AGENTS

LLM-based agents have become a prominent paradigm for reasoning and decision-making, framing
complex tasks as sequential interactions between planning, observation, and action. Early approaches
such as ReAct (Yao et al., 2023) integrate chain-of-thought reasoning with tool use, enabling stepwise
interaction with external environments. Subsequent frameworks extend this paradigm to various
domains, such as web-based QA (Nakano et al., 2021), multimodal reasoning (Yang et al., 2023),
social simulation (Park et al., 2023) and maths problem (Lei et al., 2024). However, these approaches
lack mechanisms to learn from feedback and remain heavily dependent on the underlying LLM
backbone. Therefore, researchers have incorporates self-evaluated feedback (Shinn et al., 2023; Yao
et al., 2023; Madaan et al., 2023; Panickssery et al., 2024) into the reasoning loop to enhance LLM
reasoning. In parallel, Monte Carlo Tree Search (MCTS)-style agents have been introduced to sample
and select from multiple reasoning trajectories for robust decision-making (Hao et al., 2023; Hu et al.,
2025; Luo et al., 2025; Sun et al., 2025). However, relying on unverified external feedback often
introduces noise and factual gaps, increasing the risk of hallucinations during reasoning.

5.2 KG-ENHANCED LLM REASONING

To enhance the reliability of LLM reasoning, recent studies have incorporated KGs as structured
external sources. We summarize representative KG-enhanced approaches in Table 4, which broadly
focus on three key aspects: planning, retrieval, and verification. Planning-focused methods such as
RoG (Luo et al., 2024b) and KG-Agent (Jiang et al., 2024) enhances the planning capabilities of
LLMs by generating structured reasoning paths over KGs. While effective initially, such plans are
fixed once generated and cannot adapt to new evidence, leading to error accumulation in multi-hop
inference. Retrieval-focused methods aim to improve the quality of KG evidence provided to the
LLM. For example, KnowGPT (Zhang et al., 2024) applies reinforcement learning for knowledge
extraction, KG-CoT (Zhao et al., 2024) retrieves high-quality multi-hop subgraphs with a graph
reasoning model, and ToG (SUN et al., 2024) adopts an LLM agent to perform iterative retrieval.
Building upon these, PoG (Chen et al., 2024) incorporates planning with iterative retrieval to better
coordinate evidence gathering and reasoning.

Table 4: Comparison of recent KG-enhanced LLM reasoning
methods from three perspectives.

Method Plan Retrieve Verify

RoG (Luo et al., 2024b) ✓ ✗ ✗
KnowGPT (Zhang et al., 2024) ✗ ✓ ✗
KG-Agent (Zhao et al., 2024) ✓ ✓ ✗
KD-COT (Wang et al., 2023b) ✗ ✓ ✓
ToG (SUN et al., 2024) ✗ ✓ ✗
PoG (Chen et al., 2024) ✓ ✓ ✗
VoG (Ours) ✓ ✓ ✓

Despite these advances, the above
methods either lack explicit verifi-
cation mechanisms or perform only
global verification after completing
the entire reasoning process. To ad-
dress this gap, KD-CoT (Wang et al.,
2023b) introduces a retriever-reader-
verifier pipeline that verify the factual
consistency of final answers against
KG evidence. While promising, their
verification serves only as a passive
check and does not influence or revise subsequent reasoning steps. While PoG (Chen et al., 2024)
introduces correction at the agent-level, its focus remains on optimizing the retrieval process rather
than modifying the reasoning trajectory itself.

6 CONCLUSION

In this paper, we propose Verify-on-Graph (VoG), a unified framework that advances trustworthy
LLM reasoning by by coupling planning, retrieval, and verification into a closed-loop process over
KGs. Specifically, VoG treats LLM-generated reasoning plans as tentative and refines them by
detecting and correcting potential hallucinations that arise during multi-hop reasoning. Unlike prior
frameworks that lack intermediate factual checking and adaptive revision, VoG enables stepwise
verification and broader context integration at each step. Our experiments demonstrate that VoG
significantly improves reasoning accuracy, robustness, and efficiency across multiple benchmarks,
and generalizes well across LLM backbones without requiring additional training.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

The research conducted in this paper adheres to the ICLR Code of Ethics in every respect. Our study
focuses on enhancing the reasoning reliability of large language models by incorporating stepwise
verification with knowledge graphs. As the framework does not involve human subjects, private data,
or domain-specific sensitive material, it raises no immediate concerns regarding privacy, safety, or
security. All experiments are conducted on publicly available benchmarks, which contain no personal
or sensitive information, and we strictly comply with their licenses and intended use.

REPRODUCIBILITY STATEMENT

The paper fully discloses all the information needed to reproduce the main experimental results of the
paper to the extent that it affects the main claims and conclusions. We provide our experimental results
in Section 4, and an anonymous code repository with detailed instructions for reproducing them is
referenced in the main text and also included in the supplementary materials. Detailed implementation
notes and access to the models used in our framework are given in Appendix B.3. All datasets used in
experiments are standard public benchmarks, with details described in Appendix C. As our framework
is training-free, no model checkpoint is required, and reproducibility is ensured through the provided
code, dataset references, and documented procedures.

REFERENCES

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, and et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.

OpenAI. Gpt-4 technical report, 2023.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
Computing Surveys, 55(12):1–38, March 2023. ISSN 1557-7341. doi: 10.1145/3571730. URL
http://dx.doi.org/10.1145/3571730.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Lovenia,
Ziwei Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan Xu, and Pascale Fung. A multitask,
multilingual, multimodal evaluation of chatgpt on reasoning, hallucination, and interactivity.
ArXiv, abs/2302.04023, 2023. URL https://api.semanticscholar.org/CorpusID:
256662612.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a collabora-
tively created graph database for structuring human knowledge. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, pages 1247–1250, 2008.

S. Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary G.
Ives. Dbpedia: A nucleus for a web of open data. In ISWC/ASWC, 2007. URL https:
//api.semanticscholar.org/CorpusID:7278297.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic knowledge. In
Proceedings of the 16th international conference on World Wide Web, pages 697–706, 2007.

Garima Agrawal, Tharindu Kumarage, Zeyad Alghamdi, and Huan Liu. Can knowledge graphs reduce
hallucinations in llms? : A survey, 2024. URL https://arxiv.org/abs/2311.07914.

Yu Wang, Nedim Lipka, Ryan A. Rossi, Alexa F. Siu, Ruiyi Zhang, and Tyler Derr. Knowledge graph
prompting for multi-document question answering. In AAAI Conference on Artificial Intelligence,
2023a. URL https://api.semanticscholar.org/CorpusID:261076072.

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu. Unifying large
language models and knowledge graphs: A roadmap. IEEE Transactions on Knowledge and
Data Engineering, 36:3580–3599, 2023. URL https://api.semanticscholar.org/
CorpusID:259165563.

10

https://arxiv.org/abs/2501.12948
http://dx.doi.org/10.1145/3571730
https://api.semanticscholar.org/CorpusID:256662612
https://api.semanticscholar.org/CorpusID:256662612
https://api.semanticscholar.org/CorpusID:7278297
https://api.semanticscholar.org/CorpusID:7278297
https://arxiv.org/abs/2311.07914
https://api.semanticscholar.org/CorpusID:261076072
https://api.semanticscholar.org/CorpusID:259165563
https://api.semanticscholar.org/CorpusID:259165563

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity of sparql. ACM
Transactions on Database Systems (TODS), 34(3):1–45, 2009.

Haoran Luo, Haihong E, Zichen Tang, Shiyao Peng, Yikai Guo, Wentai Zhang, Chenghao Ma,
Guanting Dong, Meina Song, Wei Lin, Yifan Zhu, and Anh Tuan Luu. ChatKBQA: A generate-
then-retrieve framework for knowledge base question answering with fine-tuned large language
models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, Findings of the Association
for Computational Linguistics: ACL 2024, pages 2039–2056, Bangkok, Thailand, August 2024a.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.122. URL https:
//aclanthology.org/2024.findings-acl.122/.

Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su, and Wenhu Chen. Few-shot in-context
learning for knowledge base question answering, 2023. URL https://arxiv.org/abs/
2305.01750.

Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. Reasoning on graphs: Faithful
and interpretable large language model reasoning, 2024b. URL https://arxiv.org/abs/
2310.01061.

Yu Gu, Xiang Deng, and Yu Su. Don’t generate, discriminate: A proposal for grounding language
models to real-world environments. In Annual Meeting of the Association for Computational Lin-
guistics, 2022. URL https://api.semanticscholar.org/CorpusID:254853929.

Qinggang Zhang, Junnan Dong, Hao Chen, Daochen Zha, Zailiang Yu, and Xiao Huang. Knowgpt:
Knowledge graph based prompting for large language models, 2024. URL https://arxiv.
org/abs/2312.06185.

Ruilin Zhao, Feng Zhao, Long Wang, Xianzhi Wang, and Guandong Xu. Kg-cot: Chain-of-thought
prompting of large language models over knowledge graphs for knowledge-aware question answer-
ing. In Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence
(IJCAI-24), pages 6642–6650. International Joint Conferences on Artificial Intelligence, 2024.

Keheng Wang, Feiyu Duan, Sirui Wang, Peiguang Li, Yunsen Xian, Chuantao Yin, Wenge Rong, and
Zhang Xiong. Knowledge-driven cot: Exploring faithful reasoning in llms for knowledge-intensive
question answering. arXiv preprint arXiv:2308.13259, 2023b.

Yilin Wen, Zifeng Wang, and Jimeng Sun. Mindmap: Knowledge graph prompting sparks graph of
thoughts in large language models, 2024. URL https://arxiv.org/abs/2308.09729.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut, Percy Liang, and Jure Leskovec. Qa-gnn:
Reasoning with language models and knowledge graphs for question answering, 2022. URL
https://arxiv.org/abs/2104.06378.

J SUN, C XU, L TANG, et al. Think-on-graph: Deep and responsible reasoning of large language
model on knowledge graph [a/ol]. arxiv, 2024 [2024-07-08], 2024.

Xiang Huang, Sitao Cheng, Shanshan Huang, Jiayu Shen, Yong Xu, Chaoyun Zhang, and Yuzhong
Qu. QueryAgent: A reliable and efficient reasoning framework with environmental feedback
based self-correction. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 5014–5035, Bangkok, Thailand, August 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.acl-long.274. URL https://aclanthology.org/
2024.acl-long.274/.

Jinhao Jiang, Kun Zhou, Wayne Xin Zhao, Yang Song, Chen Zhu, Hengshu Zhu, and Ji-Rong Wen.
Kg-agent: An efficient autonomous agent framework for complex reasoning over knowledge graph,
2024. URL https://arxiv.org/abs/2402.11163.

Xinyan Guan, Yanjiang Liu, Hongyu Lin, Yaojie Lu, Ben He, Xianpei Han, and Le Sun. Mitigating
large language model hallucinations via autonomous knowledge graph-based retrofitting. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 18126–18134,
2024.

11

https://aclanthology.org/2024.findings-acl.122/
https://aclanthology.org/2024.findings-acl.122/
https://arxiv.org/abs/2305.01750
https://arxiv.org/abs/2305.01750
https://arxiv.org/abs/2310.01061
https://arxiv.org/abs/2310.01061
https://api.semanticscholar.org/CorpusID:254853929
https://arxiv.org/abs/2312.06185
https://arxiv.org/abs/2312.06185
https://arxiv.org/abs/2308.09729
https://arxiv.org/abs/2104.06378
https://aclanthology.org/2024.acl-long.274/
https://aclanthology.org/2024.acl-long.274/
https://arxiv.org/abs/2402.11163

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.
org/abs/2210.03629.

Liyi Chen, Panrong Tong, Zhongming Jin, Ying Sun, Jieping Ye, and Hui Xiong. Plan-on-graph:
Self-correcting adaptive planning of large language model on knowledge graphs. arXiv preprint
arXiv:2410.23875, 2024.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 11 2019. URL http://arxiv.org/abs/1908.
10084.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=XPZIaotutsD.

Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On bayesian upper confidence bounds for
bandit problems. In Artificial intelligence and statistics, pages 592–600. PMLR, 2012.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances
for uncertainty estimation in natural language generation. ArXiv, abs/2302.09664, 2023. URL
https://api.semanticscholar.org/CorpusID:257039062.

Yuan Sui, Yufei He, Tri Cao, Simeng Han, and Bryan Hooi. Meta-reasoner: Dynamic guidance for
optimized inference-time reasoning in large language models. ArXiv, abs/2502.19918, 2025. URL
https://api.semanticscholar.org/CorpusID:276647786.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Haotong Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena. ArXiv, abs/2306.05685, 2023. URL
https://api.semanticscholar.org/CorpusID:259129398.

Alon Talmor and Jonathan Berant. The web as a knowledge-base for answering complex questions.
arXiv preprint arXiv:1803.06643, 2018.

Wen-tau Yih, Matthew Richardson, Christopher Meek, Ming-Wei Chang, and Jina Suh. The value
of semantic parse labeling for knowledge base question answering. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages
201–206, 2016.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on Freebase from
question-answer pairs. In David Yarowsky, Timothy Baldwin, Anna Korhonen, Karen Livescu,
and Steven Bethard, editors, Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pages 1533–1544, Seattle, Washington, USA, October 2013. Association
for Computational Linguistics. URL https://aclanthology.org/D13-1160/.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving retrieval
with chain-of-thought reasoning for knowledge-intensive multi-step questions, 2023. URL https:
//arxiv.org/abs/2212.10509.

Donghan Yu, Sheng Zhang, Patrick Ng, Henghui Zhu, Alexander Hanbo Li, Jun Wang, Yiqun Hu,
William Wang, Zhiguo Wang, and Bing Xiang. Decaf: Joint decoding of answers and logical
forms for question answering over knowledge bases, 2023. URL https://arxiv.org/abs/
2210.00063.

Jinhao Jiang, Kun Zhou, Wayne Xin Zhao, and Ji-Rong Wen. Unikgqa: Unified retrieval and reasoning
for solving multi-hop question answering over knowledge graph. arXiv preprint arXiv:2212.00959,
2022.

12

https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://openreview.net/forum?id=XPZIaotutsD
https://api.semanticscholar.org/CorpusID:257039062
https://api.semanticscholar.org/CorpusID:276647786
https://api.semanticscholar.org/CorpusID:259129398
https://aclanthology.org/D13-1160/
https://arxiv.org/abs/2212.10509
https://arxiv.org/abs/2212.10509
https://arxiv.org/abs/2210.00063
https://arxiv.org/abs/2210.00063

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Ehsan Azarnasab, Faisal Ahmed, Zicheng Liu,
Ce Liu, Michael Zeng, and Lijuan Wang. Mm-react: Prompting chatgpt for multimodal reasoning
and action. arXiv preprint arXiv:2303.11381, 2023.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S
Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings of the 36th
annual acm symposium on user interface software and technology, pages 1–22, 2023.

Bin Lei, Yi Zhang, Shan Zuo, Ali Payani, and Caiwen Ding. Macm: Utilizing a multi-agent system
for condition mining in solving complex mathematical problems. arXiv preprint arXiv:2404.04735,
2024.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL
https://arxiv.org/abs/2303.11366.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative
refinement with self-feedback, 2023. URL https://arxiv.org/abs/2303.17651.

Arjun Panickssery, Samuel R. Bowman, and Shi Feng. Llm evaluators recognize and favor their own
generations. ArXiv, abs/2404.13076, 2024. URL https://api.semanticscholar.org/
CorpusID:269293311.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model, 2023. URL https://arxiv.
org/abs/2305.14992.

Yunhai Hu, Yilun Zhao, Chen Zhao, and Arman Cohan. Mcts-rag: Enhancing retrieval-augmented
generation with monte carlo tree search. arXiv preprint arXiv:2503.20757, 2025.

Haoran Luo, Yikai Guo, Qika Lin, Xiaobao Wu, Xinyu Mu, Wenhao Liu, Meina Song, Yifan Zhu,
Luu Anh Tuan, et al. Kbqa-o1: Agentic knowledge base question answering with monte carlo tree
search. arXiv preprint arXiv:2501.18922, 2025.

ZhongXiang Sun, Qipeng Wang, Weijie Yu, Xiaoxue Zang, Kai Zheng, Jun Xu, Xiao Zhang, Song
Yang, and Han Li. Rearter: Retrieval-augmented reasoning with trustworthy process rewarding.
ArXiv, abs/2501.07861, 2025. URL https://api.semanticscholar.org/CorpusID:
275515946.

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47:235–256, 2002. URL https://api.semanticscholar.
org/CorpusID:207609497.

13

https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.17651
https://api.semanticscholar.org/CorpusID:269293311
https://api.semanticscholar.org/CorpusID:269293311
https://arxiv.org/abs/2305.14992
https://arxiv.org/abs/2305.14992
https://api.semanticscholar.org/CorpusID:275515946
https://api.semanticscholar.org/CorpusID:275515946
https://api.semanticscholar.org/CorpusID:207609497
https://api.semanticscholar.org/CorpusID:207609497

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

This appendix provides additional implementation details, experimental configurations, full prompt
templates, ablation settings, and supplementary visualizations referenced throughout the main paper.

A FURTHER DETAILS OF VOG AGENTS

A.1 PRE-DEFINED SPARQL QUERY

For KG-based knowledge extraction, we use the following predefined SPARQL query templates to
access facts from Freebase.

SPARQL: Relation Retrieval

Outgoing Relations:
PREFIX ns: <http://rdf.freebase.com/ns/>
SELECT DISTINCT ?relation
WHERE {
ns:mid ?relation ?x .

}

Incoming Relations:
PREFIX ns: <http://rdf.freebase.com/ns/>
SELECT DISTINCT ?relation
WHERE {
?x ?relation ns:mid .

}

SPARQL: Entity Search

(ehead, r, ?)

PREFIX ns: <http://rdf.freebase.com/ns/>
SELECT ?tailEntity
WHERE {
ns:mid ns:relation ?tailEntity .

}

(?, r, etail)

PREFIX ns: <http://rdf.freebase.com/ns/>
SELECT ?tailEntity
WHERE {
?tailEntity ns:relation ns:mid .

}

SPARQL: Entity Name Search

PREFIX ns: <http://rdf.freebase.com/ns/>
SELECT DISTINCT ?tailEntity
WHERE {
{
?entity ns:type.object.name ?tailEntity .
FILTER(?entity = ns:mid)

}
UNION
{
?entity <http://www.w3.org/2002/07/owl|\#|sameAs> ?tailEntity .
FILTER(?entity = ns:mid)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

}
}

At each reasoning depth t, VoG constructs structured KG queries based on the current action At from
the reasoning plan S(t). These queries follow the pattern (ehead, r, ?) or (?, r, etail) and are executed
against the underlying KG. Entities from Et−1 and filtered relations fromRcand

t are combined to form
the query set.

A.2 ENTROPY-BASED FILTERING

To reduce prompt length and eliminate noise from large candidate sets, we apply entropy-based filter-
ing to relation and entity candidates. Specifically, we first compute similarity scores between all candi-
dates and a set of suggested relations using a pre-trained encoder msmarco-bert-base-dot-v5.
For each candidate ci ∈ C, its weight is calculated as

wi = max
rj∈R

sim(M(ci),M(rj)), (5)

where M(·) denotes the encoding function and sim(·, ·) the similarity measure.

We then normalize the weights via softmax:

pi =
exp(wi)∑
j exp(wj)

, (6)

and compute the normalized entropy over the distribution {pi}:

Hnorm = −
∑

i pi log(pi)

log |C|
. (7)

Using Hnorm, we adaptively determine the selection width k within bounds [kmin, kmax] by

k = max (kmin,min (⌊kmin + (kmax − kmin) ·Hnorm⌋ , |C|)) . (8)

Finally, we select the top-k candidates ranked by their weights wi. The detailed procedure is sum-
marized in Algorithm 1, where the above equations correspond to the respective steps of computing
weights, normalizing via softmax, calculating entropy, determining adaptive width, and selecting
candidates.

Algorithm 1: Entropy-Based Relation (or Entity) Filtering
Input: Candidate set C = {c1, . . . , cn}, Suggested relations R = {r1, . . . , rm}, Similarity

encoder M , Width bounds [kmin, kmax]
Output: Filtered subset Cselected

1 Encode all candidates and suggestions using encoder M ;
2 Compute similarity scores wi as in Equation equation 5;
3 Normalize weights via softmax according to Equation equation 6;
4 Compute normalized entropy Hnorm as per Equation equation 7;
5 Compute adaptive width k following Equation equation 8;
6 Select top-k candidates Cselected by weights wi;
7 return Cselected

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.3 PROMPT TEMPLATES

A.3.1 PLAN GENERATION PROMPT

Prompt Template: Plan Generation

Instruction: You are an intelligent assistant tasked with answering the following question.
Your job is to understand the question and plan all the necessary steps to solve it. Do not
judge the question or give an unknown answer. You can only use the following two actions:
(1) Search[Keyword]: To retrieve relative information based on the given question.
(2) Finish[Answer]: When the observations are sufficient to answer the question, return the
final answer and finish the task.

Few-shot examples

Inputs:
Question: { Q}
Output:Initial plan S(t)

A.3.2 RELATION SELECTION PROMPT

Prompt Template: Relation Selection

Instruction: Please provide the relevant relations to the question "{Q}" and suggested
relation in current action "{A_t}".
Candidate Relations: {r1, r2, ..., rn}

Few-shot examples

Output: {Relevant relations}

A.3.3 ENTITY SELECTION PROMPT

Prompt Template: Entity Selection

Instruction: Based on the question "{Q}" and predicted observation "{O_t}", choose the
most plausible target entities.
Candidate Entities: {e1, e2, ..., en}

Few-shot examples

Output: {Entities}

A.3.4 VERIFICATION PROMPT

Prompt Template: Stepwise Verification

Instructions:You are given a set of knowledge triplets and an LLM-generated reasoning
step. Analyze whether it is necessary to revise the LLM’s observation. Your response must be
in valid JSON format including keys "Revise" and "Reason". If "Revise" is "Yes",
include a corrected "Revised Observation" field.
Predicted observation from LLM: {}
Knowledge Triplets: []
Few-shot examples

Output Format (JSON):
{

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

"Revise": "Yes" or "No",
"Reason": "...",
"Revised Observation": (only if "Yes")

}

A.3.5 REVISION PROMPT

Prompt Template: Local Revision

Instruction: You are provided with a reasoning plan for the following question. Based on the
given context, revise the plan as needed to correctly answer the question. You can also adjust
previous steps based on how the observation aligns with or contradicts existing steps.

Few-shot examples

Inputs:
Question: { Q}
Current plans: { S(t−1)}
Current observation:{ Ot}

Output:Revised plan Ŝt

Prompt Template: Global Revision

Instruction: You are provided with a reasoning plan for the following question and a set of
knowledge graph (KG) triplets. The existing reasoning plan might have factual errors. Please
revise the reasoning process completely from Thought 1.

Few-shot examples

Inputs:
Question: { Q}
Current plans: { S(t−1)}
KG triplets:{ O1:t}

Output:Revised plan S(t)

Prompt Template: Lookahead Revision

Instruction: You are provided with a reasoning plan for the following question and future
relations as reference. Based on the given context, revise the plan as needed to correctly
answer the question.

Few-shot examples

Inputs:
Question: { Q}
Current plans: { S(t−1)}
Lookahead relations:{ Rt+1}

Output:Revised plan S(t)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Prompt Template: Mixed input

Instruction: You are provided with a reasoning plan for the following question, a set of
knowledge graph (KG) triplets, and future relations as reference. Based on the given context,
revise the plan as needed to correctly answer the question.

Few-shot examples

Inputs:
Question: { Q}
Current plans: { S(t−1)}
Lookahead relations:{ Rt+1}
KG triplets:{ O1:t}

Output:Revised plan S(t)

B DETAILS OF CONTEXT SELECTOR

B.1 ALGORITHM AND BONUS FORMULATION

Our selection is performed via a modified UCB algorithm that incorporates reward-driven updates
and KG-aware priors, as shown in Algorithm 2. We extend the classical Upper Confidence Bound
(UCB) algorithm to incorporate domain-specific priors for KG reasoning. Specifically, for each
context-selection strategy c ∈ C, the score at step t is computed as Eq. (2) in Section 3.4, where each
additional bonus term is defined below.

Entropy-aware Bonus. To encourage global planning under high answer uncertainty, we define a
bonus term based on the entropy Ht of the answer distribution at step t:

Bent(Ht) = λent · [Ic=global · σ (a(Ht − b)) ,) (9)

where Ht is the normalized entropy of the current answer distribution. The sigmoid function σ(x) =
1

1+e−x ensures a smooth transition of reward scaling. Constants a = 6 and b = 0.5 control the
steepness and center of the response curve, respectively.

KG-aware Bonus. To prevent inefficient exploration due to over-deep search or entity redundancy,
we incorporate a KG-aware penalty term that discourages excessive reasoning depth and repeated use
of entities:

BKG(t, Erep) = λKG ·
[
Ic=global · (δ · Erep)− Ic=lookahead · tanh

(
κ · t

Td

)]
, (10)

Here, c ∈ {lookahead, global} denotes the current strategy, t is the current reasoning depth, and Td is
the expected maximum depth. The binary variable Erep ∈ {0, 1} indicates whether the retrieve agent
revisits a previously retrieved entity and results in a loop. The constants δ and κ control the penalty
strength for repeated entities and the steepness of the depth-based penalty curve, respectively. In our
experiments, we set δ = 0.2 and κ = 4. The indicator function Ic=· activates the corresponding
bonus based on the selected strategy.

Strategy Diversity Penalty. To avoid excessive reliance on a single context strategy, we incorporate
a diversity-based penalty term that discourages repetitive selection. This is computed based on the
number of times each strategy has been chosen within the past k revision steps:

Bdiv(c) = −λ(c)
div · countk(c), (11)

where countk(c) denotes the number of times strategy c has been selected in the last k steps. We apply
a strategy-specific coefficient λ(c)

div , where c ∈ {Local,Lookahead,Global}, allowing differentiated
regularization strength depending on the relative risk of overuse for each strategy.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 2: KG-Aware Context Selection via Modified UCB
1: Input: Strategy set C = {Local,Lookahead,Global}, initial plan steps T , expected depth Td ;
2: Initialize: N [c]← 0, R[c]← 0, countk[c]← 0, N ← 0, P ← ∅;
3: for t = 1 to T do
4: Compute entropy Ht and normalized depth dt = t/Td;
5: while νt < reward_threshold do
6: foreach c ∈ C do
7: if N [c] = 0 then
8: Score[c]← +∞ ; // Ensure initial exploration
9: continue

10: end
11: Compute UCBt(c) using Eq. 2;

// Context-aware bonus terms:
// Bent(Ht) from Eq. 9
// BKG(t, Erep) from Eq. 10
// Bdiv(c) from Eq. 11

12: Score[c]← UCBt(c);
13: end
14: ct ← argmaxc∈C Score[c] ; // Select best context strategy
15: Generate revised plan S using ct;
16: P ← P ∪ {S} ; // Append revised plan to candidate pool
17: Compute reward νt using Eq. 4;
18: Update:;
19: R[ct]← R[ct] + νt;
20: N [ct]← N [ct] + 1, N ← N + 1;
21: countk[ct]← countk[ct] + 1;
22: end
23: T ← len(S) ; // Update plan length after success
24: end

B.2 TASK-SPECIFIC REWARD

We define the task-specific reward νlocal as a weighted aggregation of five interpretable metrics, each
designed to capture different aspects of reasoning quality at step t. These metrics jointly assess
factual accuracy, semantic relevance, and reasoning efficiency, based on the alignment between the
revised plan S(t), the question Q, and the knowledge graph feedback Ot.

• Validation: Measures the factual correctness of the predicted observation Pred_Ot using a
contradiction classifier. Specifically, we employ the DeBERTa-large-MNLI model to assess
whether the prediction contradicts or aligns with the KG feedback. Additional penalties are applied
for degenerate outputs such as “none,” “unknown,” or empty spans.

• Quality: Evaluates the semantic relevance between the predicted observation Pred_Ot and the
input question Q.

• Efficiency: Penalizes redundancy across reasoning steps by comparing the semantic similarity
of the current thought st with all previous thoughts s1:t−1. High overlap in meaning reduces the
reward, encouraging non-redundant, progressive reasoning.

• Thought Completion: Assesses whether the current reasoning step is adequately grounded in the
KG feedback Ot. We calculate the similarity between the step’s “Thought” component and the KG
observations using the same embedding model.

• Question Alignment: Measures the overall coherence of the reasoning step S(t) with respect to the
original question Q. This is computed via embedding-level similarity to ensure that each revision
remains question-centric.

For all similarity-based metrics, we compute cosine similarity between sentence embeddings obtained
from a pretrained model (msmarco-bert-base-dot-v5).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.3 IMPLEMENTATION DETAILS

B.3.1 HYPERPARAMETER SETTINGS

We summarize below the hyperparameter settings used in our context selection and reward computa-
tion modules.

For the UCB-based strategy selection, we use an exploration coefficient of α = 1.4 to balance
the trade-off between exploration and exploitation. With regard to the three context-aware bonus
terms, we adopt default values based on practical intuition rather than extensive search. Specifically,
the entropy-based bonus is scaled by λent = 0.1, encouraging exploration under high uncertainty.
The KG-based redundancy penalty is set with λKG = 0.1, discouraging repetitive or overly deep
retrieval. For the diversity bonus, we assign strategy-specific coefficients λ(c)

div = {0.05, 0.1, 0.2} for
the Local, Lookahead, and Global strategies respectively, reflecting varying tolerance for repetition.
To evaluate the impact of these weights, we further perturbed them by ±20% and observed only
marginal changes in accuracy (≤ 1.2%) and stable strategy distributions in Appendix E.5, confirming
that VoG’s performance is robust to hyperparameter variation.

The expected reasoning depth is set to Td = 5 for CWQ, and Td = 3 for both WebQSP and WebQues-
tions, reflecting the variation in question complexity and the structural depth of their corresponding
knowledge graphs. For instance, CWQ typically requires longer and more compositional reasoning
plans compared to WebQuestions. In reward aggregation, we use an entropy-based interpolation
factor β = 0.4 for CWQ, and β = 0.2 for both WebQSP and WebQuestions, to control the weighting
between task-specific and confidence-based reward components. The final plan selection threshold is
set to 0.73 for CWQ and 0.77 for the other two datasets, tuning the sensitivity of plan acceptance
to dataset-specific characteristics. Above task-specific values were chosen based on the average
plan lengths observed from a small sample of development questions, and no further tuning was
performed.

B.3.2 EXPERIMENT SETTINGS

In our experiments, we evaluate VoG using three different language models: GPT-3.5 and GPT-4
accessed via the OpenAI API,1 and Qwen2.5, which is deployed locally.2 We set the temperature to
0.3 to reduce generation randomness, and restrict the maximum number of generation tokens to 1024
across all experiments for consistency. The experiments are conducted on an NVIDIA A800 GPU
server.

C DATASETS

We evaluate our method on three widely-used knowledge graph question answering (KGQA) bench-
marks: ComplexWebQuestions (Talmor and Berant, 2018), WebQSP (Yih et al., 2016), and
WebQuestions (Berant et al., 2013). All datasets are constructed on the external knowledge graph
from Freebase(Bollacker et al., 2008) and require multi-hop reasoning to reach the answer. The
statistics of the datasets used in this paper are shown in Table 5.

Table 5: Dataset statistics.
Dataset Answer Type Train Test
ComplexWebQuestions Entity 27,734 3,531
WebQSP Entity / Number 3,098 1,639
WebQuestions Entity/Number 3738 2,032

D BASELINE DESCRIPTIONS

We compare VoG against three categories of baselines:
1https://platform.openai.com/docs
2https://huggingface.co/Qwen

20

https://platform.openai.com/docs
https://huggingface.co/Qwen

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D.1 LLM-ONLY BASELINES

These methods test the inherent reasoning capabilities of LLMs without external knowledge.

• IO Prompting (Brown et al., 2020): This approach performs few-shot prompting using
direct input-output examples without any intermediate reasoning steps.

• Chain-of-Thought (CoT) (Trivedi et al., 2023): It generates intermediate reasoning chains
that help the model arrive at a more accurate final answer.

• Self-Consistency (SC) (Wang et al., 2022): This method samples multiple CoT reasoning
chains and selects the most consistent final answer through majority voting.

D.2 FINETUNED KG-AUGMENTED METHODS

These methods incorporate KG information via supervised learning or fine-tuning strategies.

• UniKGQA (Jiang et al., 2022) unifies KG path retrieval and reasoning by introducing a
pre-training objective based on question-relation matching, enabling shared representation
learning.

• DECAF (Yu et al., 2023) linearizes the knowledge base into text-like sequences and retrieves
relevant subgraphs using text-based retrieval. It jointly generates both logical forms and
direct answers, combining the strengths of symbolic and generative reasoning.

• KD-CoT (Wang et al., 2023b) introduces a retrieval-augmented CoT framework, where an
LLM queries a retriever for external knowledge and refines its reasoning chains based on
returned answers, improving accuracy and credibility.

• RoG (Luo et al., 2024b) employs a fine-tuned LLM to generate reasoning plans based on
the KG. These plans guide the retrieval of faithful evidence from the KG, improving the
factual alignment of the reasoning process.

• KG-Agent (Zhao et al., 2024) uses a fine-tuned planner within a tool-augmented agent
framework, enabling iterative interaction with KG APIs for multi-hop question answering.

D.3 AGENT-BASED KG-AUGMENTED METHODS

These methods utilize LLMs as agents to guide reasoning over KGs through prompting, without
requiring fine-tuning.

• ToG (SUN et al., 2024) treats an LLM as a agent that performs beam search over the KG. It
iteratively expands and scores candidate paths to discover the most promising reasoning
trajectories.

• PoG (Chen et al., 2024) decomposes the input question into structured subgoals, which are
then used to guide step-by-step retrieval and reasoning. Additional memory and reflection
mechanisms are introduced to enhance coherence and accuracy.

We emphasize that VoG is a model-agnostic framework that does not require fine-tuning, and is
directly compatible with both open-source and proprietary LLMs.

E ADDITIONAL ANALYSIS AND ABLATION STUDY

In this section, we provide a deeper ablation to further examine the behavior and effectiveness of the
proposed VoG framework beyond the main experimental results. All experiments are conducted with
GPT-3.5 for consistency. Together, these ablation studies offer fine-grained insights into how each
design choice contributes to VoG’s overall accuracy, robustness, and efficiency.

E.1 REVISION SIGNAL ANALYSIS

To better understand the distribution and necessity of revision across reasoning steps, we analyze
how often the verification module flags reasoning steps for revision. We compare the revise signals

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

generated by the LLM-based verifier (GPT-3.5) and a lightweight PLM-based verifier (e.g., DeBERTa-
based NLI model(He et al., 2021)). Figure 5 visualizes the distribution of revision signals across
three datasets, segmented by the source of verification. The outer ring distinguishes between samples
that triggered a revision signal and those that did not, while the inner ring further breaks down the
revision-triggering cases into those suggested exclusively by the LLM verifier, the PLM verifier, or
by both. This visualization highlights the complementary nature of the two verifiers, as well as the
relative proportion of agreed versus disagreed signals.

Figure 5: Distribution of revision signals across datasets. The outer ring shows the overall proportion
of examples requiring revision, while the inner ring indicates the source of the revision signal (LLM
only, PLM only, or both).

E.2 DETAILED EFFICIENCY ANALYSIS

To provide a finer-grained view of efficiency, we further analyze the token usage distribution across
different stages of VoG. Specifically, we separate the tokens consumed by planning, retrieval, verifi-
cation, and revision, and report their proportions relative to the total tokens. Figure 6 presents the
results on CWQ and WebQSP with GPT-3.5, based on a representative sample of test data. We find
that initial planning consistently accounts for only a small fraction of the total tokens, whereas the
relative costs of retrieval, verification, and revision vary across datasets.

Initial Plan

19.2%

Retrieve

22.2%

Verify

24.5%

Revise

34.2%

CWQ Token Usage by Stage

Initial Plan

15.5%

Retrieve 19.6%

Verify

32.4%

Revise

32.4%

WebQSP Token Usage by Stage

Figure 6: Stage-wise token distribution of VoG on CWQ and WebQSP. Each slice shows the proportion
of tokens consumed by initial planning, retrieval, verification, and revision relative to the total.

E.3 STRATEGY-LEVEL PERFORMANCE ANALYSIS

In contrast to the isolated strategy end-to-end comparison in Section 4.3, here we analyze the
effectiveness of different strategies under the adaptive MAB framework. We first compute the per-
iteration revision success rate, defined as the percentage of revisions that successfully correct an

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

initial error, considering only the instances where the prior plan’s answer was incorrect. As shown in
Table 6, all three strategies show comparable revision success rates.

Table 6: Revision success rates (%) for each strategy, computed as the proportion of revisions that
successfully corrected an error in each attempt.

Strategy CWQ WebQSP WebQuestions
Local 26.0 38.6 27.0
Lookahead 25.9 36.8 27.9
Global 26.1 33.6 28.5

We then examine which strategy contributes to the final answers produced under the MAB setting.
Figure 7 reports the proportion of correctly answered questions attributed to each strategy, highlighting
their complementary roles in the overall framework.

Figure 7: Strategy-specific answer accuracy under the MAB framework across three datasets. Each
bar represents the proportion of correctly answered questions attributed to a given strategy.

E.4 ABLATION ON BONUS TERMS

We evaluate the contribution of each component in our KG-aware UCB scoring mechanism by
conducting ablation studies on the CWQ dataset. Specifically, we consider three variants: (i) removing
all KG-aware prior terms, (ii) removing only the diversity-aware bonus, and (iii) removing both,
effectively reducing our scoring function to the standard UCB formulation (Auer et al., 2002). Table 7
reports the performance degradation under each variant. The results demonstrate that incorporating
KG-specific priors and diversity control leads to more effective context selection, ultimately enhancing
reasoning accuracy.

Table 7: Ablation study of UCB bonus terms across datasets.
UCB Variant CWQ WebQSP WebQuestions
Modified UCB (all bonuses) 64.7 83.2 63.0
w/o KG-aware priors 64.2 77.7 60.2
w/o Diversity 63.8 77.3 59.4
w/o both(UCB) 63.0 74.7 58.9

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

E.5 ROBUSTNESS OF MODIFIED UCB

To assess the robustness of our UCB formulation, we perturbed the weights of the context-aware
bonus terms by ±20%. Across all perturbation settings, VoG consistently outperforms other GPT-
3.5-based baselines, and the performance fluctuations remain marginal (≤ 1.2% in accuracy). This
confirms that our approach is robust to moderate changes in weighting. Tables 8 and 9 report the
accuracy, average plan length, and average strategy counts under each perturbation for CWQ and
WebQSP, respectively.

Table 8: Robustness analysis of UCB bonus weights on CWQ.
Weight

Perturbation
Accuracy

(%)
Avg Plan
Length

Avg Strategy Counts
(Local / Lookahead / Global)

+20% 63.5 3.49 1.60 / 1.22 / 1.21
–20% 63.6 3.52 1.59 / 1.21 / 1.15

0% 64.7 3.62 1.69 / 1.26 / 1.22

Table 9: Robustness analysis of UCB bonus weights on WebQSP.
Weight

Perturbation
Accuracy

(%)
Avg Plan
Length

Avg Strategy Counts
(Local / Lookahead / Global)

+20% 82.4 2.76 1.35 / 0.83 / 0.70
–20% 83.2 2.78 1.34 / 0.81 / 0.66

0% 83.2 2.80 1.35 / 0.80 / 0.63

E.6 ABLATION STUDY ON REWARD DESIGN

We conduct two sets of ablation experiments to evaluate the contribution of different reward compo-
nents used in our MAB-based context selection.

Task-Specific vs. Confidence-Based Reward. We first compare the performance of the task-
specific reward and confidence-based reward in terms of their ability to guide the selection of
high-quality plans. Specifically, we report the accuracy of the highest-scoring plan from the full set
of candidates P under each reward formulation. Note that this includes all plans proposed throughout
the iterative reasoning process, regardless of whether they were ultimately accepted or discarded. As
shown in Table 10, the confidence-based reward generally achieves better performance, indicating a
stronger alignment with answer correctness. Additionally, we compute the mean entropy of answer
distributions aggregated over all revision steps. This metric captures the average level of uncertainty
during reasoning across datasets. It is important to distinguish this analysis from the actual decision
process in our MAB-based controller. During inference, the final answer is produced by the plan
selected at the last revision step. Specifically, the one that exceeds the reward threshold and is chosen
based on dynamic strategy selection. In contrast, this ablation purely evaluates each reward’s ability
to assign higher scores to more accurate plans within the full candidate pool.

Table 10: Accuracy (%) of the plan selected by different reward methods, and corresponding answer
entropy.

Reward Method CWQ WebQSP WebQuestions
Task-specific reward 56.5 75.9 59.1
Confidence reward 60.4 79.1 62.4

Entropy (avg.) 0.37 0.34 0.32

Component-wise Ablation of Task-Specific Reward. To understand the role of each component in
the task-specific reward design, we perform a leave-one-out ablation study. As shown in Table 11,
removing any individual component leads to a drop in accuracy, confirming the necessity of all five
elements. These results highlight the importance of penalizing hallucinated or contradictory outputs
and aligning the reasoning step with the input query.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 11: Ablation Accuracy (%) on Task-Specific Reward across Datasets
Setting CWQ WebQSP WebQuestions
Full Reward 56.50 50.61 75.60
w/o Quality 52.41 49.47 71.45
w/o Thought Completion 52.66 49.82 70.35
w/o Efficiency 52.49 50.53 71.29
w/o Question Alignment 52.15 49.47 70.98
w/o Validation 51.13 48.07 68.61

F ADDITIONAL CASE STUDY

F.1 ADDITIONAL CASES

Beyond the representative case analyzed in Section 4.5, we also examine additional examples that
highlight how different revision strategies become effective under different conditions. Figure 8
presents two additional cases using Qwen2.5-7B. The upper case shows how future relations provide
useful guidance to revise the plan, while the lower case demonstrates that they may instead introduce
distraction. We also observe that the Local strategy often works well in earlier steps when explicit
evidence is available and competing candidates exist, as in the lower case, where lightweight local
correction prevents unnecessary detours.

Together, these examples highlight both the potential and risks of relying on broader context, further
underscoring the importance of adaptive strategy selection. These examples further highlight the
difficulty of predicting which context will be most effective, reinforcing the importance of dynamic
strategy selection. We also note that although intermediate answers at non-terminal steps are not final
outputs, their errors can mislead subsequent reasoning and incur unnecessary computational cost.

Q1：What	country	bordering	France contains	an	airport	that	serves	Nijmegen?
Current	depthNext	step	relations:

Co
nt
ex
t

Nijmege
n

partially_containedb
y

Weeze	
Airport Germany

second_level_divi
sion_of

location.containedby

Europe

Retrieved	Chains: Current	plan:

Re
vi
si
on GlobalLookaheadLocal

Thought	2:	Nijmegen	is	a	city	in	Netherlands which is located
in Europe.	I	need	to	search	Netherlands.
Action	2:	Search[Netherlands]

Thought	2:	The	airport	serving	Nijmegen	is	
Weeze	Airport.	I	need	to	determine	the	country	
where	Weeze	Airport	locates.	Action	2:	
Search[Weeze	airport]

Thought	2:	Nijmegen	is	a	city	in	Netherlands.	
I	need	to	search	the	airport	in	Netherlands.
Action	3:	Search[Netherlands]

Thought	1:I	need	to	find	out	which	countries	border	
France	and	contain	an	airport	that	serves	Nijmegen
Action	1:	Search[airports	serving	Nijmegen,	
countries	bordering	France]
Observation	1:	(Nijmegen,	located	in,	Netherlands),	
(Nijmegen,	located	near,	Nijmegen	Airport)	
……
Finish[Netherlands]Depth	1 Depth	2

France Netherlands

aviation.airport.serves

nearby_air
ports Weeze

location.
containe

dby Europe

Predict	answer:	Netherlands Predict	answer: Netherlands✅Predict	answer:	Germany

Q2：Which	of	team	owners	Tom	Hicks	sports	team	are	in	the American	League	West?

Current	depthNext	step	relations:Retrieved	Chains: Current	plan:

GlobalLookaheadLocal
Thought	2:	Tom	Hicks	owns	the	Texas	Rangers.	
Texas	Rangers	are	indeed	members	of	the	
American	League	West.
Action	3:	Finish[Texas Rangers]

Thought	2:	I	have	identified	that	Los	Angeles	Angels	of	
Anaheim	and	m.0crtd21	are	members	of	the	American	
League	West
Action	3:	Search[Los	Angeles	Angels	of	Anaheim,	m.0crtd21]

Thought	2:	I	have	identified	that	Tom	Hicks	
owns	the	Texas	Rangers,	which	are	part	of	the	
American	League	West.
Action	3:	Finish[Texas	Rangers]

Thought	1: Identify	the	teams	in	the	American	
League	West
Action	1:	Search[American	League	West	teams]
Observation	1:	"(Los	Angeles	Angels,	member_of,	
American	League	West,	(Oakland	Athletics,	
member_of,	American	League	West)
……
Finish[Oakland	Athletic]

Predict	answer: Texas	Rangers Predict	answer: Texas	Rangers ✅Predict	answer:	Los	Angeles	
Angels	of	Anaheim

❌

Co
nt
ex
t

Re
vi
si
on

sports_team.owne
r	 Texas	

RangersTom	Hicks

American	
League	
West m.0crtd21

Los	Angeles	
Angels	of	
Anaheimbaseb

all_di
vision

.team
s sports_team.owner_s	 Arte	

Moreno

Seattle	
Mariners

❌❌

✅

sports.sports_league.teams

basebal
l_divisio

n.teams

league_participation.team

Figure 8: Additional two case studies with Qwen2.5-7B, illustrating how different revision strategies
become effective under different conditions.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

F.2 CASE COMPARISON WITH BASELINES

While Section 4.5 presents a strategy-level case study highlighting VoG’s internal context selector,
here we provide a complementary example comparing VoG against two external agent-based baselines,
ToG and PoG. Figure 9 illustrates the question, retrieved triplets, and intermediate reasoning process
for each method. This example highlights how VoG’s iterative verification and context-aware revision
mechanisms help mitigate hallucinations and enable correction of intermediate errors.

Both ToG and PoG fail to produce the correct answer in this example, but for different reasons. ToG,
which conducts beam search over KG triplets by prompting an LLM to score candidate paths, retrieves
facts such as (France, location.location.containedby, Europe) and (Nijmegen, second_level_division,
Netherlands). However, lacking structured planning or subgoal decomposition, it prunes valid paths
prematurely and incorrectly concludes that insufficient information is available.

PoG performs better in retrieval, identifying facts like (Nijmegen, location.location.nearby_airports,
Weeze Airport). However, it suffers from LLM hallucination, prematurely terminating the reasoning
process and erroneously predicting the Netherlands as the final answer without validating supporting
facts.

In contrast, VoG successfully answers the question by employing three key mechanisms: (i) an initial
reasoning plan that explicitly outlines the intended depth or retrieval, (ii) stepwise verification that
checks the factual correctness of each intermediate step against retrieved KG triplets, and (iii) a
context-aware revision strategy, such as lookahead, which dynamically adapts retrieval and plan
updates. These allow VoG to refine incorrect steps and extend reasoning depth when necessary,
leading to a factually grounded and correct answer.

Q：What country bordering France contains an airport that serves Nijmegen?

Retrieved	triples:	[France,	location.location.containedby,	Europe],	[France,	location.location.containedby,	
Western	Europe],	[France,	location.location.geolocation,	Unnamed	Entity],[Nijmegen,	second_level_division,	
Netherland]	
Reasoning: Based	on	the	given	knowledge	triplets,	there	is	insufficient	information	to	answer	the	question.

ToG

Retrieved	triples	(depth	1)	:	[Nijmegen	,location.location.containedby,	Netherlands], [France,	location.location.
containedby,	Europe],	[Nijmegen	,	location.location.nearby_airports,	Weeze	Airport]
Reasoning：[LLM	hallucination	about	the	stopping	criterion]{	"A":	{	"Sufficient":	"Yes",	"Answer":	"Netherland
s"	},	"R":	"The	country	bordering	France	that	contains	an	airport	serving	Nijmegen	is	the	Netherlands."	}

PoG

VoG

Thought	1:I	need	to	find	out	which	countries	
border	France	and	contain	an	airport	that	serves	
Nijmegen
Action	1:	Search[airports	serving	Nijmegen,	
countries	bordering	France]
Observation	1:	(France,	located	in,	Europe)
(Nijmegen,	located	in,	Netherlands),	(Nijmegen,	
located	near,	Nijmegen	Airport)	
Thought	2:	The	airport	serving	Nijmegen	is	
Weeze	Airport.	I	need	to	determine	the	country	
where	Weeze	Airport	is	located.
Action	2:	Search[Weeze	airport]
Observation	2: (Weeze	airport,	in	Germany)
Thought	3:	I	have	found	that	Weeze	Airport	
serves	Nijmegen	and	is	in	Germany,	which	
borders	France.
Action	3:	Finish[Germany]

Nijmegen

partially_contained
by

Weeze
Airport

Germany

second_lev
el_division

_of

loca
tion

.con
tain

edb
y

Europe

Depth 1 Depth 2

France Netherlands

aviation.airport.serves

ne
arb

y_
air
po
rts

Weeze

Topic Entities：France，Nijmegen

(Weeze Airport, serves, Nijmegen)

Verify Agent

Plan
Agent

Figure 9: Case study comparing VoG, ToG, and PoG.

F.3 ANALYSIS OF RECOVERED FAILURE TYPES

To further investigate which types of reasoning failures benefit most from VoG’s verification mecha-
nism, we conducted an additional error analysis. Failure cases were categorized into four types via
annotation assisted by GPT-3.5, with spot-checking for consistency. Table 12 summarizes the results.

We find that hallucinated facts and incomplete evidence are the most effectively recovered failure
types, which aligns with our main claim that stepwise verification and context-aware revision help
mitigate hallucination and premature stopping.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 12: Distribution of recovered failure cases using GPT-3.5 annotation.
Failure Type Description Proportion (%)
Hallucinated fact LLM fabricates a fact not supported by KG evi-

dence.
37.5

Incomplete evidence Answer returned before all necessary evidence is
collected and verified.

27.9

Entity disambiguation error Incorrect entity chosen when multiple candidates
exist.

21.7

Query intent drift Reasoning plan deviates from the original query
intent.

12.9

G LIMITATION

Despite the strong performance of VoG in multi-hop KG reasoning, several limitations remain:

Reliance on KG Completeness: VoG assumes access to a reliable and sufficiently complete KG.
However, real-world KGs that constructed from web corpora are often noisy or incomplete, which
may lead to retrieval failures or factual errors. In future work, we plan to incorporate KG confidence
scores or external sources to mitigate such issues.

Frozen LLM-based Verifier: In this work, we leverage frozen LLMs and PLMs as verifiers, which
may be limited by their pre-training distributions and lack of task-specific tuning. As a result, subtle
inconsistencies may go undetected during stepwise verification. In the future, we plan to explore
fine-tuning LLMs to act as more reliable verification modules and enable stronger factual validation
and more accurate revision signals.

Basic Context Selection Granularity: Our current context selector relies on signals like entropy
and step. Incorporating structural signals from the KG, such as node centrality or subgraph coherence,
may offer finer-grained control over reasoning revision and is worth exploring in future.

H THE USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were used in this work as supportive tools to polish the writing. They
assisted with grammar, clarity, and style, but did not contribute to the design of the methodology,
implementation of experiments, or interpretation of results. Their role was limited to improving
readability, without generating original research contributions.

27

	Introduction
	Preliminary
	Method
	Initialization and Planning
	Stepwise KG Retrieval
	Stepwise KG Verification
	Stepwise Plan Revision
	Context-aware UCB Scoring
	Reward Design

	Experiment
	Experiment Setup
	Main Results
	Ablation Study
	Efficiency Analysis
	Case Study

	Related Work
	LLM-based Agents
	KG-enhanced LLM Reasoning

	Conclusion
	Further Details of VoG Agents
	Pre-defined SPARQL Query
	Entropy-Based Filtering
	Prompt Templates
	Plan generation Prompt
	Relation Selection Prompt
	Entity Selection Prompt
	Verification Prompt
	Revision Prompt

	Details of Context Selector
	Algorithm and Bonus Formulation
	Task-Specific Reward
	Implementation Details
	Hyperparameter settings
	Experiment Settings

	Datasets
	Baseline Descriptions
	LLM-only Baselines
	Finetuned KG-Augmented Methods
	Agent-Based KG-Augmented Methods

	Additional Analysis and Ablation Study
	Revision Signal Analysis
	Detailed Efficiency Analysis
	Strategy-Level Performance Analysis
	Ablation on Bonus Terms
	Robustness of Modified UCB
	Ablation Study on Reward Design

	Additional Case Study
	Additional Cases
	Case Comparison with Baselines
	Analysis of Recovered Failure Types

	Limitation
	The Use of Large Language Models

