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Undo Maps: A Tool for Adapting Policies to Perceptual Distortions
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Abstract
People adapt to changes in their visual field all
the time, like when their vision is occluded while
driving. Agents trained with RL struggle to do the
same. Here, we address how to transfer knowl-
edge acquired in one domain to another when the
domains differ in their state representation. For
example, a policy may have been trained in an
environment where states were represented as col-
ored images, but we would now like to deploy this
agent in a domain where images appear black-and-
white. We propose TAIL–task-agnostic imitation
learning–a framework which learns to undo these
kinds of changes between domains in order to
achieve transfer. This enables an agent, regardless
of the task it was trained for, to adapt to perceptual
distortions by first mapping the states in the new
domain, such as gray-scale images, back to the
original domain where they appear in color, and
then by acting with the same policy. Our proce-
dure depends on an optimal transport formulation
between trajectories in the two domains, shows
promise in simple experimental settings, and re-
sembles algorithms from imitation learning.

1. Introduction
We perceive the world as up-right even though the image
that hits the retina of the human eye is inverted. What if
everything was indeed flipped upside-down? The same ques-
tion, first posed by psychologist George Stratton (Stratton,
1897), has become the focus of many experiments trying to
understand visual perception today. Subjects are tradition-
ally made to wear goggles equipped with prisms in order to
distort their view. These optical illusions can be as subtle
as shifting the visual field by a translation to as extreme as
inverting the visual field altogether (Stratton, 1896; Linden
et al., 1999). In both cases, individuals adapt to the trans-
formation in remarkably less time than it would require for
them to learn basic visuomotor commands from scratch.
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Figure 1. Motivating example. A high-reward seeking policy acts
optimally in the domain where it was trained, but behaves sub-
optimally when the same states (i.e. yellow and blue nodes) are
represented differently.

Although people adapt to their environment all the time, like
when their vision is deliberately inverted, policies trained
with RL struggle to do the same. Consider the problem of
reaching a high-rewarding terminal state in a binary tree as
shown in Figure 1. At every node, the state is represented by
a 0 or a 1 as illustrated and the agent can either move to the
left or to the right child. Starting at the root node, we train
a policy with RL to reach the high rewarding leaf node in
the tree. This policy is trained in a domain where the yellow
nodes are represented as 0 and blue nodes are represented
as 1, so the agent learns the rule π(0) = right and π(1) =
left. We then purposely invert the state representation so
yellow nodes now appear as 1 and blue nodes appear as 0.
As expected, the same policy now behaves quite differently
in the new domain.

In many scenarios, changing how the world is represented
can debilitate a policy: an agent trained to solve a task
from colored images will fail to perform in a setting where
everything appears black and white, or an agent trained to
solve a task from up-right observations will fail to perform
in conditions where everything looks tilted. Just as how
humans can adapt to such perceptual disturbances, a policy
should be able to do the same without having to learn all over
again. Transfer learning in RL is appealing for this reason,
but has not received as much interest as supervised learning
(Daumé, 2007; Ben-David et al., 2010; Weiss et al., 2016).
Transfer in machine learning generally adapts a model to
work well on a new dataset by finding correspondences
between this dataset and the one used for training. This is
different from RL where data typically contains variable-
length sequences and a policy must be adapted to a new
environment online rather than to a new dataset offline.
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Contributions. We consider the setting where domains
differ due to a drift in the representation of the state space,
like the one outlined in Figure 1. Given a policy that has
already been trained to solve a task, we adapt it to such
perceptual distortions with TAIL. Our contributions are:

• Optimal Transport Formulation. We formulate the
problem of transfer learning as matching the trajectory
distributions of a policy acting in the original domain
and in the new domain, respectively. We characterize
the distributional distance with optimal transport (OT)
and use the Dynamic Time-Warping distance as a ground
metric in our OT formulation to handle trajectories with
varying length and dynamics.

• Undo Map as an Abstraction. We explicitly learn the
transformation between domains (i.e. the undo map), so
we can adapt a policy that was unseen during training at
no additional cost. We can also adapt multiple policies
together, each living in the same domain, if they are all af-
fected by the same perceptual distortion. The abstraction
of the undo map provides greater capabilities for tackling
transfer in RL compared to methods that directly adapt
policies (Ho & Ermon, 2016; Xiao et al., 2019; Dadashi
et al., 2020; Fickinger et al., 2021).

• Empirical Evaluation. We construct a grid world envi-
ronment to evaluate the effectiveness of TAIL. We run
our method on three different types of policies from the
source domain to empirically understand when it is easier
to transfer knowledge across domains.

2. Background
2.1. Imitation Learning

RL can solve a variety of control tasks provided that we can
construct informative reward functions. There are many real-
world cases where these reward functions are too difficult to
specify, so imitation learning (IL) attempts to recover poli-
cies from data instead–specifically, demonstrations of expert
behavior which are often available even when rewards are
not. One approach includes Inverse-Reinforcement Learn-
ing (Abbeel & Ng, 2010) where first we estimate a reward
function under which the observed demonstrations are opti-
mal, and second we learn a policy with the estimated reward
model.

2.2. Occupancy Measures

Consider an MDP M := (S,A, p, r, γ, d0), where S and
A are the state and action spaces, p(·|st, at) is the tran-
sition distribution, r : S × A → R is the reward func-
tion, γ ∈ [0, 1) is the discount factor, and d0 is the
initial state distribution. A policy π induces a distribu-
tion ρπ over trajectories τ := (s0, a0, s1, a1, . . . ), where
ρπ(τ) = d0(s0)

∏
t≥0 p(st+1|st, at)π(at|st). The dis-

counted state-action occupancy measure ρπ(s, a) is the
state-action marginal of the trajectory distribution written
as ρπ(s, a) := (1 − γ)π(a|s)

∑
t≥0 P(St = s). Note that

ρ(s, a) uniquely defines a policy π(a|s) := ρ(s,a)∑
a′∈A ρ(s,a′) .

Generative Adversarial Imitation Learning (GAIL) (Ho &
Ermon, 2016) bypasses the step of learning a reward func-
tion, as done in inverse-RL, by reformulating the problem
as matching occupancy measures. From convex duality, IL
can be described by the following optimization objective:

min
π∈Π

max
f∈D

Eρπ [log f(s, a)] + Eρµ [log(1− f(s, a))] (1)

Here, µ is the expert that we intend to imitate with a policy
π in the class Π and D is a set of classifiers in which f :
S ×A → [0, 1] determines the likelihood of a state-action
pair (s, a) being generated from the imitator as opposed to
the expert. In fact, the inner maximization is exactly the
Jensen-Shannon Divergence DJS(ρ

µ, ρπ) up to a constant.

2.3. Optimal Transport

The Wasserstein distance computes the distance between
two distributions p1 and p2 with support in sets X1 and X2

when we have a cost function c : X1 × X2 → R. For the
purposes of this work, we focus on its dual formulation:

Wc(p1, p2) := max
h,g∈F

Ep1
[h(x)] + Ep2

[g(x)]

s.t. h(x) + g(x′) ≤ c(x, x′), ∀(x, x′) ∈ X1 ×X2,
(2)

where F is a function class defined by the geometry that c
induces on X1 ×X2. We will henceforth refer to functions
in F as potentials. As an example, when X1,X2 ⊆ Rd

and c(x1, x2) = ∥x1 − x2∥, the set of functions F in the
variational definition of the Wasserstein distance (2) corre-
sponds to 1-Lipschitz functions. Solving this constrained
optimization problem in practice can prove challenging, so
we consider the regularized objective below,

W̃c(p1, p2) := max
h,g∈F

Ep1
[h(x)]+Ep2

[g(x)]−αEp1×p2
[f(x, x′)]

where α > 0 is a regularization parameter, p1 × p2 is the
product distribution of p1 and p2 (i.e. i.i.d. samples from
each), and f(x, x′) := max{0, h(x) + g(x′)− c(x, x′)}.

3. Methodology
3.1. Optimal Transport Formulation

We assume access to trajectories {τi}Ni=1 ∼ ρµ where µ
is a behavior policy that we intend to imitate. We will
later see that µ need not be an expert as often the case in
IL. Our goal is to find a new policy π that minimizes the
Wasserstein distance W̃c(ρ

µ, ρπ) between the two trajectory
distributions. This time, however, the two sets of trajectories
live in different domains. We model the source and target
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domains as the MDPs MS = (SS ,AS , pS , rS , γ, dS0 ) and
MT = (ST ,AT , pT , rT , γ, dT0 ), respectively. Here, the
agent would have first interacted with MS in order to learn
how to solve the task. Afterwards, the agent would interact
with a target domain MT where its learning objectives will
hopefully have been made simpler due to knowledge of MS .
Our underlying assumption remains that there is structure
shared between MS and MT .

We denote a policy in the source domain with µ : SS →
P(AS) and its trajectory distribution in MS with ρµ. Poli-
cies in the target domain are represented as π : ST →
P(AT ) with their trajectory distribution in MT as ρπ. We
consider source and target MDP pairs (MS ,MT ) which
have the same action space A. Our assumption of a shared
action space is less restrictive than many prior works that
typically assume both shared state and action spaces (Teh
et al., 2017; Moskovitz et al., 2022a), or even shared transi-
tion kernels (Barreto et al., 2020; Moskovitz et al., 2022b).

[Distributional Equivalence] We say two MDPs MS and
MT are distributionally equivalent if there exists an undo
map u∗ : ST → SS and a target policy π(·|s) := µ(·|u∗(s))

such that W̃c(ρ
µ, u∗(ρ

π)) = 0 for all source policies µ,
where u∗(ρ

π) is the distribution of u∗(τ) when τ ∼ ρπ .

Since ρπ is a distribution over trajectories as opposed to
the state-action occupancy measure, we define u∗(τ) :=
(u∗(s0), a0, u∗(s1), a1, · · · ) as applying the undo map state-
wise. The policy π in our definition can be viewed as the
composition µ◦u∗. At any given time t in the target domain,
the agent would act by first undoing the distortion between
domains according to s′t = u∗(st) and then by reusing the
controller from the source domain as at ∼ µ(·|s′t).

3.2. Learning the Undo Map

When (MS ,MT ) are distributionally equivalent and we
have access to µ, we can transfer knowledge across domains
by searching for an undo map where π := µ ◦ u:

min
u∈U

W̃c(ρ
µ, u(ρπ)) (3)

This insight is the basis of our approach. When µ is an
expert with respect to the reward function rS and the reward
remains unchanged in the target domain, we may augment
our distributional objective with rewards from MT . In
all other cases where µ may be any behavior policy, the
objective in 3 solves the problem of finding a policy in MT

that behaves similarly to the one in MS .

The last ingredient needed for a practical algorithm is a
suitable cost function c : ΓS × ΓS → R where Γ is the
space of trajectories in one of the domains. We choose
the Dynamic Time Warping distance (DTW) as our cost
in order to account for the variable length of these trajec-

Algorithm 1 Task-Agnostic Imitation Learning (TAIL)
1: Input: source domain trajectories DS = {τn}Ni=1 ∼ ρµ

and behavior policy µ if available
2: Initialize: undo map uω , potentials hξ1 , gξ2 and policy

µθ if µ is not available
3: while not done do
4: sample target domain trajectories DT = {τi}Ni=1 ∼

ρπ where π := µθ ◦ uω

5: for k = 1 . . .K do
6: compute

W̃ =
1

N

∑
τ∈DS

hξ1(τ) +
1

N

∑
τ∈DT

gξ2(τ)

− α
1

N2

∑
τ∈DS ,τ ′∈DT

[h(τ) + g(τ ′)−DTW (τ, τ ′)]+

7: update potentials with −∇ξ1,ξ2W̃
8: end for
9: update undo map uω with ∇ωW̃

10: update policy µθ with ∇θW̃
11: end while

tories. This distance between two time-series of possibly
different sizes is designed to measure their similarity even
when their dynamics differ(200, 2007). We define the DTW
distance between two trajectories with a unit cost equal to
the Euclidean L2 distance between two states ∈ S.

3.3. GAIL Interpretation

TAIL is designed to transfer a policy in one domain to
another via the undo map, yet it bears strong similarities
with GAIL, an algorithm meant to imitate an expert pol-
icy in the same domain. This resemblance can be ob-
served by considering an alternative objective to Equation
3: minu∈U DJS(ρ

µ, u(ρπ)), where ρ now refers to state-
action occupancy measures. We can further re-write this
objective as follows:

min
u∈U

max
f∈D

Eρπ [log f(u(s, a))] + Eρµ [log(1− f(s, a))]

While the imitator π plays the role of the generator in
GAIL, the undo-map u plays the same role in TAIL. The
discriminator f now classifies whether a state-action pair
belongs to the target domain or the source domain.

4. Experiments
4.1. Reasoning in Grid World

In order to understand the properties of Algorithm 1, we first
consider the navigation task of reaching the bottom-right
corner of an 8-by-8 grid. In this grid world, we represent the
state as the (x, y) position of the agent where (0, 0) denotes
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Source	Domain Target	Domain With	Undo	Map Adaptation	Metrics

2k 4k 6k 8k

Reward

2k 4k 6k 8k

Undo	Map	Error

2k 4k 6k 8k

Wasserstein	Distance

Figure 2. Experiments. We visualize the behavior of three different policies all trained in the source domain. For each policy, we also
visualize its behavior in the target domain when deployed naively versus when deployed with the learned undo map.

its initial location. At any position in the grid, there are
four available actions: move left, move right, move up, and
move down. The agent always moves to the immediate cell
in the direction of the chosen action unless it runs into a
wall, in which case the agent remains at the same place. An
episode terminates either when the agent reaches the goal
(7, 7) or H = 50 timesteps have passed. Finally, we provide
a per-step reward of −1 in order to encourage the agent to
reach the destination as quickly as possible.

From this source MDP MS , we define a related but differ-
ent target MDP MT by considering transformations to the
state space of MS . In particular, we rotate the grid world in
the original domain so in MT every position

(
x
y

)
appears

to be Tθ

(
x
y

)
instead, where Tθ ∈ R2×2 is a rotation matrix

parameterized by a single angle θ. Although we consider a
variety of angles, we only visualize experiments for θ = π

2
because they are much easier to interpret. In this setting,
the optimal undo map u∗ rotates the grid world defined in
MT by −θ in order to undo the transformation between the
two domains, therefore u⋆

(
x
y

)
= T−1

θ

(
x
y

)
. Since Tθ is an

orthonormal matrix, the inverse T−1
θ is equivalent to T⊤

θ .
We can easily observe that for any policy µ acting in the
source domain, rolling out the the policy µ◦T⊤

θ in the target

domain produces a trajectory distribution which when trans-
formed with T⊤

θ would match the trajectory distribution of
µ in the source.

4.2. Interacting with the Source and Target Domains

We assume knowledge of solving the task in MS in the
form of a parametric policy µθ. Although there are many
policies that solve the task of reaching the destination in the
grid, each one may take a different path. We specifically
consider three kinds of interaction with the source domain.

Low-Entropy, Optimal Behavior The agent tends to take
the same route to the destination, reaching there as quickly
as possible but only ever visiting a few of the cells in the
grid. We train a low-entropy, optimal policy in the source
domain with PPO (Schulman et al., 2017).

High-Entropy, Optimal Behavior The agent takes various
paths to reach the destination, visiting a majority of cells
in the grid. Although each route is different, the agent
reaches the target with minimal steps. We train a high-
entropy, optimal policy in the source domain with a discrete
action-space formulation of SAC (Haarnoja et al., 2018).

High-Entropy, Sub-optimal Behavior The agent again
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visits many cells in the grid, though this time it does not
necessarily reach the destination as quickly as possible. At
times, the agent even fails to reach the target and instead
runs into a wall. In order to recover a high-entropy, sub-
optimal policy, we train a policy in the source domain with
SAC for only a few epochs.

We visualize each of the behaviors described above in our
grid world. Figure 2 depicts three columns and three rows,
where the first column shows the trajectory distribution of
a policy µθ trained in the source domain, the second col-
umn shows the trajectory distribution of the same policy
now acting in the target domain, and the last column shows
the trajectory distribution of the policy µθ ◦ uω. Each row
corresponds to a different policy µθ in the source domain
trained to demonstrate either low-entropy and optimal be-
havior, high-entropy and optimal behavior, or high-entropy
and sub-optimal behavior. A path or trajectory is repre-
sented as a line starting at the initial state, highlighted in
blue, and ending possibly at the destination, highlighted in
yellow, or another cell. Frequently occurring trajectories
appear in a darker shade than others.

In the source domain, trajectories from a low-entropy, op-
timal policy tend to be the same, always moving along the
edges of the grid, while trajectories from a high-entropy,
optimal policy all end at the bottom-right corner of the grid
in many different ways. In contrast, trajectories from a high-
entropy, sub-optimal policy look chaotic, often times ending
at a cell other than the destination. In the target domain,
we observe how a policy trained originally in the source
domain behaves when placed in the target domain. Note
that the grid in the target domain is rotated by 90o from the
grid in the source domain. Regardless of the behavior in the
source domain, we see that the same policy never reaches
the destination. Every policy in the source domain fails to
solve the task even once in the target domain.

4.3. Adapting with the Undo Map

We evaluate how well the policies µθ trained in the source
domain MS can be adapted to the target domain MT with
the undo map. Following the procedure in Algorithm 1, our
agent acts in the rotated grid world according to the policy
a ∼ π(·|s) = µθ(·|uω(s)). We visualize the trajectory
distribution of µθ◦uω in the last column of Figure 2. We also
track three important metrics over the course of adaptation:

1. Wasserstein Distance We estimate W̃c(ρ
µ, u(ρπ)) from

sample trajectories in the source and target domains.
2. Target Domain Return We compute Eτ∼ρπ [R(τ)],

where R(τ) :=
∑H

t=0 γ
trTt in order to measure the per-

formance of π := µθ ◦ uω . We use rewards in the target
domain only to compute this metric.

3. Undo Map Error In order to evaluate if we

are learning the correct undo map, we calculate

E(x,y)∼ρµ

[∣∣∣∣∣∣(xy)− uω ◦ Tθ

(
x
y

)∣∣∣∣∣∣2]. Here, the distribu-

tion ρµ refers to the state visitation frequency or occu-
pancy measure induced in the source domain when acting
with µθ. Intuitively, this measures how close the compo-
sition uω ◦Tθ is to the identity function provided that we
have knowledge of Tθ, the transformation applied to the
state space of the source domain in order to construct the
target domain. We use Tθ only as a performance metric.

In our experiments, we find that it is difficult to recover
the optimal undo map from a low-entropy, optimal policy
in the source domain (plots shown in pink). Although the
Wasserstein distance decreases during adaptation, the undo
map error plateaus and the agent never learns to reach the
destination. This is shown in the last grid of the first row
of Figure 2 where trajectories in the target domain after
using the undo map always run into a wall. Surprisingly,
we find that training the undo map proves challenging only
when the source policy has narrow state coverage. For
instance, we are able to learn the undo map very well in the
case where the source policy has high entropy, whether the
behavior is optimal (plots shown in green) or sub-optimal
(plots shown in purple). This reiterates the idea that the undo
map depends on the source and target domains rather than an
already trained, optimal policy in the original environment.
A policy with enough state coverage in the source domain
can learn the undo map even if the policy is not optimal.
After learning the undo map uω in this way, we can later
compose it with an optimal policy µθ in the source domain
to construct an optimal policy µθ ◦ uω in the target domain.

5. Conclusion
We have so far considered transfer settings where knowl-
edge about the source domain is available as a parametric
policy µθ. When only expert demonstrations {τi}Ni=0 from
the source domain are available, we can again follow the
procedure in Algorithm 1 with the exception that we must
now learn the source policy µθ in addition to the undo map
uω. This works well even when the demonstrations only
cover a small portion of the state space. With these grid
world experiments, we come to the conclusion that our al-
gorithm has two principle use cases: solving the same task
in a new domain from only demonstrations in the original
domain or, more importantly, learning a task-agnostic undo
map which allows for reuse but requires high state coverage
demonstrators.
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